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Abstract. Significance of symmetry in representing real- and reciprocal-space prop-
erties of a crystal and of its constituents is discussed in terms of symmetry eigenfunc-
tiens. The formation of the site-symmetrized multipole expansion for the 32 crystal
point symmetries is shown, and the mutual relations between the real- and reciprocal-
space expansions are discussed. The origin of the symmetry-based phase relations,
equivalences and extinction rules of structure amplitudes is pointed out. Distinction is
made between the accurate and approximate ones arising from the true space-group
symmetry and from the approximate free-particle symmetry of the constituents,
respectively. Finally, the symmetry imposed by reality of charge density and its
violation through anomalous dispersion are discussed in terms of symmetric and
antisymmetric contributions of atomic charge densities.

SYMMETRY AND CONSTITUENTS OF MATTER
Symmetry is the most fundamental property of any
physical system. It is an exact requirement fulfilled by all
observable properties of the system. Particularly, sym-
metry defines the constants of motion. The true sym-
metry is never violated, and any higher symmetry can be
realized only approximately.

The idea of constituents is a general scheme for
“understanding” properties of a physical system. It in-
volves identification of structural units with some free
particles. In principle, a bound particle is never identical
with a free one. Identification is made possible by
characteristic invariants which remain unchanged under
the influence of binding forces. This stipulates that the
internal interactions responsible for the characteristics of
the constituents are stronger than their mutual interac-
tions. Constituents with their free-particle properties,
held together by their mutual interactions, form a zeroth-
order model for the system. The accuracy of this descrip-
tion depends on the degree of invariance of their free-
particle properties.

Nuclei and electrons form a very good zeroth-order
model for matter, since nuclear forces are much stronger
than the electromagnetic interactions. It is just a beauti-
ful surprise of Nature that atoms and molecules are
invariant enough to be treated as constituents of matter.
Since both the internal and the mutual interactions are
electromagnetic it is obvious that the corresponding
zeroth-order model will not be sufficient for detailed
understanding of matter. The changes of atoms and
molecules due to bonding forces are important.

One of the primary aims of charge-density studies is
the observation and characterization of deviations of
bound atoms and molecules from free ones. Basic reduc-
tion of symmetry occurs when a free particle becomes a
part of a larger system. The free-particle symmetry
remains, however, as an approximate symmetry of the

bound particle. It will be violated in a way which exactly
follows the true reduced symmetry and to an extent
depending directly on the strength of the bonding.

Symmetry and its consequences therefore form the
basis for understanding the nature of the bonding prob-
lem. This paper gives a simple approach to symmetry and
its consequences in charge-density studies. Special atten-
tion is paid to violations of approximate symmetries,
since any observation of them would serve as a direct
measure of the deviations from free-particle properties
and, thus, of the bonding effects.

SYMMETRY OPERATORS AND EIGENFUNCTIONS

The basic symmetries correspond to unitary transfor-
mations of the Euclidean space or operators acting on
spatial functions g(r). Table 1 defines four basic sym-
metry operators using alternatively the position vector r
or the corresponding conventional Cartesian and spheri-
cal coordinates chosen according to the symmetry ele-
ments. All symmetry operators can be formed as pro-
ducts of these basic ones.

A unitary transformation corresponds to a symmetry
of the system if the system remains invariant under the
transformation or, formally, if the corresponding
operator U commutes with the Hamiltonian H of the
system, i.e. HU = UH. As a consequence, the statlonary
states ¢, are (or can be chosen as) simultaneous eigen-
functions of any mutually commuting set of symmetry
operators. Formally, this is the source of all the great
simplification won through symmetry:

Let S be the subspace of simultancous symmetry
eigenfunctions belonging to a definite set of eigenvalues
Aiiy. .., Ay of the commuting symmetries U, , ..., U,. We
then know that: the subspaces S, are mutual]y or-
thogonal; the Schrédinger equation Hy = Ey of the
system can be solved separately and independently in
each S;; an arbitrary function ¢(r) has a unique rep-

Table 1. The Basic Symmetry Operators

S. Operation (S. Element)

S. Operator with Definition

Translation (by displacement a)

Rotation (about z axis through «)

Reflexion (in xy plane)

Inversion (through origin as center)

~ Tgr)=g(r—a)
R.g(r,6,¢)=gnb ¢ —a)

ag(x.y.z)=g(xy, —2)
Ig(r)y=g(-r)

Israel Journal of Chemistry Vol 16 1977 pp. 115-123



116

Table 2

. Symmetry Eigenfunctions and Eigenvalues. ng = Ag.

Operator Subspace = eigenfunction Eigenvalue
U Sy = {gat A
T, S.={e*u(r)u(r—a)=u(r) N w
R.. S.=le™u(r)u(r6 ¢—a)=u(rb.¢) A, =e " m=integer
5. S.={glx,y.2)=g(x.y.— 2)} A=
I S.={gr)=xg(—r)} A=l

resentation (r) = = ¢ (r) where ¢, is the projection of v
on S;; for a time-dependent state ¢ (r,t) of the system
{¢; | ;) is time-independent, indicating that the dynamics
of the system will never mix states with different sym-
metry eigenvalues and, particularly, that a symmetry
eigenstate will remain an eigenstate.

