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1. INTRODUCTION  

In charge density studies the problems of analysis cannot be  

separated from problems of representation. The aim of the analysis  

is to obtain chemically and physically meaningful information on  

the structure, bonding and dynamics of the atoms in a crystal. But  

in order to detect this kind of information from the charge density  

we need a clear enough picture of the three-dimensional charge dis-  

tribution function represented by the diffraction data or by the  

model fitted to the data. Problems of visualization of the informa-  

tion may seem physically trivial, but in practice they have proved  

to be essential. The article by Smith, Price and Absarl demonstrates  

these difficulties very clearly while showing different ways by  

which one has tried to overcome them.  

In principle the problem is just the illustration of a real  

function in three-dimensional space, for which we should need four  

dimensions. In the study itself one can resort to three-dimensional  

models and for demonstration purposes time may be useful as the  

third dimension. However, the journals still are the main forum of  

scientific communication, which forces us to restrict into two-di-  

mensional illustrations.  

Smith et al.l demonstrate beautifully, how one can make use of  

modern computer techniques to produce different kinds of perspective  

views and projections to visualize e.g. the development of the shape  

of a molecule, when looked on different charge density values.  

Still, simple two-dimensional contour maps are the most common means  
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of representation and often the only one which can be used when  

computing and plotting facilities are restricted.  

The multipole expansion offers another completely different  

possibility of representation. At present multipole expansions are  

used in many different, often quite sophisticated ways for analysis  

of diffraction data. However, when first introduced by Atoji2 the  

main implication was just their use for representation of the charge  

density. This original purpose has largely been neglected in spite  

of its several obvious advantages.  

In this article we discuss the representational possibilities  

offered by multipole expansions as an alternative to more conven-  

tional map representations and demonstrate, how they can be used to  

obtain quantitative information on significant features of the charge  

density distribution.  

 

2. THE MULTIPOLE EXPANSION  

By multipole expansion of the charge density we mean an expan-  

sion of the form 

  
cf.Kurki-Suonio.3 It is an expansion of ρ(r) around a given origin  

in terms of conventional spherical co-ordinates r,θ,φ using real  

spherical harmonics  

 

 

 

 

The spherical harmonics are well-known standard functions. So,  

the illustration of the behaviour of each term requires only rep-  

resentation of the radial density ρ𝓵mp(r) as a function of the dis-  

tance r from the origin. Given the function ρ(r) and the origin,  

the expansion (1) is unique. Thus, we have a representation of the  

three-dimensional charge density in terms of a set of one-dimen-  

sional functions. This yields a quantitative illustration of the  

charge density around the origin in all directions simultaneously  

in terms of a set of curves ρ𝓵mp(r).  

The perspicuity of this representation decreases rapidly with  

increasing number of terms required. However, taking the origin at  

the site of the atomic center few low-order terms are necessary to 
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represent the charge density of the atom and its close surroundings.  

Moreover, the harmonics can be site-symmetrized i.e. adapted to the  

point symmetry of the atomic site, which effectively minimizes the  

number of terms.3,4  

For the crystal charge density the radial densities around any  

fixed point ro can be expressed in terms of the crystal structure  

amplitudes in the form 

 

Taking ro to be the position of each atom of the asymmetric unit 1n 

succession we effectively get representations of the atomic charge  

densities when the radial densities are looked only at small enough  

distances r. Conventional multipole models used in charge density  

studies involve a division of the crystal charge density into its  

atomic constituents; each is assumed to take the form of a multipole  

expansion. This division and hence the expansions are not unique  

but depend on the assumed motions of the atoms and on the analytical  

form chosen for the radial densities. Such use of the multipole ex-  

pansions always involves some sophisticated interpretation of the  

charge density. Eq. (2) does not yield any such division. It just  

gives a pure representation of the crystal charge density as an  

alternative to contour maps, but is concentrated to the region of  

each atom separately.  

The nature of the representation obtained in this way is cer-  

tainly very much different in nature from the map representation.  

The map is more concrete in showing directly the charge density on  

a plane through the unit cell. Chosen proper planes one gets an  

immediate picture about the distribution of electrons in various  

regions. A map is, however, interesting only on a qualitative basis.  

