Introduction to Molecular dynamics
Complete lecture notes for self-studies
Professor Kai Nordlund and University lecturer Antti Kuronen 1999 - 2015

* The idea of the course is to teach the students the basics of atom-level computer simulations,
which are widely used in materials and atomic physics, chemistry and biology.

* The course deals with 2 basic simulation types: molecular dynamics (MD) and structural optimization (by
using conjugate gradients (CG) and genetic algorithm (GA) methods).

» Course material home page: http://www.acclab.helsinki.fi/~knordlun/moldyn/
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Exercises

* Questions and exercises are provided among the materials

* Many of the exercises involve writing subroutines or full computer programs.

» The programs are provided either in Fortran90 or C.
* Linux (or other Unix) is the preferable environment.
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Computer environment

* For exercises you need an computer environment with C or Fortran compiler.
* Good non-commercial (i.e. free) alternatives are the GNU compilers.
* They can be easily installed in any Linux distribution.
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Literature

* Lecture notes
» Will appear on the web a bit before the lecture
(http://www.physics.helsinki.fi/courses/s/atomistiset/lecturenotes/).
* The web page also has links to similar courses elsewhere in the world.

* As background information you can use e.g.:

* M. P. Allen, D. Tildesley: Computer simulation of Liquids (Oxford University Press, Oxford,1989)
* The classical simulation textbook everybody refers to.
« Statistical mechanics approach.
* D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications,
2nd edition (Academic Press, 2001)
« Statistical mechanics approach.
* Note that the 1st edition has quite a few printing errors.
* Book home page (http://molsim.chem.uva.nl/frenkel_smit/) has exercises and case studies.
* R. Phillips: Crystals, defects and microstructure : modeling across scales (Cambridge University Press,
2001)
* A nice textbook on computational methods in materials research in general; from atomistics to elastic continuum.
* Includes a chapter on interaction models.
* A. R. Leach: Molecular modelling: Principles and applications, 2nd edition (Prentice Hall, 2001)
« In addition to simulation methods includes also nice chapters on interaction models (classical and quantum mechani-
cal).
 Molecular mechanics and force fields.
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Computer simulations in physics

+ Simulation can bridge the

Basic theory gap between theory and
[ Nature ] > (model) experiment.

/ \ + Sometimes only choice
_ _ _ Analytical (theory too complicated).
Experiment Simulation
theory . . .
» Sometimes simulation

impossible: not enough
computer capacity.

* Also comparison between
analytical theory and simu-

Simulated Analytical
prediction prediction
lation: if both are based on

Result
the same basic theory
(e.g. Newtons laws), but
v analytical theory uses

Comparison Comparison approximations, simula-
tion can be a perfect way

+0K +n°t - * oK * hot OK to test the approximation.
Understanding Theory Theory
of nature! Theory wrong [right wrong
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Atomistic simulation: What is it?

* Model where the basic object is (roughly) a spherical object.

* This object can be an
* atom
* molecule
* nanocluster
* a particle in a fluid
* a planet or a part of a galaxy

» On this course, we almost always talk about “atoms”, but in many cases the algorithms are such that the
“atom” could be almost any of the above.

* Application areas:
» atom movement in equilibrium: thermodynamics
* nonequilibrium phenomena: irradiation, material heat or pressure processing, phase transitions, nucle-
ation, surface growth (thin film deposition)
* properties of lattice defects
* nanostructures: Ngioms ~ 10% - 10%: can be simulated!

* interactions inside a molecule: vibration, rotation, protein folding
* intermolecular interactions
» chemical reactions
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And what is it not?

» Continuum modelling (e.g. Finite Element Modelling, FEM)

Fixed lattice or grid model
* Although here the limit is sometimes hard to draw.
* Modeling of amorphous materials using continuous random networks: bond-switch simulations.

Particle physics

Electronic structure calculation (for fixed positions of nuclei)
* But these are often used as basis for atomistic simulation: ab initio MD.

Since the basic object is an atom, and a computer memory is limited, atomistic simulations are
always somehow size limited.