Any properly chosen basis sets of the subspaces S
form together the natural basis of representation for the
system taking full advantage of the symmetry. Table 2
lists the eigenfunctions and eigenvalues of the operators
of Table 1 where g denotes an arbitrary function. For a
translation all numbers A with [A | =1 are eigenvalues,
and eigenfunctions are the Bloch functions. Each value
k-ac (- 17.11'] specifies one subspace S,. For rotations
the situation is very much analogous, except that now the
eigenvalues and subspaces are defined by an integer m.
The smallest number n which makes na a multiple of 27
defines the number of different eigenvalues, correspond-
ingnowtom=0,1,....,n—-1

The eigenfunctions of a reflexion and of the inversion
are just the even and odd functions with respect to the
operation with the parity as the eigenvalue.

Complete translational symmetry means invariance
under all translations. This implies honogeneity of all
observable properties and momentum conservation. All
translations commute and the subspaces of their simul-
taneous eigenfunctions are the one-dimensional S, =
{Ce™ 7} where k runs through the whole reciprocal space.
The free particle is therefore an extreme case where the
stationary states, the momentum eigenfunctions, are
uniquely defined by the symmetry. In discussions of
translational symmetry the momentum representation
thus forms the natural basis.

When the translational symmetry is reduced to that of
an electron in a crystal with three basic translations a, b, ¢
the homogeneity is reduced to periodicity. The momen-
tum conservation is lost and replaced by conservation of
crystal momentum. The subspaces of simultaneous eigen-
functions are now the infinite-dimensional spaces Si =
fe* "u(r)} of Bloch functions with arbitrary triply
periodic u(r). The wave vector k runs through the first
Brillouin zone and corresponds to the eigenvalues e e
e **and e ™ of the translations T,, T, and T.. respec-
tively. The plane waves with the wave vectors k +27H,
where H'=ha*+ kb*+ Ic* denotes the reciprocal-
lattice vectors, form a basis of S,

Complete point symmetry involves invariance under all
rotations, reflections, and their combinations including
inversion. This implies isotropy of all observable proper-
ties and conservation of angular mementum L* with all
its components L., L, L, and of parity.

Point-symmetry operations in general do not com-
mute, cf. e.g. Tinkham.' Therefore there is no complete
set of simultaneous eigenfunctions for all of them. The
optimum choice for basis functions is the set of angular-
16
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momentum wave functions, which are the complex spher-
ical harmonics (see footnote next page)

YT(0,¢)=P7(cos8)e™;

=01,

m=0,=1,...
with the normalization

dz (I +[m])
2A+1(I—|m)-

J YT RdQ=

Arbitrary radial functions R(r) can be attached to
them so that each function (1) creates an infinite-
dimensional subspace S, of simultaneous elgcnfuncnons
of the mutually commuting operators L? L. R., &, and
I to the eigenvalues h[(I+ 1), him, e""“' (—1)"™ and
(— 1), respectively.

A free atom or an electron in a free atom is a system
with complete point symmetry. The angular basis (1)
includes the exact symmetry requirement imposed by the
symmetry on the wave functions, and the Schrodinger
equation can be solved independently in each subspace
Sim-

Complete axial symmeltry, the symmetry of a linear
molecule, is an infinite symmetry involving all rotations
Rm and possibly &. plus their combinations including I
which all commute. Conservation of angular momentum
is reduced to conservation of L,. The subspaces S,. and
S.._ to the eigenvalues e ™™ and *1 are spanned by the
subspaces S, with I=mm+2, and [=
m+1,m+3,..., respectively. When point symmetry is
reduced in any other way we come to the finite point
symmetries. Particularly, the site symmetry of a bound
crystal atom is one of the 32 crystal point symmetries.
(The site symmetries occurring in each of the 230 crystal-
lographic space groups are listed in the International
Tables.”) Conservation of angular momentum is now lost,
leaving behind just the conservation of the symmetry
eigenvalues. Still the basis (1) gives the optimum starting
point, first, since it corresponds to the approximate
symmetry, and, second, because the relevant subspaces
of symmetry eigenfunctions are easily obtained by sym-
metrization within each [ separately and consequent
direct summation over L

Translations do not commute with point-symmetry
operations, except for translations parallel to the axis of
rotation or to the plane of reflexion. In crystals the choice
of basis functions can therefore follow only one of them
according to which one is found more important.

SYMMETRIC REPRESENTATION OF SPATIAL OBSERVABLES
In a discussion of wave functions all symmetry eigen-
functions are equally important. Non-commuting sym-
metries complicate the treatment because stationary
states can obey at the same time the requirements of one



commuting set of symmetries only. Different sets yield
different wave functions for the energies, which are
degenerate to a degree defined by the number of existing
different commuting sets. Systematic treatment of this
situation can best be done using group theory, cf. e.g.
Bradley and Cracknell.’

For real physical observables the problem of symmetry
is far simpler. Any spatial observable, say the charge
density p(r), is invariant under all symmetry operations
U; of the system. This means that Up(r) = p(r) or that p
is a symmetry eigenfunction to the eigenvalue 1 of all
symmetry operations of the system. The same is true for
both the static and dynamic density (see Chapter XIV),
for the electronic and the nuclear potential, the thermal
smearing function, etc. We need work just in the sub-
space of completely symmetric functions of the symmetry
of the system. In presence of commuting symmetries
only, this is just the subspace of simultaneous eigenfunc-
tions with all symmetry eigenvalues equal to 1. In case of
non-commuting symmetries it can be found by a simple
symmetrization procedure.

