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Abstract

It is desirable to represent the electron densities and scattering factors of
atoms in terms of harmonics adapted to the symmetry. As a consequence of the
invariance of the harmonics under the Fourier transformation, every term in such
an expansion of the atomic factor corresponds to an electron density with the same
angular dependence. Theoretical considerations suggest that a few terms will be suf-
ficient for a good approximation, and there is a certain connection between this series
and the angular momenta of the electronic wave functions. It is shown how the radial
coefficients of such expansions can be derived for the atoms of a crystal from experi-
mental structure amplitudes. Explicit formulas are given up to the 10 order for
calculation of the cubic-harmonic expansions for an atom in a tetrahedral or cubic
crystalline field. As an example, the nonsphericity of the ions of KBr is studied using
the data of MEmsAro and INKINEN (Acta Cryst. 22, 58 (1967)); both ions are seen to
have essentially the symmetry of the cubic harmonic K,.

Mathematical basis

The spherical harmonics
(1) Y70,9) = Pil(cos 6)e™ ;1 =0,1,2,...;m =0, +1,..., 4,

with the associated Legendre functions

1 Y
P'(z) = S (1—=z2)™" A (22— 1)

give certainly the most convenient description of nearly spherical structures,
such as the electron distributions or scattering factors of single atoms. The
spherical harmonics form a complete orthogonal set of functions in the full
solid angle. Therefore any density function o(r) can be expressed as a
series

(2) 3 3 ualr) Y(0g)

Jn
\IMa

and is uniquely determined by the set of radial functions am(r). Even for
a bonded atom p(r) is nearly spherical (varies slowly with the angular
variables) and the first few functions . will be sufficient for a good
description.
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In a crystal, local symmetry determines the symmetry of the atom.
In each order [ there is a definite number of linearly independent harmonies

(3) KO Z Cima Y7'(0,)

m=—1

with this particular symmetry. They can be chosen to be orthogonal. The
expansion (2) for the atom concerned must possess this same symmetry in
each order, and it can therefore be written in the form

(4) o(r) :g; > i (r) K (0,9)

A high symmetry will strongly reduce the number of terms. The full cubic
symmetry is certainly the most favourable case. The functions (3) are then
the a-type cubic harmonics of Von der LAGE and BETHE [36] and the ex-
pansion (4) contains up to the 10" order only five terms, see eqs. (13) below.
The X-ray scattering factor of p(r) is simply the Fourier transform

(5) fb) = f o(r) ™ dr .

The spherical harmonics are invariant in this transformation. To be more
specific, let Yy(0,¢) be any harmonic of order [, i.e. any linear combination
of the functions (1) with a definite I, and g(r) an arbitrary radial function.
Then we have

(6) f g(r) Yil0,g) e "dr = 4ni' G(b) Yi(u,0)

where b, u, v are the spherical coordinates of the vector b in the reciprocal
space, and the radial transform G'(b) is

o

(7) G(b) = /g(r)ja(?nbr) rdr ,

0
where j; is the spherical Bessel function of order [. Therefore the terms
of the expansion (4) behave in the transformation as independent entities,
each keeping its angular dependence. Thus, the corresponding scattering
factor 1s

(8) f(b)y = 4= Z Z B, (b) Kl (u,w) with B, (b) = fbm(r)j;(ifrbr)r%l?* ,

where each term is the transform or scattering factor of the corresponding
term in (4).

If the harmonics (3) are known, there will be no difficulties, in principle,
in working out the expansions (4) or (8). One can apply the conventional
methods for orthogonal expansions. Also, there are several methods for
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finding the functions K;. ArtmMaNy and CRACKNELL [2] have given general
group-theoretical methods for obtaining them in any particular symmetry.
MvuELLEr and PriesTLEY [33] have developed a simpler procedure for cubic
cases. Their general formulas are given in spherical coordinates and they
note that the formulas obviously would be very complicated in cartesian
coordinates. In applications, where only the first few orders are needed, one
has no use of the general formulas and the cartesian representation will be
more practical — at least more perspicuous in many cases. Then the question
is how to find the harmonic polynomials

Kixy,2) = r'K}0,¢) .

For cubic symmetries these are given in the lowest few orders by Von der
Lace and BeTHE [36] and with some more general considerations by
BeTTts, BHaTIA and Wyman [5]. Actually one can find them for any order
through a simple procedure. In most cases one can directly write down all
homogeneous polynomials of the correct symmetry, and the corresponding
harmonic polynomials of th's symmetry can then be constructed from them
by the method of Gauss, see e¢.g. HEINE [18].