* Hence usually simulating macroscopic (mm size and up) objects is usually out of the question.
* 100 million atoms is doable: quick estimate of what physical system size this corresponds to:

3 3
« E.g. silicon: volume/atom v = M = 2O.OA—
8 at. at.

7(10%atoms) = 2.0x10°A>
cube edge = 3/2.0x10°A = 1260A = 0.126um

* Time scale of normal MD limited to tens of nanoseconds (but more about that later).
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Important types of atomistic simulations

* Molecular dynamics (MD)
« Simulate the dynamic atom motion based on some interaction model.

* Monte Carlo (MC)
* MC is in the broadest sense any simulation which uses random numbers.
* Even most MD simulations do use random numbers, but they are still conventionally not considered true
MC simulations.
» There are a few varieties of MC which are often used for atomistic simulations. The most important are
maybe:
* Metropolis MC (MMC)
» Simulate a thermodynamic ensemble, energy minimization by simulated annealing.
« Kinetic MC (KMC)
» Simulation of activated processes (e.g. diffusion)
* The MC courses deal with all this. (http://beam.acclab.helsinki.fi/~eholmstr/mc/)

* Structural optimization
* Find the equilibrium state of of an atomistic system

based on some interaction model: energy minimization. | . Binary collision approximation (BCA)
* Global vs. local minimum: simulated annealing.  In nuclear and ion beam physics (and

+ Conjugate Gradient (CG) method almost nowhere else)

* An efficient way to find a local minimum. « Event-driven simulations in general (e.g.

* Can also be used for atoms. interaction of electron and photon radiation
*» Genetic algorithms (GA) with matter)

* Sometimes an efficient way to find a global minimum.

* Can also be used for atoms.
* Minimum energy path determination
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How to present atomistic data From program babel :
alc -- Alchemy file
» There exist about a zillion different file formats for presenting boin - atcimin Commsnd file
e box -- DOCK 3.5 box file
atom positions. e Cmmmiieiie
. c3d2 -- Chem3D Cartesian 2 file
* An example: how should we present the coordinates? cacort - Casao cartesian file
cache - e . ruc 1le
* For 8 Cu atoms in the corners of the unit cube cacint -~ Cacao Tnternal file
* Trivial format 1 “x y z"™: ST e ente en g
cssr -- CSD CSSR file
diag -- DIAGNOTICS file
O . O O . 0 O . O dock -- Dock Database file
dpdb -- Dock PDB file
1. . . ea -~ Feature file
0 g 2 8 8 8 Ehzt -- lljen;ke—l{gli ZMatrix file
. . . amin -- Gamess Input file
0.0 0.0 1.0 et el Caresion e
1.0 1.0 0.0 gr96A -- GROMOS96 (BA) file
1 O o 0 1 0 919612 :: gROMOsSG Z(ij)tf%lef‘l
0 : O l : O 1 : 0 gin -- Hyperchem HIN file
. . . icon -- Icon file
1 O 1 0 1 0 idatm -- iDATMsfile
- - - m3d -- file
macmod -- Macromodel file
macmol -- Mac Molecule file
mdl -- MDL Molfile file
. . . . micro -- Micro World file
* No information about time (for a dynamic system) niv -~ MelTnventor file
- “ » mm2in -- MM2 Input file
* Trivial format 2: “xy z t mout - Wiz oupus file
mm3 -- MM3 ile
mmads -- MMADS file
mol -- Syby? Mol fi}e
0.0 0.0 0.0 3.0 mopert L onbe corresion file
mopin -- Mopac Internal file
1.0 0.0 0.0 3.0 pcrpnodt -- I\;CpModiltfile
0.0 1.0 0.0 3.0 pdb -- PDB file
psc -- PS-GVB Cartesian file
0.0 0.0 1.0 3.0 psz -- PS-GVB Z-Matrix file
repor -- Report file
1.0 1.0 0.0 3.0 T i eor fite
1.0 0.0 1.0 3.0 smiles i: SMILES fl}e
O . O 1 . O 1 . 0 3 . 0 t}i)nker -- i}i)nk;r X‘izlfile
orlis -- Torsion List file
1.0 1.0 1.0 3.0 smixye - Onichem %vs file
wiz -- Wizard file
xed -- XED file
xyz -- XYz file
» Downside of both formats: All file has to be read in before we know how many

atoms there are.
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How to present atomistic data

* In this course we use the XYZ standard format.
* First line has number of atoms at this time
» Second line is comment
» Then come the coordinates of the atoms with the element symbol as the 1st column.