Thus, in complete translational symmetry the plane
wave with k =0, i.e. p = constant, is the only possible
function. This reflects the homogeneity of the free-
particle system. In case of the translational symmetry of a
crystal the subspace of Bloch functions with k = 0 is the
relevant subspace. This says that the charge density must
be triply periodic

p(r+ na+ nb+nse)=p(r)

2
mi,ny =0, %1, %2, )
In terms of the plane-wave basis of this subspace the
allowed functions are the Fourier series

,J_ ~2miH v
= v;Fne (3)

with arbitrary coefficients Fg.

Similarly, rotational symmetry R.. requires p(r) to be
periodic in ¢ with the period a, or p € S,. Reflexion and
inversion allow only even functions with respect to the
corresponding symmetry element, or p € §. etc. Sym-
metrization means that the requirements imposed by all
symmetries are taken into account simultaneously. For
any specific point group the symmetric subspace can be
obtained, for instance, by symmetrization of the basis (1),
as shown in the next section.

In general the symmetrization of a given basis goes as
follows. Let {¢,} be the basis and U, i = 1,. ., N the set
of all symmetry operators of the system Then {S¢.} with
the symmetrization operatorS = (1/N)EX, U, is a basis i in
the subspace of completely symmetric functions. In fact $
is a projection operator projecting any function onto the
symmetric subspace. In general the symmetric basis

obtained will be overcomplete, the functions Se, being
non-orthogonal and linearly dependent. Often the sym-
metrization will be easier if performed in successive steps
with respect to each of the generators of the group.

THE SITE-SYMMETRIZED HARMONICS
The partition of a crystal into atoms or molecules is
ambiguous. Bound atoms or molecules cannot be defined
uniquely, but, whatever the definition, it must for each
atom follow the relevant site symmetry. All spatial
observables of the bound atom/molecule must belong to

117

the completely site-symmetric subspace of functions.
Thus, they must be representable as an expansion in
terms of the site-symmetrized spherical harmonics which
form a basis of this subspace. Since physical variables are
real, it is convenient to take as the starting point instead
of the complex basis (1) the real spherical harmonics*

sm=0,1,....1
)

VYime = P7(coS 9);(:15::(:,1 =0,1,

with the normalization

2 (I+m)!
2041 (I -m)! - ()

e f [Vim=2dQ = (1 + 8,0)

The site symmetrization of the spherical harmonics (1)
or (4) is easily established, because any point-symmetry
operation transforms a spherical harmonic into another
one of the same order I. Thus, each of the symmetrized
S¥up is either a spherical harmonic of order [ or identi-
cally zero. This simplifies the question of overcomplete-
ness since Sy,,,.p and Sy,,,,,, with " # | are automatically
orthogonal and the linear dependences of the symme-
trized basis need be checked only within each order
separately.

The harmonics Y7 are f:igenfunctions of }é,z,.,,‘. ., i
and the rotatory inversion IR .;.,.. Symmetrization of Y7
with respect to any of them conserves those with the
eigenvalue 1 and destroys the others. Because Y7 and
Y, ™ are always conserved together, the resulting “index
picking rules” apply for y,.. as well.

The Cartesian representations

r'y;” L(Z)(x+:y (6)

, 4Pz Re(x +iy)

ryrmsf—-i—)dzm (7)
Im(x +iy)”

show that y,,. are all even or odd polynomials with
respect to each variable with

z-parity = (— 1)'"",

y-parity = +1 for (I, m, =) and

x-parity =(—1)" and (—=1)"" for (Lm,+) and
(L m, —), respectively. Thus, they are eigenfunctions
of &, &, d., R R,., R., and I which only affect the
signs of the coordinates. In symmetrization those with
the eigenvalue + | are preserved.

Table 3 summarizes the picking rules based on these
eigenfunction properties of Y7 and y.,. The operators
listed here are sufficient for generation of any of the 27
non-cubic site symmetries. The completely symmetrized
spherical-harmonics basis for any of these symmetries is

* The nomenclature varies. In general the solutions of .the
Laplace equation V*f =0 are harmonics. In spherical coordi-
nates it has the solutions r'Y, r'"'Y, where Y, = Y, (6. ¢) is any
combination Y, =X, C, V.. Both the solutions and their
angular dependence Y, are generally called spherical harmonics.
To make a distinction one sometimes calls them spherical
volume harmonics and spherical surface harmonics or just
surface harmonics. Further, the name spherical harmonics is
often used specifically either for the functions Y7, (1) or Yimps (4).
The more specific names zonal, tesseral and sectoral harmonics
are used for these sets with m =0; 0<m <{ and m =1,
respectively.*

Kurki-Suonio | Symmetry
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Table 3. Effect of Symmetrization on Real Spherical Harmonics (A, u, j are integers)

