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ABSTRACT: 

 
An entire single-tree remote sensing (STRS) system was developed and tested in an inventory of timber resources of a 56.8-hectare 
forest. A semi-automatic approach with operator intervention is used in the system and it solves the essential tasks of STRS: 3D 
treetop positioning, height estimation, species recognition, crown width estimation and the model-based allometric estimation of the 
stem diameter.  Large-scale aerial imagery, an accurate DTM and semi-dense LiDAR data are required. The relatively low sampling 
density of the LiDAR, 6 points per m2 here, was considered appropriate for crown width estimation, when the 3D treetop position, 
tree height estimation and species classification are done first using the images. LiDAR-based crown width estimation was done 
using crown modeling, in which parametric crown instances are iteratively fitted with the LiDAR data. Image-based 3D treetop 
positioning and crown width estimation rely on multi-scale template matching (MSTM). Species recognition was done by visual 
photo-interpretation. In the experiment, a total of 59 circular 0.04-ha plots and 5294 trees were measured using STRS. The plots 
were investigated in the field and all STRS-trees and omission trees with a stem diameter of above 50 mm were mapped. The 
mapping was based on the use of the STRS-trees as geodetic control points. Redundant intertree azimuth and distance observations 
and a weighted least square adjustment of observations was used for the positioning of the omission trees. The commission error-rate 
was 2% in stem number and the omission trees constituted 10% of the total stem volume. Visual species recognition accuracy was 
95% in classes of pine, spruce, broadleaved and dead trees.  Height estimation accuracy of MSTM was 0.71 m or 4.7% in RMSE and 
it includes the DTM-errors. Stem diameter estimation RMSE was 29% and 20% when the crown widths were estimated using images 
and LiDAR, respectively. Underestimation of stem diameters was considerable, 3.4 and 1.0 cm. The inaccuracy of the stem diameter 
estimates degraded the accuracy of single-tree volume estimates and the results of estimating the proportion of assortments. 
Calibration of the STRS measurements and estimates are needed and this calls for field observations.  
 
 

1. INTRODUCTION 

1.1 Single-tree remote sensing from the viewpoint of 

forestry 

The conventional way of measuring trees is giving way to new 
remote sensing applications, which have different scales of 
observation from individual trees to stands. Different sensors or 
methods that encompass certain levels of observation should not 
be taken as exclusionary alternatives. An optimal hybrid forest 
inventory most likely combines different data sources and 
furthermore, adjusts to the information needs that vary between 
stands and forest owners. Trees constitute a natural target of 
observation and single-tree remote sensing (STRS) aims at 
substituting the field measurements of position, species, height, 
stem diameter and volume. Preferably, a STRS-based forest 
inventory would be carried out without field visits, as it is 
largely based on direct measurements of the dimensions of the 
trees. However, STRS estimates seem to be prone to bias - e.g. 
the use of LiDAR often results in an underestimation of tree 
heights. This means that in situ data may be needed, at least for 
calibration.  
The idea of photogrammetric STRS is old as early articles date 
back to the 1950s (e.g. Avery, 1958). Although the interest in 
the development has been extensive recently, especially in 
LiDAR-based methods (e.g. Persson et al. 2002), commercial 
STRS systems are essentially pending on the market. There are 
explicit difficulties to explain this. Scene complexity is an 
inherent aspect. Trees vary in crown size, shape and optical 

properties. Crowns are often interlaced. Occlusion and shading 
are present and result in omission errors. In boreal canopies, the 
trees with a relative height of above 0.5-0.7 are detectable in 
images and 0-12% of the total stem volume and nearly all short 
trees remain unseen (Korpela, 2004). The fact that small trees 
remain undetected is a serious shortage for many applications. 
The detectable trees constitute 90-100% of the commercial 
timber, which motivates for applications in timber cruising. 
Reliable species recognition is needed by foresters and remains 
currently unsolved. A satisfactory level of accuracy is above 
95% (Korpela and Tokola, 2006). This can be very difficult to 
achieve in for example temperate forests, where several species 
of one family or genus coexist in a stand. Foresters are 
interested in the current and future properties of the stems and 
the information on available timber assortments in a given area. 
Improved decisions are made in silvicultural and logging 
operations based on this information. This pays for the data. 
The estimates need to be accurate enough and the expenses of 
data acquirement and analysis need to remain tolerable. 
Objectives that are set for STRS systems should reflect these 
information requirements.  
  
