
4. Nuclear stopping and atomic 

collisions

[Section contents mainly by Prof. Flyura 

Djurabekova]

Radiation Damage in Materials
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4.1. Physical origin of nuclear stopping power

 Recall from previous section the definition of stopping power

𝑆 = −
𝑑𝐸

𝑑𝑥
= 𝑆𝑛 + 𝑆𝑒+𝑆𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 Now we will consider the nuclear stopping power in more 

detail, especially its physical origins

L
o

g
 S

to
p

p
in

g
 p

o
w

er

Log Energy

Sn

Se

Sreactions

~ 1 keV/amu

~ 100 keV/amu

Bragg peak (not to

be confused with x-

ray Bragg peaks!



Radiation damage 2020 – Kai Nordlund

Nuclear stopping power from collisions

 When an ion/recoils moves in a lattice, it collides with the 

atoms in it

 In each collision, it transfers some momentum and energy to 

the lattice atom => energy loss => nuclear stopping

 If the collision cross section is low, it collides only occasionally, 

and moves straight in between

- All the time it loses energy also to electrons via electronic 

stopping

Straight path

between collisions
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Multiple vs. single collisions

 Animations of the 

difference between 

single and multiple 

collisions:

 10 keV Ar -> Cu 

very thin foil (2 nm)

 Upper part: all atom 

movements 

taken into account

 Lower part: strongest 

binary collisions

only

[Animation: 10kevar_cu2nm.avi]

[Animation: 10kevar_cu2nm_bca.avi]
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Energy loss

 The nuclear stopping power 𝑆𝑛(E) is simply the average 

energy loss per unit path length travelled from all the 

collisions

 In principle it is always from all the multiple simultaneous 

collisions

 But for high ion/recoil energies >> 1 keV, the collision cross 

section becomes low, and a few binary collisions tend to 

dominate the energy loss

 For the example case of Ar -> Cu,

for E ≥ 1 00 keV, single binary 

collision model very accurate

[K. Nordlund, NIM B 266 (2008) 1886]
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Independence of nuclear and electronic stopping

 A natural question is whether the nuclear and electronic 

stopping depend on each other

 For instance, since a strong collision will likely also excite 

electrons of the atom, one might think that high nuclear stopping 

enhances the electronic one

 However, a wide range of theoretical and experimental 

studies indicate the two effects are almost completely 

independent of each other for stopping and damage 

production

 Very recent work shows that there is a small energy range where 

nuclear and electronic processes contribute both to the stopping 

and damage, but this is a rather marginal effect and seldom 

important [Debelle et al, Phys. Rev. B 86 (2012) 100102]
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4.2. The binary collision scattering integral

 Here b is the impact parameter 

(impaktparametern/ törmäysparametri)  

and T the transferred energy

vl

M1, Ei

b

θ1

 Since the binary collision  (binärkollision/binääritörmäys) 

dominates nuclear stopping power, we treat it here in 

mathematical detail

 The basic premise is the following: a moving atom with velocity vl

of mass M1 and initial energy Ei is impacting on an atom at rest of 

mass M2 in the following geometry:

M2

θ2
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Central-force scattering

 The binary collision movement can be solved analytically 

provided the interatomic interaction is a so called central force 

one, i.e. depends only on the interatomic distance: V = V(r)  

 The problem is actually quite general, and applies to also 

classical atom-nucleus, atom-electron etc. collisions. 

 The potential can in principle be any function that only 

depends on r, but the following three types are important:

V
(r

)

r

V
(r

)

r
V

(r
)

r

Hard-sphere potential Purely repulsive potential Potential with attractive well
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Where are they important?

1. The simplified type 1 is actually quite good for describing elastic 

atom-nucleus collisions (nucleus is small and ‘hard’)

2. Any collision between charged particles of the same charge leads 

to a purely repulsive (Coulomb) potential. 