8

Molecule name or comment or whatever (Might, however, be used by some applications.)
Cu 0.0 0.0 0.0 320.0

Cu 1.0 0.0 0.0 310.0

Cu 0.0 1.0 0.0 305.0

Cu 0.0 0.0 1.0 280.0

Cu 1.0 1.0 0.0 290.0

Cu 1.0 0.0 1.0 320.0

Cu 0.0 1.0 1.0 310.0

Cu 1.0 1.0 1.0 320.0

* The fifth column can also hold other information, or be empty.

« Itis a very good idea to include useful information on the second line (a non-standard feature), e.g.

8
Frame number 1 3.0 fs boxsize 3.0 3.0 3.0
Cu 0.0 0.0 0.0 320.0
Cu 1.0 0.0 0.0 310.0
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How to present atomistic data

» For dynamic information, the info for each time can simply be put after each other in the same file:

2

Frame number 1 0.0 fs boxsize 3.0 3.0 3.0
Cu 0.0 0.0 0.0 320.0

Cu 1.0 0.0 0.0 310.0

2

Frame number 1 2.0 fs boxsize 3.0 3.0 3.0
Cu 0.1 0.0 0.0 330.0

Cu l.1 0.1 0.0 300.0

2

Frame number 1 4.0 fs boxsize 3.0 3.0 3.0
Cu 0.2 0.1 0.0 340.0

Cu 1.2 0.1 0.0 290.0

» For very large simulation systems this text format may become too inefficient (both from the
point of view of space and time).
* Binary formats exist, but are not standardized at all...
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Visualization of atomic data

Visualization is fun but also useful.

Plot each atom as a sphere, either statically or dynamically.

Plot bonds between atoms: ball-and-stick model.

As with file formats, there are about a zillion programs which can do that.

* One much used visualization program is RasMol. It is

+ free and open source (easy to modify for your needs)

+ works at least in Linux, Unix, Windows, and Mac

+ fast

+ supports many of the most common chemistry formats, including XYZ
+ can produce publication-quality output

- poor at adding text to the graphics

- can not draw much else than atoms, bonds and protein backbones

- no perspective transformation

* Home page: http://rasmol.org/
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Visualization of atomic data

*» Useful Rasmol commands (see also http://www.physics.helsinki.fi/courses/s/atomistiset/refcardUS.pdf):

load xyz file Read in a file

write gif image.gif Store an image in the gif format

write ppm image.ppm Store an image in the ppm format When started, rasmol reads the
write ps image.ps Store an image in the ps format file ~/.rasmolrc for initial set-
zap Remove all data, needed before new load command tings

quit ’

wireframe <on/off/value> Adjust bond width
spacefill <on/off/value> Adjust atom size

spacefill temperature Get atom size from column 5 in XYZ file
zoom 150 Zoom display, default=100

set ambient <values> Ambient light strength

set specular on Use a nice 3D shade on atoms

set specpower <value> Remove the 3D shade

set shadows on/off Use/don’t use atom shadowing (slow)
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Ovito

* Ovito is a very powerful software for atom (not molecule) visualization and analysis
« Maintained and developed by Alex Stuchowski of the TU Darmstadt
It has a very nice graphical user interface and many very advanced modern analysis methods
« Filters for selecting only parts of atoms
Available for Unix/Linux, Windows
and Mac OS X
» Very quick guide to get started for
XYZ files:
* Start ovito
* From top right corner, select “Import
data” button
and then open an XYZ file
* In “File column mapping” set (at
least)
* Column 1: Particle Type
* Column 2: Position X
* Column 3: Position Y
* Column 4: Position Z
* Column 5: Particle Type
« After this the atoms should display
* Analysis options in menus on right
» Can be scripted via python

