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Abstract

A method is presented for analysis of observed X-ray structure amplitudes in
terms of nonspherical atoms. It 1s based on iterative calculation of the lattice harmonic
components of the atomic factors. Locality and low order harmonic behaviour of
the atomie charge densities are assumed providing thereby a criterion for adequacy
of the data for nonspherical analysis.

In the examples of diamond and silicon components up to the fourth order are
involved. Preparcd models with practically complete fit to the data are obtained,
provided that large overlapping of the atoms is allowed. The resulting radial atomic
factors show artificial details but their average behaviour is well defined within
uncertainties determined mainly by the cxperimental accuracy. The nonsphericities
build up a systematics which makes the experimental information insensitive to
omission of one of the reflexions, e.g. the weak Fo, of diamond and silicon. The
results support the justification of the corresponding paratnetric approach presented
by Dawsox in 1967 except that his omission of the spherical component is a decisive
defect.

1. INTRODUCTION

It has been proposed recently that lattice harmonic expansions of
crystal atomic factors would provide a simple interpretation of crystal
scattering factors [F; in terms of the separate atom model. Dawson
treated diamond, silicon and germanium as examples in refs. [1, 2, 3] and
in a summarizing conference lecture [4]. A simple expression was assumed
for the radial behaviour of the different harmonic components of the atomic
charge density, and the parameters were adjusted by comparison with
experimental structure factors. A least squares version of this analysis was
presented by McCoNNELL and SANGER [5]. Kurkri-Suonio and MEISALO
[6, 7] suggested as an alternative direct evaluation of the radial functions
from structure amplitudes.

In a subsequent paper KUurRkKI-Svownio [8] considered the possibilities
of having such information in principle and of obtaining it in practice.
Assuming Jocality as a basic property of the atomic definition, it was
concluded that the available information decreases rapidly towards higher
order harmonics, few first orders playing any role. It was also shown that
a truncated set of structure amplitudes determines the atomic factor



4 Ann. Acad. Sei. Fennice A, VI. 358

components up to the cut off in sin/2. Overlapping of neighbouring atoms
was found to increase the indeterminacy of the components but not to destroy
their significance: this statement is in fact decisive towards the nonspher-
ical analysis having any value.

In this work we shall develop a direct method of nonspherical analysis
on the basis of the suggestion of Kurkr-Svoxio and MEersaro [6, 7], and
shall study its properties. Diamond, silicon and germanium are obvious
examples because they provide a direct comparison with the parametric
approach of Dawsox [1, 2, 3] and McCoxNELL and SANGER [5]. It will be
interesting to see whether the direct analysis, without any a priori assump-
tions about the radial behaviour, will give equal results. In view of Daw-
soN’s arguments in ref. [1] about the choice of radial functions and our
statements in ref, [8] on the basically restricted nature of this type of in-
formation this ought to be the casc.

The significance of the nonspherical analysis can be properly understood
only if the indeterminacy of its results is known. By a direct calculation
of components we probably get a better idea about the uncertainties of
the atomic factor curves than by parameter fitting. Covalent bonding
means that interpretation of the electron density in terms of atoms will
require overlapping of the atomic densities, and the question about the
uniqueness of the results will be important. By treating diamond, silicon
and germanium as examples we thercfore hope to shed some light on this
problem.

On the other hand, the diamond structure is unfavourable for our
method. Since at every step of analysis a limited spherical region is treated,
the bond may cause some difficulties. Therefore we expect these examples
to be instructive in showing the limitations of the method.

Further, this analysis leads to a discussion of the degree of internal
congistency of the data, 4.e. of the extent to which the experimental struc-
ture factors can be found to possess physically acceptable or reasonable
behaviour. Our interest is specially directed to restrictions in the behaviour
of the atomic factors, (¢f. ref. [8]). In the following we shall deal with two
aspects of this question:

First, consistency of the data is closely connected with their accuracy;
errors are likely to cause inconsistency, therefore greater overall accuracy
means normally a higher degree of consistency. This leads us to search for
consistency criteria to indicate the reliability of the experimental values.
Such eriteria will help us judge what will be a reasonable degree of refine-
ment of the analysis. DawsoX’s snonspherical standard of adequacy» is
an example which by its very nature is suitable for nonspherical analysis.
In a direct analysis we expect some modification of it to be useful.

Secondly, some of the structure amplitudes may be particularly difficult
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to measure. In principle, however, they are fixed, more or less, by the
others through the requirement of consistency. The famous weak reflection
222 of diamond structure is an interesting example. Sometimes it has been
thought to be a unique indication of atomic deformation and much effort
has been concentrated on measuring it. Study of the nonspherical con-
sistency will now offer the possibility of seeing to what extent the informa-
tion included in Fy, is independent of the other reflections.

