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Abstract: Applying the Bohr-Mottelson hydrodynamic model, we develop and solve a coupled
Schridinger equation yielding the K = 1, 2, 3 octupole vibrations in deformed even nuclei
(the K = O state is obtained trivially). For higher states, K does not appear to be a good
quantum number. We assume the simple rotation-vibration picture in the adiabatic approxima-
tion and neglect quadrupole-octupole coupling. The model does not fix the energies; it permits
any order among the K = 1, 2, 3 states.

1. Introduction

For deformed even nuclei the Bohr-Mottelson collective model gives a qualitative
prediction of octupole vibrations ') with K =0 (J*=17,37,57,...), K=1
WP=17,27,3",..),K=2 (JP=27,37,4",...) and K=3 (JF=37,47,
57,...). They correspond roughly to the surface shapes ¥;x. However, generally
there is coupling between the multipole shapes Y,,, and the goodness of the K
quantum number is not evident except for the manifestly axial-symmetric case K = 0.
Below we demonstrate that a coupled problem does yield the K = 1, 2, 3 vibrations.

In sect. 2 we outline the general rotation-vibration problem, state the approxima-
tions and derive a Schrédinger equation for octupole vibrations. Then, in sect. 3,
we develop the solution for K, and in sect. 4 for the energy. Sect. 5 gives the discus-
sion.

2. The rotation-vibration problem

In the laboratory coordinate system the nuclear surface is %)
R(2) = Ro[1+ Y, ty Yim(Q)] (1)
im

with o;_,, = (=)™« The corresponding coefficients a,,, in the body-fixed coordinate
system are

A = Z D::'}ma!m' . (2)

7

m
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The classical kinetic energy for small oscillations T becomes with eq. (2)

T =143 Biloml®

tm
3
=%Z'—’{kw§+%231|dimi2 + H'. (3)
k=1 Im

Here the first term, where ., = 4, given by eq. (5) below, is the diagonal part of
the rotational energy, the second term is the vibrational energy, and H' is the rest.
Specifically, H' contains the off-diagonal rotational energy and the Coriolis-type
rotation-vibration coupling :

H =1 Z I ke O mk'—lm}: }: Bt(—)m+m,d?:na!m’<hn|Lk|l’”,)mk’ (4)
k+k' k Imm’
where
T =3, B(=)""" ap, ay MLy L] Im"y (%)
Imm’

(note that in the body system [L,, L,] = —iL; etc.).

In the quadrupole problem (I = 2) the shape (1) is ellipsoidal and the body axes
can be taken as principal axes *). Then we have a,,, = 0, a,, = a,_, = a3, (a0
is necessarily real). It follows that H'’ vanishes for the pure / = 2 problem. However,
once the body axes have been so fixed, all the coefficients a,,, for a given / = 3 are
present and they are complex (except a,,).

In earlier octupole work *~7), the coefficients a5, have been taken as real and/or
some of them have been assumed absent, in order to make the Coriolis term " or
all of H' vanish. Without such arbitrary restrictions on the degrees of freedom, H'
will not vanish. Nevertheless, what little experimental information there is ®), it
supports the simple rotation-vibration picture as a reasonable first approximation
for the octupole case, and we drop H' in what follows.

We make the adiabatic approximation of small vibrations about alarge axial quad-
rupole deformation:

S =F=5, Sy = Sleazziz+233(|031i2+4|032!2‘]‘9]“33]2)- (6)

Upon quantization, the coupling between the a,,, wiil appear in the form 1/, (see
below). We note the absence of a;,, which means that each axially symmetric mode
(K = 0) is decoupled from the rest. This leads immediately to the f-vibrations and
the K = 0 octupole vibrations (b-vibrations) *?).

As we are specifically concerned with the octupole states, we neglect for simplicity
the quadrupole-octupole coupling by dropping the a,, term from eq. (6); this coupling
is considered in ref. ®). (Accordingly y-vibrations will not appear in the present
problem.)