Many planes are needed to cover the whole unit cell, and from a set  

of several maps it is not easy to create a clear view about the  

three-dimensional distribution. The view obtained of the distribution  

even on a single plane depends on the contour values used. and  

it is only through considerable experience one can learn to read and  

to interpret the maps, to discover essential features and to dis-  

tinguish information from artefacts and noise. Even dramatic changes  

of single contour shapes may occur as a result of completely insig-  

nificant changes of the density. On the other hand, significant  

features may be left unobserved by occasional improper choice of  

contour values.  

While the map representation gives a picture of the unit cell  

in slices the multipole representation builds the view of the unit  

cell of three-dimensional pieces, each showing one atom or a sym-  

metric molecule with its immediate surroundings. The representation  
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of each piece is slightly more abstract since it does not immediately  

relate density values to certain points of the unit cell. Reading  

and interpreting the radial density curves requires a good compre-  

hension of the behaviour of the symmetrized spherical harmonics in  

order to get the three-dimensional mental picture.  

On the other hand the representation is quantitative. Large  

changes of radial density curves indicate significant changes of  

the density distribution and any significant features are very  

unlikely to remain unobserved. The information is given in an ana-  

lysed form, since different low-order multipoles are coupled to dif-  

ferent kinds of physical parameters. Also most of the expected in-  

teresting observations concern the motions and bonding of atoms i.e.  

features which are well in the range of the multipole representation  

and are easily described by low-order multipole components.  

Calculation of radial densities through Eq. (2) and plotting  

the corresponding curves is straightforward and easy. No big compu-  

ters or sophisticated computational techniques are necessary. So  

the multipole representation would certainly deserve a much wider  

use than at present.  

 

3. TWO EXAMPLES  

To demonstrate the use of the multipole representation we pre-  

sent two simple examples showing the different steps needed for  

formation and interpretation of the radial densities and comparing  

the representation with the use of the contour maps. We discuss the  

charge densities of the CI- ion in NaCl and of the OH- ion in LiOH  

as they appear on the basis of the data by Göttlicher5 and Göttlicher  

and Kieselbach,6 respectively. The basic information required is  

listed in Table 1. In addition to what is needed for calculation of  

the conventional Fourier series the following basic data must be  

stated or defined for calculation of the multipole expansion:  

1. The center of the expansion ro. This is the position of the atom  

or molecule we wish to study, in this case the atomic site of  

chlorine in NaCl and that of oxygen in LiOH. 

  

2. The site symmetry of the center. In addition to the point group  

(m3m and 4mm) one has to state the orientation of the symmetry  

elements with respect to the crystal axes. It may also be useful  

to pay attention to possible approximate site symmetry as apparent  

from the co-ordination of the nearest neighbours.  

 

3. The local co-ordinate system. This defines the meaning of the  

angular variables (θ,φ) and the explicit expressions of the  

symmetrized harmonics. When adapting the axes properly to the  

symmetry elements of the site. these are either real spherical  
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harmonics or cubic harmonics with specific selection rules as  

indicated by Kara and Kurki-Suonio.4 In both of the present  

examples the natural local axes arc just along the crystal axes  

i.e. have the directions [100],[010],[001].  

4. The multipole components to be calculated. Normally all components  
allowed by the symmetry up to some not very large order l should  

be calculated, cf. Kurki-Suonio.7 No definite rule can be given  

here for the maximum order. In discussion of approximate symmet-  

ries, it is informative to calculate also components allowed by  

the exact symmetry but not obeying the approximate symmetry be-  

cause they indicate to which extent the charge density violates  

this symmetry.8,9  

The calculation of the radial densities (2) for any components  

is then straightforward. The expressions (1) and (2) are valid as  

such even when y𝓵mp are replaced by any spherical harmonics of a  

definite order l, e.g. cubic or icosahedral harmonics. This is useful  

to note in discussing the approximate symmetries where the harmonics  

orthogonal to the symmetric ones may have more complicated expres-  

sions in terms of y𝓵mp. 

Figures 1 and 2 show the radial difference densities for the  

low-order components in our examples. They refer to cubic harmonics  

K𝓵j(θ,φ) and real spherical harmonics Y𝓵mp(θ,φ), respectively, both  

normalized to maximum value 1, so that each curve shows directly  

the relevant contribution to the charge density in the direction  

(θ,φ) where it is largest. They were calculated using Eq. (2) as a  

 

Fig. 1. Low-order radial difference densities of the site-symmet-  

   rized multi pole expansion centered at the chlorine position  

   in NaCl.  
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fig. 2. Low-order radial difference densities of the site-symmet-  

   rized multipole expansion centered at the oxygen position  

   in LiOH.  

