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Abstract

A critical review is given of methods used in determinating the ionic stato of erystal
atoms from X-ray structure amplitudes. The necessity of defining the atoms as local
objects on the basis of the composite charge density is emphasized. The radins of
best separation of the atom from its surroundings is daefined as tho radins B corre-
sponding to minimum  4zr%g(r), where g, is the spherical average charge density
around the atom. Definition of the atomic echarge as the integrated electron count
within this radius has a conceptual indeterminacy of the order of 4aR%g,(R). For
:alculation of these quantitics a method is suggested based on analytic integration
of Fouricer series and on analytic treatment of a Gaussian model erystal to climinate
termination errors. Methods based on extrapolation of atomic factors or on comparison
of structure factors with different models suffer from undefined basic concopts. They
arc unable to distinguish the effeet of the ionic state from the influence of atomic
distortions and they give a misleading picture of the problem, because the charges
of the free model atoms cannot be interpreted as the atomic charges of the model
crystals. The alkali halides KBr, Lilf and Nal and the metal oxides MnO, CoQ and
NiO are treated as examples. The experimental data are scen to indicate single and
double ionization for halides and oxides, respeetively, with a larger conceptual indet-
crminacy in the latter case.

1. Introduetion

X-ray diffraction provides mformation on charge distributions and is
therefore one of the most direct means for studying the ionic state of atoms
in solids. This has been clear since the early history of X-ray diffraction.
In 1918 Desye and ScHERRER [34] stated definitely the possibility of
studying the bonding in solids in this way. They also made the first attempt
to derive the atomic charges in some alkali halides particularly in LiF from
the low order reflexions. Several authors, ¢.g. GERLACH and Pavurr (1921)
[42], MArRK and Torksporr (1925) [77] and ZiNtL and HaArDER (1931)
[117] applied the same reasoning, which actually was an clementary version
of the conventional method based on extrapolation of atomiec factor eurves
to zero diffraction angle.

In 1926 ComrTox [28] presented a more sophisticated method, where
by assumption of sphericity the radial charge density of the atom was
represented as a Fourler series in terms of the atomic scattering factor.
The atomic charge was then obtained by numerical integration. This work
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was followed by further applications of this method by HAvVIGHURST [45]
and BEARDEN [7]. These works seem to represent the first initiative towards
evaluation of the atomic charges directly from the charge distribution or
from different projections of it. In this context the difficulty caused by
the considerable width of the electron clouds or by their overlap was noted
for the first time. Attempts to avoid this were made by use of a large
artificial lattice constant in caleulating the radial charge density, but then
the problem once again turned into the difficulty of extrapolating the
atomic factor curves.

In 1939 Brirn, Grimm, HErRMaNN and PeETERS [18], made the first
serious attempt to observe the influence of the bonding type on the electron
distribution. The difficulty caused by the overlap was described as being
properly solved (in the case of NaCl) by use of smooth atomic factor curves
derived graphically from the experimental structure amplitudes. This
procedure is indeterminate and as such it must be regarded as an unsatis-
factory makeshift. This difficulty with its different manifestations has
been a source of continual confusion. Particularly in the case of LiH the
results obtained with the graphical method by Bravorr and FREDERIKSE
[10] in 1929, ZinTL and Harprr [117] in 1931, and AEMED [3] in 1951
were contradictory. Sharp criticism was therefore presented by WALLER
and Luxpqvist [111] in 1952 and by BuyvogeT and LoxspaLg [11] in 1953,
who came to the completely negative conelusion that the state of ionization
cannot at all be determined by X-ray diffraction.

Meanwhile, it had become a common practice to estimate atomic charges
from the Fourier maps by numerical integration; [c¢f. 23, 24, 74]. In con-
nexion with this method the same overlap problem made its appearance
and led to a series of critical articles by TavLor (1954) [105], Braok (1955)
[12] and Brack and Tavror (1958) {13] referring particularly to studies
of some transition metal alloys [36, 89, 97]. In addition to certain experi-
mental problems three difficulties were mentioned: 1) imperfect resolution
of the atoms, i.e. overlap of the outer regions, 2) outer electrons affect only
low order reflexions and even there the differences between different
models are small [¢f. 103], 3) the atomic factor curves used do not corre-
spond to the electron content of the atom which they are supposed to
represent [¢f. 25]. In fact, however, these are different manifestations of
the same problem. Also in this context a rather pessimistic view was
adopted.