This representation, or some closely related ones, have been used in
several cases. KONOBERVSKIT and Mamepov [21, 22, 23] as well as Wriss
ef al. [12, 39, 40, 41] use symmetric polynomials for the description of
aspherical atoms with the motivation that they are simple functions with
the correct symmetry. Another equivalent representation in terms of angular
variables is used by FrREEMAN, WEISS and WATSOY in their studies of d-
and f-electrons [14, 15, 16, 37, 42]. Although the cubic harmoniecs, either
in angular variables or in terms of harmonic polynomials, do occur in these
papers and in some others [e.g. 6, 35], there seems to be no clear tendency
to their systematic use. At least no advantage is taken of their simple
transformation properties, which certainly are a most prominent advantage
and suggest very strongly their use whenever the electron densities or
seattering factors of nonspherical single atoms are considered.

Physical preliminaries

The use of the harmonie expansions (4) and (8) seems to be reasonable
also from a physical point of view. The quantal state of an atom is commonly
expressed in terms of one-electron wave functions of the form

(9) Vo p(r0,q) x — R(r) Yi(0.9) 2,

where y is the spin function. In principle the state is an infinite series of
Slater determinants of these functions, but for most purposes one or a
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few terms give a sufficient approximation. Since BETHE’s classical work [4],
the effect of a crystalline field on the one-electron wave functions has been
qualitatively well known, and this formalism is still used whenever the
problems are handled in terms of single atoms. In the one-electron repre-
sentation the electron density is always a sum of the form

(10) o(r) = Za;ypFy; = X oy(r) .

The fact that p(r) is a one-particle operator assures that only products of
two orbitals y; occur. The sum (10) can always be changed into the form of
the expansion (2) or (4), since, as is well known, any product of two spherical
harmonics can be expressed as a finite sum

I+r
(11) Ypre Yy =% C(mlm)yyr—
i=|m'—m
where the coefficients are integrals of products of three Legendre functions
1

f P @) P () P @)da

931 (A—|m'—m))!

cf. [4, 14, 42]. These coefficients are well known from the theory of angular
momentum.!)

The highest order that may occur in the expansion (4) is twice the highest
value of ! in the one electron wave functions (9) used. The representation
of the state by a finite sum of Slater determinants leads therefore to a
finite number of terms in the expansions (4) or (8) of the corresponding
electron density or atomic factor. The situation is still more simplified by
symmetry considerations. For instance, we know that a closed shell has a
spherical electron density, so it contributes only to the first term of the
expansions. Therefore the number of terms depends only on the valence
electrons, provided that the closed shells are not deformed by the crystal-
line field.

For instance, if the state of the valence electrons is a mixture of s- and
p-states, then only terms up to the second order may occur in the expansions
(4) and (8). In the most general case this may involve, in addition to the
spherical term, three first order terms with the angular factors x, y, z and
five second-order terms, with angular dependence 3 (322—1), xz, yz, vy,
22—y? (x, 9,2z understood to be the direction cosines). McWEENY [29, 30]
and Dawsox [11] have considered single configurations where the valence
electrons are in different p-states or sp-hybrid states. For instance, the

) Note, however, that the phascs of our Y7* are not the CoNpoN and SHORTLEY
[9] phases commonly used in angular momentum theory.
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contribution to o(r) of a hybrid orbital ¢, = @(s) 4 Agp(ps;) will be of the
form

0.(T) = 0ss(r) + Aosp(r) Y? + A20pp(7) (Y[l})2
= 0u(r) + 522 0pp(r) + A0up(r) Y] + 522 0pp(r) T3

In case of axial symmetry we are in this way led to the formulas

o(r) = afr) + o) Y] + ea(r) Vs, f(b) = fo®) -+ FB) YT + fo(B) Y

for the electron density and the scattering factor of the atom. Since Y { =
z==—cos0 and Y) =1 (322—1) we have a simple relation to the expres-
sion f= fcos?0 + f sin®0 + focos 0 used by McWEENY and Dawsox.