 

difference series with coefficients ∆F = Fobs - Ftheor. In case of  

LiOR ∆F000 = 2 must be included because there are two electrons  

missing from the model.  

As far as the charge density of Cl– or OH– is concerned these  

are the results to be discussed. One has to learn to visualize these  

curves as a three-dimensional charge density. Each curve must be  

understood as multiplied by the corresponding harmonics to yield  

the three-dimensional contribution to the charge density. Therefore  

one needs a good acquaintance with the behaviour of low-order  

Legendre polynomials and associate Legendre functions which define  

the θ dependence of ylmp,as well as of the basic symmetry proper-  

ties of the harmonics. Figures 3 a,b,c show the behaviour of the  

cubic harmonics K4, K6 and K8, respectively, corresponding to the  

radial densities of Cl- in Figure 1. The figure shows one octant  

of the surface of the unit sphere mapped on an equilateral triangle  

based on the correspondence x2=a, y2=b, z2=c where a,b,c are the  

distances of a point measured from the sides of the triangle. For  

a good mental picture it is sufficient to note the directions of  

the main maxima and minima.  

So, for instance, we can read from Figure 1 the nature of the  
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Fig. 3 a,b,c. Contour maps of the cubic harmonics K4(θ,φ), K6(θ,φ), 

     K8(θ,φ), respectively, normalized to Max{Kl} = 1 in  

     the first octant. Contour interval 0.2, solid line  

     positive, dashed line negative and dotted line zero.  
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deformations of chlorine as indicated by the data. The spherical  

component Po indicates a slight compression of the ion. In the core  

region, r<l Å, ρ4 shows some transfer of charge from the [111] di-  

rections to the [100] directions. In the outer region, r>1 ... 2 Å,  

which from the point of view of bonding effects ought to be more  

interesting, the contributions to the density seem to be rather  

small. The nature of the 4th and 6th order deformations is, however,  

clear. Both reduce the density in the directions [100], thus effec-  

tively decreasing the overlap of the Cl- and Na+ as compared to the  

spherical ion model. They have partly cancelling effects in the  

[111] directions while the 6th order dominates in the [110] direc-  

tions allowing an expansion of the chlorine towards the neighbouring  

chlorines.  

Correspondingly, in Figure 2 ρ10+ indicates asymmetry of the  

charge distribution in the tetragonal axis direction. ρ20+ shows a  

symmetric elongation of the charge distribution along the tetragonal  

axis. The features at small r dominate the behaviour of both of  

these components, while all contributions look small at larger dis-  

tances, which should be more interesting from the point of view of  

the effect of the hydrogen. (Note that there is no hydrogen included  

in Ftheor.) At about the hydrogen distance it will be necessary to  

pay attention also to the main features of both 30+ and 40+. They  

are similar to those of 10+ and 20+ as described but concentrate to  

a narrower angular range around the tetragonal axis.  

The correspondence between the radial densities and the con-  

ventional map representations is demonstrated in Figures 4a and 4b.  

They show the development of the multipolar charge density of the  

chlorine ion on the lines [100] and [111], respectively, with in-  

creasing number of multipoles as compared to the charge density  

calculated by Fourier series. The set of Figures 5 a,b,c,d show the  

corresponding development of multipolar charge density map on the  

plane x=y through the chlorine as compared to the Fourier map.  

Similarly Figures 6 and 7 a,b,c,d show the development of multipolar  

charge density of the oxygen ion in LiOH along the z-axis and on  

the plane x=0 as compared to the corresponding Fourier representa-  

tions.  

Once the three-dimensional main features have been stated from  

the radial densities (Figures 1,2), their effect is clearly seen in  

the corresponding charge densities (Figures 4-7). It is, however,  

not quite clear how easily one could conclude backwards from the  

one- and two-dimensional representations, what are the main features  

three-dimensionally. Also, the shaping of the contour lines in the  

core region dominates the visual picture, while at the interesting  

distance r=l ... 2 Å it is much more difficult to deduce the essen-  

tial features of the three-dimensional behaviour. For this purpose  

the multipole representation gives the information in a much more  

complete and concise form.  
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Fig. 4 a,b. Truncated multipole expansions of the difference charge  

   density at the chlorine position in NaCl along the  

   lines a) [100] and b) [111], as compared to the dif-  

   ference Fourier series (⦁). The number of terms 1,2,3,5  
   as indicated in the figures corresponds to the maximum  