1.2 Reducing the ill-posedness of STRS 

  Because of the complexity and ill-posed nature of optical and 
LiDAR-based STRS, it seems necessary to adopt the semi-
automatic approach and to use auxiliary information about the 
targets. Allometry, the knowledge on the relative sizes of plant 



 

parts, is used in STRS, when the measurements of species (Sp), 
height (h) and crown width (dcrm) are used for estimating the 
stem diameter (dbh) with allometric equations (e.g. Kalliovirta 
and Tokola, 2005). They are imperfect and the inaccuracy, 
approximately 10% for dbh, defines an upper limit of attainable 
accuracy. Allometry varies between species and between trees 
in a stand as trees adapt to the intra- and interspecific 
competition and site conditions. The functioning and structure 
of trees are closely linked and it might be possible to improve 
the estimation accuracy of dbh, if, STRS could provide accurate 
measurements of the foliage density, foliage mass (Ilomäki et 
al., 2004) or crown length (Kantola and Mäkelä, 2004). Another 
aspect of allometry is to use the regularities for designing filters 
of rational STRS observations and for finding gross errors. In 
model-based STRS, allometry can provide initial 
approximations of the model instances (e.g. Larsen and 
Rudemo, 1998). In our STRS-system, the semi-automatic 
approach and allometric knowledge are used in solving the tasks 
of STRS. 
 
1.3 Objectives 

A set of semi-automatic STRS methods that use multiple images 
and airborne LiDAR data were developed to form an entire 
STRS system (Figure 1).  

 
Figure 1. A schematic diagram of the STRS system with the 

data, tasks and output.   
 
Allometric regularities are used for estimating the stem 
dimensions from STRS observations and for creating initial 
approximations of crown model instances. Following variables 
are measured by the system: i) Photogrammetric 3D treetop 
position using multi-scale template matching (MSTM), ii) 
photogrammetric tree height (h_foto) using the treetop position 
and a DTM, iii) LiDAR-based tree height (h_LiDAR), iv) 
species (Sp_foto) using visual image interpretation, v) image-
based crown width (dcrm_foto) using MSTM, vi) LiDAR-based 
crown shape and  width (dcrm_LiDAR) using least square 
adjustment of a crown model with the LiDAR point cloud and 
vii) stem diameter estimates (dbh_foto, dbh_LiDAR) using 
allometric equations. The system is described and a thorough 
performance test provided using a representative reference 
material from a systematic forest inventory. The rationales for 
our STRS system originate from the information needs in 
forestry and timber cruising in particular.  

2. METHODS 

2.1 Assumptions  

It is assumed that multiple accurately oriented large-scale, 
>1:15000, aerial images and a semi-dense, 4-8 pulses per m2, 
leaf-on LiDAR data are available. An accurate DTM is needed 
for reliable tree height estimation. Here, an experienced photo-
interpreter performed the visual species recognition. 
 
2.2 Semiautomatic photogrammetric 3D treetop 

positioning, height and crown width estimation using multi-

scale template matching 

Single-scale template matching has been successfully applied in 
2D and 3D treetop estimation of regular stands, where crowns 
show only moderate variation (Pollock, 1996; Larsen and 
Rudemo, 1998; Korpela, 2004; 2007a). The semi-automatic 
method that was presented in Korpela (2004; 2007a) and uses a 
single template per an aerial image was modified towards a 
more manual and reliable method. Instead of trying to position 
all treetops in an area, which fails when trees exhibit variation, a 
method that utilizes multi-scale template matching (MSTM) and 
operator assistance was developed. In it, the templates 
representing crown instances in the different views are copied 
from the real aerial images by first manually measuring the 3D 
treetop position of a model tree. Model trees are needed for as 
many species as there are in the area of interest. In the images, 
elliptic templates are defined by 3 metric parameters and the 
templates capture the upper part of the crown (Korpela 2004 p. 
#). For MSTM, these sub-images are copied, low-pass filtered 
and scaled into N=11 scales between 0.5 and 1.2 using bilinear 
re-sampling. For K images, this results in N×K templates. The 
semi-automatic 3D treetop positioning follows. A treetop is 
pointed manually in an image that is preferred by the operator. 
This image observation defines a reference image-ray, which is 
sampled over a range in Z (Figure 2).  