Another view of the problem was presented by CoCHRAN [26, 27] (1958,
1961), who emphasized the necessity of careful definitions of the concepts
of charge transfer or ionic charge, and in 1962 by CarLDER, COCHRAN,
GrirriTHs and LowpEe [21], who showed in their thorough and careful
work that the distribution of charges in LiH indicates single ionization of
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the atoms inspite of the negative conclusion of BisvoEgT et. al. [11]. In fact,
although the paper does not so state explicitly, this work shows that

1. the two types of methods, the atomic factor method and direct inte-
eration of charges, are definitely non-equivalent,

the integration method arises in a natural way from definition of the
basic concepts and leads to a realistic deseription of the situation in a
solid and

o

3. the state of lonization can be a meaningful concept even in cases where
no conclusions about it can be made from the atomic factor method.
Still, some confusion seems to be prevailing in the treatment of this

problem in the literature. Both methods have been applied continually
side by side, with several improvements in the calculation techniques, as
can be seen from the more recent review articles by StroTa and GoLoroBov
[1017], SirorA [100], Brirn [17] and Hosova [48], but the origin and nature
of their differences and of their uncertainties coupled particularly to the
atomie factor method seem not always to have been fully realized. Through
this paper, besides giving a review on the development of this problem, we
therefore wish, to call attention back to the nature of the problem, to the
foundations of these methods and to their basic limitations in order to
attain a proper appreciation of the significance of the results obtained.

2. Nature of the problem

Basically the ionic state is a parameter of the separate atom model, as are
many other parameters conventionally treated in crystal analysis. Such
parameters have significance only in so far as it is meaningful to speak
about atoms in a solid. If we can define the atom, we immediately also get
all atomic parameters, and, vice verse, any determination of such parameters
necessarily involves some definition for the atom, the significance of the
results depends on the relevancs of this definition.

Because the first aim is to obtain experimental information about the
atoms, we must have some kind of an operational definition, i.e. we must
not start from the abstract idea of an atom but from the experiment [cf. 26].
Each type of experiment or phenomenon then creates naturally its own
definition of ’atom’ which is the ’effective atom’ in this particular phenom-
enon. The agreement or disagreement between the values of atomic
parameters obtained in different contexts is an interesting question in
itself indicating the degree of relevance of the atomic concept [ef. 27].
Here we shall concentrate on the ’effective atom’ of X-ray diffraction.

In the case of one given atom, the atomic charge Z can be expressed
unambiguously either in terms of the charge density o(r) or in terms of
the scattering amplitude f(b):
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(1) Z == / o(T)d*r = f(0).

This simplicity is apparently preserved in the separate atom model, i.e., in
a crystal built by superposition of atoms. Since in such a model we know
the charge distributions p,(r) and seattering amplitudes f.(b) of the
individual atoms beforehand, we can immediately express the charge den-
sity and structure amplitudes of the composite system in terms of them
through the equations

(2) o(r) == 4 Ou(F == T,)
{3) Fj — Zf,,(bj) (,ffn'bj"'n

where we understand the effect of thermal motion to be included in g,
and f.. Here 1, are the atomie positions and b; the reciprocal lattice
vectors; the first summation runs through all atoms while the latter refers
to one unit cell.

This construction is somewhat misleading, because in the true problem
the primary system is the composite one, and not the atoms as in the model.
To write the charge density and the structure amplitudes in the form of
eqs. (2) and (3) means decomposition of the ervstal into atoms, and this
is not possible without first defining the atoms in some way. It is clear from
the requirement of operational definition that this must arise from a study
of the crystal itself, and in this context particularly from the experimental
structure factors or from any quantities mathematically derived from them
¢.g. the charge density. The frec atom is a completely different system and
can therefore not provide a basis for this purpose. The crystal as a whole
1s a complicated quantum mechanical system of a vast number of electrons.
From a theoretical point of view the division into atoms is artificial and
no unique definition can be given as emphasized by Luxbpqvist [75] in
1954 and later by WEsTIN, Warrer and Luxpvist [115], MANSIKKA and
Kurmara [76] and Aikara and Maxsikga [4]. Consequently, there will
always be a basic conceptual indeterminacy in all atomic parameters, in-
cluding the ionic state of the crystal atoms.

Although we do not know exactly how to define the atoms, there are
certain conditions which must be fulfitled to make the definition reasonable.
For example, we must introduce the requirement of locality [63, 64] as a
basic property of our ’effective atom’. This is guite a natural requirement
from the point of view of the abstract idea of an atom. It says simply that
no distant parts of the charge distribution will be assigned to the atom;
an electron cannot be said to belong to some particular atom for any other
reason than for being close enough to its nucleus. This requirement is
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directly applicable to the operational definitions desired in this context,
because it refers to the charge distribution.

