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Abstract. Basic construction principles of charge-density models based on indepen-
dent deformed atoms are presented. The asymptotic validity of the rigid free-atom
model in reciprocal space; mathematical properties of possible radial bases of
multipole expansions; requirements put by symmetry, by regularity, by approximate
free-atom nature, by approximate harmonicity of motion and by N-representability on
the deformation models; and the connection between orthogonality and independence
of model parameters are discussed together with consequent conclusions about the
analysis of diffraction data in terms of deformation models.

INTRODUCTION
A deformation model is an interpretational scheme in
charge-density analysis. It involves the basic idea that
matter is built of atoms which can be identified with the
free atoms performing thermal motion and suffering
some deformation under their mutual interactions.

It is thus assumed that the total charge density of a
crystal can be represented as a superposition of atomic
densities. The model itself requires a quantitative de-
scription of the shape and motion of the atoms. It must
also involve some dynamical principle which allows
interpretation of the thermally averaged charge density
in terms of atomic at-rest charge densities and their
motions.

The consequences of symmetry discussed in Chapter
IV are general mathematical rules, not bound to any
particular model. This chapter is confined to deformation
models. It gives a discussion of mathematical and physi-
cal conditions, exact or approximate, to be fulfilled by
the deformation model, of criteria and arguments which
can be applied in construction and further development
of such models, and principles concerning the analysis of
neutron and X-ray diffraction data in terms of them.

Because the construction principle of the deformation
model is simple superposition, it is mostly sufficient to
discuss only one atomic contribution.

THE RIGID-BODY MODEL

The simplest dynamical principle which can be as-
sumed to relate an atom at rest to the thermally smeared
atom is rigid-body vibration. According to this assump-
tion the vibrational smearing function ¢(r) and the
charge density po(r) of the atom at rest define the
dynamic atomic charge density as the convolution in-
tegral (see Chapter 11)

p(r) = [ 1or = e 1)
The corresponding atomic scattering amplitude is
f(8)=T(S)fuS), 2)

where the temperature factor T(8) and the scattering
amplitude of the atom at rest f(S) are Fourier trans-
forms of r and p,.

The smearing function can be given a unique meaning
by defining it as the average nuclear distribution. The
at-rest charge density p, is already a more questionable
concept. It should represent the contribution of the atom
to the total charge density of a “frozen crystal”, and a

direct approach to the concept would be possible by
theoretical calculation only. It forms, however, the
necessary bridge between the free atom and the model,
since calculation of free-atom charge densities gives
at-rest densities.

The great importance of this model in charge-density
analysis is established through the basic statement that
the system nucleus-plus-core is rigid, unaffected both by
vibrations and by bonding (see Chapter XIII). Thus, the
free atom will produce correctly the core part of py(r)
and, further, when combined with the correct smearing
function, also p(r)in the core region. In reciprocal space
this is equivalent to saying that the vibrating rigid
free -atom model is correct asymptotically for large scatter-
ing vectors 8. Some comments on the validity of this
statement should be made: (a) Since the core is spherical,
possible librational motion does not affect the validity of
the statement. (b) Existence of a core is necessary.
Therefore the validity is reduced, particularly for hyd-
rogen. (c) In practice we should be able to apply the
statement to theoretical free atoms. Then the validity will
naturally depend on the reliability of the theoretical
calculation. which reduces the validity for heavy atoms.
(d) All estimates of the core polarization thus far indicate
that non-rigidity of the nucleus-plus-core will have no
observable effect on charge density. (Still it may possibly
yield significant dipole moments.)

The nuclear distribution functions ¢(r) are directly
observable by neutron diffraction. In principle, the ex-
perimental ¢{r) thus obtained can be used as the smear-
ing function in the rigid-atom model for charge-density
studies by X-rays. In practice parametrization of t(r) is
necessary. The obvious first-order model for this is
harmonic vibration, yielding a Gaussian smearing func-
tion with the center (position), the principal axes and the
principal rms amplitudes as adjustable parameters (to the
extent they are not fixed by the site symmetry). The
asymptotic validity of this harmonic rigid-atom model
can be studied by comparison of the neutron values and
large-scattering-angle X-ray values of the parameters (cf.
Coppens, Chapter XI).