T We assume mass parameters B, rather than By, even though deformed nuclei are considered?).

tt Davidson's argument ¢) for the vanishing of the Coriolis term fails upon guantizing the
vibrations because the matrix of d is pure imaginary.
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We now take x, y, z, defined by
xt = 2|a31IZa .}’2 = 2[“32|2: z' = 21033|2, (7)

for the coordinate variables of our vibrational problem and perform canonical
quantization as in refs. *-%), finding

.2 o
T = ~— ” [V2+ 3 15——2 (x"(L +4yi 49z ﬁ)] . (8)
2B, X" +4y +9z ox oy oz

In the approximation H' = 0 the body axes are principal axes, and we have with
eq. (6)

h o Ji
To= = L%
Y2 ; z,
i‘Z } 2 KZ
= A=K e (9)
2.4, 2B; x“+4y"+9z
For the potential we write
V = 1C.x*+1C,y* +1C,z" (10)
Defining
h* K?
vib = Tjp+ — ——5—, (H
b 2B, x*+4y?+9z° )
we have the vibrational Schrodinger equation
(Tv’ib'*_ V)ﬂb = Ey. (12)
3. The eigenvalue problem for K
We write the potential (10) in the form
V = 1Cyr? +ie,x* +3c,p  +4c.2°
= 1C;r*+ V' (13)
and treat V' as a perturbation. With the substitution
Y= (X +4y2+92%) "t (14)
the unperturbed problem becomes
2
{_. _h__ {Vl_ “M:l -|-;C‘,3 rz} v = Ev, (15)
2B3 re
where
: 2 2 2 2
fK(B, _(,2)_ _ 25x74+64y"+9z K (16)

P2 AP +4y7 4922 x4y 4922
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Writing
v = R(r)%(8, ¢)
we obtalin the separation

{— "2% [vf— ’1(12‘1)} +%C3r2) R = ER, (17)
3 r
[ —A(A+1)+fx(0, $)]% = 0, (18)

where A is a so far undetermined separation constant.

The requirement that ¥ be analytic at the origin '°) determines the eigenvalues
of . As r — 0, the asymptotic solution of eq. (17) is r*. According to eq. (14), ¥
then has the asymptotic radial behaviour r*~%, which allows 4 = 1,3, 3, .... How-
ever, the angular function % imposes a further restriction. We shall find % as a
series in the spherical harmonics Y,,,. Analyticity requires that an even (odd) radial
exponent A —} be taken together with even (odd) values of /. Thus for 4 = } we have
1=0,2,4,...and for A = 3 thevalues'/=1,3,5,....

We seek solutions to eq. (18) in the form

Y =), ComYims (19)
ime
T __ Yim"'a(—)myl—m
Y, = It
V2i (1 +8,0)
¢=+(1), mz0. (20)

We note that the functions ¥};, are orthonormal and real, and
Y,:{ = Yo, Yo =0.

These functions prove convenient because fx (6, ¢) contains only Y7, with L, M =
0,2, 4.

We clear the denominator of eq. (18), substitute in eq. (19) and form the secular
equation, which will give the eigenvalues of K for a given A. The matrix is reduced
to eight unconnected submatrices by the selection rules 4o = 0, A = even, Am =
even, which follow from the form of f,(0, ¢). Thus each submatrix, labelled I to
VIII, is characterized by a certain set of /, m, ¢ values, as shown in table 1. We note
that A = 1, §,%,... can be used in submatrices I, V, VI, VIl and A = 3,3, 5%, . ..
in 11, IL1I, IV, VIII.

In practice the matrices must be truncated after some /-value. Only the first ap-
proximation, involving a single matrix element, can be calculated conveniently by
hand. In that approximation I, II, IIl and IV with the lowest values of A give real
values of K: 1.57, 3.34, 2.19 and 2.43, respectively. (Submatrices V-VIII give
K?* < 0.) Machine calculations of higher approximations showed that these K-values

T In familiar point-particle quantum mechanics the proper matching of radial and angular func-
tions near the origin (#*Y,,,) is automatic.
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converge to 0, 3, 1 and 2. Below (sect. 4) the corresponding states are identified as
the ground state and the sought one-quantum octupole states.

The machine calculations were done on an Elliott 503 at the State Computing
Centre, Helsinki. Since the secular matrix is not symmetric, the diagonalization was
done by Eberlein’s method !'). All submatrices were taken as large as 28 x 28. Con-
vergence was rapid for I and IV, slow for I and intermediate for III.