Symmetry element Operation Index picking rule for y,.,

Center of symmetry fn (xyz—= —x, -y, —z) (2A,m, =)

p-fold axis || z-axis R,z (I pu, =)

p-fold inversion axis || z IR, ,.,, p even QA pu, ) CA+1,p(p +3), )
p odd (2A, pu, =)

2-fold axis | y-axis

2-fold axis || x-axis

Symmetry plane L z-axis
1 y-axis
1 x-axis

g, (z— —z)
G, (y—=—y)
o (x—= —x)

R, (xz— —x,~z)
Ry (yz— -y, —2z)

CAm +)CA+1,m -
(L2, +)(L1-2j+1,-)
(L1-2), %)

(Lm, +)
(L2, +) (L2p +1, —)

Table 4. Index Picking Rules of Site-Symmetric Spherical Harmonics

Symmetry  Choice of coordinate axes Indices of symmetric y;.,
1 any all (Lm, =)
any A, m, x)
2 2 2 (2w, =)
m mlz (L1-24=x)
2/m 2|z, mLz (2A, 2y, =)
222 2z 2y @] x) CA2u, +), A +1,2u, —)
mm?2 2l z,mLy, (mLx) (L2u, +)
mmm mlz,mly mlx (2A,2u, +)
4 4|z (L4, =)
4 4| z A4, £), CA+1,4u +2, +)
4/m 4| z,mLz A dp, +)
422 4l z2]y( (2A,4p, +), A + 1,41, —)
4mm 4|z, m Ly, (Ldu, +)
42m 4 2z 2| x, (m=xy —yx) A4, +), CA +1,4u +2, -)
m Ly, (2= xyz —yxZ) (A 4w, +), CA+ 1,40 +2, +)
4/ mmm 4 z,m Lz, mLx, (m=xy— yx) @A 4p, +)
3 3 2 (h3p, *)
3 3|z (2A,3p, )
32 3fz2y (@A 3w, +), CA+1,3u, =)
2 x (Bp +2j,3u, +),Bu +2j +1,3u, —)
3m 3 zzmLy (L3m, +)
~ mLlx (L6p, +),(L6p +3,—)
3m 3| z,mLy (2A,3u, +)
mLlx (2A,6p, +),(2A,6u +3, =)
6 6 z (L 6p, =)
6 6)z=@1z,mLlLz) (2A, 6, =), (2A + 1,6 +3, =)
6/m 6| z,mLlz (2A,6u, =)
622 6 z2)yC]|x) A, 6p, +), QA+ 1,64, =)
6mm ol zm Ly (mLlx) (1,6, +)
6m?2 6z, mTy, 2| x) (CA,6p, +), A +1,6u +3, +)
mlx 2| y) (@A, 6p, +),2A + 1,60 +3, ~)
6/mmm 6]z, mLlz, mLly (mLlx) (2A, 64, +)

therefore a set of functions y,.,. It is obtained by simul-
taneous application of the picking rules corresponding to
the group generators. The results are listed in Table 4.
For this table to be applicable one has to define for each
atom a local Cartesian coordinate system adapted to its
site symmetry as indicated in the table.

To obtain the symmetrized harmonics for the five
cubic site symmetries we need one more symmetrization.
The groups 23, m3, 432, 43m and m3m are obtained
from 222, mmm, 422, 42m and 4/ mmm, respectively by
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introducing a 3-fold axis in the [111] direction. This
requires the further symmetrization under cyclic permu-
tation of the coordinates defined as Sf(x,y,z)=
f(x y, 2)+ f(y, z,x)+ f(z,x,y)], which yields sets of
cubic harmonics K;; as given in Tables 5 and 6 up to the
10" order. Several y., lead to the same function K,
reflecting the overcompleteness of symmetrized bases in
general. However, since the functions K, listed contain
each y., just once, they are orthogonal. The normalized
functions K, /N, are identical with cubic harmonics of
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Table 5. Symmetrization of y,., with Respect to a 3-axis in [111] Direction

(Lmp)— SYimp belongs to 23 m3 432 43m  m3m
0,0, +) K, X X x X X
(2,0, +), (2,2, +) 0

3,2, -) K, X X

4,0, +), (4,4, +) K, x X x X x
(4,2, +) 0

(5.2.-), (5.4, -) 0

(6,0, +), (6,4, +) K., X X X X X
(6,2, +), (6.6, +) K- X X

(7.2, =), (7,6, —) K, x X

(7.4, =) 0

(8.0, +), (8,4, +). (8.8, +) K. X x X % X
B2, +), (8.6, +) 0

9,2, =), (9,6, —) Ko, X x

9.4, -), (9.8. —) K., x x

(10,0, +), (10,4, +), (10,8, +) Ko, X x x x x
(10,2, +). (10,6, +), (10,10, +) Koo x x

Table 6. Expressions for Cubic Harmonics

Unnormalized K, (6, ¢)

Normalization constant N}

K,= Yoo = |

K,= ¥Yaz-

K=y +

a = Yao- 168 Yaas

1

K(\J = Yoos — 'ﬁ Yea
1

Kﬁ,Z: Yoz _ﬁyhﬁ#

1
K, = Yo t+ m)ﬁﬁ—

1 1
Ky= y:«(1++m()’m+ +672Ym(4-)
1

Koi= yor — T
Kot = Yioos _ﬁ (Yw,«u + ﬁ )’w.x»)
Koz = Yozt @ ()‘m.m - _'1% y m.m—)

4

2407

7

167

21

27

13

S127 105
1311
2567 567
2567
17-33
5124

=g 165
20487 243 - 5005
9 17
s27 3

21 65
20487 4455
21 247

the types a, a', B, B’ (Kaniy Koz, Kaniiny Kaaira respec-
tively) of von der Lage and Bethe’ and with the one-
dimensional real representations of the cubic groups as
given e.g. by Bradley and Cracknell.’