The rigid-atom model can be used as an ordinary
deformation model if deviations of py(r) from the free
atom are allowed. Then it becomes important to know
how the translational vibration affects a multipole expan-
sion.

If t(r) too is written as a multipole expansion this
question is most easy to approach in reciprocal space,
where Eq. (2) applies. The dynamic atomic scattering
factor f(S) can then also be written in the form of a
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multipole expansion just by application of the conven-
tional multiplication rules for spherical harmonics on the
expansions of T(S) and f(S).

For the multipole moments which are integrals of the
radial densities (Chapter 1V, egs. (10), (10")) one simple
rule can be stated: the lowest-order non-vanishing mul-
tipole moment of any charge distribution is independent
of the choice of origin. Therefore it is unaffected by any
translational motion. For an electron distribution this is
always the monopole moment, i.e. the charge, unless we
are able, for a neutral atom, to include the nuclear charge
in the treatment.

The effect of rigid-body librations on a multipole
expansion is multiplication of each term except the
spherical one by a coefficient ¢;.,, <1 depending just on
the orientational distribution function of the libration.
The elementary discussion of Kurki-Suonio et al." shows
the validity of this statement in some cases of high
symmetry.

RADIAL BASES FOR MULTIPOLE EXPANSION

As discussed in Chapter IV, symmetry requires the
atomic charge density p(r), as well as the smearing
function t(r) and the at-rest density py(r), to be com-
pletely site symmetric. Each of them is therefore repres-
entable in terms of any complete site-symmetrized basis
of functions. For simplicity we shall use a local Cartesian
coordinate system adapted to the atomic site symmetry
as defined in Chapter IV, table 4. Then we can in
particular write the site-symmetric multipole expansion

p(F)= 3 1 P (1)3ims (6., )
tmp {Nimp

as defined in Chapter 1V, eq. 8, and similar expansions
for po(r) and t(r), as well as for the corresponding
reciprocal-space quantities f(S), f«(S) and T(S). Equa-
tion (3) is valid for the non-cubic site symmetries. In this
paper we shall omit the obvious parallel representation
for cubic symmetries (cf. eq. (8) of Chapter 1V).

By this expansion the representation of the three-
dimensional density p(r) is reduced to a set of radial
functions py., (r), each coupled to a well defined angular
behaviour. If the number of terms is small, this represen-
tation gives a clear overall picture of the total three-
dimensional density function.

We may also make one further step and define some
complete orthogonal sets of radial functions R, (r) with

[ Rnl’mp (r)R H'Jmp(r)rzdr = Snn’Milmp (4)

to obtain

1
P(r) = E CMMPW Rnrmp (T)YJmp (6) ‘P) (5)

nimp
By this step the deformation model is completely
parametrized, and the representation of the three-
dimensional atomic charge density is reduced to a set of
numbers {Com,},

1

Cotmp = mj P (PR s (F) Vi (0, 0 )dr

1 =
- MnfMP J’il Pimp (r)R"l”‘P (-")rzdr. (6)

The choice of the radial basis {R,.,(r)} is in principle
arbitrary, except that analytic angular behaviour requires
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Rt ' 10 be finite at the origin (cf. Stewart, Chapter V).
In practice either Gaussian or Slater type functions have
been used. They originate from the two well known
complete sets of functions, the radial harmonic-oscillator
wave functions

W1
Ru(r) = (ar) exp{ ~ 3@’ rH(Li ) (a’r);
n=1,1+2,[+4,___ (7)
with the normalization

, TGE(n+1+3)

nl T 2(13[%(?1 _ I)]' (8)

and the radial Coulomb wave functions

1
0= (2] o {21} 21, (2)

n=1+1,1+2,... (9)
with the normalization

., 2nt(n+ 1)

e gy gy R (10)

Both expressions involve

polynomials

the associated Laguerre

m

1 z d z m+
L,k,,(z):ﬁez kdz’“(e z™)

(11)

and a parameter a, which can be chosen separately for
each angular function y,.. (In fact, the set (9) is not
complete without inclusion of the continuum wave func-
tions. Correspondingly, the summation over n in the
expansion (5) must be understood to comprise a sum plus
an integral.)