We have fo=3(f+2f ) fi=/fc and fo=13% (fy—f. ). For some
other symmetries DAwsox derives the formula f = f,'a® + foy® + filz2 + faz,
which can be written as the harmonic expansion

J=fotfe+113 32— 1)+ il =)
with
ho= 5 AL A L=t s =3 = =1 =1 1),
Werss and FREEMAN [42] give an extensive discussion of the d- and
f-electrons in cubic and tetrahedral fields. Their expressions, given in terms
of symmetric polynomials, can also be very easily related to the harmonic

expansion. For the first few x- and S-type cubic harmonics of Von der
Lace and BETHE [36] we shall use the expressions

(13) K =y (gt b A — )
Ky = a4y 42— 33K, ~ HE K, — )

where again a,y,z are the direction cosines. If there are f-states but no
states with higher angular momenta involved, we need these functions
only up to the 6'® order, and we have the expressions

0 = 09(r) - p4(r) K3 4 04(r) Ky 4 0g(r) K

14)
( f= 1) + fo(0) Ky + fib) Ky + fo(b)K,
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with

oz

fu(b) = dmi” / 0n(r) Ju(27br) 2 dr

0

according to (7), for the teterahedral electron density and the atomic factor
with f-electrons involved. In a cubic case the odd terms vanish and only
three terms are left. If only d-electrons are present, the 6" order must be
dropped. We also see immediately the well-known fact that the p-electrons
give only a spherical contribution in these symmetries.

If theoretical wave functions of different possible bond configurations
exist and if the radial functions g, or f, can be studied experimentally,
it might be possible to get some estimates of the populations of different
valence electron states. In fact, there has been considerable interest in
obtaining such results about the d-electrons from X-ray and neutron dif-
fraction [e.g. 1, 13, 34, 37, 41]. In the following, a calculation method is
proposed for extracting the radial functions f, and g, of an atom from
experimental structure amplitudes of a crystal.

Evalution of the radial functions from structure amplitudes

To use the representation discussed above, one should be able to derive
from experiments the radial coefficients o,(r) or f.(b) of different harmonics
for the crystal atoms. The X-ray structure amplitudes Fbj of a crystal,

contain all the information about the average electron density

1
(15) o(r) = 5 Y, Py e

Since the nonsphericity of atoms concerns only the outer electrons,
practically ali information about it is contained in the lower-order reflections
which can be measured. The only question is whether the experimental
accuracy is sufficient to reveal it. There is, however, an increasing number
of cases where the deformation is shown to be detectable. The most obvious
demonstrations are the occurence of »forbidden reflections» and the differ-
ences of coincident reflections [e.g. 8, 13, 20, 21, 23, 25, 28, 41]. The mea-
surements of these exceptional features give valuable information about
the nature of the nonsphericity. This information is, however, restricted
to certain points in the reciprocal space and does not exhaust the informa-
tion contained in the experimental structure amplitudes.

The Fourier series (15) contains all experimental information. In a
careful analysis one may be able to see nonsphericities of the atoms in the
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density maps [e.g. 10, 34, 38]. The termination effects, however, make it
very difficult to draw definite conclusions in this way. An alternative
approach is to calculate the atomic factors from the experiments, as is done
in the works of the present authors and their collaborators [e.g. 19, 24, 26,
31, 32]. In this method the termination effects are much simpler in charac-
ter, and more definitive statements about the significance of the asphericity
can be obtained. However, these calculations have no connection with the
harmonic analysis.

It is casy to transform the Fourier series into a harmonic expansion. We
merely apply the well-known spherical-wave expansion

16
(16) no(n— (m)!

ey = 3 e i) | 3 Y, m) V06 | G,

tas

where the spherical coordinates of the vector b; are denoted by b;, u;, v;
corresponding to r, 0, ¢ for the vector r. If this substitution is made in
(15) we get an expansion of the type (2)

(17) o(r) = Z owm(r) Y30, ¢),
where

_ 1 , - (n — im)! - . ,
(18)  owm(r) = ; (20 F1) (— 1) - ! . Foy T (1 ) Ju(27b;7)

"This leads to the »spherical Fourier method» of ATost [3]. Symmetry con-
siderations will essentially simplify these expressions, leading to expansions
of the type (4), as ATost has shown explicitely in one special case.

If the origin is at the center of an atom, this expansion will converge
rapidly in the region of that atom, just because the atom is nearly spherical.
The higher terms will be needed only if we want to describe the neighbouring
atoms, too.

In practice, each coefficient (18) is a finite sum, since the series is ter-
minated at the cutoff value of b = 2 sin 6/7. Here again we meet the usual
difficulties arising from the termination effects. The use of difference series
will, of course, improve the situation, but the difficulties are the same in
principle. The uncertainty of the residual term is spread all over the r-space
and malkes it difficult to see which features are significant and which are not.
Therefore we prefer to keep the analysis in the reciprocal space and want to
make the conclusions from the atomic factors rather than from the density
maps. This procedure has the advantage that the termination etfects have
very little influence on the atomic factors except near the cutoff. They
express the information in the reciprocal space, where the residual term 1s
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locally separated from the experimental information. The significance of
different features can be seen much more easy. Therefore we want to take
a step forward from the series (17) and calculate from it the atomic factor
as the scattering factor of a sphere. The radius R of the sphere must, of
course, be chosen so that the atom is separated from its surroundings as
completely as possible.

