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Introduction

In principle it is obvious that properties of crystal atoms can be studied by
X-ray diffraction. In practice this is a question of an extreme refinement of the
analysis. The structure must be known, and the experimental data on the diffraction
intensities must be very accurate to make the treatment of the problem reasonable.

We can, thus, assume in this context that the experimental information is given
as a set of structure amplitudes F; . In crystallographic studies this is often the end of
an analysis rather than the starting point. One might think that further analysis would
be trivial, because we have the basic relationship
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* This article contains the two lectures
“Significance of reciprocity in crystallography” and
“Crystal atoms from the point of view of X-ray diffraction” given at the congress.
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between the charge density and the structure amplitudes of the crystal, The only
problem seems to be, how do the experimental errors and the termination problem
affect the results. We are, however, not so much interested in values of the charge
density but in the physics behind. There are many kinds of phenomena involved,
charge transfer, bonding, dynamics etc. which we should like to study, and this makes
the further analysis a problem. We shall discuss general principles of such an analysis,
its goal and the requirements we must put on it, and then study how these
considerations apply on our particular problem, the study of crystal atoms.

2. Two directions of approach

Analysis is a central problem of physics in general. It is the point where theory
and experiment meet, Practically speaking, its purpose is to extract information from
the data. Since information must be expressed in terms of some parameters, we can
define the analysis roughly as a proper parametrization of the experimental
information. The attribute “proper” is clearly important. Its meaning, however,
depends on the case treated, and a detailed discussion will be necessary to make clear
its contents, .

The two counterparts, the theory and the experiment are always both involved
in the analysis. The results necessarily include two kinds of statements: definition of
the theoretical model used, and statements concerning deviations of the experimental
results from the model. Comrespondingly we may use two kinds of parameters, those of
the meodel and some others which express directly the nature of experimental
information. We can, thus, approach the problem from two different directions, from
the model or from the data, depending on the nature of parameters we are using in the
treatment.

The first approach is, more or less, fitting of model parameters. In the second
approach we try to find the essential features of the experimental information - to
separate the signals from noise - in order to get a direct parametrization of it.

The phenomena we are discussing in this context are governed by quantum
mechanics. If we were able to perform a complete quantum mechanical calculation we
should obtain a very accurate result, which could be used even to check our
experiments. However, nobody thinks to check the validity of quantuin mechanics by
crystallography. All of the models we can use are highly approximate. What we can
and should do with our experiments is to test the validity of the approximate concepts
used in order to obtain better understanding of their nature and, thus, to improve our
ability to treat complex systems. A good fit is no end in itself. It is much more
important to have a well defined approximate model; and a good experiment is
expected to measure deviations from this model.

In our problem a natural primary model #s a crystal built from rigid theoretical
atoms in harmonic thermal motion. Some fitting procedure will fix the mean nuclear
positions and the Debye-Waller factors of the model atoms,
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If this leads to agreement with data within experimental accuracy, the mode! explains
the data. The present problem of analysis arises when this is not the case, i.e. when the
model is not sufficient, and the data contain more information than just values of the
primary parameters. In treatment of this excess information a difference can be made
between the two approaches,

Let us think as an example estimation of the atomic charges, cf. Kurki-Suonio
and Salmo (1971) (hereafter KSS). One current method is to build model crystals
from atoms in different states of ionization and to look for the best fit with the low
scattering angle data. Here the ionic state is treated clearly as a parameter of the first
kind. It is also possible to conclude the state of ionization by scrutiny of the electron
counts in different regions of the unit cell, This is an approach of the second type,
because the electron count of a given region is obtained from the experimental
structure amplitudes by a definite algebraic procedure, and it is therefore just a piece
of experimental information in form of a special parameter.

Continuation of the first approach to obtain more information of the atoms
would involve improvement of the model by adoption of new parameters. We may, for
instance, introduce unharmonicity of motion and changes in the atomic wave
functions properly parametrized. Each additional parameter will improve the fit until
it is compiete. There are several sugpestions, how to proceed, but, it is not clear what is
the most appropriate way of choosing parameters. Therefore, at this stage of the
problem the second approach, direct study of the experimental information, will be
useful, and we shall concentrate on it. The problem is, how to find the most proper
way of direct parametrization of the experimental information, how to choose the
parameters to make possible a succesful analysis.

3. Clarity, refiability and totality

Physical inquiry is the primary motiv of the analysis. It is essential that the
analysis gives answers to our questions. The information must therefore be expressed
in form of parameters which have a concrete meaning from the point of view of the
physical problem studied and of the model used. This is the re(;uirement of clarity,
which the parameters must fulfil to have interpretational value. '

In our problem this requirermnent means that we should use parameters
characterizing single atoms of the crystal. However, only the free atom is a well
defined entity. If we want to speak of an atom as a part of a larger system we need an
independent definition of the atom in that system. The interest is then concentrated
on comparison of this atom with the free one. In other words, we want to.find
parameters describing properly the changes which the free atoms underge when
packed together to form a solid. This may involve charge transfer from one atom to
another, so that the electron count of the atom is an obvious parameter. Other changes
can be called deformations.

There is an important conceptual difference between the crystal atom and the
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free atom. Any division of the crystal into atoms is artificial and the atomic definition
can never be unique. Therefore interpretation of data in terms of the atomic model
must necessarily contain statements on this conceptual indeterminacy. This will appear
as indeterminacy of the values of parameters obtained. It has nothing to do with the
experimental inaccuracy, but it is a piece of experimental information concerning the
usability of the atomic concept.

If we take the requirement of clarity seriously, each parameter used in the
analysis, and the value obtained for it, should imply an independent well defined
statement of some relevant property of the atom. This clearly means that we ought to
get along with a small number of mutually independent parameters; otherwise the
information is not well analyzed.

Nature brings up the questions we want to ask, the data determine those we are
allowed to ask. This gives us the second requirement, the requirement of reliability: we
must adopt parameters which can be ¢valuated reliably from the data. They must not
depend strongly on unknown structure amplitudes and must not be sensitive to their
errors, random or systematic. In the 4th section we shall study in detail the explicit
consequences of this requirement.