   order 𝓵 = 0,4,6,10, respectively.  
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Fig. 5 a,b,c,d. Truncated multipole expansions of the difference  

   charge density at the chlorine position in NaCl  

   on the plane x = y up to a) the 4th, b) the 6th and  

   c) the 10th order as compared to d) the difference  

   Fourier series. Contour interval 0.1 e/Å3.  
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Fig. 6. Truncated multipole expansions of the difference charge  

   density at the oxygen pos i ti.on in LiOH along the tetragonal  

   axis as compared to the difference Fourier series. The  

   number of terms 1,2,3,6,10 as indicated in the figure cor-  

   responds to the maximum order 𝓵 = 0,1,2,4,6, respectively.  

  

The only question then remains, how far we can rely upon having  

all important features included in the low order multipoles. To some  

extent this can be judged on the basis of convergence of the multi-  

pole expansion. The nature of the convergence is clearly visible in  

the Figures 4-7. We see that the convergence is very rapid in the  

main part of the atom up to about 1 Å distance from the center.  

In CI- three terms (up to the 6th order) and in OH- three terms  

(up to the 2nd order) are sufficient to reproduce the shape of the  

ion. At larger distances higher orders get more important and, as  

is obvious, close to the distance of the nearest neighbour many  

more multipoles would be needed for reproduction of the Fourier  

series value of the density.  

In the intermediate region, which is important in discussing  

the nature of bonding, a few more multipoles seem to give some con-  

tribution, and there still remain some deviations from the Fourier  

value. It is then important to be able to estimate the significance  

of these less smooth contributions and differences. On general phys-  

ical arguments one would not expect to have strong high order com-  

ponents in the bonding region. Their presence is rather an indication  

of inaccuracies of the data. This is certainly true for any very  

local deviations.  

One should remember that charge density is not a very favour-  

able quantity to judge experimental significance of different   
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features because of the reciprocity of the representation space to  

the space of the experimental data. It is the number of electrons  

contributing in a feature which determines its significance rather  

than value of the charge density.7,l0 From this point of view, the  

radial densities at some distance from the center express more re-  

liably the significant feature. than charge density value. on any  

single line do, because they present an integrated behaviour over  

a whole spherical surface. There are, thus, good reasons to think  

that the smoothing of the Fourier series when presented by a low  

order multipole expansion is not a defect but an improvement of the  

picture, filtering away some unnecessary insignificant ripples.  

This brings us already close to the question about the ordinary  

purpose of the charge density representation. If the question is  

only about getting a clear qualitative over-all picture, then we  

can hardly convince anyone used to the maps to change over to multi-  

poles. But as soon as we come to the quantitative analysis and  

interpretation of the data on basis of the representation, then the  

multipole expansion has some undeniable advantages over the maps.  

4. QUESTIONS OF INTERPRETATION  

An experienced track-finder is able to recognize also the origin  

of various features of his maps. He is able to see differences in  

position and in thermal parameters and many kinds of bonding effects.  

In the multi pole representation different effects are largely con-  

centrated in different components and, thus, even more easily. recog- 

nizable:  

Change of atomic position has a negligible effect on any other  

component than the first order. Moreover, the ratios of the three  

first order components express immediately the direction of the  

displacement, and the magnitude can be derived easily from their  

values at small r.  

Difference in the harmonic temperature factor is visible in  

the zeroth and in the second order. Each of these six components  

indicates a difference of its own recognizable nature. The zeroth  

or monopole term refers to the average isotropic temperature para-  

meter <u2> = (<ux
2> + <uy

2> + <uz
2>)/3. Significant second order terms  

indicate anisotropy of the thermal motion. Assuming the local xyz-  

co-ordinate system to coincide with the thermal axes, 20+ indicates  

a difference in prolateness or <uz
2> - <u2>, 22+ implies necessity  

to correct the non-axiality or <ux
2> - <uy

2>. Rotation of the aniso-  

tropic thermal ellipsoid about the local x-, y- and z-axes gives  

rise to the components 21-, 21+ and 22-, respectively. Each of these  

effects is visible only in the relevant component with negligible  

effect on the others.  
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Fig. 7 a,b,c,d. Truncated multipole expansions of the difference  

   charge density at the oxygen position in LiOH on  

   the plane x = 0 up to a) the 2nd, b) the 4th,  

   c) the 6th order as compared to d) the difference  

   Fourier series. Contour interval 0.2 e/Å3.  
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Fig. 8 a,b. The effect of  

  a) the change ∆z = 0.01 Å of the oxygen position  

  b) introducing prolateness <uz
2> - <u2> = 0.002 Å2  

     of the thermal mot1on of oxygen  

  on the radial densities centered at the oxygen in LiOH.  