In this way we get for the atomic factor the expansion

(19) Fulb) f o1) T B — X f(B) Y, 0)

T

where according to (7)
R

Jum(b) = 47" [ Onm(7) Ju(27br)ridr .
0

Further from (18), we get

dn (n — [m))! o N
(20) fam(b) = 7 @n+1) @-WI_’ Z Fy, Y. ™w0)) In(22b, 27b; ; R)
R
with T.(z,y; R) = [ ja(ar) ju(yr) r*dr. This integration can be performed

0
explicitely (cf. Luke [27]) and it gives

(21 ( R
] 22— g W I (CR(YR) — yju(@R)jun(yR)] for @y
Iz, y;, R) = R3
5 [Ja(@R) — Jni1(@R)j, 1 (xR)] for x =y
l e

We see by comparison of (20) and (18) that all symmetry considerations
concern the expansions of o(r) and fx(b) in a completely similar manner.
The task involved in their calculation is therefore essentially the same.
The series for f; has now the advantage of keeping the analysis in recip-
rocal space, and it can be expected that uncertainties due to termination
are mainly concentrated on the cutoff limit. Therefore it ought to be possible
to see in much closer detail the significance of different features in the results.
For instance, one will be able to see the significance of the radial coefficients
in different orders, whether there is any experimental evidence for their
existence or not. This again may be valuable for discussion of the occurren ce
of different angular momenta in the valence electron wave functions.
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Fig. 1. The choice of the coordinate axes in the case of tetrahedral symmetry.

Tetrahedral and cubic symmetries with a special application to KBr

Let the atom considered have tetrahedral (or cubic) symmetry. This
means that the electron density of the entire crystal has tetrahedral sym-
metry with respect to the position of this atom. The cubic symmetry is a
special case of the tetrahedral one, realized when the antisymmetric
(o(—r) = — o(r) ) component of the density function vanishes.

In this symmetry there is just one natural choice of the coordinate axes,
see Fig. 1. If the structure amplitudes F,,, are labelled with respect to
this coordinate system, we get the simple rules:

1. F,, is independent of the order of indices.
2. Fyy=F }ﬁ:l .

In this way we are led to the well-known multiplicities puu of the reflec-
tions from the crystal, with a maximum of 48 when all indices Akl are
different and nonzero.

We can perform in (18) or (20) the summation over identical reflections;
we get the result

for n = 2» ,m = 4u
({ m F 2 h
> By Vi, v) = Ip""‘ UDERE for m =2 4+ 1,m = 4u + 2

identical 0 in other cases,

reflectiong

where “!/% is the symmetrized spherical harmonic

Re |1 _ S o | even
o | [YROED A Y2GR) 4 YRR | for n %

expressed in terms of the direction cosines % &1 of the vector b;. Because
of the symmetry of ¢ and f we can also replace ¥ in the series (17)
and (19) by the symmetrized “!/7, and we get their expansions into the
form

(22) Um(hkl) =
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o(r) = Z own{r) Uz y 2) . fr(b) = X fun(0) “U2(h kD)

with
oyt o i) By 3 U™ (hikeily) (27D
o = (2nED) (1) thu s By} U (Rikily) Ja(2etDyr)
and
4; n -— |ml) ,
o — T gy P b o Fy ") 122
V (n—]—[m.
where Re must be chosen for n = 2r,m = 4 and Im for n = 2Zr+1,
m = 4u+2 .
In the lowest few orders we have 1)
6-5!!
(‘?/;2 = 44" K
M , o7t
C 0O C A
U = K YR = K,
. 1!! . 7-111!
o o b 4 L _ o
o =y e i — gy K
, 2:13!! . 22-131!!
Uit =iy o Ko, Ui = ti——y K,
. 151 S st 6501510
Usg = g7y Ko Uit = g B U =y Ky
s REER A B 261711
g e A T
Caodet gt 1874191
e = 3101 Kw Ve = =557 Koo e == 50 K

where the notation of (13) is used.
In these orders the summation over m can be done immediately and we
obtain

(23) o(r) = 2 on(r)Ku(zyz), f(b) = 2 fu(b) K. (k)

H nl! ;W;a(n = 2)...(2or 1).
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with
(24) 0u(r) = (_1/1 4 C. bz Dy, }‘,;{Fbj} K (hikil;)jn(27b7)
J
(25) fulby = 4; C % D, iﬁ,,{ff’bj} K, (hikil;) 1.(27b,27b; 5 R)
with
108 [ 5112
Cy =1, Cy=7T- (?é_r) = 105,
12 /7100 [ 11112
Cy= 0 (é--_{_“) = 32.8125, (g — 13-8(\3_6---!—) = 2408.656,
112 (13112 64 (15112
C; =15 o (§7i,) = 10322813, Cy = 17" (_?_8!) — 9258.691,
1536 17112 384 /19112
Cy= 19— (3-@) = 531654.635, Cyy = 21 -~ (‘3_10!‘) = 448736.96.