Finally, the analysis should lead tu an interpretation of the data in terms of the
parameters. This will be obtained if it is possible to exhaust the available experimental
information by the set of parameters. This is the requirement of totality. It is fulfilled
when no more independent information can be extracted from the data. It is not easy
to judge by certainty when this situation is achieved. Obviously, this will be the case, if
the data can be completely reconstructed from the parameters obtained. It this
reconstruction is not exact we ought to be able to check whether the differences have
the nature of pure random fluctuations or not. On the other hand, if it is exact, our
parameters have not accomplished any separation of information from errors, which a
good analysis should be able to do. Thus we encounter here the problem of constraints
and their effect on signal shape: by appropriate application of our knowledge about
the system we ought to be able to distinguish weaker signals from the background
noise and, thus, to improve the degree of totality of our analysis.

Totality alone can certainly be achieved by using many parameters. But, if we let
the two first conditions determine our choice of parameters, it will be a difficult
requirement. We cannot be sure beforehand how well it will be satisfied. The degree of
totality can be checked only afterwards, and in this way it is, more or less, a measure
of the final success of the analysis.

These three requirements form a basis on which we can judge the relative merits of
different methods of analysis, and we can use them as a guidance when we seek better
methods. If we could satisfy all of them simultaneously in our present problem, we
were able to transform all information contained in the set {'F o'bsg into quantitative
statements on deviations of crystal atoms from theoretical free atoms. If it is not
possible to make this analysis total, the data will give us also some information on the
nature of the deficiency of the atomic model.
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4. Reciprocity and reliability

Reciprocity means conventionally the relation between the real space and the
Fourier or reciprocal space. The charge distribution lies in the real space of the
position vector r, while the geometry of scattering is defined by the scattering vector b
which is a vector of the reciprocal space. Reciprocity refers to the fact that,
qualitatively speaking, the scales of these two spaces as defined by the real lattice and
the reciprocal lattice are reciprocal.

We may also understand reciprocity as the relation of the charge distributionp (r)
and its scattering amplitude f(b), which define the physical system in the real and
reciprocal space, respectively. They are related through the Fourier transformation

2) p(M=Sf(b)e?™PTg3p  Fb)=[p(r)elTbary3,

and therefore a sharply peaked p (r) has a flat f{(b) and vice versa.

Here we take a third view. We connect the reciprocity with gquantities or
parameters representing properties of the system.

We restrict the treatment on a class of quantities which can be called linear
parameters. A linear parameter X is uniquely defined, independent of the system, by
its distribution ‘y (r) in real space or its distribution g, (b) in reciprocal space. The
value of X in any system is then given by the integral

3) X = fy (np(nd>r = [q, (b)f(b)d3b .
The two distributions are related by the Fourier transformation
@ 7,0 =g me™ T3 ;g () = [y (e ?T0-1g3,

They are therefore reciprocal to each other in the same way as the charge distribution
and its scattering amplitude. A sharply local quantity is nonlocal in reciprocal space
and vice versa. The widths of the two distributions are, more or less, inversely
proportional.

Let us look, for instance, the three quantities:
1. Charge density at a point
2. average charge density at distance R from the origin
3. the electron count in a sphere of radius R,



which can be defined by the distributions shown in table 1. They present three
different degrees of locality in rteal space. The first quantity is strictly local,
concentrated on one point, the second is uniform on a spherical surface, and the third
is uniformly distributed in the volume of a sphere. Their reciprocal distributions
demonstrate clearly the nature of the reciprocity. The first one is completely nonlocal,
uniform in the whole reciprocal space, while the two others show different degrees of

localization around the origin, fig. 1.

Table 1. Examples of real and reciprocal distributionsy and g of quantities X.

X ¥x (r) gx (b) qx (b>=)
p (15} 5 {r- 1y} exp {-2nib . r,,) ~1
oo (R) 8 (r- R} sin 2rRb ~p-1
o —_— —
Anr2 2aRb
[o tx) a3r LirgR sng3JL(27Rb) ~p2
sphere 0;r>R —_——
2aRb
10 >
05
b
I\._ -
1 2 3R

Figure 1. Reciprocal distributions 1. of the charge density at a point 1y, 2. of the average charge

density on a spherical surface of radius R=0.5
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If the system is a crystal, the scattering amplitude is a lattice of & -functions and
the second integral in eq. (4) gets the form of a series

(5) X = Zq,(b)F,

L
v

where the summation runs through the reciprocal lattice. Thus, the reciprocal
distribution tells us the importance of different structure amplitudes in calculation of
the value of X for the crystal. Its behaviour is therefore decisive in the problem of
reliability.

This problem resolves naturally into two parts: the effect of experimental
uncertainties and the residual term problem. If we do not think about the
experimental difficulties, then, in principle, the first problem is far simpler, because it
concerns a finite number of terms. The rate of convergence depends on the asymptotic
behaviour of the reciprocal distribution, In this respect the three examples of table 1
represent different orders of magnitude.

Because the asymptotic behaviour of the Fourier transform reflects the degree of
discontinuity of the function, the microstructure of the real distribution seems to
determine the difficulty of the termination problem. However, we must take into
account the whole region beyond a fixed finite cutoff, determined by the X-ray wave
length, rather than just the behaviour at infinity. We should also note that in all three
of our examples series (5} will converge only due to the strong asymptotic decrease of
the structure amplitudes. They have normally considerable values at the cutoff and,
thus, the residual term will be large in any case. On the other hand, it can be assumed
that the theoretical free atom model provides asymptotically reliable values.
Therefore, in practice, the terms closely beyond the cutoff will be most important in
the termination problem, and the degree of the reliability of X will in the first place
depend on the values of its reciprocal distribution in that region of the reciprocal
space.

In our examples this means that below some critical radius there will be no
substantial difference in the reliability of these three quantities.Suppose the cutoff is
at about & = 1.0 A" (1.2 A7 is the limit of CuK a-radiation). From fig. 2 we see
then that the radius must be about 0.5 A or larger to make the two last quantities
essentially more reliable than p (ro}.

More generally, we can conclude from the reciprocity that non-local quantities, or
quantities with wide distributions in real space will be essentially more reliable than
the more local ones. To make this statement more accurate we need a more
quantitative definition for the reciprocity.
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Figure 2. Distributions ¥ {r} and g (b} of the electron count in a sphere for three different radii
The dashed curves are Gaussians with 3-dimensicnal least squares fit to the case B.

The conventional “uncertainty relation”

3
(6) ArAb ?H

of the Fourier transformation applies naturally on the distributions 7y (r) and ¢ (b),
with the normal definitions

M BN =) 5 (Bb)? =((b-b)?) |
2 3 2d3b
®  (F)) - Tfty®<ad>r g = Sgd)lg(b)]
Sly(n)?d3r flg (b)(2d3b

However, it does not represent a quantitative reciprocity theorem because of the
unequality sign. For instance, in all three of our examples we have an infinite A b,
although A — 0 only for the first one. This again shows the dominant role of the
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“microstructure”. To get forward we ought to define in some way the large-scale or

macroscopic behaviour of distributions which clearly also obeys some kind of a
reciprocity theorem.