THE MULTIPOLE EXPANSION

Once the position of an atom in a crystal is known the
crystal symmetry determines its site symmetry and,
hence, the form of the site-symmetrized harmonic expan-
sion of the atomic charge density. If the origin is put at
the atomic position and if a local Cartesian coordinate
system adapted to the site symmetry is used, this expan-
sion can be written in the form

p(r)= Eﬁpmp(r}yw(em (8)

Imp

for any of the 27 non-cubic site symmetries and in the
form

p(r)= 32 o (PK, (6, ) ®)
i Ny

for any of the five cubic site symmetries, where the
indices I, m, p and [, j run through the values indicated
by Tables 4 and 5, respectively. The same form of
expansion is valid for all other spatial observables of the
atom. Since the bound atom cannot be uniquely defined.
neither the radial densities p,,(r) nor p;(r) are unique,
but the form of the expansion is. If we have by some
means defined the atomic charge density p(r) then the
radial densities are obtained from

Do () = NL [ o010 (©)

or

)
Kurki-Suonio | Symmetry
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corresponding to the general way of calculating coeffi-
cients of an orthogonal series.

The expansion (8) or (8') is called the multipole expan -
sion since its terms have a close relation to the multipole
moments of the charge distribution p(r). The quantities

1 3 « +2
Qimp :N—J’P(")"J)’lmp(aa (P)dr:J' Pimp(")"i d?’,
Imp 0
(10)

I ! , (*) . s
4 =R pOrK. ok = [ porar (o)

are called multipole moments in spherical coordinates.
According to the polynomial representation (7) they are
simple linear combinations of the conventional Cartesian
multipole moments of order /. In the lowest three orders
we get, in terms of the monopole moment or the total
charge Q, of the components p,, p,, p., of the dipole
vector and of the components of the quadrupole tensor
Q, = [ Gxx, —r'8,)p(r)d’r,

Goo-=Q/2V'w (11)
qi0+= il\'/mpz (12)
11+ X
11- ¥
G = V5 705 q,,= V5370 u;
21— ¥z
22— xy
(13)

o = %\//5/377(0;; = Q).

The terms with [ =0,1,2,3,4,5,6, etc. of the multipole
expansion are correspondingly called monopole or sca-
lar, dipole or vector, quadrupole, octopole, hex-
adecapole, triacontadipole, hexecontatetrapole, etc.
terms, respectively.

Thus, Tables 4 and 5 indicate directly for each site
symmetry how many independent components there are
in each multipole tensor and, particularly, which of the
multipoles vanish through symmetry.

The approximate free-atom symmetry of the bound
atom corresponds to a spherical charge distribution, i.e.
to the monopole term. Because of bonding the monopole
term of the bound atom will be slightly different from the
free-atom radial density. The arising non-spherical terms
I>0 violate the approximate symmetry reflecting the
nature of the symmetry reduction.

The charge density of the whole crystal can also be
represented as a multipole expansion (8) or (8), as first
suggested by Atoji.® The form of the expansion must
then correspond to the site symmetry of the origin. This
charge density, contrary to the atomic one, is conceptu-
ally unique and is represented by the Fourier series (3).

" Inserting Eq. (3) in (9) or (9") we get, by application of
the general Fourier invariance theorem of the/spherical
harmonics et

J Yi(6, ¢)e?™ "dQ = da(— i)j,(2mSr) Yi(8s, ¢s),
(14)

for the corresponding radial densities
4 (=i) .
(1) = TS, Foi QY (O ). (15)
imp
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Y
ou(r) = LS Fo QrHn K, (6 ), (15)
ij H

where ji(x) is the spherical Bessel function of order L7
We can choose the origin at any atomic site. The phases
of the structure amplitudes Fy just depend on this
choice. Then we can understand the radial densities (15)
or (15°) at small values of r to represent the atom at the
origin. For radii r clearly less than the nearest neighbour
distance, the multipole expansion of the whole crystal
converges rapidly. Few terms are necessary to show the
central atom accurately. The number of terms necessary
for a good representation of p(r) at larger distances
increases rapidly with increasing r.

SYMMETRY IN RECIPROCAL SPACE
In diffraction studies we deal with reciprocal-space
properties of the system like the scattering amplitude or
the Fourier transform

151 [ p(rye e (16)

of the electron charge distribution p(r). The inverse
relation

p(r) = jf(S)e s s (7

is the representation of p(r) in the plane-wave basis.
Consequences of symmetry in reciprocal space can there-
fore also be interpreted in terms of symmetrization of the
plane-wave basis.