When orthogonality is not important the sets (7) and
(9) can be replaced simply by

n=1L1+21+4,. .. (12)
(13)

with the parameter « independent for each (Imp), which
up to any value of n span the same subspaces of
functions, respectively. However, because of the non-
orthogonality of these sets the straightforward relation
(6) between the charge density p(r) and its expansion
coefficients Cypp is lost.

The expansion (5) of a real-space quantity, p(r) or
t(r), gives, through Fourier transformation, the same
type of expansion for the corresponding reciprocal-space
quantity, f(§) or T(S),

Ru(r)=r"e™;

Ru(r)y=r""e™;, n=1+1,1+2,...

1
f(8)= 2 Cume gy Sume(S)¥in (65, 95) - (14)
nimp Imp

nlmp

with the radial functions

o

Suimp (S) = 47’ j Rt (1) 2wSr)rdr (15)

0

(cf. eq. (24) of Chapter IV). Since the Fourier transfor-
mation conserves both orthogonality and normalization
there is no other difference between the real and
reciprocal-space expansions, or their uses, than that of
the radial functions.

For the radial basis (7) even the functional forms of the
expansions (5) and (14) are equal because of the Fourier
invariance of the harmonic-oscillator wave functions:
Fourier transformation of the equation
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Vi(r)+a’Ce — a’r)y(r)=0, (16)

which is essentially the Schrodinger equation of the
isotropic harmonic oscillator, vields

Ve (S)+ A*(2e — AS%)e(S) =0,

with Aa = 2m,

(16)

which is identical in form to (16). Since an eigenfunction
of an equation is transformed into an eigenfunction of
the transformed equation with the same eigenvalue, and
since. moreover. the normalization is conserved, the
transform of any normalized eigenfunction ¢ = f(ar) of
(16) to any eigenvalue ¢ = n +3/2 is obtained just by
inscrting AS instead of ar and possibly multiplying by a
phase factor. Detailed calculation shows that this phase
factor is " Now, with the radial functions (7),
R (7)Yimp (6, @ Y MyN,, are normalized eigenfunctions of
Eq. (16) to the eigenvalue n + 3/2 and we can directly
apply the above replacement rule to obtain

s (S)=i"(alA)(AS)
X expl—1ASYLiL W(ASY. (17)

For transforms of other radial functions see e.g. the
review article by Kaijser and Smith.’

There are obvious differences in the behaviour of the
functions of the two bases (7) and (9), or (12) and (13),
due to the different nature of the two physical systems
from which they originate. Particularly, the singularity of
the Coulomb potential means that the Coulomb func-
tions are not analytic at the origin — as the oscillator
functions are — but have their derivatives defined only
up to a finite order or have a cusp. In the corresponding
reciprocal-space radial functions (15) this is reflected in
the asymptotic behaviour at large S, which is also Gaus-
sian for the oscillator functions but like a finite negative
power of § for the Coulomb functions.

OPTIMIZATION OF THE MODEL

The application of multipole expansions to deforma-
tion models is far from straightforward. Any complete
basis can give a representation to any given accuracy if
any number of terms is allowed. However, the main
problem is the optimization of the basis so that a good
representation can be achieved with a minimum number
of parameters. The whole success of the analysis by
deformation models depends on the degree of optimiza-
tion one is able to achieve. In this section some argu-
ments are discussed which have been or may be used in
this process. Several important ones lie already behind
the preceding developments and the significance of some
of them is still open to discussion.

Symmetry

Restriction of the treatment to the subspace of com-
pletely symmetrized functions means essential exclusion
of useless degrees of freedom. This is seen very clearly in
the index picking rules of tables 4 & 5 of Chapter 1V for
symmetrized multipole expansions. For atoms with low
site symmetry an appropriate further reduction is often
possible by assuming the approximate higher symmetry
of the immediate neighbourhood to be valid. This and
other related possibilities based on assuming the free-
molecule symmetry or other approximate symmetry to
be valid will not be elaborated further in this context, but
their significance will be evident in several examples
treated by Hirshfeld (Appendix 2).
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Regularity