Here we refer to well known properties of the Fourier transformation:
First, the barmonic oscillator wave functions are form invariant in the Fourier
transformation: 1f

©) g, (1) = a®'2 f(ar) @2 -2%,

is an arbitrary n quantum state of an isotropic three dimensional harmonic oscillator,
its Fourier transform is given by the expression

(10) 9, (B) = Sy, () e2™0-T a3 = n 43127 (4p)

where

Gaussian is the most simple example corresponding to n = 0.

Secondly, an n quantum state of a barmonic oscillator obeys the “uncertainty
equation”

(12) Arnb = 1. (n+3) .
27 2

Thirdly, least squares fit is conserved in the Fourier transformation. If g (r)is the
Fourier transform of G (b), this theorem says

(13) flg(M-v(N12d%r = [1G(b)-g (b)|2d3b

Particularly, if g(r) is the Gaussian with the best least squares fit to the
distribution 7y (r), then G{b) will be that Gaussian which has the best fit to the
corresponding reciprocal distribution g (b), cf. fig. 2.

It is obviously possible to define the macroscopic behaviour of a distribution, for
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Instance, as that Gaussian which has the best least squares fit to the distribution. The
macroscopic widths A7 and A, b of the two distributions of a quantity X would
correspondingly be equal to Ar and Ab of their best fit Gaussians. With these
definitions we have the exact reciprocity theorem

14) A, rA b - 3 .
(19 2uTlwm 4T

This is mathematically valid for any quantity with a square integrable distribution. It
cannot be applied, for instance, to any & -function distribution, but this is no essential
limitation because use of strict 8-functions is never necessary.

There are, however, important practical limitations. Gaussian definition of the
macroscopic behaviour will be reasonable only for distributions which have some
resemblance to a Gaussian behaviour, The electron count of a sphere is clearly a
positive case having

f.\.r:\/gﬂmo.?nz;aa;a

but

Dyt = 070R and A, b = 0.341_1{ :

Any distribution with a harmonic angular dependence K, (0, ¢ ) of order { > 0, would
represent an obviously negative example, since the best fit Gaussian would be
identically zero. In such a case an appropriate definition of the macroscopic behaviour
and the macroscopic width can be based in a similar way on the function

Ca 3”2(5:3?)' exp (-é..t12f'2)fi'f (@, ¢)

which is the most simple harmonic oscillator wave function with the relevant anguiar
behaviour and corresponds to an / quantum state. This leads to the reciprocity
theorem

WAL rA b =1 (1+3) .
(a4 dyrb,, 217(2)
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It is not possible to put the reciprocity theorem in a general form which would be
satisfactory for all possible cases simultaneously. These considerations show, however,
that the concept of reciprocity in macroscopic sense, as we need it, is not merely
qualitative. We can make the practical conclusion that integral parameters are more
teliable than the local ones. To be more concrete, if the cutoff is at about & =1 &1,
then only quantities with a A >>0.4 A can beiong to the class of the best possible
reliability. The condition is necessary but not sufficient. Only a closer study of the
reciprocal distribution will make clear the nature of the residual term problem for any
particular quantity. It gives, however, a suggestion of the type of parameters we should
seck. Because the atoms have radii of the order of 1 A it is obvious that we can  derive
from the data integrated properties of atoms much more accurately than their charge
distributions in detail, and we should tend to describe the crystal atoms in terms of
such paramneters rather than by density maps.

5. Atomic defipition

The assumption that the crystal is composed of atoms means in this context, that
the composite charge density of the crystal is the sum of atomic contributions

(15p(r) = Zp,(r-r, ),

where r  is the mean nuclear position of the 7" atom and the summation runs over
all atoms; and that the crystal structure amplitudes are certain linear combinations of
the atomic factors at relevant scatfering angles

(16)F; = Zf,(b,)e2Mb; -,

¥

with n running through the atoms of one unit cell. ‘

For a model crystal there seems to be no problem since we start from known
theoretical atoms and we are, thus, going from right to left in eqgs. (£5) and (16). This
construction is misleading, because in reality the composite system is primary and the
problem is to decompose the left hand sides of eqs. (15) and (16) into atomic
contributions which is not possible without some underlying atomic definition. The
definition must arise from the properties of the crystal. The free atom is a completely
different system and cannot provide a basis for this purpose. As known by experience,
superposition of free atoms gives a good approximation for the composite charge
density of the crystal. This, however, does not necessarily mean that the free atoms
would represent the crystal atoms. They just correspond to one possibile way to
decompose the structure, but there is no 4 priori reason why we should prefer this

particular way. This applies also to the model crystal, because we must use our
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definitions consistently.

As emphasized in sec. 3, it is clear that no unique definition can be given for the
crystal atoms. It is also obvious that no distant parts of the charge distribution can be
assigned to one atom; an electron cannot be said to belong to an atom for any other
reason than for being close enough to its nucleus. We call this the requirement of
locality, which the atomic definition must fulfil to be physically reasonable. This
means simply that we should define the atom as the charge distribution peak at the
relevant position. The problem is where to draw the limit, but this is just an expression
of the conceptual indeterminacy of the atom. The definition cannot be more accurate.

It is easiest to keep track on the requirement of locality by looking at the radial
charge density

sin2 'n'bl.r

(Ndmr?p,(r) = [ p(rr2dQ = 4m2 L 2 F
am v ! 2abr

around the atomic positions. Figures 3, 4 and 5 show four examples: the radial
densities of Ca and F ions in CaF,, NH, and CI ions in NH,Cl and the atoms in
diamond and silicon according to the data of Togawa (1964), Pesonen (1971),
Gottlicher and Wolfel (1959) and Hattori, Kuriyama, Katagawa and Kato (1965),
hereafter T, P, GW and HKKK respectively.

5ok anro, (87 10

anrig, (A7)
301 30
o e, 140 I |
CI~
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20 {20 |
£ 10 NH™ . 410
10 J10 /,/,‘N* |
riA) 05 B 5 207 \k® A - ,110 T A 30 \[3356
26| _20 5 10 05 1a] 336 30 T 20 10 riAl
Figure 3. Radial charge densities 4mr2p , (r} of Figure 4. Radial charge densities
Ca and F in CaF, with an indication of the 4nr2p, i} of NHgand Cl in NHg Cl as
integrated electron counts of the peaks, as calculated from the P data. The dashed
calculated from the T data. (From an curves correspond to a model built of N
unfinished work by Ruuskanen and and ClI'. (From a preliminary analysis).