2. OUTLINE OF THE METHOD

At first we write the scattering amplitude of each atom in form of an
expansion

(1) JO) = 3 [ (b)K o (u, v)

which is a Fourier invariant division of the atom into harmonic components
[6]. Here the scattering vector b is denoted by (b, u, ») in spherical co-
ordinates, and the functions K, form a complete orthogonal set of lattice
harmonies for the atomic site symmetry. If the atom is defined as the
contents of a sphere of radius R, the radial scattering factors can be
written in the form of the series

(470)2R3
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where ju(x) is the spherical Bessel function, @ = 2aRb, 4, — (K} K, dQ,
and the summation runs through all reciprocal lattice points b; [7]. The
complex conjugate in eq. (2) plays no role in practice, since normally all
K, ., are real.

The functions f,, are rcal for even n and purely imaginary for odd

n. In series (2) this is established by the parity theorem
Kmi(_b) - (_'l)n Kno: (b) 2
which shows that we can always combine terms by writing

[ 2 Re{F,}K_ (D) (n even)

3 FK (b)) +-F_ K (—b ,
(3) b () o l ZIm{F K, (b) (n odd) .

The analysis will be based on some theoretical model built from separate
atoms. The basic theoretical atomic factors f,,(h) need not be spherical,
but usually they are. Series (2) is used as a difference serics with coefficients
AF; = F, - F,, to evaluate the first order corrections A,f = 3/, JraK
to the theoretical atomic factors. The corrections are taken into account
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only in those orders where they are of significant magnitude. All different
atoms are treated similarly. This gives us a prepared model with atomic
factors flg) = fu, + A,f and structure amplitudes Fl(llr).

According to the meaning of series (2), this correction ought to remove
all essential deviations of the theoretical charge density from the experi-
mental one inside the spheres used. Another calculation with differences
MF = F, — F{) would then give 4,f,, with negligible values, and the
prepared atomic factors f}(,i) would represent the results of analysis. If,
however, the neighbouring spheres overlap, their common regions are
counted twice and the corrections are in error. In such cases A,f,, might
not be small enough and a new prepared model with structure amplitudes
F® can be constructed by using the prepared atomic factors SO = fu+
Af -+ Ayf. This can be repeated, which leads to an iterative procedure.
In the case of the diamond structure iteration will be necessary, because
considerable overlapping of the atomic densities will require the use of
large spheres in the analysis.

Defects of experimental data, such as low angle reflexions not measured
or coincident reflexions, may also make the iteration procedure necessary.
The experimental information will thus leave the corresponding structure
amplitudes arbitrary in certain limits. It is then reasonable to choose for
them values which make the internal consistency of the experimental set
{F, as good as possible, although each model gives a slightly different
basis for this choice. If we assume that the structure amplitudes can be
exhaustively interpreted in terms of atomic factors (1), the unknown
values must be taken as close as possible to the corresponding prepared
values F .. Therefore the absent structure amplitudes are simply omitted
from the difference series calculation, and the joint intensities of coincident
reflexions are divided after each step in the same relationship as the »pre-
pared intensitiesy.

Of course, this procedure will be reasonable only if it converges. At the
limit then we have prepared atomie factors in the form of expansion (1).
These atomic factors arc consistent with the experimental structure ampli-
tudes in the sense that the difforences F, — F . do not require any further
corrections of the model inside the atomic spheres. Thus, they constitute
an interpretation of the data in terms of separate deformed atoms.

There are scveral problems connected with the method itself, such as
the role of the radii R, which are parameters of the method and whose
hasic function is to control the degree of locality in our treatment of the
single atoms, this being basic to the method. The results of ref. [8] indicate
that valnes larger than ordinary crystal radii are appropriate. The radii
are alzo connected with the problem of convergence. It is clear at least that
the procedure will diverge if the spheres are too large. The resulting model
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will evidently depend on the radii R, and this leads us to study the range
of different possible interpretations. Both the rate of convergence and the
resulting model will certainly depend also on the number of harmonic
components included in the iteration, on the quality of the experimental
data used, and on the basic model. As a whole, these problems are too com-
plicated to be treated thoroughly, therefore we simply hope to obtain a
rough idea of their nature.

3. APPLICATION TO DIAMOND STRUCTURE

The atoms of the diamond structure fall naturally into two groups,
denoted by A and B in ref. [1], depending on the orientation of the
tetrahedrally located neighbours. Atom B is just the mirror image of A.
Thus, their electron densities and scattering amplitudes are related by

(4) o6(r) = e(—1) ;5 fa(b) = fu(—D) = fi(D).
Expansion (1) now takes the form
(5) Ja=To ‘E—f:sKa +f4K4 +f6K6 + f Ky + .

where K, are cubic harmonics. The expansion for fg is obtained by chang-
ing the sign of the odd terms, which are imaginary. We shall normalize
such that Max{K,} = 1 > |[Min{K,}|, which gives for the lowest order
harmonics

Ky = 3V 3ayz
P, = FA = ])
PEy = S (08 4 g — 8 Ky )

(6) 'Ky = — SFIG@t 4yt + 24— )
PR = et b (B K S - )
1Ky = —60.3367 [Ky(a® + 3 + 28 + 2% K, — 25 K
Ko = = BT K S K K )

By this choice the radial function f, gives directly the maximum contri-
bution of the 2™ term to the atomic factor (3). This is practical, because
we shall then get immediately an idea of the significance of each component
obtained from series (2).