 If it is two nuclei, this is known as Rutherford scattering (spridning/sironta)

3. The interaction between two neutral atoms has an attractive well 

due to chemical (covalent, metallic, van der Waals) effects
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1. Hard-sphere potential 2. Purely repulsive potential 3. Potential with attractive well
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Center-of-mass (CM) coordinates

 To simplify the problem, we will 

consider the collision of two 

particles in 2D geometry, in the 

plane where the collision is held.

 To solve the two-body collisional 

process, it is useful to go via 

Center-of-Mass coordinates 

instead of lab coordinates (LC)
 In these the CM does not move

 Why is it needed? Because atoms 

“move” along one line as in simple  

face-to-face collisions
 Before the collision towards one 

another

 After the collision in opposite 

directions.

 We know how CM moves in LC, 

hence the results obtained in CM 

can be converted back in LC
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Velocities in CM before and after collision

 We will consider a collision of two particles moving in CM 

 a projectile with mass m and velocity in CM v1c (v1c´ after the 

collision) 

 a target particle with mass M and velocity in CM v2c (v2c´ after the 

collision).

 The total momentum of such system will be zero. Momentum 

conservation gives us that

(1)                   

 Energy conservation then 

(2)

 Combine (1) and (2) together and it will be obvious that 

velocities in CM before and after collision do not change their 

absolute value
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Recoil velocity in LC

 Velocity in the LC will be calculated as 

 Since both particle and CM move in the same direction then 

the relation of CM velocity to LC velocity is v1c=v1l – VCM 

 The target particle (not moving in LC) moves in CM with the 

same velocity (opposite sign only) as the CM itself in LC, or 

v2c= – VCM .

 Using these in (1) we find that                                   (3)

 After the collision, target particle will receive some recoil 

energy T and move with corresponding recoil velocity V’l. 

Applying the cosine rule to sum the vectors: 

 since               . Here Θ is scattering angle in CM, which is 

related to the scattering angle in LC 𝜃2 (see figure) as 

𝜃2 = (π − Θ)/2 (4)
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Recoil energy (energy transferred in collision)

 Now we apply (3) and (4) and finally obtain

 The recoil velocity in LC then is

 This gives us also transferred in collision energy, which is

 This equation gives us a clear idea that the maximum energy 

will be transferred in face-to-face collision (𝜃2 = 𝜋 ) 
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Scattering angles in LC

 Even if now we know how to find the transferred energy, it is 

still not clear how to find the angle 𝜃1.

 In general, to describe the collision fully we need to know both 

scattering angles (for projectile and target particle) in LC.

 Let’s look again in this figure, and remembering Eq.(1) that 

 We find

 And finally we can say that we know that the scattering angles 

in LC (angles in the plane of the collision) of both particles 

relate to a single scattering angle in CM as 

(5)
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The two-body scattering integral solution

 However, we need to know this angle Θ and for this we need to 

solve the scattering integral! 

 All what we have to do is to find the trajectories of particles in 

CM.

 As was said before, the problem is two-dimensional and belongs in 

the plane formed by the vector of initial velocity and the initial 

position of the target particle.

 The problem can be solved easier if we remember about polar 

coordinates. This polar coordination system will be associated 

with CM, since the motion of both particles in CM is symmetric 

and linear momentum before and after collision is zero.

 We will need two polar 𝜗 and radial r coordinates (illustration is 

given in the next slide). 

 The motion can be considered in the potential field V(r) centered 

at the center of mass.
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Illustration of motion of two colliding particles in 

CM

v1c

v2c=VCMb

v1c´

𝜗𝜗

Θ
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Derivation of integral of motion

 Energy conservation demands that the energy, initially 

available in the system (in CM) remains constant, or

(6)

 Here ECM and MC are the energy and reduced mass in CM

 Also, the angular momentum                      is also conserved 

and is defined by the impact parameter b and the initial velocity 

of the system                     , which gives us                  (7)

 then we can re-write Eq. (6) as radial equation of motion 
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 Finally we obtain                                          (8)

 Integrating this can give the time evolving trajectory in CM, 

which needs extra efforts to convert it in LC

 In many cases it is enough to find the azimuthal angle of 

scattering, which can be easily converted in LC angles as we 

saw in Eq.(5). Then, combining (7) and (8) we will have

 Now we need only to integrate this expression over all range 

of r − ∞ to +∞
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Scattering angle in CM (integral of motion)

 The maximum deflection angle in CM (following the polar 

coordinate direction in illustration in slide 16) is

 Now, from the same illustration we see that the angle Θ is 

related to the angle 𝜗 as Θ = 𝜋 − 𝜗. 