The operator U is uniquely defined in reciprocal space
through the statement:

07($) = [ (Op(rle™ (18)

for all f and p related through Eq. (16). By this definition
all equations, e.g. commuting rules and eigenvalue equa-
tions, fulfilled in the real-space representation are valid
in reciprocal space as well. Thus, reciprocal-space eigen-
functions are Fourier transforms of the real-space eigen-
functions and belong to the same eigenvalues.

According to the definition (18) the translation
operator T, has the effect of multiplication by an §-
dependent phase factor:

T.f(S) = e*™ *((S). (19)

For such an operator the subspace of eigenfunctions to
an arbitrary eigenvalue e ™ ® is defined by all functions
that vanish everywhere except on the set of equidistant

parallel planes defined by the equation
a-S=a-S+n;n=0,=1,£2,... . (20)

This is equivalent to stating that in the plane-wave
representation of the corresponding real-space eigen-
functions only wave numbers k with a-k=
—2ma - §,—2mn can be present, which just form the
plane-wave basis for the subspace of the relevant Bloch
functions in Table 2.

All point-symmetry operators preserve their nature in
the Fourier transformation, i.e. rotation is a rotation
about the same axis and through the same angle, reflex-
ion is a reflexion in the same plane and inversion is an
inversion in both spaces simultaneously. The meaning of
this statement will be clear if we define a common
Cartesian coordinate system with dimensionless unit



vectors i, j, k, writing r = xi + yj + zk, § = hi + kj + Ik.
Then we have, corresponding to Table 1:

R..f(S. 05, ¢s) = f(S, 6s, s — a);
G.f(h k1) = f(h k, = 1); If(S)=f(— S).

Thus, the treatment of point symmetry in reciprocal
space is in all details similar to that in real space. The
Fourier invariance (14) of the spherical harmonics, form-
ing the natural bases for any subspaces of point-
symmetry eigenfunctions, is an expression of this in-
variance. The scattering amplitude (16) must belong to
the eigenvalue 1 of all symmetries of the system.

According to Eq. (20) the subspace of completely
symmetrized functions for the crystal translational sym-
metry is formed by functions which vanish everywhere
except at points which lie simultaneously on the three
sets of parallel planesa - S =h,b-S =k, ¢-§=11i.e.at
the reciprocal-lattice points. In analytic form this is
defined by

f(S):;F,,S(SvH) @n

with arbitrary coefficients Fy. In terms of the plane-wave
representation of real-space functions this says that the
wave vectors k = —27H form the basis of the symme-
trized functions as expressed by Eq. (3).

The site-symmetrized bdsis for representing scattering
amplitudes of bound atoms is given also in reciprocal
space by the symmetrized harmonics as defined by
Tables 4, 5, and 6. Thus the atomic scattering amplitude
has the same type of multipole expansion as the atomic
charge density:

F(8)= 3 5 Fne (S )i (B ) (22)

Imp

or

£(8)= 2 5 S IK, (B 05). @2)

U
where the radial scattering amplitudes are obtained from
the scattering amplitude through the equation

fo ()= [ s ean, @

) =3 [ K gde @)
y Jam

The expansion (22) or (22') is obtained by Fourier
transforming the real-space expansion (8) or (8'), showing
that the radial densities and the radial scattering am-
plitudes are related through the Fourier-Bessel transfor-
mation

(=)
Fimp (S) = 4171"[ Pimp (P)jr(27Sr)ridr, (24)

(=)

fi(8)= 4m"f oy (r)ji (27 Sr)ridr. (24")

0

It is worthwhile inserting for the spherical Bessel func-
tion its power expansion. This yields for f.., the power
series

N TN
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showing e.g. that the radial scattering amplitude fi.,
behaves at the origin like S’ with a coefficient propor-
tional to the multipole moment g..¢, given by Eq. (10), of
the system. Vice versa, the multipole moments are
determined by the behaviour of the scattering amplitude
at the origin:

wl _ian 3\ 1 d'fip(S
e = (=13 (13) 1 ) )

§=0

EQUIVALENT REFLEXIONS AND EXTINCTION RULES

Equation (21) summarizes the effect of translational
symmetry on the scattering amplitude of a crystal. It is
concentrated into Dirac deltas of weights Fy, called the
structure amplitudes, at the reciprocal-lattice points H.
This expression must further be invariant under all other
operators of the crystal space-group symmetry. This
involves two kinds of symmetries.

First, there are the site symmetries of different points
of the unit cell. If U, is a point-symmetry operator
belonging to the point r,, then T ,p is invariant under
U, or, written in reciprocal space,

Oufe > 5f($)] = e 2™ *f(S).

When applied to Eq. (21) this says that in the operation
U, any reciprocal-lattice point H is transformed into
another one K, and that the corresponding structure
amplitudes have the phase relationship

Fyx = e’ *"F, 27)

Second, there may be combined symmetries U, Tg involv-
ing a non-lattice translation and a point-symmetry opera-
tion U, with respect to a point r, (any point of the
relevant axis or plane). This imposes invariance of T_,p
under U, T or, written in reciprocal space,

U]ez,nm—r,)‘s)c(s) = ~2mir, Sf(s)

This again requires that U, bring each reciprocal-lattice
point H to another one K and that there be the phase
relationship

errirl 1K*HiFH (28)

between the relevant structure amplitudes.