It should be noted that this discussion applies also to any model crystal.
It is often stated that superposition of theoretical free atoms gives a good
approximation for X-ray diffraction analysis. This is true, but it concerns
exclusively the composite charge density of the erystal. It does not imply
that the parameters of the free model atoms used would represent the
situation in the composite model crystal in any sense. Consistency already
requires that we use the same definitions for the model quantities as for
the experimental ones. Their deviations from the theoretical free atom
values are important for understanding the nature of the model used. If
eventually the experimental values obtained lie close to the free atom values,
it 1, 1In prineiple, just a fortunate coincidence. On the other hand, serious
or irregular deviations from the free atom values would indicate that the
concept of an atom is no more fully usable.

All methods applied in the determination of the ionic state must be
judged on the basis of the propriety of the atomic definitions inherent in
them. The conventional methods fall naturally into two categories according
to the principle followed in dividing the crystal into atoms. This division
1s effected either as a decomposition of the charge density according to
eq. (2) or as a decomposition of the structure amplitudes according to eq.
(3). The results are then correspondingly based on either of the definitions
(1) of the atomic charge; [¢f. 17]. In the following we shall call these two
groups of methods the infegration methods and the extrapolation methods,
respectively.

3. The integration method

a) General

The integration method is based on the simple idea of relating the total
charges in suitable parts of the unit cell, as calculated from the experimental
charge distribution, to the atomic charges; [¢f. 27]. In these methods the
requirement of locality is taken into account automatically. If the atom
were surrounded by a region of zero charge density, the volume taken up
by the atom would be well defined and integration over this volume would
vield an unequivocal definition for the atomic charge. This is, in fact, never
the case. But, in any event, the charge distribution shows directly the
degree of atomic separation, and we can still use the electron count of the
atomic peak as the ’effective charge’ defined by our experiment; its de-
pendence on the size of the region will show the coneeptual indeterminacy
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coupled to this definition [¢f. 21]. In this way such calculations will provide
a realistic picture of the atomic charges.

The applications of the integration method vary in the technique of
integration, in the choice of atomic regions, and in the treatment of the
residual term problem and obviously in many technical details.

b) Technique of integration

Numerical integration of the charge distribution has been done most
frequently from two, or even one, dimensional projections [6, 23, 24, 36,
56, 89, 97, 98, 101]. When the three dimensional charge density has been
used, the calculation has been based on values in one direction and on the
assumption of sphericity or on some average of several different directions
[5, 45, 90, 116].

The method of Compron [28] is also based on numerical integration.
However, the radial charge distributions of the atoms used there are cal-
culated from the experimental atomic factors, which must first be evaluated
from the experimental structure amplitudes. Therefore this method and
other comparable calculations [7, 18, 20, 45, 54] fall rather into the class
of extrapolation methods. It should be noted in this context that the aver-
age radial charge distribution around a nucleus can also be calculated
without any intermediate steps and without the assumption of sphericity
directly from the structure amplitudes of the crystal from the series

1 sin 27b;r

& ) =538 "
J

where the relevant nucleus is assumed to lie at the origin [50, 62, 63, 72, 85].
This would provide the most direct means for numerical integration of
the atomic charge.

Analytical integration of the Fourier series has certain practical advan-
tages due to avoidance of the tedious preliminary caleulation of the charge
density. The electron count of an arbitrary region 7' is given by the series

1
(5) Zy = ?sz G;k"(bj)s

where op(b) is the shape transform of 7' [60]. For a sphere of radius R
centered at the origin eq. (5) takes the form
i3 » Ji(27b;R)

Vo~ 2abR

(6) Z(R) =

Except for spherical regions, which are used most frequently [51, 55, 61,
6770, 73, 81, 82, 84, 93, 110], use of an ellipsoid [55, 61, 110], or a cube
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[17, 21, 26, 85, 113], or a parallelpiped [30] have all been proposed. The
analytic method is similarly applicable to the projections of charge density;
CocHrAN [23] and BrowN and WiLkINsON [19] give the expressions for
a rectangular region and a circle, respectively, separated from a two di-
mensional projection. The analytic calculation of electron counts and the
estimation of the effect of known experimental uncertainties [cf. 23, 30,
64, 113] is in all these cases straightforward.

¢) Choice of atomic regions

Obviously, the choice of atomic regions must correspond to the shape
and width of the atomic peaks shown by the charge distribution. If we
want to share all of the charge between the atoms, we must divide the unit
cell into parts and assign each part to one atom. In this way we may obtain
regions of rather complicated shapes [cf., e.g., 23, 24] for which numerical
integration is preferable. CALDER ef. al. [21], Wxiss [113] and MERISALO
et. al. [85] have followed this principle in the case of NaCl structure by
simply dividing the unit cell into equal cubes of side a/2. This, of ecourse,
is an easy way to gain some idea of the charge transfer from one atomic
site to the other, but it does not even tend to find the most proper atomic
reglons.