To demonstrate this good separation of information we show in  

the Figures 8a and 8b the radial densities caused by a change  

∆z = 0.01 Å in the position of the oxygen in LiOH and by introducing  

a prolateness <uz
2> - <u2> - 0.002 Å2 to its thermal motion, respec-  

tively. Both figures are results of a pure model calculation in-  

volving no experimental data. They show very clearly that conclusions  

on the position and on the anisotropy must be based merely on the  

components 10+ and 20+, respectively. At the same time we recognize  

that the component 20+ in Figure 2 is mostly due to anisotropy of  

the thermal motion. Comparison of the magnitudes would give the  

value 0.0070 Å for the prolateness parameter of the oxygen. Simi-  

larly we can conclude that moving the oxygen from the position  

z = 0.8408 Å by 0.0052 Å down the z-axis would make ρ10+ vanish  

without effecting any other components.  

Reading quantitative information on other effects, say features  

which qualitatively are described as electronic deformations or bond-  

ing effects is also possible although less straightforward. There  

are better means than the radial densities themselves to judge the  

significance of such features, viz. calculation of radial scattering  

factors corresponding to the different multipoles by spherical volume  

partition techniques.7 Also the functions 4πr2ρ𝓵mp(r) show the sig-  

nificance of different features more clearly, since the area under  

the curve is directly related to the number of electrons contributing   
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to the deformation described by the component. Quantitative conclu-  

sions require then knowledge about the integrals of the harmonica  

over their lobes. For instance, knowing that the integral of K4  

over its positive lobes is 2.30 we can conclude from ρ4 in Figure 1  

that the angular transfer of electrons involved in the "core de-  

formation" (r<l Å) is only 0.07, which is at the limit of signifi-  

cance. The corresponding number in the region r = 1...2 Å is 0.3  

electrons, which is significant.  

In our second example the effect of the hydrogen atom is seen  

as an electronic deformation of the oxygen. We already saw that  

visually dominant features can be explained just as small non-  

interesting corrections to conventional parameters. To discuss the  

deformation we have to look at the features which at the first sight  

seem to be small and in fact are small in terms of local density  

values. However, redrawing the components as 4πr2ρ𝓵mp(r) would reveal  

the real relative significance of different features as integrated  

large-scale features. Taking into account the integrals of y𝓵0+  

over their main positive lobes we find that the 10+ -asymmetry of  

OH-, which extends rather far from the center, involves the total  

of only about 0.3 electrons, while the symmetric 20+ deformation,  

beyond the anisotropy effect, is much larger involving about 0.75  

electrons. The 30+ does not add to the integral value of charge  

asymmetry, but it pushes the excess charge closer to about the hy-  

drogen distance. Also, the 40+ does not essentially add to. the charge  

of the symmetric deformation. It makes it to concentrate to a nar-  

rower angular region around the z-axis.  

5. SUMMARY  

Multipole expansions in the sense they have been discussed in  

this paper have been applied on both neutron and X-ray data. They  

have been seen to be most advantageous in case of simple inorganic  

structures. While providing a simple means of representing the charge  

density they give an immediate three-dimensional picture and. at  

the same time, show the information in a well-analyzed form. dif-  

ferent components indicating different kinds of effects. Moreover, 

it is easy to proceed from it into quantitative determination of  

physically and chemically meaningful parameters. One has been able  

to see bonding effects, spherical and aspherical deformations of  

ions,8-15 anharmonicities of motions.9,16 librations and preferred  

orientations of small rigid molecules.17–19  

The easy adaptation of multipole expansions to any symmetries  

makes them valuable ig studying possible approximate symmetries or  

deviations from them.8,9 On the other hand the number of applications  

is still rather small. So far almost every single application has  

revealed some interesting new possibilities or problems. A recent  

study of BeO has proved that even the phase problem of non-centric  
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crystals can be properly treated.9 It seems that as a means of ana-  

lysis the mu1tipole expansion would be most profitable when used  

beside the conventional least squares method to guide the refinement  

process. As a representation it may similarly find its best use as  

a simple complementary method to show quantitatively some interesting  

three-dimensional features, which can be seen from the charge den-  

sity maps only incompletely and qualitatively.  
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