 
Figure 2. Illustration of the sampling of the reference image-ray 

over a search range in Z. The treetop position in the 
reference image is manually observed.  

 
The search range in Z is one parameter that is set by the 
operator. It depends on the height variation of the trees and it is 
always centered on the Z of the previously measured treetop. At 
each 3D point along the reference image-ray, normalized cross-
correlation (NCC) is computed in all images (along the epipolar 
lines) and templates (scales). The mean NCC of each scale is 
stored for each search point and the solution is the 3D point 
with the maximum NCC over all scales. Tree height (h_foto) is 
then given by the DTM by subtracting the terrain elevation from 
the elevation of the treetop. 



 

Image-based crown width (dcrm_foto) estimation follows. The 
image with the smallest off-nadir angle is automatically selected 
for dcrm_foto estimation using MSTM. The 3D treetop position 
is mapped to this image and MSTM is tried in a small circular 
(r=0.4 m) image window near the projection point. The scale 
that gives the maximal NCC is used for the estimation of 
dcrm_foto: The crown width of the model tree, which is one of 
the 3 parameters that define the shape and position of the 
elliptic templates of the model tree, is multiplied by the scale 
factor to give dcrm_foto (Figure 3).  
 

 
Figure 3. Results of MSTM in 3D treetop positioning and in 

dcrm_foto estimation: a CIR-image triplet of a pine-
spruce stand. Solutions of twelve treetops are 
superimposed as yellow dots and the green circles 
depict estimates of dcrm_foto.  

 
2.3 Species recognition 

In tests with Vexcel Ultracam data (1:10000, GSD = 28 cm), it 
was found that the spectral values have considerable overlap 
between Scots pine, Norway spruce and birch. Within restricted 
areas in the front-lit parts of the images, the IR- and B-channels 
could potentially be used for species discrimination. The image-
position seemed to cause variation in the spectral values. Also, 
young and old trees of the same species had varying spectral 
characteristics. The automatic approach was therefore discarded 
and visual interpretation of Sp_foto was applied. In an image set 
with 60% forward and side overlaps that was available here, 
there were always 1-2 views, where the crowns were seen back-
lighted. These images are helpful for separating pine and spruce 
(Korpela et al., 2007). An experienced photo-interpreter carried 
out the visual interpretation.  
 
2.4 Crown width estimation using LiDAR and least square 

adjustment of parametric crown models 

A method was tried for LiDAR-based dcrm estimation, in which 
a parametric, non-linear crown model is iteratively fitted to the 
LiDAR point cloud (Figure 4; 5). The position and initial size 
and shape of the crown model are derived from the 
photogrammetric observations of Sp_foto, h_foto and the 3D 
treetop position. With these constraints, it was assumed that tree 
crown modeling is feasible even using rather a sparse LiDAR 
data. Crowns are approximated by a curve of revolution (1) that 
gives the crown radius r(hr) at a relative height hr∈[0..π/2] 
down from the treetop. The length of the crown is fixed to 40% 
of h_foto, which is a simplified approximation. The model is 
centered to the photogrammetric XYZ treetop position. If trees 
have only moderate slant, it can be assumed that the trunk is in 
the correct XY position. The crown model has three parameters 
and their initial values vary between species (Figure 4):  
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Parameter a1 sets the relationship between tree height and the 
maximum crown radius; a2 is a shape parameter and a3 gives the 
width of the top. If a3 ≠ 0, the top is flat. Using allometric data 
from the National Forest inventory of Finland (Kalliovirta and 

Tokola, 2005), conditional distributions of dcrm given h and Sp 
were derived. The relationship between dcrm and h was linear 
for all the three studied species: pine, spruce and birch. All 
broadleaved trees were treated as birches, as the proportion of 
other broadleaved trees is small in Finland. The conditional 
distributions were used in deriving initial values of parameter 
a1. Initial values for parameter a2 were set such that pine and 
spruce had a conical crown and birch a more round crown 
(Figure 4). At the start of the iteration, the crown instance was 
made to overestimate the expected crown envelope through a1. 
Initial value of a3 was 0.3 m for pine and spruce and 0.5 m for 
birch. 