Kurki-Suonio (RKS).}
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To obtain these curves Gaussian representations were used for the atomic factors
at large sin O/\ and the Debye Waller factors of the Gaussian crystal were chosen such
that the difference series ./_\po was flat at the atomic centra. The radial charge density
(17) was calculated for the Gaussian crystal on the basis of the analytic expression and
these values were corrected by a difference series with coefficients ¥, - F. .
This procedure corresponds to the method used by Hosemann and Bagchi (1953,
1962) for charge density calculations, and it is expected to yield pure experimental
results with termination errors minimized. According to the preceding section the
quantity (17) fulfils the requirement of reliability for » > 0.4 A, and it is justified to
believe that in those regions the significance of the results depends only on the
accuracy of the experimental values £, .

As seen from figs. 3 to 5 the radial charge density (17) shows clearly the relation
of an atom to its surroundings and, thus, the possibilities to define the crystal atom as
an independent entity. The distance of the minimum is the radius of the best
separation of the atom from its surroundings. The distribution within this radius
behaves essentially as a distribution centered at the relevant nucleus, and it is natural
to take it as the operational definition of the atom, or the ‘effective atorn’ in the sense
of X-ray diffraction. The value of the radial density at the minimum is a measure of
the conceptual uncertainty of this definition.

The figures show also the characteristic difference between the atoms of ionic
compounds and covalent crystals for which our definition, more or less, falls down
because of the pronounced bond contribution. Fig. 4 shows also for comparison the
situation in a model crystal built from free ions C1” and N~. The ions of the real
crystal are more compact and thus better definable than the atoms of the model
crystal.

To demonstrate the need for such a simple atomic definition we shall discuss more
closely the determination of the ionic state of crystal atoms in the light of relevant
literature, cf, KSS.
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6. The ionic state

The determination of jonic state by X-diffraction was proposed already by Debye
and Scherrer (1918). They sugpested a procedure where the information obtained
from low angle data was extrapolated to zero scattering angle. The classical book of
Compton (1926) presents another, somewhat more sophisticated method based on the
charge distribution. By these two works the initiative was given to development of two
basically different methods which can be called the extrapolation method and the
integration method corresponding to two different principles followed in dividing the
crysial into atoms. The extrapolation methods correspond to a decomposition of the
structure amplitudes into atomic factors according to eq. (16) and an extrapolation to
zero scattering angle. The integration methods involve some division of the charge
density according to eq. '(15) into atomic contributions and a subsequent integration
to count the electrons.

In fifties severe difficulties were realized leading to a wave of critical articles. The
criticisin culminated in the completely negative conclusion by Bijvoet and Lonsdale
(1953), that it is impossible to determine the ionic state by X-ray diffraction. They
referred particularly to the extrapolation method. Applications of the integration
method led to a similar develapment. The critical articles of Black (1955), Taylor
(1954) and Black and Taylor (1958) ended up with an equally pessimistic view.

Cochran (1958, 1961), however, took the question up again emphasizing the
necessity of careful definitions of the concepts. And it was shown in an article by
Calder, Cochran, Griffiths and Lowde (1962) that the distribution of charges in LiH,
which was the original cause of the whole discussion, does indicate single ionization of
the components.

These are the main points of the long history, and it is only left to show, why and
in which sense some positive statements are possible.

It is essential in this problem that we want to study the changes of atoms when
they become a part of a solid. Information of these changes is included in the low
angle behaviour of the scattering factors. Extrapolation involves necessarily an
assumption of the low angle behaviour. Most often it is the free-atom-like behaviour
we assume; direct comparison of data with different atomic models is nothing but a
free-atom-like extrapolation. But this is contrary to what we know and to what we try
to get out from our analysis. There is no space left for the experimental information if
the low angle behaviour is fixed beforehand by extrapolation.

The impossibility of the extrapolation method is obvious if we look at the
structure factors of different models with different states of ionization. The
differences are often extremely small, almost always smaller than the experimental
errors, so that it is hopeless to stare at their fit with the experimental values. One has
tried to avoid the problem by electron diffraction, where the differences in the lowest
order structure amplitudes are strongly enhanced. It is then possible to see, which of
the models has best fit with the low angle data, but the procedure is still not more

44



reliable because the low angle behaviour will not be that of the free atoms.

It is instructive to note that this problem concerns even the most obvious ionic
crystals such as alkali halides. The structure amplitudes, say, of K¢ Br® and K Br
model crystals are all almost equal. This, however, does not indicate that the atomic
charges of the crystal are indeterminate but just that the atomic charges of the free
model atoms have little correlation to the charges of the atomic peaks. If it would not
be possible to see that KBr is composed of ions, then X-ray diffraction would not be
worth much. :

The same problem appears in connection of the integration method, if we look at
the difference series and try to make conclusions on the basis of deviations of the
integrated electron counts from model values. For instance, Weiss (1966) states in his
book that there are very little differences in the electron counts of Mg® 0°
Mg+1 07" and Mg*? 02 model crystals. This of course is due to the fact that they
have almost equal structure amplitudes. Fig. 6 shows the same situation in K® Br® and

Z(R)
Br

u / -

- 24722 20 18 16 14 12 10A

08 10 12 14 16 18 20 22A
Rk

Figure 6. Integrated electron counts in spheres around K and Br atoms in KBr. The curves

correspond to 1. K2 Br® model crystal, 2. K* Br model crystal, 3. experimental data of
Meisalo and Inkinen (1967). (Fig. 1 of KSS).
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K* Br model crystals. Again, this does not imply any conclusion on the atomic
charges of the real crystal.

It is misleading to think, for instance, that K® Br® represents a crystal with
neutral atoms. We had better realize that it is an artificial model lacking some essential
features of a crystal, It should be understood only as a model for the composite charge
distribution, and the free atoms, from which it is formally built, have no relevance in
it. It cannot provide reasonable atornic parameters for comparison with experimental
values. Its main role is just to provide estimates for residual terms, so that we shall be
able to calculate the integrated charges or any other quantities X from the
experimental data.