 Then, finally
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From solution to scattering cross section

[Was, p.30; Smith, pp.36-38]

 We saw how we can calculate the energy transferred in collision, 

which can be considered as a energy loss.

 Is it possible to estimate these losses as a continuous function? 

 The answer is “yes”. And this is the nuclear stopping power 

defined in section 3, which is known as the amount of energy lost 

on nuclear collisions per unit length and denoted as

where N is the atomic density

 This interpretation is convenient as it gives general 

understanding of when and why a projectile will stop in the 

matrix. 

1
( )n

dE
S E

dx N
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Cross section of scattering

 Generally speaking we can consider a number of particles 

which will collide with target atoms with the impact 

parameters b±db (all particles within the cross-section 2𝜋bdb )

 These particles will scatter within the solid angle interval d𝜙, 

which depends on initial energy Ei and transferred energy T 

for given pair of atoms.

 The scattering cross-section can be found as  ( , ) 2i

db
d E T d

d
  


 
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Nuclear stopping power

 Integrating the last expression over all impact parameters b 

(from zero to the bmax) and all the transferred energies on 

what the scattering angle also depends, will give us a 

functional form for total cross section of scattering, which can 

be used to calculate the stopping power.

 For details see [Was] or [Smith]

max

0

( ) ( , )
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n i iS E Td E T 
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A special case: nuclear stopping power of 

antiprotons

 Antiprotons present an interesting special case in nuclear 

stopping theory

 Because the charge of the antiproton is negative, they will be 

attracted to the regular atom nucleus

 Nordlund et al [Phys. Rev. A 96, 

042717 (2017)] showed that the even 

accounting for the screening by 

electrons, the antiproton-atom 

interparticle potential is attractive 

at all distances

 The binary collision integral cannot be used since the 

scattering is inwards (square root would become imaginary)
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A special case: nuclear stopping power of 

antiprotons

 Using molecular dynamics iteration of the scattering process 

between antiprotons and atoms, it is possible to determine the 

energy transfer T and hence the nuclear stopping power

 Contrary to the case of protons, for antiprotons the nuclear 

stopping power is stronger than the electronic stopping power at 

very low energies

- Reason: stronger scattering energy transfer due to attractive 

potential and longer screening length

Si Si

[Nordlund et al, Phys. Rev. A 96, 042717 (2017)]



Radiation damage 2020 – Kai Nordlund

4.3 Role of interatomic potential

 The final solution shows that the actual scattering angle is 

determined from the interatomic potential:

 Hence good knowledge of the interatomic potential V(r) is 

crucial for being able to accurately calculate the stopping and 

energy transfer of atoms in solids

 For keV and MeV energies,

the solution is fully dominated by

the repulsive part of the potential

Irradiation physics

Chemistry and

materials science
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Repulsive potentials

 The origin of the repulsive potential can be understood by 

considering the structure of an atom: a positive nucleus of 

size ~ 1 fm surrounded by an electron cloud of size ~ 1 Å.

 Assume the shells are filled and the van der Waals interaction 

is negligible: then the interactions go as follows:

++ +

Atoms very close

to each other =>

pure Coulomb repulsion

+

Intermediate distances

=> electron clouds partly screen

the Coulomb repulsion

++

Atoms far from

each other => complete

screening, no interaction
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Pure Coulomb potential – Rutherford scattering

 At the very smallest distances, the pure nuclei see each other 

and one can consider the problem with the ‘pure’ Coulomb 

potential

 In this case the scattering integral is actually solvable exactly 

analytically [Was page 34-36]. The solution for the scattering 

angle can be from the solution written as
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Reason to decrease of nuclear stopping

 This shape has the feature that the 

scattering angle decreases with 

increasing energy (see adjacent 

figure)