 
Figure 4. Illustration of three crown models for 22-m-high trees: 

a birch, a pine and a spruce. Birches have a 30-50% 
wider crown given the same tree height. 

 
The LiDAR points that are inside the initial crown instance are 
collected and the relative height (hr) down from the top and the 
XY distance (r) from the trunk is computed. These observations 
are used in solving a1, a2 and a3 by a least square adjustment 
procedure. The highest DTM-normalized height of a LiDAR 
point alternatively inside the initial crown instance or inside a 
0.6-m wide cylinder is stored and used as height estimate 
h_LiDAR. dcrm_LiDAR is given by the adjusted model. 
 

 
Figure 5. A view of an image pair after crown modeling of a 

birch. The "trunk" that is known from 3D treetop 
positioning is drawn in the images as well as the 
adjusted crown model. dcrm_LiDAR = 4.5 m, h_foto 
= 22.1 m and the RMSE of the model fit was 0.43 
m. The texts give the image codes and the scale.  

 
2.5 Allometric estimation of stem diameter and sortiment 

volumes 

Equations by Kalliovirta and Tokola (2005) that predict dbh 
using h and dcrm for Sp i were applied: 
  

iii dcrmbhadbh ε+⋅+⋅=  (2) 

 
The models (2) assume maximal dcrm. Here, h_foto was always 
used as the h estimate and dbh was computed alternatively with 
dcrm_foto or dcrm_LiDAR giving two estimates for each STRS-
tree: dbh_foto and dbh_LiDAR. The first case represents a 



 

situation, where no LiDAR data is available. Assessment of 
different assortments was made by simulating stem bucking into 
logs of saw wood and pulp wood. The calculation of tree and 
log volumes was done using polynomial stem taper curves by 
Laasasenaho (1982). They use Sp, dbh and h for predicting the 
stem form. The bucking algorithm used rules for allowable log 
lengths and the minimum top diameters. 
 

3. EXPERIMENT 

3.1 Study area, image and LiDAR data 

  The study site is a 56.8 ha forest in southern Finland (61º50’ 
N, 24º20’ E). The area consists of 25-70 and 100-130-yr-old 
stands. A systematic 50×50-m grid of 0.04-ha circular plots was 
established. Every 4th plot was selected and two additional 
plots giving a total of 59 plots and 2.36 ha (Figure 6). The 
image data is given in Table 1. Images were orientated in a 
hybrid bundle block adjustment (c.f. Korpela, 2006). For visual 
interpretation, the 5-channel Vexcel images were fused into 
CIR-images having a 9-cm GSD.  
 

 Image set 
Date July, 18 2004 August, 5 2006 
Time 11:25 09:27 
Scale 1:8000 1:10000 

Overlaps 60/60% 60/30% 
Sun elev. 45° 30° 
Camera RC30 UltraCam D 

Focal lenght 0.214 m 0.105 m 
Film-type CIR Kodak 1443 PAN, R, G, G, IR 
Film-size 23 × 23 cm 10 × 6 cm 

GSD 12 cm 9 cm PAN, 28 cm MS 
Table 1. Parameters of the two image sets. 
 
A LiDAR-DTM was estimated using TerraModeler software 
from leaf-on data from August, 2004 having 0.7-2 points per 
m2. Its accuracy was 0.27 m in a reference data of 8300 
tacheometer points (Korpela and Välimäki, 2007). A semi-
dense LiDAR from July 25, 2006 was available for tree crown 
modeling. An ALTM 3100 sensor with a pulse frequency of 100 
kHz, a flying height of 800 m, a scan frequency of 70 Hz, a scan 
angle of ±14°, a flying speed of 75 m/s and strip overlaps of 
55% were applied in the mission. The density of the data varies 
from 6 to 9 pulses per m2 and from 1 to 4 points per pulse. The 
data had a minimum range difference of 3 m between points in a 
pulse. The footprint was approximately 25 cm. 
 
3.2 STRS and field measurements 

In April 2007, 5294 STRS-trees in the vicinity of the photo-
plots were measured using the methods of sections 2.2-2.4. The 
work took 32 hours giving an average rate of 165 trees per hour. 
Each tree was measured for 3D treetop position, h_foto, 
h_LiDAR, Sp_foto and estimated for dcrm_foto and 
dcrm_LiDAR. From 3 to 6 images were used and the newest 
images from 2006 were included to reduce the underestimation 
of h caused by the 2-year mismatch of the 2004 images. There 
were always 6 images available on the computer screen for the 
visual species recognition into classes of pine, spruce, 
broadleaved and dead trees.  