The analyticity of the representation is an obvious
requirement, except for the cusp of charge density at the
nuclear position, where the Coulomb potential has a
singularity. This affects the behaviour of the radial basis
at the origin in real space and at infinity in reciprocal
space. The oscillator or Gaussian basis (7) or (12) shows
the correct behaviour for representations which are
analytic also at the origin. The Coulomb or Slater basis
(9) or (13) has the correct behaviour for representing
functions with the Coulomb cusp at the origin. This does
not mean that a Gaussian expansion would be unable to
represent a cusp. Based on a complete set it can repres-
ent any square-integrable function. However, since every
partial sum will be analytic the expansion converges
slowly at the cusp, while in the Slater expansion all
partial sums already have a cusp and it is probable that
by a proper choice of the parameters a rapid convergence
is obtained even at the origin. Thus, as regards the
behaviour at the nuclear position, the oscillator basis is
the better one for representing t(r) and T(S) while the
Slater basis is better for po(r) and fy(S).

Approximate Free-Atom Nature

This gives a qualitative reason to expect that a mul-
tipole expansion of the atomic charge density will con-
verge rapidly towards larger values of I For a free atom
only the spherical term ! = 0 exists. Even for an oriented
free atom, which means an atom in a site-symmetric field
of zero strength, the highest [ occurring in the expansion
cannot be larger than twice the angular-momentum
quantum number of the unfilled shell. If the free atom
can be understood as a zeroth approximation in the sense
of perturbation theory, the high energies of the orbitals
with high angular momenta effectively suppress the high
multipole terms which these contribute to the charge
density.

The same qualitative argument may be used for the
expansion with respect to the radial quantum number, if
radial functions closely enough related to the free-atom
orbitals are used. The problem, however, concerns
mainly the representation of the contribution of the
valence electrons, which feel most strongly the presence
of neighbours and the effect of bonding. Therefore the
choice of the radial functions must be a compromise
between several trends. The free-atom approximation
suggests Slater type, the presence of neighbours and the
necessary locality of the atom makes it desirable to
suppress their long tails.

Approximate Harmonicity of the Motion

In cases where this argument is valid it is clear that the
harmonic-oscillator wave functions will give a proper
basis for representing the smearing function and the
temperature factor. There is an essential difference be-
tween this argument and the preceding one in that the
physical circumstances on which the validity depends, i.e.
the temperature, can be varied. The number of signifi-
cant parameters can be reduced to those necessary for
the harmonic motion just by doing the charge-density
studies at low temperature.

On the other hand this would suggest analysis of
neutron diffraction data, e.g. for studies of anharmonic-
ity, in terms of the harmonic-oscillator wave functions. In
the cubic site symmetries, where the harmonic oscillator
is necessarily spherical, this would be just the multipole
expansion with the radial basis (9). In axial and general



non-axial site symmetries the wave functions of the axial
harmonic oscillator and of the general three-dimensional
one, respectively, lead to shorter expansions. It is, how-
ever, obvious that refinement of a model where t(r) and
pu(r) are both represented by expansions, though short,
will already contain too many parameters. Therefore,
unless an independent determination of ¢(r) is made, one
must be content with the harmonic approximation.

Orthogonality and Independence of Parameters

Independence of the parameters is a necessary condi-
tion when the number of parameters is to be minimized.
Often it can be obvious from the physical nature of the
parameters. So, intuitively we understand that positions
and thermal parameters of an atom as well as parameters
of two different atoms should be independent. In a
practical analysis we know, however, that correlations
occur. One possible way to discuss this problem can be
based on orthogonality.

Orthogonality represents the ultimate degree of inde-
pendence. The best possible representation X, c,u, (r) of
a function p(r) with an incomplete set of orthogonal
function u,(r) is unique and can be defined as the
projection of p(r) on the subspace spanned by the set
{u,}. The unique least-squares values of the coefficients
are ¢, = [upd’r /[ u%u,d’r obtained by projecting p on
u,. Each parameter ¢, can thus be determined separately
and independently even without knowing what other
orthogonal functions u, are used. Similarly any two
parameters included in two mutually orthogonal terms of
a representation are independent and can be called
orthogonal.