In order to make a close comparison with the parametric approach we
shall analyse the same experimental values as studied in the refs. [1, 2, 3, 5]
and shall adopt the same theoretical atomic factors as the basic models.
Thus, for diamond we take the F, values of Gorrricner and WOLFEL [9],
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hereafter GW(C), completed with F,y, corresponding to the measurements
of RENNINGER [10] and Wriss and MIDDLETON, ¢f. ref. [1]. The theoretical
atomic factors are those given in ref. [1] obtained by interpolation from
the Hartrec-Fock estimates of Frerman [11]. For silicon we have three
different sets of structure amplitudes to compare: the powder data of
GorroicHer and WOrFeL (GW) [9], the single crystal data of DEMARCO
and Werss (DMW) [12] and those of HarTort, KURtvama, KaTAGAWA and
Karo (HKKK) [13] obtained from mcasurement of Pendellosung fringes
completed with the DMW value of F,,,. For germanium we use the data
of DEMarco and Wziss [12]. The theoretical atomic factors for Si and Ge
are those given in refs. [2, 3] obtained from the Hartree-Foeck calculation
of CLEMENTT [14]. The necessary dispersion corrections are included in
the experimental values in all cases.

As guidance for the choice of radius R we first calculated the avera ge
spherical electron density

I . sin2zabyr
(7) o=y 25—

around one atom. Here a Gaussian representation was used for the atomic
factor at large sinf/A. For Gaussian atoms p, could be calculated ana-
Iytically and the result was corrected by a difference series (7) with coef-
ticients F, — Fgu.. In this procedure termination errors are expected
to be small in the interesting region between atoms, (¢f. HoseMany and
Baccwr [15]). Fig. 1 shows the functions [47r2/Z]o,(r) obtained for GW(C)
and HKKK(Si). These curves give an idea of the separability of one atom

Arnr
Z
20+
15+
10+
d*Sr
O5H
Reiq RT;* Reis

L1 S [
05 10 15
Figure 1. The average spherical charge density (4a12/Z )oo(r) at an atom in diamond

and silicon as caleulated from the experimental structure amplitudes of Gottlicher &
Walfel (1959) and Hattori, Kuriyama, Katagawa & Kato (1965), respectively.
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from its neighbours. In light of the discussion i ref. [8] we expeet the
ncighbours not to contribute seriously to the series (2) until the radius R
extends to the region of steeply increasing curve in fig, 1. This, however,
does not necessarily mean that radil extending to that region would be
unusable. Although the first step of the calculation will give a distorted
picture, the iteration will still give a reasonable result provided it converges.

Anyhow, fig. 1 motivates the preliminary choice of radii: R = 1.1 A
= 0.71d for diamond and R —= 1.7 A == 0.72d for Si, where d is the
nearest neighbour distance or 1.544 A and 2.352 A, respectively. By analogy
we take R = 1.8 A = 0.73d for Ge with d = 2.450 A. Difference series (2)
calculated with these radii are shown in figs. 2 to 6 up to the eighth order.
The error bars indicate the uncertainty corvesponding to the experimental
limits of error. For discussion of these figures we refer to the next section,

To carry through the iterations two different programs were written in
ALGOL. In one of the programs, in accordance with Dawsox’s analysis
where no spherical corrections were included, only the nonspherical com-
ponents n == 3 and 4 were corrected at each step. I the other program
the spherical zeroth order was also included and treated similarly. We shall
call these procedures K34 and K034, respectively, The M-factor, N =
002 F 0 — [F /28, was used to follow the convergence and to
indicate the fit of the preparved model with the data. To account for the
coincident reflections in powder data a subprocedure was included, which
divided the jomt mtensities in the same relationship as the mtensities
corresponding to the prepared model cach time the new M-factor was
smaller than the preceding one.

All calculations were performed with the Elliott 803 computer at the
Department of Nuclear Physics of the University of Helsinki.

diamond (GW)
R=11A =71d

| I — i

05 10 15 20 25 p(A™
Figure 2. The radial scattering amplitudes 4,f, of an atom in diamond caleulated
from the GW data with a sphere of radius 0.71d.
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Figure 3. The radial scattering amplitudes 4,f, of a erystal atom of silicon calculated
from the HKKK data with a sphere of radius 0.72d.
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Figure 4. The radial scattering amplitudes 4, f, of a crystal atom of silicon calculated
from the GW data with a sphere of radius 0.72d.
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Figure 5. The radial scattering amplitudes 4, f, of a erystal atom of silicon calculated

DeMarco & Weiss (1965) with a sphere of radius 0.72d.,
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Figure 6. The radial scattering amplitudes 4,f, of a crystal atom of germanium
calculated from the DMW data with a sphere of radius 0.73d.
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4. THE 'NONSPHERICAL STANDARD OF ADEQUACY’

To compare the quality of different data on silicon Dawsox introdueed
a snonspherical standard of adequacyy 2], The basie argument was that
the deviations of the strueture amplitudes from the model values must
‘display the correct svmmetry’. This statement was applied i a specific
way cquivalent to two assumptions: first, the lattice harmonic expansions
(1} of the atoms do not contain significant higher order teris. Secondly,
the radial atomic factors of the low order components are smooth functions
of sinf/ .

