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Wang (1) has introduced a '"valence electron model of atoms' with the Hamiltonian
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where I and C are constant parameters. Kunz (2) ard Nickle (3) have discussed the
possible values of C. Their treatment is, however, based on formal and even partly
incorrect arguments deserving some complementary comments.

The radial Schréodinger equation corresponding to (1)
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is analogous to that of hydrogen-like atoms, with @ = r/ao, k2 = _E/Eo’ and
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where a is the Bohr radius and Eo the corresponding energy. It has the general

solution R = A fl(g) + B fz(g ), where
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in terms of the confluent hypergeometric function F(a|c|z). Here we can write

from (3)
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Choosing the minus sign for the square root would just change f1 into fz.

Discussing bound states we must look for normalizable solutions. At the origin
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this requires £ g ~0 with € > 0. This leads us to a classification of the

problem into three cases:
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(iii) A is complex or £,1, l1(1 +1)
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In case (i) f2 is ruled out by the behaviour at the origin, and fl is normalizable

only if it terminates. This gives us the quantization rule
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of the energy. In the other two cases both f1 and f2 have acceptable behaviour

at the origin, and the particular solution
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is normalizable for all E < 0 (4). So we see that Nickle’s extension of the energy
quantization equation (6) to all real values of A needs further justification.
Kunz discusses the possible non-Hermiticity, which is a basic but difficult

problem (5). His proof, however, is incorrect, because it is based on unnormalizable
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Fig. 1. The three lowest s levels in the truncated potential plotted against the
well depth. The curves correspond to C/ao = 0.1 (ii) and 0. 2 (iii) close

to the limiting value 0.125

test functions. Particularly, the continuous set of functions (7) is evidently not
orthogonal. Therefore, in cases (ii) and (iii) either the model Hamiltonian is not
Hermitian or the eigenfunctions of the problem are given by some discrete ortho-
gonal subset of equation (7).

An instructive way to study this question is to treat the singular model Hamil-
tonian (1) as a limiting case of the regular one obtained by cutting out the singularity.
If in the limit of zero cut-off radius the spectrum approaches a definite limit, the
singularity is not essential for the problem. The spectrum of the singular Hamil-
tonian is then the limiting spectrum, and the eigenfunctions are the normalizable
solutions (7) eorresponding to the E values of this spectrum. The procedure as-
sures the orthogonality and the completeness of the eigenfunctions and, hence, the
Hermiticity of the Hamiltonian in the limit. In case (i) the normalizability is suf-
ficient to fix the spectrum, while the other cases require closer examination.

The eigenvalues and eigenfunctions corresponding to the truncated non-singular

potential
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are obtained by the continuity requirement of the radial wavefunction and its derivative
at ro- The solution for r 2 r is given by equation (7) and for r < r, it has the form

of a spherical Bessel function. In order to demonstrate the nature of the problem we
have studied numerically the dependence of the spectrum on.the cut-off.

Fig. 1 shows the behaviour of the three lowest s levels Eo, E}, and 62 in the
potential well (8) as a function of its depth € b in cases (ii) and (iii) on both sides of
the limiting value C/a0 = 0.125. Very close to the boundary the numerical difficulties
increase greatly. The results indicate the existence of a well-defined limit in case
(ii) showing that the differential operator (1) can be understood as a representation
of an Hermitian operator. The spectrum is numerically equal to that given by
equation (6), which justifies the formal extension of the termination rule. In case
(iii) there is obviously no definite limit but each level will sink infinitely following
the bottom of the well. The rule of the asymptotic behaviour is numerically equal to

the rule
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derived for the case of 'r_2 potential (6) from the requirement of orthogonality.
Thus, in case (iii) the procedure does not define any Hermitian operator, and the
potential is too singular to be used as a model of any quantum mechanical problem.

In any case the singular Hamiltonian (1) is an unrealistic one at small values of
r. The point is that in cases (i) and (ii) the states are not sensitive to the behaviour
of the potential at small r, while in case (iii} they are. Therefore, if C is large, a
more realistic short-range force must be included in the model when the states of
low angular moments are treated.
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