To give an example we applied this method to KBr using the experimen-
tal structure amplitudes measured by MEsaLo and INKINEN [31]. The
radial coefficients (24) and (25) of the difference series corresponding to (22)
are shown in Figs. 2 and 3 for both K+ and Br—. The ionic radii used in the
caleulation of f,(b) were 1.57 A for K+ and 1.73 A for Br—, as given in ref.
[31]. These curves are normalized in such a way that they present directly
the contribution of each component to p(r) or f(b) in the direction where
it is largest, i.e. in [100] direction for the 4™ and 8" order and in [111]
direction for the 6 and 10" order.

To judge the significance of the different harmonic components we have
to take account of several considerations. The use of difference series is
equivalent to the use of a theoretical 1esidual term. The possible termination
errors of Figs. 2 and 3 will be therefore due to the difference between the
true residual term and the theoretical one. As concluded qualitatively, the
termination error will have essential influence on the f, curves only near
the cutoff b of the experimental values, contrary to the situation in r-space.
Thus, their significance is mainly determined by the experimental inac-
curacies. The error bars in Fig. 3 show the customary standard deviations
calculated from the errors OF, given in ref. [31]. The uncertainty of the
scale factor has not been included in the limits. Its effect is mainly confined
to the spherical component f,. 'The errors due to division of the intensities
of coincident and overlapping reflections in the ratio of the theoretical
intensities may also be significant, especially at those values of b where
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do, (A-3)

(b)

0.5 1.0 1.5 r (A)

Fig. 2. The radial coefficients of the cubic harmonic expansion of 4o, (a) for K+
and (b) for Br~ in KBr.

such cluasters occur. This may cause the apparently significant values of
the higher-order components in the case of K+. A closer examination of the
properties of the series (21) will show in more detail their behaviour in
different circumstances, e.g. when different kinds of systematic errors are
present, and the nature of termination errors.

As 18 natural, the term f, is the only clearly significant nonspherical
component in our example. It is therefore solely responsible for the pro-
perties of the Af; eurves, which led to the conclusions of ref. [31]. It can
also be easily checked that f, and f, do give Af curves nearly identical
to those found by direct calculation (Figs. 3 and 4 of ref. [31]); if the con-
tributions of the higher components f;, f; and f;, are added, those curves
are reproduced very accurately. This, of course, is only a check on the
correctness of the present calculation.
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Afn

I

o o

s ..
_ o

0.0

Wk : WD

-~ I

0.0 - -
-1 ]
(b)
|
0.9 - T é: s '_E o ! — ‘i‘ -
—a } N
0.5 1.0 15 b (A-)

Fig. 3. The radial coefficients of the cubic harmonic expansion of 4f, (a) for K+
and (b) for Br~ in KBr.

The harmonic representation is no doubt preferable to the /Af curve
representation as it shows the entire behaviour of the atomic factor in all
directions at once. It also defines accurately what we have earlier called
the average trend of the atomic factor curves in a way which is equivalent
to the spherically symmetric form factors of BrRowN and WiLkINSON [7]
derived from a projection of the Fourier series. Of course, the main advantage
is still the simple behaviour in the Fourier transformation, which means
that f.(b) represents the scattering factor of that component of the electron
density which is represented by g.(r) in real space, both having the same
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angular dependence. Thus, a concrete interpretation of the results in terms
of the electron density is always immediately available.

The programs for calculation of the radial coefficients (24) and (25)
from the quantities F, or AF, and 0F, were written by the authors in
ALGOL. In the present form they cover only the cubic symmetry, but a
simple modification will make them applicable to tetrahedral cases, too.
Also, there will be no difficulties in writing similar programs for other sym-
metries when needed. The spherical Bessel functions are calculated in pro-
orams by a special procedure modified from a procedure of GavTscHr [17]
for calculation of ordinary Bessel functions. The calculations were performed
with the Erriort 803 computer at the Department of Nuclear Physics of
the University of Helsinki and partly with the ErLiort 503 of the Finnish
State Computer Center.
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