Justification of these assumptions follows from the definition of the
atoms as local objects [8]. Another argument is that wave functions with
angular momentum [ can give rise to components up to the ovder v = 2{
in the expansion (1), (¢f. ret [6]), and it is veasonable to requive that the
states of high angular momenta are weakly occupicd in the atoms. T'hus,
it the deviations from the spherical model are not equivalent to low order
harmonie deformations of the atoms, the data cannot be expected {o be
accurate enough to contain information about the asphericiticos,

Furthermore, to apply this eriterion 1t was necessary to require in ref,
[2] that the model atoms alrcady possess the correct spherical hehaviour,
1f then the deviations from the model showed sufficient internal consisteney
according to the eriterion, the nonspherical analyxis was possible to carry
through. The present method does not have these limitations, bhecause the
different components can be evaluated independently and for any data,

It spheres of appropriate size are used, the first step of the caleulation
will alrcady show the order of magnitude of the different components,
Ocemrrence of significant higher order components will indicate nonspherical
madequacy of the data. However, by using large spherves contributions
from neighbouring atoms may cause higher compouents to appear. On the
other hand, small spheres suppress them because of the more confined
locality. Thus, for the criterion to be applicable we must take the spheres
large cnough for us to observe the possible occurrence of the higher com-
ponents and small enough to get satisfactory evaluation of the components
in one step. This kind of optimum cheice is the real purpose of fig. 1.

In our examples we assume only the 3rd and the +th order deformations
to he present. Thus, from fig. 2 we immediately see the excellent nonspherieal
adequacy of GW(C). Tig. 3 proves similarly that a nonspherical analysis
will Le reasonable in the case of HKKIN(S1), deseribed also by Dawsox [2]
as highly adequate; still, the components n = 6, 7 are clearly visible here.

Fig. 4 corresponds to GW(Si). Contrary to the conclusion in ref. [2]
the nonspherical consistency seems to be good also here. The 3rd and the
4th orders dominate the nonspherical behaviour completely. There Is,
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however, a significant difference in the spherical component as compared
with fig. 3. DMW(Si), fig. 5, shows a very similar spherical behaviour.
Thus, there scems to be in these cases some systematic difference with a
relatively smooth sinfi/2 dependence between the Pendellosung method
and the Bragg reflexion measurements. As to the nonspherical adequacy
of DMW(Si), although the higher components are small, there is one alarm-
ing feature, the almost complete absence of the 4th order. If we assume
that the nonsphericities are bound up with the angular momentua, the
highest order ought to be even. A significant odd component, such as the
3rd in this case, corresponds to an antisymmetric density, and a correspond-
ing even component is needed to cancel the negative clectron density in
the minimum directions of the odd harmonics. Thus, we conclude that the
nonspherical behaviour is not completely adequate.

Finally, fig. 6 shows the corresponding results for DMW(Ge). This is
a very obvious cxample of nonspherical inadequacy. Apart from the error
bars due to experimental uncertainties, this is evident from the large values
of the 8th and 6th components.

9. CONVERGENCE

Extensive calculations were performed to study the convergence pro-
pertics of the iteration procedures K34 and K034. They were designed to
give an idea of the effect of the following factors on convergence: the radius,
the basic model, the quality of data — or, more specifically, their accuracy,
the cut off value of sind/2, coincident reflexions and absent reflexions of
low sinf)/2. As examples of the calculations, figures 7 to 10 show the pro-
gress of iteration, in particular its dependence on the radius R, in the casc
of HKKK(Si). Figures 7 and 8 were obtained from K34 using the radii
17 A = 0.72d and 2.2 & = 0.94d, respectively. Similarly, figures 9 and
10 represent K034 itcration with the radii 1.7 A and 2.0 A = 0.85d, re-
spectively. The starting model was the spherical model F(0, 0) of ref. [2]
and the curves represent the spherical corrections Af, and the nonspherical
components f; and f; of the prepared models in the successive steps of
iteration.

In general, R/d scems to be the most important factor. For both pro-
cedures it has a limiting value, beyond which the procedure diverges. For
K34 it is about 1.0 and for K034 about 0.85. As far as could be stated,
these values depend only on the geometry of the problem and not on the
other factors mentioned. For K34 convergence was still stated at R = 0.94d
(¢f. fig. 8), but divergence at R = 1.02d. K034 converged at R = 0.72d
and diverged strongly at R = 0.94d, while at R = 0.85d a more compli-
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Figure 7. The radial scattering amplitudes a) 4f;, b) fy/i ¢) f, for successive prepared

models in K34 iteration of HKKK data of silicon caleulated with a sphere of radius
0.72d.

cated situation occurred, (¢f. fig. 10). The successive intermediate results
showed neither convergence nor divergence, but an oscillation between two
fixed curves.