 This explains why the nuclear 

stopping starts decreasing above 

some energy: the ion is deflected less 

and transfers relatively less energy => 

less energy deposition/stopping

 Qualitative explanation: “ion is faster 

=> less time near another atom => 

less time to transfer energy”
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Screened Coulomb potentials

 From the physical picture, it becomes natural to write the 

interaction for larger distances in the form of a screened

(avskärmad / varjostettu) Coulomb potential

 Here the screening function φ is a function that should 

become 1 when r=0 and 0 when r=∞

 This form fills the requirement that the potential becomes a pure 

Coulomb potential at short distances

 Here Z1 and Z2 are the charges of the interacting nuclei, and r

the distance between them; a is the so-called screening 

parameter.
[These three pages are largely from the wikipedia page Stopping power (particle radiation) sections written by Kai Nordlund]

++
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Screened Coulomb potentials

 A large number of different repulsive potentials and screening 

functions have been proposed over the years, some 

determined semi-empirically, others from theoretical 

calculations. 

 A very widely used repulsive potential is the one given by 

Ziegler, Biersack and Littmark, the so-called ZBL repulsive 

potential.

 It has been constructed by fitting a universal screening 

function to theoretically obtained potentials calculated for a 

large variety (~ 500) of atom pairs using so called Thomas-

Fermi electron structure calculations from the 1970’s.
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The ZBL potential

 The ZBL screening parameter and function have the forms

where x = r/au, and a0 is the Bohr atomic radius = 0.529 Å.

 The standard deviation of the fit of the universal ZBL repulsive 

potential to the theoretically calculated pair-specific potentials 

it is fit to is 18% above 2 eV [ZBL book] 

 Even more accurate (~1%) repulsive potentials can be 

obtained from self-consistent total energy calculations using 

density-functional theory, but much of the time the ZBL 

potential is ‘good enough’

[K. Nordlund, N. Runeberg, and D. Sundholm, Nucl. Instr. Meth. Phys. Res. B 132, 45 (1997)].



Radiation damage 2020 – Kai Nordlund

Repulsive potentials from experiments?

 It is also possible to determine the repulsive part of the 

interatomic potential from gas phase scattering experiments

 Recent example of experimental data compared to Dmol DFT 

repulsive potentials:

[A. N. Zinoviev and K. Nordlund, Nucl. Instr. Meth. Phys. Res. B 406 (2017) 511]
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4.4. Binary collision codes like SRIM

 What Binary collision approximation (BCA) codes like SRIM 

do is follow the passage of an ion and its recoils, collision 

after collision in space

 The position and impact parameter of the next colliding atom 

is selected with a Monte Carlo approach selecting the next 

colliding atom according to the density of the material

 This gives a picture of

the collision cascade

(kollisionskaskad / 

törmäyskaskadi) formed

by the set of atoms

Picture: wikipedia by Kai Nordlund]
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Energy transfer 

 The binary collision calculations gave (for any interatomic 

potential)

where Ei is the initial energy of the particle of mass m, T is 

the energy transferred to the atom of mass M, and θ is the 

scattering angle in center-of-mass coordinates.

 This equation was already given in section 2 for nuclei

 The energy transfer T is what eventually may lead to 

damage production

21 2
22

1 2

4 cos
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M M
T E

M M
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Binary collision damage model

 In BCA codes like SRIM the model for damage production is 

simple: if the energy of a recoil exceeds a certain threshold 

value, known as the threshold displacement energy 

(förskjutningsgränsenergi / siirtymäkynnysenergia) or the 

displacement energy or the threshold energy, it assumes a 

vacancy (vakans/vakanssi) (empty lattice site) is produced 

where the recoil atom was initially

 The threshold displacement energy (TDE) can be measured 

experimentally using electron irradiation to find the threshold 

at which damage starts to be produced

 The TDE’s are typically between 10 and 50 eV in elemental 

materials, and in BCA models assumed to be a constant for 

the material
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4.5 The threshold displacement energy