 
Figure 6. The 5294 STRS-treetops superimposed in a BW leaf-

off topographic image from 1999. Forest roads 
define the borders of the 56.8-ha study area. The 
colors are: pine = red, spruce = green and 
broadleaved trees = blue. 

 
The STRS-trees were processed into plot-wise maps (Figure 7). 
Labels to be fastened to the stems were printed. These had 
information of the STRS measurements and a map of the 
neighboring trees with azimuths as seen from the tree in 
question. A GPS-receiver with 1-m accuracy was used for 
finding the plot center. From then on, the field investigators 
used the map, intertree azimuths and a precision compass for 
identifying the STRS-trees. Cases, in which the STRS-tree did 
not have a unique counterpart in the field, the STRS-tree was 
made into a commission error. In addition to the STRS-trees, all 
omission trees with dbh of above 50 mm were mapped and 
included in the reference data and measured for Sp and dbh and 
assessed for the state of the crown. Every 3rd STRS-tree and 
every 6th omission tree were measured for h and crown length. 
The h-observations were done with a Suunto-hypsometer and 
the standard error (SE) was assumed to be 0.8 m. It undoubtedly 
varied between investigators, tree species and height classes.  

 
Figure 7. A tree map of STRS-trees that the investigators had in 

the field. The circle depicts the 0.04-ha plot and the 
STRS-trees are represented by species-specific 
symbols. A LiDAR-DTM in 1-m resolution is drawn 
in the background.  

 



 

The mapping of the omission trees used a geodetic procedure, 
where the STRS-trees served the role of control points (Korpela 
et al., 2007). The investigators selected 3-4 STRS-trees with 
vertical stems and an unambiguous apex. These trunks were 
assumed to have an XY accuracy of 0.3 m. Intertree azimuths 
(spatial resection) were measured with a precision compass and 
intertree distances (trilateration) with a laser distance meter. 
Using weighted least square (WLS) adjustment of control point 
coordinates, intertree distances and azimuths, the omission trees 
were positioned with an average accuracy of 0.25 m in X and Y. 
The SE estimates of X and Y were above 0.75 m in 4 of 1410 
omission trees. These trees had several gross observation errors 
and as the WLS adjustment could not be done in the field, it 
was arduous to track blunders. A leave-one-out technique was 
used to find cases with a single gross. Trees were also measured 
again. 
 
3.3 Results - Performance of tree detection 

2122 of 2205 STRS-trees were unambiguously found giving a 
commission error-rate of 3.7%. The commission error-rates 
were 1.8% for pine, 2.4% for spruce and 10.4% for the 
broadleaved trees. 

 
Figure 8. Results of tree detection. The curve gives the 

proportion (vertical axis, %) of correctly detected 
trees in 8 classes (0.3-1) of relative tree height.   

 
Broadleaved trees can have round crowns, which affects the 
photogrammetric treetop positioning and makes the field 
identification of STRS-trees difficult. Broadleaved trees may 
have fused crowns, or the top of the crown consists of several 
upright thick branches, which are easily misinterpreted as 
individual trees. Commission errors were detected in 29/59 
plots and the presence of broadleaved trees was associated with 
the number of commission errors. Since the detection of 
commission errors was a subjective process, it can be argued 
that a part of the commission errors were due to the prudence of 
the investigators. The true commission error-rate could only be 
examined by mapping the trees using tacheometry and by giving 
metric rules. From our field experience, we assumed that the 
true commission error-rate is approximately 2%. Omission trees 
constituted 38.8% of the stems (dbh > 50 mm) and 12% of the 
total stem volume. The omission error-rate in volume is thereby 
approximately 10%, if the “erroneous commission trees” are 
accounted for. (Figure 8).  
 
3.4 Results - Species recognition 

The species recognition accuracy was 93.7%, and if the 0-2% 
reference imprecision is accounted for, the accuracy is 
approximately 95% (Table 2).  
 