This is demonstrated by table 2 showing some experimental atomic charges
calculated on the basis of the local definition of the preceding section or, simply, the
electron counts within the radius of best separation. We observe that the state of
ionization comes out directly from the data. Similarly, integration of the areas of the
peaks in figs. 3 and 4 gives correct electron counts of Ca™ ,F~ ,NH} and CI” . The
corresponding values for different model crystals serve just for demonstration of the
irrelevance of the free atom parameters.

N + - . .

Table 2. Degrees of ionization n and n~ of the atoms in some crystals as obtained from electron
counts corresponding to the local definition of crystal atoms. The derivative dn/dr is a relative
measure of the conceptual indeterminacy. (Kurki-Suonio and Salmo 1971},

neutral ionic .

modsl model experimental

n* n- o n* a dant | - anm- [t p-

dr dr

KBr +0.8 -0.2 +1.0 -0.4 +0.45 0.6 —1.15 1.4 1.6
NaF +0.9 -(0.2 +0.9 -0.6 +0.85 1.4 -0.75 2.0 1.6
LiF +0.9 —-0.3 +1.0 —0.6 +3,95 1.0 -0.70 1.8 1.65
MnQO +1.8 -0.2 +20 -1.2 +2.0 4.0 -1.7 40 3.7
CoO +1.5 -0.1 +1.9 —-1.0 +2.0 26 -0.7 3.2 2.7
NiO | +1.3 00 | +1.0 —10 | 421 54 |-1.8 | 50 |38

The ionic state expresses only one, though important, property of the atoms. To
obtain a complete description of the experimental information we need more
parameters. The atomic charge is a typical one and the preceding discussion applies in
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many respects to the whole analysis, Particularly, the same dualism dominates all of
the historical development: conclusions are based either on charge density or on
comparison of scattering factors. There is also the same temptation to misuse
theoretical free atom parameters; and the same cure can be recommended: careful
definition of basic concepts and use of purely experimental values for the parameters
Le. the full scries (5) instead of difference series, which can be realized e.g. by
Gaussian procedures similar to that explained in connexion of series (17).

7. Charge density analysis

The conventional analysis in terms of charge density fits in our general scheme.
The values p ('r’0 ) at ail points 7, of the unit cell form its basic set of linear
parameters. The main advantage is, that it gives a clear and concrete view on the
situation in crystal. This js, however, not enough to satisfy our requirement of clarity.
1t uses an infinite number of parameters, none of which is very informative from the
point of view of crystal atoms. It can lead to definite statements of the crystal atoms
only through a visual survey of the maps drawn, which means some kind of an
integration by eye.

From the point of view of reliability these quantities are the worst one can think,
because the reciprocal distribution is uniform over the whole reciprocal space. Only
the totality is fulfilled completely. The charge distribution is just another way to
represent the data, and that is why it is so useful in preliminary study of the nature of
the information.

To avoid difficulties caused by the ultimate locality Weiss (1966) proposed the use
of charge distributions with density values p ('i-'0 )  averaged over a small cube. The
real distribution of this quantity is constant within the cube and zero outside. This
certainly improves the reliability, but rather large cubes are required before this really
matters, cf. fig. 2. According to sec. 4 the edge should be at least of the order of
1.0 A if the data extend t0 0.5 A" insin /A . This would yield strongly smoothed
charge distribution maps with a somewhat questionable interpretational value,

8. Atomic factor analysis

The atomic scattering factors refer directly to the single atoms. There seems to be
a direct connexion between them and the experimental stricture amplitudes through
eq. (16). This has given rise to studies where *“experimental atomic factors” are derived
from the data by simple algebra, interpolation and extrapolation. This procedure is,
however, bound to the behaviour of the theoretical atomic factors in a way which,
strictly speaking, leads to misuse of the parameters of the free model atoms just as
explained in sec, 6, and, consequently, to misinterpretation of data, cf. also
Kurki-Suonio (1970). The point is again that the method leaves the atoms undefined;
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it merely correlates them in some vague manner to the formal constituents of the
model. Therefore, the results do not represent the experimental information in a
definite sense,

The unsatisfactory nature of such procedures has led to a search for alternative
methods. The first idea (Kurki-Suonio 1959) was to try analysis in terms of the
scattering amplitude

(18) fr(®) = [ p (1) g2mb.r 43,

of a region T. For any region T and any value of b this is a linear parameter. We can

also apply directly the local definition of an atom to obtain from eq. (18) its
experimental atomic factor with a certain conceptual indeterminacy. The result
coincides at b = O with the atomic charge defined in the previous section.

The reciprocal distribution of f. (b, ) is

(19) ¢ (b) =TIe2‘"' (bg - b).r g3,

If T'is a sphere of radius R centered at the origin we get

(20)q () = 4RS! (mRIb-byl)
ZﬂRIb-bol
q(b)
b0
b
L - \/ _
~ 0 \_X.O,g' B 49 15 204

Figure 7. The reciprocal distribution of the scattering amplitude Fr (bg) of a charge distribution
within a sphere of radius R = 20 A for by = Oand by # 0 along the straight line through the
point b, in the reciprocal space.
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From its behaviour, fig. 7, we easily see the rcliability of f.. It is for any b, the same
spherically symmetric function in 3-dimensions centered at b, . When b, approaches
the cutoff value of data i.e. the surface of a sphere with the radius b cutoff » the main
peak of this distribution is gradually displaced into the residual term region. The
region 7" must have atomic dimensions, and for small b, fT (b ) is therefore of the
highest class of reliability. With increasing b, the reliability keeps first practically
unchanged, until b, exceeds the value b, . o~ A, where A is the width of the main
peak and is smaller for larger regions. Then the reliability starts going down rapidly
until at b, . ¢ it is of about the same quality as that of the local charge distribution
and finally at b, = b ¢+ A there is no information about f,. (b, ) in the data.

This shows what we mean by saying somewhat loosely that the analysis is kept in the
reciprocal space and that therefore we obtain f, reliably up to beutoff but not
beyond.

Analysis based on estimation of atomic factors by eq. (18) has been applied to a
number of crystals with simple structures. Figures 8 to 13 show two typical examples:

0.054—— (3)

0.054— ()

0. 05~ =a_ (c)
05 ‘p\\._.