The K34 iteration has a better convergence than K034. The reason is
obvious. The coupling between components of different orders, especially
that of the spherical component with the lowest order nonspherical ones,
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-1 .
Q40 'OHF Si{HKKK)
K34 -iteration
O3r R=.94d

02t
01

\ |
o - -1,
05 10 150(A )
Figure 8. The radial scattering amplitudes a) 4f, b) f,/i ¢) f, for successive prepared
models in K34 iteration of HKKK data of silicon caleulated with a sphere of radius
0.944.

is strong due to overlapping of spheres. This is clearly seen also in the
behaviour of Af, in K34 (figs. 7a, 8a) where the change in each step 1s
merely due to corrections of the nonspherical components. The strength-
ening of the coupling with increasing radius appears as an increasingly
oscillatory behaviour of the iteration which finally turns into a divergence.
In K034 this coupling introduces at each step a large exaggeration of the
correction to the preceding model, causing the strongly alternating nature
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Figure 9. The radial scattering amplitudes a) 4fy b) f;/2 ¢} f; for successive preparcd
models in K034 iteration of HKKK data of silicon calculated with a sphere of radius
0.72d. The shaded area shows the oscillation of the result at the limit.
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Figure 10. The radial scattering amplitudes a) 4f, b) f,/7 ¢) f, for suceessive prepared
models in K034 iteration of HKKK data of silicon calculated with a sphere of radius
0.85d. The shaded area shows the oscillation of the result at the limit.
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of the convergence. This also makes the limiting radius smaller for K034,
However, unexpectedly large radii are needed in both procedures to build
up a divergence.

Starting from different models had little effect on the convergence. One
might think that a good enough model would lead to a convergent procedure
even with a somewhat larger E. Dbut this seemed not to be the case. For
instance, for HKKK(Si) the model obtained by K34 with R = 2.2 A,
fitting well with the data was used as the initial model for another K34
with R -= 2.4 A and for K034 with R = 2.2 A but again the divergence
was quite clear after a few loops. Moreover, when this model was used for
K034 with I - 2.0 A the sstationary oscillations appearved, this time,
however, with a much smaller amplitude.

The quality of the data can be seen to cffect the convergence in two
different ways. The abgsence of one or several reflexions from the data tends
to improve the eonvergence slightly, while changing the alternating nature
of convergence to monotonie. This seems natural, since it should be casicr
to reach consistency of the prepared model with less complete data. On the
other hand, inaccuracy or internal inconsistency of the data seems to make
the convergence somewhat slower. All these effects have, however, little
significance compared with the dominant role of the radius.

6. INDETERMINACY OF THE PREPARED MODEL

Each convergent iteration yields a prepared model defined in terms of
radial atomic factor curves. For a given set of data these curves may depend
on the number of components included in the iteration procedure, on the
order in which the different components are treated, on the radius used and
on the reference model. Thus, we have a multitude of different prepared
models to deal with. Fig. 11 shows some examples corresponding to HKKK
(S1). Certain general requirements will, however, restrict the range of models
to be discussed.

Hirst, the result must be consistent with the data simultaneously in all
components assumed to be significant. These components must therefore
be treated on an equal basis. In the present casce this means that K034
must always be applied as the final refinement of the model. Variations in
the order of treatment of the components are therefore equivalent to
variations of the initial model in the K034 iteration. Use of K034 is, how-
ever, limited by its slower convergence. By R — 0.72d there are no diffi-
culties, but already at R — 0.85d K034 gives no unique result, (¢f. fig. 10).
Still, when used as refinement of the K34-model it shows only very small
»stationary oscillations» so that a definite prepared model is obtained.
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Figure I1. The radial scattering amplitudes a) Af, b) f;/¢ and ¢) f, of the final prepared

models for the HKKK data of silicon obtained by iteration. Model 1 is obtained by

K034 with B = 0.72d. Modcls 2 and 3 are refinements of the K34 result by K034

with 2 —= 0.72d and R = 0.85d, respectively and model 4 is a K34 result with

It = 0.94d. Model 5 is the result of McConnell & Sanger (1969) obtained by a para-
metric approach.

Only if the K34-prepared model does not indicate any spherical correc-
tions will completion with K034 be unneccessary. This is, in fact, the case with
both HKKK(Si) and GW(C), when the larger radii are used, but not,
for instance, with DMW(Si) and GW(Si). This justifies in the first two
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Figure 12. The differences between the GW structure amplitudes of diamond and
those of the original theoretical model and those of two prepared models obtained
with the radii 0.71d and 0.84d, as compared with the experimental uncertaintics
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Figure 13. The differences between the HKKK structure amplitudes of silicon and
those of the original theoretical model and those of two prepared models obtained
with the radii 0.72d and 0.85d, again compared with the experimental uncertainties

reported.
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cases the treatment of nonsphericitics without paying attention to the
possible spherical corrections, as done by Dawsox [1, 2] and McCoNNELL
and SANGER [5].