One of the major problems in the charge-density
analysis is that we have experimental information only
about a finite number of Fourier coefficients of p, i.e.
about the projection of p on a finite-dimensional sub-
space spanned by the plane waves exp(—2miH - r) with
H < 2/A. Therefore, it is not really the orthogonality of
the functions u, themselves that counts, but the or-
thogonality of their projections on this subspace. We
shall not elaborate this point further, since our purpose is
just to give a qualitative understanding of the close
connection between independence and orthogonality
and to indicate why it is useful to look at the parametriza-
tion from this point of view. Although, strictly speaking,
orthogonality is neither quite necessary nor sufficient for
independence of the parameters, it is a promising prop-
erty to start with. In the limit of very large data sets it will
lead to independence. Also, a severe lack of orthogonal-
ity in any case indicates close correlation of the corres-
ponding parameters.

Parameters of different atoms are necessarily almost
orthogonal. In the limit of zero overlapping of the
functions used for representation of different atoms the
orthogonality is exact. Parameters belonging to different
terms (Imp) of the same multipole expansion (3) are
orthogonal due to the orthogonality of y,., (6, ¢). Posi-
tion parameters belong to the dipole terms, the isotropic
temperature factor to the monopole term and the
parameters describing the harmonic anisotropy to the
quadrupole terms. Provided x.y, and z are coordinates
in the specific symmetry-adapted local Cartesian coordi-
nate system formed by the principal axes of the thermal
ellipsoid, this correspondence is that given in Table 1.

This correspondence refers most directly to the be-
haviour of the radial smearing functions ¢,,(r) but
applies also to the radial densities p,.,, () of the thermally
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Table 1. Correspondence between the Atomic Parameters and
the Terms of the Multipole Expansion

Imp corresponding parameter
00+ isotropic temperature factor B
=i(B. + B, + B.)
1T+ x-coordinate of the position
11— y-coordinate of the position
10+ z-coordinate of the position
20+ prolateness B> — B of the thermal ellipsoid

22+ non-axiality B, — B, of the thermal ellipsoid
22— direction of the x-axis in the plane L z-axis
21+ direction of the z-axis in the plane L y-axis
21— direction of the z-axis in the plane L x-axis

smeared density p(r). Positive slope of ¢,,., 1;,_ or t,,. at

= 0 indicates that the correct position has positive x, y
or z coordinate shift, respectively. Similarly. deviation of
the second derivatives 1,-(0), f4.(0) or 15.(0) of the
model from those of the function to be represented
indicates a necessary correction of B, B, — B or B, - B,,
respectively; and non-vanishing %(0), t%,.(0) or 1} _({))
indicates erroneous directions of the principal axes of
thermal motion in the way indicated in Table 1. Corres-
pondingly, a site symmetry which does not allow occurr-
ence of the components (20+) (22 +), (22— ) or (21 +),
respectively, requires sphericity, requires axial symmetry
and defines the direction of the x -axis or of the z-axis (cf.
tables 4 & 5 of Chapter 1V).

The statements above refer closely to a kind of
difference-series thinking. This becomes explicit when
we notice that the radial densities p,, (r) (Chapter 1V,
eq. (15)) of the multipole expansion (3) for the total
crystal charge density have the derivatives

47 ,
Phoa(0) = — % S FuH*

hu
2

F(0)= 7—2 Fo { ky
lu

1=
10+

(li=HD)
Hh— ki)
huku

Hul

21+ kHiH

21—

P (0)=

2+

7ﬁ"‘2FH

where hykyly denote the components of the reciprocal-
lattice vector H in the local Cartesian coordinate system.
Requiring that all the right-hand-side series vanish when
written as difference series (with F,, — F... instead of F)
we get conditions equivalent to the equations of the
conventional difference Fourier determination of the
positions and Debye-Waller factors.

Further, it is intuitively clear from the orthogonality
point of view that parameters of the smearing function
and those of the at-rest charge density of an atom will
correlate, especially if the model allows core deforma-
tion, i.e. charge-density parameters effective in the core
region. Particularly we can note that, as to the radial
dependence of the smearing function, the position is
coupled to the dipole terms with linear behaviour and the
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temperature parameters to the monopole and quad-
rupole terms with quadratic behaviour at the origin. In
the deformation model they are convoluted with a
Slater-type expansion of py(r). One can argue that the
closest correlations should occur between terms which,
except for the exponetials, behave similarly at the origin.
Thus, one should expect that charge-density parameters
of the dipole terms linear in r would correlate most with
position parameters, the monopole and quadrupole
terms quadratic in r with the thermal parameters.