* http://www.ovito.org/

' ]

Add modification... =
Display. °

Simulation cell

[

Particles
Modifications
Bond-angle analysis &
Assign color -
A wigner-seitz defect analysis
A Atomicstrain
Coordination analysis

ag

nput
Finalpos.xyz [XYZ File]
— Simulation cell

_Bond-angle analysis 7

Structure types:
Color Name Count Fraction Id
Other 1107 27.7%

FCC 2889 722%

0
1
HCP 4 01% 2
B Bc 1 00% 3

4

Ico 0 0.0%

(Double-click to change colors)
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“Quick and dirty” command line animation tool: dpc

* A simple way to make animations is to use program dpc by Kai Nordlund
* It reads XYZ files that have many frames concatenated.
* dpc is available from the course web page
» Compile it according to instructions
* Run it by command: dpc
* Basic usage for XYZ files:
dpc xyz erase sort 2 3 4 5 moviefile.xyz
*“2 3 4" tells that the x, y- and z- info is taken from columns 2, 3 and 4.

* “5” does not mean anything for XYZ, but must still be there.
* All options are between “dpc”and “2 3 4 5”

» The program is not as flexible as rasmol, but it is very fast (it is written under plain X11ib)
* Help is given by command dpc with no options.

* Most important options

s 600 800 Window size

sd 600 600 Draw area size

X 0 83 x limits

y 0 65 y limits

Z 37.8 43.6 Color (z) limits

m 1 Form of atoms: 0 rect, 1-4 circle

d 4 Dot size

gifdump Make gif file dump of each window frame

Introduction to molecular dynamics 2015 1. Introduction 16



Making presentation animations

» To make animations for the web or a presentation:

* Use rasmol, ovito or dpc to make a separate a bitmap image of every single time step.
« Each image should be stored with a name having the frame number encoded,;
e.g. frame001.png, frame002.png, ...

» Make an animation from these separate frames by using any animation program (many of them available
freely; e.g. ffmpeg).

» With new versions of ffmpeg a typical atom animation can be made using something like:

ffmpeg -framerate 2 -i dpcdump%3d.png -gqmax 5 -b 1800k -dframes 1 test.wmv
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“Quick and dirty” data-analysis: awk

* Swiss army knife of Unix: awk (or gawk)
* A lot can be done using simple ‘one-liners’.
» Example: we have a XYZ file:

2632

Time (fs) 74500

C 3.14286 5.13682 9.99465 -7.30347
C 3.54844 3.00536 11.1538 -4.55679
C 4.20179 5.13682 12.1936 -7.30347
C 5.07013 3.00536 13.0619 -4.55679
C 6.10993 5.13682 13.7152 -7.30347
C 7.26903 3.00536 14.1208 -4.55679
C 8.48933 5.13682 14.2583 -7.30347
(¢] 9.70963 3.00536 14.1208 -4.55679

» And want to check the potential energy (5th column or so-called temperature column) distribution:
cat file.xyz |
gawk '$1=="C" {i=int(10*$5+0.5); e[i]l++} END {for (i in e) print i/10,e[i]}’|
sort -n | xgraph

* Quick and dirty plotting: xgraph
* This is also installed on mill at /usr/local/bin.

* These tools reduce the need to build C or FO0 programs or to launch Matlab for every small
task.
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Other visualization programs

* OpenDX

* A commercial IBM program package which was later made open source

* Philosophy
* build a network of modules through which data flows
« data analysis and visualization in the same program package

* Home page: http://www.opendx.org/

« VMD

» More features than in RasMol.
* Slows down for large systems.

* Home page: http://www.ks.uiuc.edu/Research/vmd/

* And many many more...

Introduction to molecular dynamics 2015 1. Introduction
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Molecular dynamics 2015

Exercises 1 to chapter 1: Visualization

The face-centered cubic (FCC) lattice structure is as follows: a

lattice has an number of cubes next to each other. Each cube has  4[001]
an atom in each corner, and in addition there is an atom on the

center of each side of the cube. One cube is called the unit cell,

and it thus has 4 atoms in total (Why only 4?). By displacing the «[010]
atoms a bit it is possible to make a cube which has four atoms in- 2[100]
side it.