."“"-u..

x .
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h:l ““‘\...x :\\.._-—l
<] T “-J-x_“*:.x _r e

0.5 1.0
sine 2

N

Figure 8. Differences between experimental and theoretical f; values for a Li-centered sphere
with the radius R =0.63 A (a). R =078 A (b), R — 092 A (o) in the crystallographic
directions [h00] ({solid circles), [ hhO ] {crosses) and [ hhh] (triangles). In fig. 8 (b} the
standard deviation calculated from experimental errors has been entered for a few points, The
broken curve in fig. 8 (b) is obtained with a scale factor lower by 1 % {Fig, 4 of Mi),
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the results on LiF by Merisalo and Inkinen (MI) (1966) and the analysis of CaF, by
Kurki-Suonio- and Meisalo (KSM) (1966). These results are obtained by difference
series calculations. They, thus, represent deviations of the atomic factors from those of
the model crystal. Their dependence on the radius expresses the nature of the
conceptual uncertainty. Figs. 8 and 11 indicate relative compression of the positive
ion. From figs. 9, 10, 12, 13, we see that the fluorine ions possess, at least in LiF, a
significant nonsphericity.
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Figure 9. Differences between experimental and theoreticat frr valves for an F-centered sphere
with the radius R — 1.38 A (a) R =1.23 A (b), R =1.09 (c). The symbols are the same as those
in fig. 8. In fig. 9 {b) the standard deviation calculated from experimental errors has been entered
for a few points. The broken curves in fig. 9 {b) are obtained with a scale factor lower by 1 % {fig.
5 of MI).

These analyses are not quite satisfactory in conceptual sense, because only
difference series are calculated and not the experimental atomic factors themselves.
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Still, the nonsphericities of the crystal atoms are quantitatively described, because
they are negligible in the model. Even this need not be true always, since generally the
overlapping may produce some nonsphericities of the peaks in the model crystal. In
LiF and CaF,, structures this would affect specifically the results in [100]and[ 111 ]
directions, respectively, due to the nearest neighbours.

-_'-h.
0.05- e \
/ "t-._-—.—-_._.__-.
% ™~
.
e - o :(/ TN \ 1.ID-,>-:...
<] l‘_:‘—"" I
0.5 e
N &
' a_
~0.05- e A

Figure 10. The effect on fig. 9 (b) of dividing the coincident reflections in the ratio of the
intensities measured by Krug, Witte and Wolfel (1955). (Fig. 6 of MI).
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Figure 11. The differeance betwesn the
experimental and theoretical atomic factor fp
of the calcium ion calculated in mamn
crystallographic directions using three spheres
of different sizes. The dotted curves are
obtained with the original scale which was
lower by 2 % . {Fig, 2 of KSM)
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Figure 12, The real part of the difference
between the experimental and theoretical
atomic factor fp of the fluorine ion
calculated in main crystaliographic directions
using three spheres of different sizes. The
dotted curves are obtained with the original
scale. (Fig. 3 of KSM],
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Comparison of figs. 9 and 10 shows a specific feature of powder data. No
information is obtained about the differences of the coincident reflexions, and a

damping of the nonsphericity in the results follows.

afAF (Im)  ohhh  ehhh - alb)
1.1-
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Figure 13. The imaginary part of the
experimental atomic factor f7r  of the

fluorine ion at (1/4,1/4,1/4 ) calculated using Figure 14. The radial behaviour of 11_19
a sphere of radius R = 123 A {fig. 4 of reciprocal distribution of the third order radial
KSM). density p3 (R=1.0A1.

Although this analysis refers more directly to the atoms and is based on much
more reliable parameters than the charge density analysis it is rather complicated and
obviously not satisfactory from the point of view of the requirement of clarity. In
principle, we are still working with an infinite number of parameters: the values of
fr (b) at all different points b. These do nol yield immediate concrete
statements without a thorough survey. The method also requires treatment of the
scattering factor for each atom separately in a number of different crystallographic
directions, and, in case of noncentral site symmetry (e.g. fluorine in CaF,), calculation
of the real and imaginary parts separately. Partly due to this complication this analysis
was never completed to a point where the degree of its totality could be seen.

9. Use of harmonic expansions

The next step towards more analysed information was the idea to make use of
symmetry (Kurki-Suonio and Meisalo 1967, Kurki-Suenio 1967, 1968, Dawson 1967
a, b, ¢, 1969). Each atom necessarily obeys the point symmetry of its position in the
crystal environment, We can, thus, write the atomic charge distribution and the atomic
scattering factor in form of harmonic series

21y e

Zp,(NK, (6,.¢)

2) f(b) = Zf,(b)K,(0,.¢,)
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where K (8,0) are harmonics of the relevant symmetry. The first term is spherical
and the others represent deviations from sphericity with increasing complication of the
angular behaviour with the order.

The radial density p (r,) is a linear parameter. The spherical term p, was
treated in sec. 4 as an example. The others have very similar nature with a radial
6 -function distribution, except that the angular behaviour is given by the
corresponding harmonics. The reciprocal distribution of p, (rq) is

(3) 4,0 = 2T j,@meb) K, 0 0) 3 A, = [IK, 1740

n

Figure 14 shows as an example the behaviour of g5. In all orders g, has the same
asymptotic behaviour g, ~ b™! corresponding to the radial §-function nature of the
real distribution, but as we see also by comparison of figs. 1 and 14, the damping of
oscillations gets slower and, consequently, the reliability of P, (ry) at fixed r

decreases with increasing 7, in accordance with the less favourable reciprocity relation
(14).

Although the reliability is not as good as that of integrated quantities, the radial
densities, particularly o, (), may be useful quantities in giving a concrete view of the
shape of the charge distribution around the atomic peak, cf. figs. 3, 4, 5.

If f(b) corresponds to the charge distribution in a spherical region of radius R in
accordance with our local definition of the c¢rystal atom, the radial scattering factors
j; (&) are linear parameters with the distributions

-
4;* i, @b K, (6,9) ; r<R
n

24) 7, () =

(4m)2R3 Xfos ()7, (%9) — Xo I+ (X0)], (%) K (6

2 2
An X< — xg

qn(b) = B Sob)

(25)

with x = 27#bR , x 2mb R
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Two features of the reciprocal distributions (25) should be noted. First the
distributions are peaked at a spherical shell of radius &, provided the radius of the
region used is large enough, cf. figs. 15,16. Thereforc these quantities resemble the
scattering amplitude f,(b) of a given region in that they are of the highest class of
reliability up to same value b close 10 by ofp- S0, the analysis is again “kept in the
reciprocal space”. This property menifests itsclf very concretely in the fact that even
truncated series (5) gives good values for the radial scattering amplitudes below the
point of termination (Kurki-Suonio 1968). Secondly, the effect of the reciprocity
condition (14’) getting less favourable is again observed, fig. 17. For a given size of the
spherical region g, (b) gets broader with increasing n, causing a gradual less of
reliability of f, (b). Finally, at a fixed value of n it falls suddenly down indicating that
the data do not contain any information of the high order components within the
atomic sphere. For R =1 A this limit is at about n= § as seen from fig. 17.