The dependence of the results on the radius is interesting, (¢f. fig. 11),
because 1 principle a larger sphere ought to give a more complete result,
t.. & model consistent with the data within a larger region of the unit cell.
This is also seen from figs. 12 and 13 which show that larger spheres lead
to a better fit, For HKKK(Si) and GW(Si) as well as for GW(C) each
iteration with £ smaller than about 0.85d yiclded at least two structure
factors with significant deviations from the experimental values, while for
all of the data almost complete fit was obtained with R = 0.85d, or larger.
Thus, for instance, curves 1 and 2 in fig. 11 do not explain the whole set
of data, while curves 3 and 4 do. Therefore, only the results obtained by
the Jarger spheres can be regarded as interpretations of the data. We can
take, for instance, the KO34-refined K384 results obtained by R = 0.85d
as the results of the iteration, figs. 14, 15, 16,

In principle the uncertainties of the analysis are of two different kinds,
experimental and interpretational. The error bars in figures 2 to 6 show
the order of magnitude of the experimental uncertainties of the prepared
models. In this context the interpretational unecertainty is equal to the
freedom we have in interpretation of a given set of structure amplitudes in
terms of separate atoms, within the restrictive requirements of locality
and low order harmonic behaviour of the atoms. Tt is coupled to the inde-
terminacy of the division of the charge density into atoms, but also in-
completeness of the data is contributory. The variatious of the possible
prepared models give, at least, an idea of the uncertainty’s magnitude,

Some of the results obtained using the smaller spheres differed consi-
derably, e.g. curves 1 and 2 in fig. 11. However, once the minimum radius
for obtaining an exhaustive model was exceeded, only small variations of
the results were found when the procedure was varied. Especially in the
case of HIKKIK(Si) this was studied carefully; curves 3 and 4 in fig. 11
are typical examples of the differences observed. For GW(C) such variations
seemed to be even smaller,

The method may introduce specific limitations in the behaviour of the
resulting curves, and the variations of the results therefore do not neces-
sartly cover the whole range of interpretational uncertainty. Still, the
foregoing obs=ervations indicate that in these cases the experimental un-
certainty 1s important and probably dominant as compared with the inter-
pretational one. Incompleteness of the data will, however, increase the
latter uncertainty considerably simply due to lack of information. The
importance of limitations attributable to the method can be discussed
separately,
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Figure 14. Radial seattering amplitudes 4fy, f3/¢ and f; of an atom in diamond as

calculated from the GW data by the present iterative method (solid lines) and by

the parametric approach of McConnell & Sanger (broken lines). The dotted lines are
obtained by iteration when F,y, is omitted.
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Figure 15. Radial seattering amplitudes Af,, f,/7 and f, of an atom in silicon crystal

as calculated from the HKKK data by the present iterative method (solid lines)

and by the parametric approach of MeConnell & Sanger (broken lines). The dotted
lines arc obtained by iteration when Fy,, is omitted.

7. CONSISTENCY AND F,

To speak of internal consistency of the data implies that there are
relationships between structure amplitudes, such that omission of one of
them will not essentially reduce the information included in the data,
provided the data are good enough. Also it ought to be possible to deter-
mine the value of one of the structure amplitudes on the basis of the others.
The present method provides a straightforward check of these statements.
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Figure 16. Radial scattering amplitudes 4f,, f,/¢ and f, of an atom in silicon crystal
as calculated from the GW data by the present iterative method (solid lines) and by
the parametric approach of McConnell & Sanger (broken lines).

The check was made on the weak 222 reflexion because of the special
interest in it. It was omitted from both GW(C) and HKKK(Si), and the
analysis was then repeated using R = 0.85d and K34-iteration completed
by a final K034 refinement. As seen in fig. 14 the results with and without
F,,, are practically equal for diamond, in accordance with the first state-
ment. In the case of Si, fig. 15, the differences are somewhat larger, indi-
cating that the degree of nonspherical consistency is not as high. This is,
however, natural because in Si the nonsphericities contribute a much
smaller percentage to the structure amplitudes than in diamond, and ob-
servation of them is correspondingly more difficult. In any event, this
shows that the main part of the information about the nonspherical com-
ponents is contained already in the strong reflexions.

The values of F,, are also easily obtained, since |F,y,| = 8|f;]. From
the f; curves of the figures 14 and 15 we get the values 1.35 and 2.25
for diamond and silicon respectively, while the prepared model obtained
in the ordinary analysis, with F,y, included, yields 1.15 and 1.56 and the
experimental values used were 1.16 and 1.44.

The percentage differences of the various f; curves are, however, rather
large at these values of b, and the prediction obtained on the basis of the
other structure amplitudes can therefore not be very good even for diamond
in spite of the smallness of the changes in the general behaviour of f,.
Nevertheless it seems that the other reflexions require the values of |Fo,|
to be somewhat larger than the experimental ones used. At least the value
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0.90 reported by HEwaT. PRAGER, STEPHEXNSON and WAGENFELD [16]
for Si is too small to fit in with the obscrved nonspherical systematies
contained in the other reflexions.