N-Representability

This is the obvious requirement that, since electrons
are fermions, the charge density of an N-electron system
must correspond to an antisymmetric N-particle wave
function (cf. Smith, Chapter 1). In fact, any non-negative
p(r) with [p(r)d’r=N is N-representable. (In the
ordinary use of the concept, N-representability is de-
manded in a restricted space of states with a fixed finite
basis, which is a far less simple problem.) The proof is
simple: Make an arbitrary division p = X%, p, into N
non-overlapping parts p, with [ p,d’r = 1. A state where
each of the N single-particle states i = p!”(r) is singly
occupied, i.¢. the corresponding Slater determinant, is an
example of an antisymmetric N-particle state with the
charge density p(r).

The discontinuity of the functions p; does not invali-
date the argument, because according to the mathemati-
cal foundations of quantum mechanics the space of
possible wave functions is that of all square-integrable
functions. It is true that the expectation value of kinetic
energy in such a state is infinite. Still, it has a definite
momentum distribution ¢ F(p)e (p), where ¢, (p) is the
Fourier transform of ;(r), and, thus, also a definite
probability distribution of the kinetic energy.

In building a deformation model the number of elec-
trons fixes the normalization of the monopole term. The
positivity, on the contrary, cannot be used to simplify the
model. It must be taken as an extra condition restricting
the possible values of the parameters.

DETERMINATION OF THE MODEL FROM DATA

The discussion of the validity of the rigid-atom model
suggests a natural division of the charge-density analysis
into two stages. At first an asymptotic parametrization of
the rigid-atom model to fix positions and Debye-Waller
factors without charge-density parameters should be
performed. (Conventional treatment of rigid molecular
librations belongs clearly to this stage when necessary.)
This could be done either from neutron diffraction data
or by a high-order fitting procedure from X-ray data (cf.
Coppens, Chapter XI). At least in case of accurate data
and a simple structure this would be equivalent to a
difference Fourier determination.

The second stage would be the ordinary specification
and refinement of the deformation model, keeping the
first-stage parameters more or less fixed. There are in
principle two possible strategies. One is to search for
complete parametrization, which could exhaust all the
information of the data, and to determine all parameters
by least-squares methods. All arguments of the kind
discussed in the preceding section are then necessary.

Israel Journal of Chemistry 16 1977

Also all assumptions made are then built into the model
and affect the significance of the resulting parameters.

The other possibility is to use the series (15) or (15") of
Chapter IV for direct calculation of radial densities
Pup (1) or the radial accumulation functions r'**p,,., (r) of
the multipole moments or to calculate any other relevant
physical quantities represented by a series of the form™*
X =(1/V)Z CyFy (cf. Coppens and Hansen, Chapter
XII). This possibility is mostly used in the form of a
difference series, for instance in calculation of deforma-
tion densities or valence densities, without explicit calcu-
lation of the residual term. However, the series-
termination error is present also in all such calculations.
It is equal to the difference between the true residual
term and the theoretical one. Therefore they, too, re-
quire the asymptotic parametrization. But particularly in
calculation of integrated quantities like electron counts
in specific regions, multipole moments, etc., the evalua-
tion of the residual term is necessary for determination of
the experimental value of the desired quantity. This can
be done simply by subtracting the truncated series cor-
responding to the model from the ordinary model value,
which can be calculated directly using the analytic form
of the model charge density.”* (This procedure was first
suggested by Hosemann’ for charge-density calcula-
tions.)

The advantage of this direct calculation 1s that it can be
done independently for each interesting quantity. It has
been used in calculation of charges and dipole momenta
(cf. Chapter XII) and radial charge densities .> ° It can be
applied to the analysis of molecular librations' and
anharmonicity” from neutron-diffraction data. It can also
be used to give a quick indication about the significance
of different multipole components of the atoms for
development of the deformation model beyond the
asymptotic parametrization.

Many of the problems and ideas presented here are
discussed in more detail in other Chapters, particularly
those by Smith (Chapter 1), Stewart (Chapter V), Cop-
pens (Chapters XI. XII) and Hirshfeld (Chapter XIII,
Appendix 2). As further general references on this
subject the review lectures by Becker” and Smith™ at the
Sagamore V Conference should be consulted.
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