Figures 18 and 19 show results of a difference series calculation of the radial
atomic factors for Ca and F in CaF, on the basis of the T data (a) and of the T +
WWW data (b). -

Addition of the weak reflexions affects the spherical components, while the 4th
order component corresponding to a cubic deformation is unchanged. The higher
orders are insignificant. The antisymmetric tetrahedral component (n= 3) in fluorine
seems also to be too small to be observed.

This analysis has distinct advantages as compared to the previous one. First, the
information is in a more concise form. Once we have the radial siructure amplitudes
we immediately know the behaviour of the scattering amplitude in all directions.
Moreover, only few terms are significant in series (22).

Secondly, the information is in a more concrete or more analysed form. The
spherical effects are clearly separated from the nonsphericities, which allows
statements on the average effect of the crystalline field on the atoms and separately
about the shape of the atoms or the effects of possible bond formation.

This separation of the spherical and nonspherical information is useful also when
we study the possible systematic errors. Most of the difficult problems in the
improvement of experimental accuracy concern mainly the spherical behaviour, i.e.
they depend on the scattering angle, but not on the direction of the scattering vector.
Thus, for experimental reasons the nonspherical information is more reliable than the
spherical one. It may be that the spherical components tell us more about the
experiment than about the atoms. Figure 20 demonstrates this sitvation. It shows the
radial scattering factors of silicon atoms in a silicon crystal as calculated from the
HEKKK and GW data. We observe a significant difference in the spherical behaviour,
which must be due to the different experiments, but we also see that, at least
qualitatively, the significant nonspherical terms of the third and fourth order are
equal. Also, figs. 18 and 19 indicate that the two data on CaF., combined are mutually
not quite consistent as to the spherical behaviour.

Thirdly, the use of the difference series, which in principle causes conceptual
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Figure 15. The reciprocal distribution of the spherical average
scattering amplitude f, {bg) of the charge distribution within a

sphere of radius R = 1.50
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Figure 16. The radial behaviour of the
reciprocal distribution of the third order radial
scattering amplitude f3 (bg) of the charge
distribution within a sphere of radius
R —1.50 A for different values of by .

A for different values of by

q(b}

Figure 17. The radial behaviour of the
reciprocal distributions of the radial scattering
amplitudes f; (bg =0.5 A1) of the charge
distribution within a sphere of radius
R =1.50 A in different orders.
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Figure 18. The radial atomic factor of Calcium in CaF4 within the radius R —1.48 A . Results of
" a single difference series calculation from the T data (a), and from the T + WWW data {b}). {(Froam
RKS).
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Figure 19. The radial atomic factors of fluorine in CaFy within the radius R = 1.67 A. Results of a
single difference series calculation from the T data la}, and from the T+ WWW data (b), [From
RKS).

indeterminacy, is now more safe in the case of nonsphericities. The averaging of the
behaviour over ail directions causes that we must have quite large a sphere before the
effect of overlapping of neighbouring atoms has any influence on the radial atomic
factors, cf. Kurki-Suonio (1968). Therefore the difference series gives directly the
experimental results for the nonsphericities. This naturally does not apply on the
spherical component.

Also in the study of nonsphericities there is a feedback on the problem of
experimental accuracy. The physical requirement of low order harmonic behaviour can
be used as a criterion for judgement of the quality of the data. If the data indicate
considerable higher order components they are probably just too inaccurate to contain
information about the nonsphericities. This can be controlled rapidly for any data, and
the criterion will thus spare a lot of time and effort.
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For instance, the T data on CaF,, even when completed with the WWW weak
reflections are adequate. According to fig. 20 the same is true for the two data on
Silicon. The GW data for diamond, fig. 21, seem extremely good, while it is no use to
make such an analysis of the De Marco and Weiss (DMW) (1965) data on Germanium,
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Figure 20. The radial atomic factors A f  of a crystal atorn in silicon calculated with a sphere of
radius R = 1.7 A from the HKKK data ’{al, and from the GW data {(b). The error bars show the
experimental standard errors. (Figures 3 and 4 of KSR).
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Figure 21. The radial atomic factors A f,; of carbon in diamond calculated from the GW data with
a sphere of radius R = 1.1 A . The error bars show the experimental standard errors. (Fig. 2 of

KSR).
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fig. 22, cf. Dawson (1967 d). This is quite natural since the relative contributions of
nonsphericities to the experimental intensities are much smaller in case of heavier
atoms.

There is still one interesting feature. The size of the atom, or of the sphere used
for analysis restricts essentially the behaviour of radial scattering factors. It will puta
definite lower limit for the size of details occuring in the resulting curves. This is
analogous to the restriction into low order harmonics, which requires 2 systematic
angular behaviour of the structure amplitudes. Both requirements together accomplish
here a separation of the systematic behaviour of the data from statistical fluctuations.
They are constraints, which define the signal shape so that we can better distinguish
the signal from the noise.
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Figure 22, The radial atomic factors af, of a crystal atom in germanium calculated from
the DMW data. The error bars show the experimental standard errors. {Fig. 6 of KSR).
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Because of this systematics it will also be possible to get estimates for unobserved
reflexions. One interesting example is the reflexion (222) of diamond. Fig. 23 shows
the independence of the experimental information of the presence of this reflexion in
the data. This indicates that the other structure amplitudes, more or less, determine its
valug, In fact, we get for it in this way values which are slightly larger than the
observed ones, cf. KSR.

diamond (GW)
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Figure 23. The radial atemic factors Afo,fg /i and fa of carbon in diamond according to the
GW data. Results of an iterative calculation with and without Fp92 {solid and dotted lines,
respectively}. The broken linas show the rasults of the MCS parametric analysis. {Fig. 14 of KSR).

At last, it is interesting to see how well this analysis satisfies the requirement of
totality. The question is, whether we can interprete the whole set of data in terms of
local atoms with low order harmonic angular behaviour. We can argue that both of
these requirements are physically reasonable. Therefore, if this analysis is not total,
there will be some charge distribution which does not fit in the mere conceptual
indeterminancy of atoms but definitely cannot be attached to any atom.