It is often more expedient to consider some electrons as not belonging
to any of the atoms. For instance, attempts have been made to count
from the charge distribution the number of electrons contributing to a
covalent bond [cf., e.g., 15, 16, 22, 43, 80]. Similarly, a distinction has been
attempted between the conduction electrons and the core electrons, thereby
motivating statements ccncerning the state of ionization of the atoms in
a metal [¢f. 2, 8, 44]. The electron distribution may also indicate occurrence
of separate electron aggregates in the interatomic space [55, 110].

Because of such possibilities it is advisable in more precise studies to
define the atomic region for each atom independently by seeking the most
natural way to separate it from its surroundings. An obvious solution is
to let the surface of the region go through the minimum charge density
in all directions. This procedure, however, is unnecessarily tedious. The
regions would have irregular shapes that require the use of numerical
methods, and they would be rather sensitive to termination errors. It is
much more practical to take regions of some regular shape and to deter-
mine their size such that the surface follows the minima as well as possible.
We can then use analytical integration, whereby the differences due to
the shape of the region will be nonessential and will remain within the limits
of coneeptual indeterminacy of the atomic charge.

A sphere is certainly the most natural shape to be used for any struciuie,
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because it takes the requirement of locality into account isotropically.
The problem is then to find the most proper atomic radii. It has been com-
mon practice to let the minimum value of charge density on the line con-
necting nearest neighbours determine the radii [55, 56, 110, 116]. This
principle has the disadvantage of giving one direction a special position.
Therefore Kurki-Suoxio and Foxtern [68] suggested another choice
based on the average radial charge densities around the atoms, which can
be calculated from eq. (4). To avoid overlapping of regions the sum of
the two radii was still kept equal to the nearest neighbour distance, and
the criterion was to have equal average charge density on the surfaces
{50, 51, 73, 81, 82, 84, 85, 93]. The minima of the o4(r), in all these cases,
lie far beyond these radii, which indicates that the neighbours, in fact, have
little effect on the integrated charges, unless the spheres are taken very
large [¢f. 50, 63]. Therefore, the limiting condition of having the spheres
just touching each other leads to an underestimation of the radii as well
as of the atomic charges [¢f. 101]. However, in terms of total charges
attached to the peaks of the charge distribution the minimum of dmr2g,(r),
rather than of gy(r), will show the radius of the best separation of an atom
Jrom its surroundings. This would be equal to the value of R where Z(R)
has an inflexion point, and the corresponding value of Z(R) is the natural
operational definition of the atomic charge in the crystal. The value of
4nR?04(R) will be a measure of its conceptual indeterminacy. This defini-
tion can be used for all atoms independently and will always lead to slight
but unimportant overlapping of the atomic spheres.

In the case of the NaCl structure BrILL [17] has suggested a correspond-
ing procedure with cubes. This worked well for the positive ions. However,
the charges around the negative ions were too diffuse to produce an in-
flexion point until the cubes corresponding to ions of the same kind over-
lapped considerably. Therefore the region of the negative ion was defined
simply as the complement of the cube corresponding to the positive ion.
In this way the definitions for the two ions were unique, but different, and
dependent on each other. These difficulties do not show up when spheres
are used.

d) Treatment of the termination problem

The termination problem is less serious for the integrated charge than
for the charge density [¢f. 63, 64]. One way to take termination into account
is to use eq. (5) as a difference series. The result then shows the deviation
of Zr from that of the model erystal [¢f., e.g., 61, 73, 85, 89]. This, however,
does not give direct information on the ionic state of the atoms, because,
ag first emphasized in 1953 by CocHrAN [24, 25], the theoretical values of
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Z(R) may deviate strongly from the electron counts of the model atoms
[¢f. also 12, 13, 67].

Moreover, the Z; values of the model crystal show little correlation
with the ionic state of the model atoms used, [64, 113], so that no con-
clusions seem possible without actually calculating the residual term.