Field measured value 
Sp_foto 

Pine Spruce Broadl. Dead  All 
Pine 896 37 8 6 947 
Spruce 25 726 13 2 766 
Broadl. 16 22 354 0 392 
Dead 0 3 1 4 8 
All 937 788 376 12 2113 

Table 2. Error matrix of species recognition of the correctly 
found STRS-trees excluding 9 trees with tentative or 
missing reference measurements. Kappa = 0.90.  

 
3.5 Results - Height estimation accuracy 

The RMS-accuracy of h_foto was 0.71 m with an 
underestimation of 0.14 m (Table 3). Imprecision was largest in 
the broadleaved trees. Differences of up to 4 m were found. 
These may have resulted from errors in the 3D treetop 
positioning, the reference height observations or from errors in 
the DTM. h_LiDAR underestimated true h by 0.58 m (Table 4). 
The residuals of h_foto and h_LiDAR had an R2 of 0.78. It is 
evident that a large part of the correlation is a result of the 
measurement errors in the field data. The underestimation of 
h_LiDAR was largest with spruce, which is explained by the 
peaked crown form. 
 

Sp N Mean SD RMSE  RMSE-c 
Pine 322 +0.17 0.93 0.94 0.50 
Spruce 256 +0.19 1.07 1.08 0.73 
Broadl. 128 −0.02 1.30 1.30 1.02 
All 706 +0.14 1.06 1.07 0.71 

Table 3. Accuracy of height estimates h_foto [m]. RMSE-c was 
calculated by subtracting the expected 0.8-m SE 
error of the field measurements from the observed 
RMSE. Mean reference h of all trees was 15.6 m.  

 
Sp N Mean SD RMSE  RMSE-c 
Pine 322 +0.58 0.88 1.05 0.69 
Spruce 256 +0.69 1.01 1.22 0.92 
Broadl. 128 +0.36 1.15 1.20 0.90 
All 706 +0.58 0.99 1.14 0.82 

Table 4. Accuracy of the height estimates h_LiDAR [m]. 
 
3.6 Results - Stem diameter estimation accuracy 

The accuracy of dbh_foto estimates that were based on the use 
(2) of variables Sp_foto, h_foto and dcrm_foto was 28.7% in 
RMSE. The plot-level RMSEs were 15.8%-47.3%, which 
means that in the best cases the dcrm-foto measurement by 
MSTM had succeeded reasonably well. The 3.45-cm 
underestimation is most likely caused by the fact that the 
maximal crown width could not be seen in the images (Table 5). 
The estimates dbh_LiDAR that were predicted with models (2) 
using Sp, h_foto and dcrm_LiDAR, underestimated true dbh by 
1 cm (Table 6). The overall RMSE was 19.6% with plot-level 
values ranging from 12.1% to 35.4%. The average dcrm_foto 
was 2.1 m, while the mean of dcrm_LiDAR was 2.9 m, which 
explains the differences in dbh_foto and dbh_LiDAR.  
 

Sp N Mean SD RMSE  
Pine 945 +3.96 3.33 5.17 
Spruce 792 +3.24 3.08 4.47 
Broadl. 376 +2.58 3.60 4.42 
All 2113 +3.45 3.33 4.79 

Table 5. Accuracy of stem diameter estimates dbh_foto [cm]. 
Mean diameter of all reference trees was 16.7 cm. 



 

Sp N Mean SD RMSE  
Pine 945 +0.73 3.12 3.21 
Spruce 792 +1.39 2.99 3.30 
Broadl. 376 +0.80 3.33 3.43 
All 211 +0.99 3.13 3.28 

Table 6. Accuracy of stem diameter estimates dbh_LiDAR [cm].  
 
3.7 Results - Volume estimation accuracy 

An RMSE of 60% was observed in the single tree volume 
estimates calculated with dcrm_foto. The plot-level RMSEs 
were 29.5%-108.1% (Table 6). The volume estimates that were 
based on the use of LiDAR in the estimation of crown width 
were more reliable. The RMSE for all trees was 46% and the 
plot-level RMSEs ranged from 24.6% to 101.4% (Table 7). 
 

Sp N Mean SD RMSE  
Pine 945 +82 102 131 
Spruce 792 +74 107 130 
Broadl. 376 +55 106 120 
All 2113 +74 105 128 

Table 6. Accuracy of single tree volume estimates [dm3] 
calculated using Sp, h_foto and dbh_foto and the 
taper curves by Laasasenaho (1982). Mean reference 
volume was 214 dm3. 