FCC is one of the two close-packed structures in 3D, the other one is hexagonal close packed
(HCP). The statement that FCC and HCP are the tightest ways of packing spheres in 3D is called
the Kepler conjecture. All physicists know it’s true but mathematicians only recently have been
able to prove it (http://mathworld.wolfram.com/KeplerConjecture.html).

1. (12 p) Write a program which creates a 3-dimensional Cu FCC-lattice and prints it out in the
XYZ format. As input the program should read the size of the system in unit cells in each

direction (x, y, z). Coordinates of the atoms in the XYZ file should be in A. Make a figure

out of a 4 X 4 X 4 system and visualize this with rasmol, ovito or dpcl so that at
least three sides of the cube are visible. The lattice constant of Cu (side length of unit cell) is
a=362A.

2. (8 p) Modify your program so that you can visualize the (111) surface of the Cu FCC lat-
tice. You can do this either by cutting the cube in the right direction or building the system
from unit cells with the right orientation (i.e. a unit cell with one side in the (111) plane; it
is possible, we come to that later in the lectures). Check that you get the right symmetry in
the (111) plane (hexagonal).

The exercises are returned by emailing the source code creating atoms and one rasmol-pic-
ture/exercise in the gif format.

For additional information about crystal structures and notation see any solid state physics text-
book, e.g. Kittel or Ashcroft and Mermin. Shortly, plane (111) is the the plane that is perpen-
dicular to the vector [111] = i+ j+ k. Here the unit vectors are oriented along the edges of
the cube depicted above.

1. Or whatever visualization program you use.



Basics of molecular dynamics

* The basic idea of molecular dynamics (MD) simulations is to calculate how a system of particles
evolves in time.
» The method was first used by Alder and Wainwright in 1957 to calculate properties of many-body sys-
tems. They called the particles molecules.

* There is an interesting parallel to classical mechanics here. The two-body motion problem was solved by Newton way
back then. The three-body problem was solved by a Finnish guy, Sundman, in the early part of the last century - but

the solution is utterly impractical (108000000 terms needed in a series expansion).

* The N-body problem, N> 3, can not be solved analytically. MD can also described to be a
numerical way of solving the N-body problem. The solution is of course never exact, but if done
properly it can be done arbitrarily accurately.

« Consider a set of atoms at positions r, and some interaction model which gives us the potential
energy of the system 7({r;})

* In Newtonian mechanics we then get:

dr, d
— = Vis gmyp = F = Vi = V{Z Varp )+ 3 Va(r, )+ }
J Jrk

* By solving the above set of equations numerically we can derive dr over some short time inter-
val dt.
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Basic MD algorithm (slightly simplified)

Set the initial conditions rl.(to), Vl.(l‘o)

Y
Get new forces F (r;)

y

Y

Solve the equations of motion numerically over time step A¢:
ri(t,)—>rit, ) vi(t,)—>vi(t, )

l

t—t+ At

i

Get desired physical quantities

|

t>t 5 Calculate results
max ° and finish
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An alternative view * Zoom in on 2 time steps (5

* MD-simulation of thermal motion over 100 time steps atoms):

* Attime ¢ the distances rij and
* ¥ # ¥ hence forces F' ij between nearby
atoms are calculated
N - ¥ O * From the;e forces we can solve
. Tl the equations of motion, and
T hence get new positions and
$ ) P 3 ~..~...V.<?I00|t|es.
» % 8 4 . T
‘§ e 3 2
- . ~~~.~ . O .
- * ".‘ ¥ - . @
o . ri3Fi3
= position at £ = ¢, KR r - F
* The displace- @ =posionatt = £, | . 1 122 112
ment over a o ®
time step At is
denoted Ar. 1 N
2 F r,,, F
. Ar=vAt+=-aAtr, a= — 14 7 14
Ar has to be 2 m Q ris Fs
much smaller IRRREE
than the dis- / RN 12 @
tance between . .. e © [ 4
nearby atoms. S
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General considerations

* The above was the simplest possible example, the so called microcanonical or NVE ensemble.
This means that the approach preserves the number of atoms »~, the volume of the cell ¥ and
the energy E. Other ensembles will be dealt with later on in the course. But the NVE ensemble
is the most natural one in that it is the true solution of the N-body problem, and corresponds to
the real atom motion.