In calculating the residual term a Gaussian representation of the theo-
retical atomic factors is useful. It can be used like any other analytic form
[ef. 91] to create crystal structure factors at large b values and, thus, to
provide continuation of series (5) or (6) until a reasonable convergence is
reached [17, 51, 55, 67, 68, 81, 82, 84, 110]. For a Gaussian crystal we also
have the much simpler possibility of caleulating Z(R) directly on the
basis of the analvtic expression. This procedure has been used since 1953
in charge density calculations, first by HosEmany and Baccur [46, 47],
then by several others [8, 56, 90, 102, 116], to replace Fourier series, and
for caleulation of g,(r) instead of series (4) by INgKINEN and JARVINEN [50]
and by MERIsALO ¢f. al. [85].

It is important that the Gaussian representation is accurate at large
values of b, where we can assume the theoretical free atomic scattering
factor to be reliable. If the fit is not good enough at small values of b, the
(Gaussian results must be corrected by the difference series with coefficients
Foo—Fgue to yield the experimental values of Z(R) and by another
difference series with coefficients F . ..— Foaes 10 give the model values.

4, The extrapolation method

The idea of the extrapolation method is most apparent in those special
cases where it 1s possible to assign some of the structure amplitudes to
certain atoms, on the basis of some simplifying assumptions, or to decompose
them approximately into contributions from different atoms [¢f. 65]. We
then have atomic factor values at some of the points b; and the evaluation
of the atomic charges appears to be a matter of extrapolation to b = 0.
To be able to do this we must know the behaviour of the atomic factor near
the origin, [27]. At this point the definition of the atom is included in the
method.

The extrapolation is sometimes explicit, [3, 47, 95]. More often it is
replaced by a comparison of the atomic factor values f(b;) deduced from
the data with the theoretical values derived for different ionic states of
the free atoms [20, 57—59, 86 —88, 104, 107]. Estimates of atomic charges
have also been based on comparison of the experimental structure ampli-
tudes with model values corresponding to different degrees of ionization
of the constituents [29, 35, 37, 49, 78, 96, 99, 101]. Basically these methods
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contain the implicit idea of extrapolation according to free-atom-like
behaviour of the atomie factors.

The nature of the problem is here somewhat obscured by the intimate
connexion with the separate atom model, where the initial atomic factors
are definite functions at all values of b. This gives the impression, often
referred to, that the experimental information, which is concentrated at
the reciprocal lattice points, would be critically defective [11, 106, 115].
However, all information we can have as the starting point of the analysis,
even in principle, is included in the structure amplitudes #,. To get more
information can only mean in this context to collect more complete and
more accurate data on F;. The apparent lack of information must rather
be understood as a consequence of the conceptual indeterminacy of the
atomic definition. This concerns the uncertainty in decomposition of the
structure amplitudes F; into atomic factor values f(b;) as well as the
uncertainty in the interpolation or extrapolation of these values to regions
between the points b;, particularly to b = 0.

This decomposition, interpolation and extrapolation of scattering
amplitudes is not arbitrary. There are certain limitations due to the need
to define the atoms in a reasonable manner. It is sometimes assumed that
these limitations are taken into account when the atomic factors are de-
tived graphically as smooth curves [18]. However, the important require-
ment of locality in particular, is of a more definite nature [63, 64], and
such an undefined procedure is not sufficient to satisfy it.

If we start by decomposing the structure amplitudes into atomic con-
tributions according to eq. (3), we must be sufficiently careful not to rely
on the sphericity of atoms [¢f. 33, 38, 63, 64, 114]. At least we must take
into account the possibility of having some small deformation contributions
which violate the conventional extinetion rules [65]. The first few reflexions,
on which the extrapolation must be based, are most sensitive to distortions
caused by bonding [21]. Even if the decomposition into atomie contribu-
tions were unambiguous, they would provide rather unreliable initial
values for the extrapolation. Spherical changes, ¢.g., overall compression
or extension of the atom, will cause the atomie factors to deviate from
the free atom values at the first reflexions, thus making the initial values
either too high or too low. Nonsphericities, on the other hand, cause a
selective increase or decrease of the reflexions and may therefore give a
misleading initial slope for the extrapolation. If we want to take this effect
into account in this method, we must realize that we can no more represent.
the atomic factor by just one curve, but that we have slightly different
curves for different directions of b, which means considerable complication
and additional uncertainty in the extrapolation.

In general the effect of deformations on the structure amplitudes is
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small. The examples in which it has been possible to analyze them never-
theless show that they may be of observable magnitude. At least, they cannot
be neglected without careful consideration of their order of magnitude
[cf. 31, 32, 49—51, 69, 70, 72, 81, 84].