The phase rules (27) and (28) written for a set of
generators of the space group express in full the require-
ments put by the symmetry on the scattering amplitude
(21) of a crystal.

Each of these rules yields an equivalence rule of
structure amplitudes such that |Fx|=|Fq|. The crystal
point group, which includes all point-symmetry operators
occurring in the crystal space group either as a true
point-symmetry with respect to a point in crystal (type
U,) or as a part of a combined symmetry (type U,), is
thus the symmetry group of | Fy |. (It is not necessary that
the point symmetry of the crystal with respect to any
single point equal the crystal point symmetry.)

Further, for any reciprocal-lattice point H, which is
degenerate in a point-symmetry operation involved in a
combined symmetry (type U,), Eq. (28) yields

Fu=e ™ YF, (29)

(- l)nﬂ_u:n

fmp(S) = dmi’—— [WJ pi,..,,(r)r“z"*'ldr}s"3" (25)

< =0

0 -
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This expresses an extinction rule: Fy =0 unless R - H is
an integer. Thus, each combined symmetry necessary to
generate the space group defines a set of strictly forbidden
reflexions.

These phase rules, equivalences and extinction rules
are all consequences of the symmetry of the crystal and,
hence, exact requirements. For each of the 230 crystal
space groups that can be generated by three translations,
point symmetry operators and combined symmetries,
these rules are listed in the International Tables® under
the title “General”.

Representation of the crystal as a superposition of
atoms does not bring any new aspects of the exact
symmetry of the crystal. Let us for simplicity consider
one kind of atom only. The number p of equivalent
atoms depends on the crystal symmetry and on the
degeneracy of the atomic site in the symmetry. They are
all obtained from one of them, taken as number 1,
through a set of translations and point-symmetry opera-
tions U, as defined by the space group. Their contribu-
tion to Fy can thus be written in the form

P

= 2 e MU f(H).

(30)

Now, the whole crystal symmetry is built in this expres-
sion through the site symmetry of f,(S), the positions R,
the symmetry operations U, which form a subgroup of
the crystal point symmetry, and the reciprocal lattice
{H}. Therefore, if the scattering amplitude f,(S) follows
the site symmetry without any further assumptions, i.e. if
it can be written in the form of the relevant multipole
expansion (22) or (22'), then Eq. (30) does exhibit exactly
those phase relations, equivalences and extinction rules
which were obtained generally from the space-group
symmetry, no less and no more. This is obvious, since in
principle we can just divide the total crystal charge
density arbitrarily into equivalent site symmetric con-
tributions and call such a symmetric unit the “atom’ in
our example

However, i we assume the approximate free-atom
symmetry, then we have a spherical f,(S) and Uf (85)=
fl(S) for all point-symmetry operations U. Equation (30)
is then reduced to

=~ f((H) - "Z. e H (31)

The difference between Eqs. (31) and (30) tells the effect
of approximate symmetry.

Particularly, for special positions R, the sum of expo-
nentials in Eq. (31) may have equal absolute value for
some Py and Fx with K = H but which are not related
through the crystal point symmetry. This is trivially true
if p = 1. As a consequence we may get additional approx -
imate equivalences of structure amplitudes.

Secondly, the sum of exponentials in Eq. (31) may
vanish systematically in a set of reciprocal-lattice points.
Thus, we get additional approximate extinction rules.
They refer to the contribution of one kind of atom and
are specific for each kind. They are all listed in Interna-
tional Tables® under the title “‘Special”’. They are never
exactly true. In simple structures they may give rise to
the occurrence of very weak, almost forbidden reflexions,
like the famous Fa, in the diamond structure.

Conventional talk about reflexions that depend just on
one kind of atom, e.g. Cu reflexions and O reflexions in
Cu,0, is always based on the approximate extinction
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rules and may lead to erroneous conclusions in charge-
density analysis.®®

If violation of the approximate extinction rules (or
equivalences) can be observed, they give a direct meas-
ure of bonding effects or anharmonicity of thermal
motion.”"?

REALITY AS A SYMMETRY
If p(r)isa real function and f(S) its Fourier transform
(16), then the complex con]ugate f*(S) is the Fourier
transform of Ip(r) Because inversion is inversion also in
reciprocal space, this yields

If($)=f*(S).

The reality of the charge density therefore appears as a
symmetry of |f(S)| under inversion, known as Friedel's
law.

If our system has a center of symmetry and we choose
it as the origin, then If(S)= f(§) by symmetry. Com-
bined with the reality condition (32) this yields f*=f
showing that f(S) is also real.

For a non-centrosymmetric crystal, reality of the
charge density gives an additional equivalence rule
|F 4|=|Fyl. For a centrosymmetric one this is already
true due to symmetry. This adds I db a new generator to
the symmetry group of [f(S)|. If {U,, -, UL.} is the
crystal point group then the Laue group {U, IU} of the
crystal is the point group of | f(S)|. For a centrosymmet-
ric crystal the two groups are identical. For a non-
centrosymmetric one the number of elements is double
in the Laue group. In this way the set of equivalent
reﬂexmns consists of two partial sets {SH} and {ISH} =
{—SH}." The equivalence within each is due to sym-
metry; the equivalence of the two sets is due to reality.