8. SPECIAL PROPERTIES OF THE METHOD

Tormally the method can be applied to any data regardless of their
quality. In all of the present examples — DMW(S1) and DMW(Ge) included
— it viclds a prepared model with complete fit to the data, The impression
is thercfore that this is an efficient transformation of the experimental
information into the form of atomic scattering amplitudes.

Such a transformation will, however, not be possible for an arbitrary
set of structure amplitudes because of the restrictive requirements of lo-
cality and low ovder harmonic behaviour of the atoms inherent in the
method. Yet, in some degree, the iteration scems to accommodate the radial
atomic factors to fluctuations of the data. It introduces in the prepared
model features which improve the fit artificially but which we should
judge as inconsistencies according to our nonspherical standard of adequacy.
This concerns particularly the analysis using large spheres, where the re-
quirement of locality is weaker.

The infiltration of inconsistencies into the results is particularly clear
in casc of less complete data. Thus, in the case of DMW(Ge), with several
low order reflexions missing, violent oscillations of the atomic factor
curves of the prepared model were imtrodueced, and the final result was
clearly nonsense. In this way, however, a very good fit resulted even from
the smallest sphere used (R == 0.73d) and obviously would have been
obtained from still smaller ones. The situation was similar in the case of
DMW({Si). Both of these cases were found carlier to be inadequate for the
nonspherical analysis, and the good fit is certainly made possible only by
the incompleteness of the data.

On the other hand, if the data are relatively complete up to the cut
off in sinf//, the iteration is not able to transfer single errors or onbvious
inconsistencies of the data into the results, or at least this will happen
sxtremely slowly, thus effecting a rough separation of the internally con-
sistent average behaviour of the data {from more or less random deviations.
Therefore in the cases of GW(C), GW(Si) and HKKK(Si) the final fit
indicates good internal consistency of the data. In such cascs considcrably
different values for one or two reflexions would appear in the analysis as
deviations from the general pattern of consistency. This would particularly
be thercase, if for some reason relatively small spheres would be sufficient.

These statements imply that a good nonspherical consistency probably
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indicates the existence of an exhaustive prepared model as the result of
the iterative procedure, but that the reverse conelusion, in general, cannot
be made, particularly not in case of defective data. This emphasizes the
importance of the preliminary check of adequaey by a one-step calculation.

Also in cases of good data we get some artificial features in the results.
For instance, the sinuosity of the curves at higher values of & 1is certainly
unreal. This seems evident, because there are no significant deviations
from experimental data even i the starting model #(0, 0) in this region,
(¢f. ligs. 12 and 13). It can therefore be regarded as an artifact produced
by the iteration to extend the fit even to unessential fluctuations of the data.
It may also be due to the method itself, which probably generates wavings,
analogous to the termination etfects in charge density, with a wavelength
inversely proportional to the radius £,

9. COMPARISON WITH THE PARAMETRIC APPROACH

It 1s certamly an advantage of the present method. as compared to the
parametric one, that it does not contain e prior: assumptions about the
behaviour of the radial atomic factor curves. We can thus understand the
obscrved behaviour as a purely experimental result. It is worth noting
that the three adequate data treated indicate relatively well-defined general
behaviour of these curves. Once stated this can be used as a justification
of parametric methods, provided that the functional form used has a be-
haviour of the proper type.

Figures 14, 15, 16 show for comparicon also the results of McCoxNELL
and SANGER [5]. They are based on the parametrization suggested by
Dawsox [1, 2]. According to these figures the functional form scems to
be properly chosen. The shape foliows the general behaviour of our results
the differences being mainly due to oscillations of our curves.

In the case of HKKIC(S1) the agreement is even quantitatively remark-
ably good. This agreement, however, is in a sense accidental, because 1t is
possible only when the spherical deviation from the initial model turns
out to be negligible. But since this Is the case here, the resnlts prove the
equivalence of the methods. The disagreement between the two results for
GW(BI) 1s clearly a failure of the parametric approach due to omission of
the spherical correction indicated by the data — whatever its origin. The
difference of the values obtained by McConXELL and SAXGER for the dis-
tortion parameters, when two different theoretical models were used for
carbon In diamond, 1s a similar indication. Of course, it ought to be possible
to include the spherical component also in the parametric approach. Once
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a proper parametric representation is found the results ought again to
be equivalent.

For diamond the results differ more than one would expect on account
of the small spherical correction. The presence of the spherical component,
though small, may cause part of the differcnce but probably not all of it.
Another possible explanation is that the parametric approach is not simi-
larly bound to the requirement of locality, and secarch for the best {it simply
leads slightly beyond the limit to which this requirement can be weakened
in the iterative method. The differences in the nonspherical components
are, in any event, in that direction. It should be noted that in order to get
a model with good fit we had to go almost to the limit in this respect, .e.
we had to use as large spheres as possible, both for Si and for diamond.
Also fig. 12 gives a slight indication that further enlargement of the spheres
— if it were possible — would still improve the fit at the two first reflexions,
but the fit already ohtained is a good one and there is not much to be gained
in this way cither. Definite statement of the reasons for the difference is
not possible without a closer study of the properties of the parametric
approach.