TABLE 1
The I, m, o values of the eight submatrices

I It 111 v v VI VII VIII
00+ 10+ 11+ 11— 21+ 21— 22— 32—
20+ 30+ 31+ 31— 41+ 41— 42— 52—
22+ 32+ 334 33— 43+ 43— 44— 54—
40+ 504 51+ 51— 61+ 61— 62— 72—
424 52+ 53+ 53— 63+ 63— 63— 74—

44+ 54+ 55+ 55-- 65+ 65— 66— 76—

An easy approximation to eq. (18) is obtained by replacing f (0, ¢) by its average
value

fJ}Q&@¢)=Q%¢m2wK{ (21)
4

whence
K? = 3.6[A(h+1)—=I(I+1)]-3.1. (22)

With lowest possible 4 and /, this gives K? = —0.4 for I, K = 1.8 for II, II[ and IV,
K* = —22for V, VI and VII, and K? = —33 for VIIL. This approximation is poor
but provides some guidance at a glance.

For higher values of 1, eq. (22) gives further real K-values: e.g. K = 5.3 for 1 = 3,

= 0; these 2- and [-values can occur only in submatrix I. Numerically (28 x 28
matrix) we find K = 6.5519 as the largest K for 1 with i = 3. This is obtained al-
ready with the 10 x 10 matrix, so it is clear that this K does not converge to an integer.
The same seems to hold for all K-values obtained with higher values of A. The
couplings contained in our 7y;, evidently mix K-values for the higher states, and the
calculations give rms expectation values.

4. The energy problem

The radial equation (17) is that for a three-dimensional harmonic oscillator
(except that 4 is half-integral). Hence we have immediately

E” = ho(2k+i+3) = ho(n+3), (23)
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0= 9‘—3, k=0,1,2,..., n

By

{
(N
mojw

we have added the superscript O to indicate that this is the unperturbed energy. We
see that the state A = 4, K = 0 is the ground state for these vibrations, and the three
states A = 3, K = 1, 2, 3 are degenerate at the energy hw.

The degeneracy is removed by the perturbation V', defined in eq. (13), in first
order. For the unperturbed angular functions % (K) (eq. (19)) we take simply

(1) =Y, 2y =Y, W(3) = Yip- (24)

This is a good approximation since the next-largest amplitudes ¢, are only of the
order 0.1; this was established by computing the ¢}, from the 28 x 28 matrices. As
the result of the perturbation calculation we find the ratios of the energy shifts AE(K):

AE(1) : AEQ2): AE(3) = (3¢ +cy+c.): (e+3c,4+¢,): (e, +c,+3c.). (25)

This allows any order for the three levels.
We finally note that the wave functions (2, K) have the rough asymptotic
behaviour (r — 0)

¥(%, 0) ~ const.,

Y3, 1) ~ rY{, oc X,

'r”(%: 2) ~ rYl—l oC ys

W(3,3) ~ rY o o z. (26)

In view of the definitions (7), we have here the pure multipole vibrations '). How-
ever, egs. (26) are obtained only by neglecting the angular dependence of the factor
(x> +4y?+922) ¥ in eq. (14) and by making the approximation (24).

5. Discussion

We have demonstrated above that the macroscopic collective model predicts the
one-quantum octupole states with good K in deformed nuclei. The singular 1/.7;
coupling between the octupole coordinates was taken as the only coupling.

The states K = 2% (y-vibration), 1™ and 3~ are obtained from a mathematically
identical problem. This problem was posed in ref. ), which contains the solution
of the similar K¥ = 2*, 27 problem. The general quadrupole-octupole problem
of this type would contain K* = 2%, 17, 27, 37, Such a four-dimensional problem
could be solved by generalizing the techniques of the present study. Also, in that
context it would be appropriate to trace the evolution of the solutions as couplings
are intreduced. To complete the problem, one should finally include the term H’
defined by egs. (3) to (5).



OCTUPOLE VIBRATIONS 217

Experimental evidence on K = 1, 2, 3 octupole vibrations is scant ). The isotopes
182y 228.230Th gnd 24°Cm have well-established K* = 17,27 bands. However,
some of them are based on two-quasiparticle states rather than on octupole vibra-
tions '2:13). Of course, in final analysis all collective states too must be derivable from
particle excitations.
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