The degree of totality can be checked by adding the deviations obtained for the
radial scattering factors to the model and by comparing the resulting prepared model
with the data. However, a single correction is not necessarily sufficient. If the
neighbouring spheres overlap, their common regions are counted twice and the
corrections may be in error. Termination errors and deficiencies of data, such as low
angle reflexions not measured or coincident reflexions, may also give errors which
make another correction on the hasis of the residual differences necessary. We are thus
led to an iterative procedure.

By iteration we finally come to a situation where one further calculation gives
negligible residual corrections. This final prepared model is, thus, consistent with the
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data. The totality of this analysis in case of CaF, is shown by fig. 24. We see that the
T data are exhausted of information. They can be reproduced from the results of
analysis. The combined data cannot be completely reproduced, but still the residual
differences are so small that we can consider the analysis practically total.

20k | [ I
Foos Fmo%e

Figure 24. The deviations of the experimental structure amplitudes of CaF 5 from the original
theoretical model {open circles} and from the final model {solid circles) obtained by an iterative
harmonic analysis of the T data (a) and of the T + WWW data (b}, as compared with the
experimental uncertainties. (From RKS).

It is natural that in case of incomplete data we arrive easier at a prepared model
which completely fits to the data. This indicates that in such cases the systematics is
not strong enough to accomplish the separation of information from the statistical
fluctuations. Therefore full advantage of the properties of this analysis is obtained
.only in case of as complete data as possible.

Diamond gives another interesting example, because there we definitely have
covalent bonding. From. fig. 25 we observe that the results of iteration are almost
total only when extremely large spheres are used. Thus, even these data can be
interpreted in terms of atoms with low order harmonic behaviour, which is an
extremely simple model. This is, however, possible only if we allow a very strong
overlapping of the atoms.

Inspite of the favourable properties of this analysis there is one point of criticism
left. The angular behaviour is well analysed, but the radial one is expressed in terms of
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infinite number of parameters, the values of f, (bn ) at different bu . Again further
inspection is necessary before the experimental information can be expressed in form
of clear and concrete statements.
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Figure 25. The deviations of the GW structure amplitudes of diamond from the spherical
Hartree-Fock atomic model and from final models obtained by an iterative harmonic analysis with
two different radii, as compared with the experimental uncertainties {Fig. 12 of KSR).

10. Radial parameters

The requirement of locality restricts strongly the behaviour of the radial scattering
amplitudes. Particularly the nonspherical components contain obviously little
experimental information. Their large scale behaviour reflects just the geometry of the
crystal structure. The question is, how to parametrize this scant radial information
properly to take full advantage of the geometrical constraint and, thus, accomplish
*“separation of the signal™.
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A natural characterization of a deformation component of an atom would be
given by its “strenght” and “range”. They can be defined as the number of electrons
displaced from the negative lobes of K to the positive ones or

ol P n+3 o
@6 Z - C [ p (Nr2dr - 2 ¢, f, (b4l

° M SRl NELY 0 b

2

where C = JK, d) , and as the expectation value _L (r}), ofrin this

KH)O n
component defined by

= r‘ﬂ_i L]
@ (. = C [p (r)yrd3dr = =) c [f (db.
n ngtn RS VEAAR) g n b2

2

Values of these parameters are easily obtained by numerical integration of the
results of the harmonic analysis described in the previous section. For instance, for
carbon and silicon atoms in diamond and silicon crystals we get from the results of
KSR the values of Table 3. In fact, these parameters have a direct relationship to the
parameters used by Dawson (1967 b, ¢, d) and by McConnel and Sanger (1970). And
comparison of these two analyses indicates strongly that these parameters give a total
description of the nenspherical information.

Table 3. Strenght Z,, and range (r),/Z, of the third and fourth order d2formations of crystal
atoms in diamond and silicon corresponding to the results of the iterative harmicnic analysis of
Kurki-Sucnic and Ruuskanen and to the parametric analysis of Dawson and McConnell and Sanqer.

Crystal analysis/data Z3 [{r;/z3 | Za [<e)a/24 |
diamond KSR/GW 0.338 0.605d —-0.127 0.554d
d—1.544 A DIGW 0.347 0.657d —-0.170 0.657d
MCS/GW 0.323 0.655d -0,177 0.656d
silicon KSR/HKEKK 0.500 063 d -0.318 0.60 o
d-2.352 A KSR/GW 0.617 0.65 d -0.157 G.405d
C/HKKK 0.508 0.682d —0.268 0.682¢
MCS/HKKK 0.498 0.685d —-0.351 0.685¢
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The spherical component seems to offer a more difficult problem. On the other
hand, the procedure, by which table 3 was produced, including iteration and final
numerical intergration is already too complicated to be satisfactory. We should note
therefore that the expectation values

R
@8)r*), = G, 7% », (ryr2dr

are linear parameters, and they can, thus, be calculated directly from series of the type
(5). They can be used as such in connexion of the local definition of a crystal atom.

They also constitute a natural generalization of the parameters (26) and (27)
corresponding to k& = 0 and & = 1, respectively. They include the atomic charge
treated in sec. 6 as a special case with £ = n = 0. Further we can note that the cases
n=0,k=-1and n =0, k=2 are related to the Coulomb energy and the diamagnetic
susceptibility, respectively, (cf. ¢.g. Sirota 1967).

The parameters (28) are integrals over the atomic region and we can therefore
expect them to have the best possible reliability. This can be seen in more detail from
figs. 26 and 27 showing the reciprocal distributions of { ), and( 7°) = Z,
respectively. We see that ¢ r? by is less reliable, obviously due to the singularity of its
real distribution, and we expect this to be the case always when & = -n -2 (the lowest

1q(b)

Figure 26. The reciprocal distributions of the momenta (rk)o of the charge distribution within a
sphere of radius 1.0 A,



033p3 D)

015

O

005

Figure 27. The reciprocal distributions of the electron counts Zy taking part in different terms of
the harmonic expansion of the charge distribution within a sphere of radius 1.0 A .

possible value of £ in eq. (28)). On the other hand, the reciprocal distribution moves
farther with increasing n causing a decrease of reliability. This again corresponds to the
reciprocity condition (14’) getting less favourable and agrees well with all we have
stated about the damping of information about higher order components.

These parameters summarize in integral form the properties of an atom. No
complete analysis based on them is yet done, but on the basis of their properties
discussed and the earlier developments described few low order parameters will be
sufficient to exhaust the experimental information, and “the analysis of the second
type” seems to arrive here at a point where it satisfies the requirements of clarity and
reliability in the sense defined, and the degree to which totality is not fulfilled will
show the insufficiency of the atomic model to explain the diffraction data.
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