It has been stated many times that the differences between atomic
factors corresponding to different ionic states are very small even at the
first reflexions. These differences should be compared, first, with the
experimental possibilities, which during recent years have been subject
to international projects [1, 52, 53, 66, 92], and secondly, with the effects
of deformations, which may well be of the order of a few percent. If we
were to assume that such differences characterize the accuracy required
for determination of the ionic state by X-ray diffraction, we have but one
possible conclusion: the task is impossible. The difficulty of reaching a
definite conclusion in favour of any of the models with different states
on the basis of comparison with experimental results is evident in numerous
relevant studies [11, 21, 49, 58, 59, 103, 104, 107, 115]. It is instructive that
this difficulty is not restricted to metals, or to covalent crystals, where we
might consider that the bonding makes the ionic state indefinite, but it
concerns similarly even the most obvious ionic crystals such as the alkali
halides. This leads us to suspect that such a view of the problem is over-
pessimistic.

There are cases where certain structure amplitudes of models with
different states of ionization differ markedly [35, 37]. Furthermore, electron
diffraction is more sensitive to differences at low scattering angle, because
the scattering amplitude for electrons is proportional to Z — f. It there-
fore provides a means for more accurate comparison with different models
[86—88]. The experimental accuracy then seems to be sufficient to allow
us to state which of the models is in accord with the experimental value
of the reflexion studied. The conclusion is still uncertain, because the effect
of the atomic distortions on the intensity is correspondingly greater, quite
possibly greater than the influence of the degree of ionization [21].

In the above considerations we have been concentrating on the relia-
bility of the initial values of extrapolation provided by the first few re-
flexions. This is only a part of the problem. An obvious objection can be
raised against the whole idea of free-atom-like extrapolation, which is the
essence of these methods. The ionic state is a matter of the state of the
outer electrons, which also determines the behaviour of the atomic factor
at small sin 6/4. The state of the outer electrons, however, undergoes
considerable changes when the atom becomes part of a solid. This is clear,
since the charge distributions of free atoms, particularly those of negative
ions, often extend rather far from the nuecleus, [17, 21, 24, 25, 79, 111, 115];
see further, for instance, the tables by Frousr-Fiscarr [41] on Hartree-
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Fock atoms. At least that part of the atomic charge distribution which by
superimposing the atoms comes into or close to the region of the neigh-
bouring atoms, will change completely, which already may significantly
affect the atomic factor near the origin [13, 25, 115].

In such cases the free-atom-like extrapolation also violates the restrie-
tions imposed by the requirement of locality. Thus the assumption of free
atom behaviour is a poor one. In particular the extent of its poorness
depends strongly on the state of ionization of the model atom. Therefore,
the comparison of data with different models cannot give any realistic
view of the problem.

These considerations indicate that even in the model crystals we cannot
define the crystal atoms as the free atoms from which the crystal is built.
A definition based on the composite charge density or on the structure
factors may yield atomic parameters with values significantly different from
those of the free constituents. Thus, for instance, the statements of WEIsS
[113] concerning the very small differences in the integrated electron
counts of Mg®0°, MgO'~ and Mg*t0?-, do not necessarily imply that
the atomic charges of the crystal are completely indeterminate, but only
that in the model they are largely independent of the ionic state of the
free model atoms.

5. Examples

To clarify the above considerations we shall discuss a few examples,
where the construction of separate atom models with different ionic states
is possible on the basis of existing theoretical calculations and where re-
latively good data are available. In this way we come to two kinds of
examples, the alkali halides KBr, NaF and LiF and the metal oxides MnO,
CoO and NiO. The following data were used: for KBr the data of MEISALO
and INKINEN [82], for NaF the data of ME1SALO and MERISALO [83] and for
LiF the data of MERIsALo and INKINEN [84], while for the three oxides
the data of Uxo [109] were introduced.

For each crystal one model was constructed from neutral atoms and
another from ions, singly ionized in case of the alkali halides and doubly
ionized in case of the oxides. The following theoretical atomic factors were
adopted:

atom reference
Li, Lit, K, F, F~ Freeman [38],
. Na, Kt BERGHUIS el. al. [9]
Nat Bovs [14]

Br, Br— FrEEMAN and Watson [40]
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Mn, Co, Ni Frerman and Warsox [39]
Mn2+ Prerer [94]

Co?t, Niz+ Warson and FrEEMAN [112]
0, 0%~ ToroxaMmI [108]

The calculations were performed according to the principles sketched
in the discussion on the integration method. The temperature factors
obtained in the analyses presented in the references [82--84] were used
for the model crystals of the alkali halides. For the metal oxides the tem-
perature factors obtained by Mgisaro and INkINEN [81] were used. The
Gaussian representations for Nat, K+, F-, Br—, Mn, Mn2*+, Co, Co2", Ni,
Nizt and O*- were taken from the paper by Kurri-Suonio, MEIsaro,
MERISALO and PErTora [71] and for Lit+ from the work of MERISALO and
INKINEN [84]. For the neutral atoms Na, K, F, Br and O the Gaussian
representations were chosen equal to those of the corresponding ions, which
necessitated correction of the Gaussian results by difference series, as de-
scribed 1In sec. 3.