 
Sp N Mean SD RMSE  
Pine 945 +21 88 91 
Spruce 792 +36 100 106 
Broadl. 376 +24 94 98 
All 2113 +28 94 98 

Table 7. Accuracy of single tree volume estimates [dm3] 
calculated using Sp, h_foto and dbh_LiDAR.  

 
3.8 Results - STRS forest inventory  

Inventory method 
Variable 

STRS Field 
Standing stems, n 53137 64.8 % 82042 
Total volume, m3 9783 80.8 % 12110 
Saw wood, m3 3522 67.6 %  5212 
Pulp wood, m3 5926 94.6 % 6264 
Volume, Pine, m3 4511 86.8 % 5198 
Volume, Spruce, m3 3919 73.0 % 5372 
Volume Broadl., m3 1262 80.9 % 1560 

Table 8. Timber resources of the 56.8-ha forest with the STRS 
and field inventory. The STRS-results were 
computed using measurements of Sp_foto, h_foto, 
dcrm_LiDAR and dbh_LiDAR.  

 
The timber resources were computed for the 56.8-ha forest 
using both STRS and the field measurements (Table 8). The 
STRS inventory lead to an underestimation of volume by 
19.2%, which is explained by the omission errors (10 % in 
volume) and the 1-cm underestimation and 3-cm imprecision of 
the dbh_LiDAR estimates. An average STRS-tree had a dbh of 
16.7 cm and an h of 15.6 m. A 1-cm underestimation in dbh for 
such a tree results in a 10-% underestimation of volume. The 
inaccuracy of the dbh estimates affected especially the accuracy 
of saw wood and pulp wood volume estimates. When the dbh of 
a single tree reaches 17-19 cm, the stem can be cut to provide a 
single log of saw wood, which constitutes 50% of the stem 
volume. Because dbh_LiDAR was biased and, above all, 
averaged due to regression modeling (2), saw wood volume was 
underestimated as much as 32.4%. Averaged dbh estimates 

induce systematic errors in the volume estimates, because the 
relationship between dbh and the volume is non-linear. Only 
5% of the underestimation in saw wood volume was assessed to 
be due to omission errors, as the largest trees were measurable 
in the images (Figure 8). The rest of the underestimation, 27%, 
was due to the inaccuracy of dbh_LiDAR.  Pulp wood volume 
was underestimated by only 5.4%. The seemingly good result is 
fallacious and a result of errors in stem bucking, which 
overestimated the proportion of pulp wood and underestimated 
the volume and number of saw wood logs because of the bias in 
dbh_LiDAR. Thereby, the results of Table 8 suggest strongly 
that a calibration of the STRS measurements and model 
estimates is required to avoid large systematic errors in the total 
estimates. The smaller underestimation in the volume of pine 
(13.2%) in comparison to spruce and the broadleaved trees is 
mainly explained by the differences in the relative height of the 
detected STRS-trees and the height variation of the species. 
Pine and Silver birch are light-demanding and spruce is a semi-
shade-tolerant species. Also, the underestimation of dbh_LiDAR 
was largest for spruce.  

4. DISCUSSION 

The main result was that a STRS forest inventory was shown 
feasible, but that the results are subject to systematic errors that 
can only be eliminated with calibration. The STRS system 
provided the timber volume estimates per species and per 
sortiment, which is a must in a forest inventory. We 
demonstrated many difficulties that are inherent to STRS. 
Sampling, measurement and model errors all affected the 
results. Omission errors and biased measurements caused 
considerable systematic errors in the estimates of the timber 
resources.   The use of the allometric regression models results 
in averaged dbh estimates even with error-free measurements. 
These, although free from systematic errors, resulted in biased 
volume estimates because of the non-linear dependencies. In all, 
the allometric estimation chain needs improvement.   
 
The STRS measurements took 32 man-hours and the field work 
500 with an extra 80 man-hours of data recording. The ratio was 
1:18 between the two inventories. If larger photo-plots were 
used, less time per STRS-tree would have been needed, as the 
selection and measurement of the model tree in each plot was 
time-consuming. The costs should also include the image 
(~2€/ha) and LiDAR data (~3€/ha). Also, there was a high risk 
that no image data from 2006 was available because of bad 
weather. The weather risk is lesser with LiDAR and field work.  
 