 The threshold displacement energy

is the smallest amount of kinetic 

energy needed to permanently 

displace an atom from its lattice site 

 The full concept is a 3D function:

<100>

<111>:
B Open

A Closed

<110>

AVERAGE

 ,ave ave ( , )d dT T  

 ,min min ( , )d dT T  



Radiation damage 2020 – Kai Nordlund

Different varieties of the threshold energy

 One can in fact define several physically different 

threshold energies:

 Minimum vs. average threshold displacement energy:

 Direction-specific 

thresholds: Td,100, Td,110, …

 Average threshold 

displacement energy:

 Minimum threshold 

displacement energy: 

- Usually in one of the principal lattice directions

<100>

<111>:
B Open

A Closed

<110>

AVERAGE

 ,min min ( , )d dT T  

 ,ave ave ( , )d dT T  

[K. Nordlund, J. Wallenius, and L. Malerba, Nucl. Instr. Meth. Phys. Res. B 246, 322 (2005)]
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Threshold displacement energy is not really a 

constant

 Due to thermal vibrations and crystal-direction specificity, the 

TDE is not even a monotonously rising function

[K. Nordlund, J. Wallenius, and L. Malerba, Nucl. Instr. Meth. Phys. Res. B 246, 322 (2005)]
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Example data: threshold displacement energy in 

W determined over all crystal directions

 (This map was calculated with a machine learned interatomic

potential, which in 2019 was a state-of-the-art method. The

results also agree with DFT calculations and experiments

where available) [J. Byggmästar et al, Phys. Rev. B 100, 144105 (2019)]
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BCA model for damage production

 To repeat, the BCA model for damage production is that each 

recoiled atom above the threshold energy leaves behind a 

vacancy, and becomes itself either an interstitial atom 

(interstitiell atom / välisija-atomi) or is sputtered

 The combination vacancy+interstitial is called a Frenkel pair

Vacancy

Interstitial atom

at end of recoil path
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4.6. The Kinchin-Pease and NRT equations for 

damage production

 The BCA model for damage production assumes independent 

collisions, which means it natural to think that the actual 

damage production is linearly proportional to energy above 

the threshold

 This leads to the Kinchin-Pease model for damage 

production for a nuclear damage energy of T 

𝑁 𝑇 =

0 when 𝑇 < 𝐸𝑑
1 when 𝐸𝑑 < 𝑇 < 2𝐸𝑑
𝑇

2𝐸𝑑
when 2𝐸𝑑 < 𝑇 < ∞

where Ed is the threshold displacement energy.

[Kinchin and Pease, Rep. Prog. Phys. 18 (1955) 1]
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The Kinchin-Pease and NRT equations for 

damage production

 The K-P model was later modified by Norgens, Robinson and 

Torrens based on BCA simulations of the probability of a new 

recoil filling in a vacancy to the slightly modified so called 

NRT form to read:

 The NRT model includes using the Lindhard energy 

partitioning, i.e. 𝑇 = 𝑓 𝐸𝑃𝐾𝐴 where 𝑓 is the function telling 

which fraction of the PKA energy 𝐸𝑃𝐾𝐴 is lost to electronic 

stopping

 There is even a standard 

behind this form

𝑁𝑁𝑅𝑇 𝑇 =

0 when 𝑇 < 𝐸𝑑
1 when 𝐸𝑑 < 𝑇 < 2𝐸𝑑

0.8 𝑇

2𝐸𝑑
when 2𝐸𝑑 < 𝑇 < ∞
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The dpa concept

 Damage is very commonly given in the form of 

displacements-per-atom (dpa) (förskjutningar-per-atom, 

siirtymiä atomia kohden)

 The standard way to calculate this is to calculate the total 

nuclear damage energy deposition 𝑇 (i.e. excluding electronic 

energy loss) in a given volume, then use the NRT-dpa

equation to calculate the number of defects (”displacements”) 

in this volume. This number divided by the number of atoms 

in the same value defines the dpa value
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The arc-dpa form

 However, during the last ~30 years it has become clear that 

the NRT form for calculating dpa’s is badly off in metals!