To obtain on a local basis an idea about how the electrons are distrib-
uted among the two components in these erystals and in the corresponding
models the electron count Z(R) was calculated in spheres around both
kinds of atoms according to eq. (5). The results are shown in figures 1 to 6.
In these figures the radii are measured from the left for the metal atoms
and from the right for the halogen or the oxygen atoms. Curves 1 correspond
to the neutral models, curves 2 to the ionic ones, and curves 3, the broken
lines, are the experimental values with error bars showing the standard
errors.

The values f(000) or f;(000) given by MEersaro and INkinEN [82] for
KBr and by Mer1saro and INKINEN [84] for LiF, as well as the values N,
of ME1sALO and INKINEN [81] for the three metal oxides are completely
equivalent to Z(R), although they are obtained by summation of a long
series (5). The theoretical values given in these references correspond to
our ionic model, but some differences can be observed. The only major
discrepancy, a matter of almost one whole electron in the case of oxygen
in NiQ, turned out to be a misprint in some earlier stage of the calculations.
In KBr, MnO and CoO there are physically meaningless deviations, which
are numerically too large to be attributed to inaccuracies in the calculations.
They could be traced back to the fact that some adjustment of the observed
structure amplitudes of KBr and refinement of temperature factors were
made after the calculation of electron counts?).

Each of the curves has an inflexion point, which shows the distance of
the lowest radial charge density from the center of the atom. (Its exact

') ME1saro, private communication
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Figure 1. Integrated electron counts in spheres around K and Br atoms in a KBr

crystal as a function of radius. The curves correspond to 1. a model crystal built from

free neutral atoms, 2. a model built from free ions Kt and Br~ and 3. experimental
data of MEISALO and INKINEN (1967h).
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Figure 2. Integrated electron counts in spheres around Na and F atoms in a NaF

crystal,as a function of radius. The curves correspond to 1. a model erystal built from

free neutral atomns, 2. a model built from free ions Nat and F~ and 3. experimental
data of MErsavo and MERIsALO (1966).
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Figure 3. Integrated clectron counts in spheres around Li and ¥ atoms in a LiF
crystal as a function of radius. The curves correspond to 1. a model erystal built from
free neutral atoms, 2. a model built from free ions Lit and F~ and 3. experimental
data of MERrIsALO and INKINEN (1966).

position is more easily seen by calculating 4mr?g, from eq. (4).) This de-
fines the atomic radius R; as the radius of best separation of the atom
from its surroundings. The value of n = Z — Z(R,) is then the corre-
sponding ionicity of the atom.

It is obvious from the curves and from the corresponding numerical
values given in table 1 that the charges of the free model atoms do not
correspond to the situation in the model crystals. The differences in the
charge distributions of the two models are much less than would be ex-
pected on the basis of the free constituents. The electron counts in equal
spheres differ at most by 0.05 to 0.15 e and by 0.1 to 0.3 e for the alkali
and halogen atoms, respectively, instead of by one electron as expected.
In the metal oxides the corresponding differences are 0.4 to 0.5 e and
0.6 to 0.7 e instead of two electrons. Thus overlapping of model atoms in
the crystal destroys to a large extent the differences in outer electron
configuration, and the atomic charge, it defined on the basis of the com-
posite charge distribution, has little dependence on the state of the free
constituents.

We realize that, in fact, the neutral model cannot be understood to
represent a crystal with neutral crystal atoms. The one or two outer electrons
of the free metal atoms are too far from the nucleus to remain in the pos-
session of the atoms after superposing the charge densities. The charges



18 Ann. Acad. Sci. Fennicae A, VI. 369

Z(R)
O

e

Fo

19 13 12 10 08 06 04 O2A |
06 08 10 12 14 16 18 20 22R&

Figure 4. Integrated clectron counts in spheres around Mn and O atoms in a MnO

crystal as a function of radius. The curves correspond to 1. a model erystal built from

free ncutral atoms, 2. a model built from ions Mn?** and 02~ and 3. experimental
data of Uxo (1965).
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Figure 5. Integrated electron counts in spheres around Co and O atoms in a CoQ
crystal,as a function of radius. The curves correspond to 1. a model crystal built from

free neutral atoms, 2. a model built from ions Co?** and O®~ and 3. experimental
data of Uwo (1965).
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Figure 6. Integrated electron counts in spheres around Ni and O atoms in a NiQ

crystal as a function of radius. The curves correspond to 1. a model erystal built from

free neutral atoms, 2. a model built from ions Ni?" and O?~ and 3. experimental
data of Uxo (1965).

of the halogen and oxygen atoms in the crystal come much closer to the
values of the neutral atoms, although the runaway electron of the other
atom does make a contribution.