The anomalous dispersion causes the coherent scatter-
ing power p'(r) to differ from the charge density p(r).
Since it causes a phase change in the scattering process
p'(r) is complex. Its imaginary component corresponds
physically to a current density rather than a charge
density. All genuine symmetry conditions are still exactly
valid for p'(r) and the corresponding effective structure
amplitudes Fg obey the corresponding phase rules,
equivalences and extinction rules. Only the reality is no
longer accurate for p'—as it is for p—but appears as an
approximate symmetry. Particularly, Eq. (32) is violated
and the two groups of equivalent reflexions are only
approximately equivalent. The difference |Fi|—|F4
where K € {~ SH} differs therefore from zero, and its
value is a direct measure of the violation of the reality of

’

p'.

(32)

SYMMETRIC AND ANTISYMMETRIC COMPONENTS
The connection of complex conjugation with the inver-
sion gives the eigenfunctions of inversion a special role.
The charge density p(r), like any function, can be
represented as a sum of a symmetric and an antisymmet-
ric component:

fPA = T Pa
(33)

p(r)=ps(r)+pa(r); fps=ps,

The Fourier transform of Eq. (33) represents the corre-
sponding division of the scattering amplitude. It is con-
ventional to write

f(8)= fs(8) + ifa(S).

As a consequence of reality of p both fs and f, are real,
as seen from Eq. (32).

(34)



In the multipole expansions (8) or (8') and (22) or (22')
for the charge density and the scattering amplitude,
respectively, the terms with even and odd [ are all
symmetric and antisymmetric, respectively. The division
into even and odd [ series thus corresponds directly to
the divisions (33) and (34). Note that according to Eq.
(24) or (24') the radial scattering amplitudes of the even
and odd terms are real and pure imaginary, respectively,
in accordance with Eq. (34).

The site-symmetric structure factor formalism was, in
fact, first presented in terms of symmetric and antisym-
metric components by Dawson."

When applied to bound atoms the symmetric compo-
nent includes the spherical term corresponding to the
approximate free-atom symmetry, and the antisymmetric
part can occur only because of bonding effects or anhar-
monicity of thermal motion.

The best known type of almost forbidden reflexions is
caused just by the antisymmetric components of off-
center atoms in centrosymmetric structures. Let such an
atom lie at the position R, and have the scattering
amplitude f\(§)= fs + ifa. It has a counterpart at R,=
— R, with f,(S)=If(S)=f1(S)=fs — ifsx. Their com-
bined contribution to the structure amplitude Fy is thus,
according to Eq. (30),

fi(H)e ™ "4 fy(H)e ™ " =
(35)
=2fs(H)cos2nR,-H —2f,(H)sin2#7R,- H

while the approximate Eq. (31) would give just the first
term. For reflexions with cos27R,-H =0 this yields
+2f+(H) while Eq. (31) would give zero. Therefore, if
fa(H) does not vanish due to symmetry, the extinction is
only approximate. For instance, the almost forbidden
reflexions of the hep™"' and diamond" structures and of
tetragonal tin"* are all of this type.

If we take the anomalous dispersion into account, we
naturally can still write Eqs. (33) and (34) for the
scattering power p’ and the effective scattering amplitude
f'. But now ps ph fs and fi will all be complex.
Conventionally we write for each atom f), = f, + AL+ iA”
where f, is the true atomic scattering factor (16) corre-
sponding to atomic charge density and A/, A}, are the real
and imaginary parts of the dispersion correction. Each of
the three terms in f,, must obey the atomic site symmetry.
In a non-centrosymmetric case we should thus write
A= Ag+ AL and A" = As+ AL In fact, the antisymmetric
A4 and A} are in practice negligible, because the effect is
almost exclusively due to the core part. At least, their
occurrence would require very large anomalous disper-
sion combined with very strong anharmonicity of the
thermal motion. With this in mind we can write for a
Friedel pair of effective structure amplitudes

Flu= E e P (fus (H) + AL(H) = AL J(H)) +
Hi(=foa(H) + AL (H) = AL (H))).
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Writing explicitly the expressions for the real and imagi-
nary parts

Xiy =2 [cosRaR, H)(fus + Als* AL)—

—sin(2wR, - H)(foa £ A% + AL,
(37

Yin =2 [cos(QmR, - H)( = foa + Als = A%4) +
+sin(2mR, - H)( = fos = Als+ AL

of F'= X'+ iY' we see more clearly the role of different
components. The terms with double sign in X’ and those
with single sign in Y’, i.e. A and A, cause deviations
from the Friedel law F’, = F4*. On the other hand, we
can note how in a centrosymmetric structure all double-
sign terms in (37) cancel in summation over a pair of
inversion-related atoms at the positions *+ R, producing
the relation F'y = Fj required by the symmetry.
Thus, normally A% is the reason for the deviation of
| F_u|— | Fu| from zero. However, occasionally, the sine
(or the cosine) terms in (37) may vanish for some special
reflexions. Then, neglecting A} and A%, the corrections A"
with no antisymmetric components f, from the atoms
would bring about the situation F'y=Fy (or
F_u = — Fy). In such cases, as Mclntyre et al."” have
pointed out, it is only the interplay of fa and A” which
makes visible the non-equivalence of F’y and Fj,.
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