 This is due to recombination, which we will return to in detail in 

section 5

 This led an OECD Nuclear Energy Agency working group to 

devise a ”athermal-recombination corrected dpa”, arc-dpa

equation of the form

[Nordlund, Zinkle, et al. Nature communications 9, 1084 (2018)]

𝑁𝑑,𝑎𝑟𝑐𝑑𝑝𝑎 𝑇 =

0 when 𝑇 < 𝐸𝑑
1 when 𝐸𝑑 < 𝑇 < 2𝐸𝑑

0.8 𝑇

2𝐸𝑑
𝜉(𝑇) when 2𝐸𝑑 < 𝑇 < ∞

𝜉 𝑇 =
1 − 𝑐𝑎𝑟𝑐𝑑𝑝𝑎

(2𝐸𝑑/0.8)
𝑏𝑎𝑟𝑐𝑑𝑝𝑎

𝑇𝑏𝑎𝑟𝑐𝑑𝑝𝑎 + 𝑐𝑎𝑟𝑐𝑑𝑝𝑎
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Arc-dpa fit to damage production data

 This modified form fits damage production results in metals 

much better than the original NRT-dpa equation

 In the plot below, the thick line is the new result fit to the data 

points, while the NRT-dpa equation would give 1 for all energy 

values

[Nordlund et al, J. Nucl. Mater. 512, 450 (2018)]. 
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Limitations of the BCA model of damage

prediction

 Due to its nature of modelling only binary collisions, the BCA 

approximation breaks down when the ion and recoil energies 

become so low that atoms collide with many atoms 

simultaneously (many-body collisions)

 For the same reason, 

it cannot tell anything

about the precise

atomic structure of defects

 How to obtain such

information will be described

in the next section
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Problems in SRIM damage models

 Major caveat: the SRIM software has internal inconsistencies between 

its own damage models

 Roger Stoller et al [Nucl. Instr. Meth. Phys. Res. B 310 (2013) 75] showed that the 

”number of vacancies” given by SRIM for the exact same irradiation condition 

can vary by a factor of 2 depending on whether the code is run in full cascade 

or ”Quick Kinchin-Pease” mode

- This paper did not explain the reason

 In 2019 William J. Weber and Yanwen Zhang [Current Opinion in Solid State & Materials 

Science 23 (2019) 100757] showed that the reasons are that the ”quick damage 

mode” uses the Lindhard model for energy partitioning, which is based on a 

different electronic and nuclear stopping models than those used in the ”full 

cascade” mode, and that the modified Kinchin-Pease model used to calculated 

number of displacements from the damage energy is based on an inherent 

assumption that there is a binding energy equal to the threshold displacement 

energy. 

- W. J. Weber also showed in the same work that two open source full 

cascade BCA codes (iradina and IM3D) give consistent results with the 

SRIM full cascade mode: that mode works reasonably 
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Problems in SRIM damage models

 To be fair to SRIM, the SRIM book does state that the ”K-P Quick 

calculation should only be used “if you do not care about details of 

target damage” “

 It is especially important to note that the K-P model and Lindhard

partitioning are not even meant to be valid for multi-elemental targets 

=> they should not be used for alloys and compounds at all

 Conclusion: for SRIM damage calculations, either use the full cascade 

mode, or do not use SRIM for damage calculations at all

 They anyway are not physically realistic, real damage is always more 

complicated (this will be apparent in next sections of this course)

 The energy deposition calculations are, however, quite reliable, and can be 

used as a basis for a dpa or arc-dpa calculation

 If one does use SRIM, one should always describe very precisely how it 

was done (SRIM version, calculation mode), otherwise the results are 

not reproducible
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What should you have learned from this section?

 Understand the picture of binary collisions in solids

 Know how the binary collision equations are solved for the 

scattering angle

 Know the basics of repulsive interatomic potentials

 Know how a binary collision model treats damage production

 You know the concept of threshold displacement energies 

and analytical damage models based on these

 You know what the dpa concept is

 You know that SRIM has inconsistencies in its damage

models, and in particular that the Kinchin-Pease model

should not be used for alloys at all