The ionic model is much closer to a crystal with ionized ecrystal atoms,
In this case it is the negative ion which is slightly too diffuse to play quite
credibly the role of a singly or doubly charged negative crystal atom
[ef. 17, 21, 111, 115].

The experimental values indicate a more compact and thus a better
defined negative ion than that of the ionic model except for CoO where
the oxygen is more diffuse, according to these data. We observe that the
differences n*—n~ come reasonably close to the ideal values 2 and 4
corresponding to the completely ionized states, again with the exception
of CoO. In this context it can be noted that the scale of the KBr data must
be somewhat high because the total number of electrons in the two spheres
comes out too large. However, the difference n*—n— is independent of
this and indicates a similar state of ionization as in the cases of the other
two alkali halides.

The inflexion points of the curves are not sharp, but there is for each
atom a longer interval of lower slope. This shows clearly the natural un-
certainty of the atomic charge in a crystal and the different degrees of it
for different kinds of erystals. As a relative measure of this conceptual
indeterminacy of the ionicity we give in table 1 also the differences /n
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corresponding to AR = - 0.05 A at the inflexion point. The slope is much
lower for the alkali halides than for the metal oxides, which indicates better
separability of the atoms, and hence a elearer ionic nature for the bonding
in the former case. We clearly observe that the positive alkali ions are more
exactly definable as independent entities than any of the other atoms con-
sidered in these examples. Yet the slope is in no case so low that we could
speak about a unique definition of the atoms. The radii of the best separation
indicate some overlapping of atomic spheres as seen from the ratio
(R + R })/d. The conventional way of choosing the atomic radii corre-
sponds to the value 1.0 for this ratio. This ratio has larger values in cases
where the space between the atomic peaks is emptier and hence the overlap
of the atoms in the conventional sense is smaller.

6. Discussion

The two main types of methods are clearly non-equivalent, and there
are several reasons for preferring the integration methods over the extra-
polation methods.

First of all, the integration method is based on calculation of a well
defined quantity. Secondly, this quantity is closely related to a definition
of the ionic state on the basis of the composite system studied. In this way
the problem is rather well isolated from other interpretational problems
connected with the separate atom model, and is thus unaffected by, say,
possible atomic deformations. The problem about the significance of the
results is in this way clearly divided into two different questions, the ac-
curacy of the quantities calculated, and the relation of these quantities
to the concept studied, which ean be treated separately.

The idea of extrapolation, on the other hand, leaves the concept of
ionic state undefined. It merely correlates the atomic charges in some
vague manner to the charges of the free constituents of the model. This
connection makes it difficult to cast aside impressions and ideas based on
the separate atom model or even the spherical model, and the deficiencies
of these models appear therefore as inaccuracies of the method. Moreover,
there is no obvious connection between these quantities and the experi-
mental data and hence there cannot be any unique way to derive them from
the data. As demonstrated by the examples, the charges of the free model
atoms correspond poorly to the atomic charges in the model crystal as
defined by integration. Therefore, when using this method, we may obtain
at worst a completely misleading picture of the whole problem. We could
consider that it is the first few structure amplitudes which are here the
definite quantities derived from the data, and the whole problem would
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then be concentrated to a study of their relation to the ionic state. There
is no direct relation; moreover, these quantities depend strongly on other
parameters of the model. Thus the problem of ionic state is not sufficiently
well isolated in this method.

In actual fact, the ionicities can be deduced much more accurately
than one would expect on the basis of comparison of different models. There
18, for instance, no doubt that the alkali halides and the metal oxides
treated as examples are close to the singly and doubly ionized states. This
statement cannot be reached by the extrapolation method, but is rather
obvious from considerations based on the integration method. We realize
that it is strongly coupled to the geometry of the crystal. Since the geom-
etry of a crystal certainly depends on the state of its constituents, it is
natural that, wice versa, conclusions on the ionicities can be traced back
to the geometry.

It should also be noted that the integration method requires a whole
set of structure amplitudes, whereas the extrapolation method involves
only the first few. Our considerations thus emphasize the necessity of
measuring complete and accurate sets of structure amplitudes. Very little
information can be obtained from a measurement of only one or two re-
flexions.
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