10. DISCUSSION OF THE RESULTS

The results show that it is possible to interpret the data GW(C), HKKK
(Si) and GW(Si) in terms of separate atoms, which are local objects with
low order harmonic deformations. This interpretation necessarily requires
the atoms to possess signilicant components of third and fourth order. The
function K, has tetrahedral character with four maxima, one in each of
the bond directions, and minima in the opposite or antibond directions.
The harmonic K, has a cubic nature with minima in the bond as well as
in the antibond directions and maxima in the directions of the cubic crystal
axes, (¢f. ref. [1]). From the transformation rules of the radial fuuctions
(egs. (6) and (7) in ref. [7]; ¢f. also egs. (4) and (6) in ref. [8]), it follows that
the radial density py(r) corresponding to the fy(b) obtained will be mainly
positive concentrated around one principal maximum, while g, (r) will
have, like f,(b), one negative prineipal lobe. Thus, in the electron density
the third order component is positive in the directions of the maxima of
K,, while the fourth order component is negative in the maxima of K,
In this way their sum increases the electron density in the bond directions,
while in the antibond directions the fourth order component partly cancels
the reduction caused by the third order.

The large radius necessary to obtain a prepared model with good {it
to the data shows that such an interpretation would not be possible in the
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cases treated without allowance of a considerable overlapping of the atomic
densities.

The interpretation obtained seems to be unique for a given set of data
in the sense that the purely experimental uncertainty is dominant. This
means that the radial scattering amplitudes f; and f, corresponding to
the data treated are those given in figures 14, 15, and 16 within uncertain-
ties of the order of the error bars in figs. 2, 3, and 4, They contain, however,
some unessential and artificial details due to the method and only their
general behaviour has any real significance.

On the basis of the spherical component f, we can also state definitely,
that GW(C) and HKKK(Si) do not indicate spherical corrections to the
initial HF model atoms, while the GW(Si) data do. However, since the
general shape of the radial scattering amplitudes is largely determined by
the requirement of locality, it can be attributed to the geometry of the
erystal. 'The amount of actual experimental information included in it
is therefore not very large. It can probably be expressed in terms of a
couple of parameters, as is obvious from the comparison with the parametric
approach. The problems connected with proper parametrization of the
analysis will be discussed in detail in a subsequent paper.

Quantitative estimation of the real significance of the results is very
difficult even if we could restrict the discussion to the experimental aspect
of the problem only. Since the analysis is based exclusively on treatment
of scattering amplitudes instead of charge densitics, we need not worry
about termination cffects, ¢f. ref. [8]. The accuracy of the results is there-
fore mainly determined by the accuracy of the structure amplitudes mea-
sured. Estimation of the experimental accuracy, however, has turned out
to be extremely difficult, (¢f. e.g. [17]). We can also argue that most of the
sources of systematic errors affeeting the results have a relatively smooth
dependence on sinf/4, i.e. on the absolute value of the scattering vector,
rather than on its oricutation. Therefore the monspherical components
arc likely to be more reliable than the spherical correction. But this takes
us no closer to a quantitative estimate of accuracy.

Our judgement of the quality of the data and the significance of the
results is thus largely based on consistency criteria. The kind of consistency
we are looking for in this connection is due to the requirements of Jocality
and low order harmonic behaviour of the atoms. By the present method
we can distinguish, to some extent, such a consistent average behaviour
from inconsistent variations. This is an advantage of this analysis as com-
pared with the earlier atomic factor caleulation of Kurki-Stvoxro [18, 19].
The fact that some of the data do fulfil the expectations in this respect
confirms our confidence in these assumptions.

Consistency alone, however, is no guarantee of the accuracy of the data;



28 Ann. Acad. Sei. Fenniese A, VI. 338

it is just a positive indication. The uncertainties discussed in the previous
sections, and concluded to be something of the order of the experimental
ones, constitute in a sense a minimum reasonable uncertainty. How much
we should add to them depends just on the confidence we have in the con-
sistency criteria. This question becomes particularly topical when we com-
pare results obtained from different data on the same substance, e.g. figs.
15 and 16. For instance, we cannot find any essential difference between
HKKK(Si) and GW(Si) merely on the basis of consistency arguments.
The corresponding results, however, differ significantly if compared with
the uncertainties treated, although there is qualitative agreement in non-
spherical components. It should be noted that the fit of these results to the
data is practically complete in both cases. The results themselves give no
defmite clue for judging which of them is more reliable, if we do not ap-
preciate the agreement of the spherical behaviour of the HKKK result
with the theoretical HF result as an argument. We are, thus, led back to
the question of the reliability of the experimental methods, where the
general opinion at present seems to be in favour of the Pendellésung method.
If this is correct we must prefer the HKKK result.
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