Multi-scale template matching (MSTM) was accurate in treetop 
positioning and h estimation. However, up to six large-scale 
images and an accurate LiDAR-DTM were available. The 
RMSE of h estimates was 0.5 m for pine, 0.7 m for spruce and 
1.0 m for the broadleaved trees. The photogrammetric XY 
positioning accuracy was approximately 0.3 m, as the average 
σ0 was close to 1, when a 0.3-m a priori SE was applied in the 
WLS-adjustment of photogrammetric coordinates, intertree 
azimuths (SE = 0.03 rad) and intertree distances (SE = 0.1 m) In 
all, the field mapping method of the omission trees, in which 
the STRS-trees were used as control points was satisfactory. In 
dense stands, where broadleaved trees formed the upper canopy, 
the mapping become tedious and subject to errors. 
 
MSTM in near-nadir images for dcrm estimation resulted in 
badly biased dbh estimates with an RMSE of 29%. A plot-level 
RMSE of below 20% was observed in 7/59 plots. In first tests 
with the method (Korpela, 2007b), the accuracy of dbh 
estimates ranged from 16% to 21%, but the results were 



 

obtained in well-structured stands and using images with a very 
low off-nadir angle. The technique needs further improvement. 
The use of synthetic templates should be tested (Larsen and 
Rudemo, 1998). The computation of NCC was done for gray-
scaled versions of the images. Better results may be possible 
using a combination of channels. Also, the system could learn 
from good and compatible measurements, where the LiDAR-
based estimates of h and dcrm are used to teach the system in 
the selection of better templates. The MSTM-based 3D treetop 
positioning algorithm was based on monoscopic observations 
by an operator and the process is slow. It might be possible to 
implement MSTM to find trees automatically. However, the 
very high computational costs of NCC need consideration. The 
3D search space for photogrammetric treetop positioning is 
accurately known, if LiDAR data is available. This was not 
exploited here and the LiDAR data could be used more effective 
by using the monoplotting principle (e.g. Baltsavias, 1996). In 
it, LiDAR data would be processed into a canopy surface model 
to be intersected by the reference (treetop) images rays. The 
search space could then be adjusted to the height variation 
measured by the LiDAR (c.f. Korpela, 2007a).  
 
The accuracy of the visual species recognition was 95% for 
classes of pine, spruce, broadleaved and dead trees. The 
achieved 95% classification accuracy is at the requisite level for 
Finnish forestry. However, in some areas a separation of the 
broadleaved trees at the species level would be needed. The 
automatic species recognition remains to be solved. Here, we 
see possibilities in the combined use of LiDAR and image data. 
 
The crown modeling procedure with LiDAR needs further 
improvement, although it resulted in a dbh estimation accuracy 
of 20% with 14/59 plot-level RMSEs of below 15%. Avoiding 
LiDAR points of neighboring trees to affect the modeling might 
be possible by constructing geometric filters that take into 
account the spatial pattern of trees, which is partially known 
from photogrammetric 3D treetop positioning. This would mean 
that the LiDAR-based crown modeling is done only after the 
tree map is attained. The dbh_LiDAR underestimated true dbh 
by 1 cm, because the dcrm was not measured correctly by the 
crown model. The LiDAR pulses do not seek their way to the 
tips of the branches and when LS adjustment is applied, the 
extent of the crown envelope is inherently underestimated. The 
nominal density of the LiDAR data was 6-9 pulses per m2 here - 
a lesser density may possibly suffice for crown modeling. 
 
Generalization of the results requires care. Most trees had 
peaked and uniform crowns. One experienced photo-interpreter 
was tested. The orientation of the images was exact and the 
image sets had a faultless match. Also, the LiDAR from 2006 
did not have XYZ offsets, which was examined using multi-
temporal large-scale images. Using network-RTK, a height 
offset of 0.18 m was detected in the LiDAR-DTM from 2004 
and corrected for. Performing such revisions is not feasible in 
practice. The stands were older than 25 years. In timber cruising 
young stands are less important, but in an inventory for forest 
management planning, they cannot be overlooked. 
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