* First MD simulations:
» Hard spheres: B. J. Alder, T. E. Wainwright: Phase transition for a Hard Sphere-System, J. Chem. Phys.
27 (1957) 1208
» Continuous potentials: J. B. Gibson, A. N. Goland, M. Milgram, G. H. Vineyard: Dynamics of Radiation
Damage, Phys. Rev. 120 (1960) 1229.

 State-of-the-art (2015):
* Of the order of 10 000 000 000 atoms can be done on many large supercomputers
* In Finland: CSC Cray (louhi.csc.fi): some 100 000 000 atoms with a realistic potential easily possible for
thousands of time steps.

« If all ¥ atoms interact with all atoms, one has to in principle calculate N interactions. This is
prohibitively expensive for millions of atoms.
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General considerations

* Fortunately, in practice most atomic interactions decrease rapidly in strength as » — «. In that

case it is enough to calculate only interactions to nearby atoms.
* E.g. in diamond-structured semiconductors (Si, Ge, GaAs...) atoms have 4 covalent bonds, so the calcu-

lation can be reduced to 4 neighbours =>4 N interactions.

« In metals atoms more than ~ 5 A far can usually be neglected => about 80 N interactions

* In ionic systems the interaction V= 1/r, i.e. decreases very slowly. It can not be cut off, but there are

smart workarounds.

Introduction to molecular dynamics 2015

Early MD simulations

Phase Transition for a Hard
Sphere System
B. J. AupEr AND T. E. WAINWRIGHT
University of California Radiation Laboratory, Livermore, California
(Received August 12, 1957)

A CALCULATION of molecular dynamic motion
has been designed principally to study the re-
laxations accompanying various nonequilibrium phe-
nomena. The method consists of solving exactly (to the
number of significant figures carried) the simultaneous
classical equations of motion of several hundred par-
ticles by means of fast electronic computors. Some of the
details as they relate to hard spheres and to particles
having square well potentials of attraction have been
described.}? The method has been used also to calculate
equilibrium properties, particularly the equation of
state of hard spheres where differences with previous
Monte Carlo® results appeared.

The calculation treats a system of particles in a
rectangular box with periodic boundary conditions.*
Initially, the particles are in an ordered lattice with
velocities of equal magnitude but with random orienta-
tions. After a very short initial run'? the system reached
the Maxwell-Boltzmann velocity distribution so that
the pressure could thereafter be evaluated directly by
means of the virial theorem, that is by the rate of change
of the momentum of the colliding particles.!:? The
pressure has also been evaluated from the radial distri-
bution function.® Agreement between the two methods
is within the accuracy of the calculation.

Introduction to molecular dynamics 2015

2. Basics of molecular dynamics

A 32-particle system in a cube and initially in a face-
centered cubic lattice proceeded at about 300 collisions
an hour on the UNIVAC. For comparison a 96-particle
system in a rectangular box and initially in a hexagonal
arrangement has been calculated, however only at high
densities so far. No differences in the pressures can be
detected. It became apparent that some long runs were
necessary at intermediate densities, accordingly the
IBM-704 was utilized where, for 32 particles, an hour is
required for 7000 collisions. Larger systems of 108, 256,
and 500 particles can also conveniently be handled; in
an hour 2000, 1000, and 500 collisions, respectively, can
be calculated. The results for 256 and 500 particles are
not now presented due to inadequate statistics.

2. Basics of molecular dynamics

5 2.0
/v,

Fic. 1. The equation of state of hard spheres. The heavy solid
curve represents Alder and Wainwright's? 108 molecule results; +-,
their 32 molecule results. @ and A represent the present and pre-
vious! Monte Carlo results. Virial=five term virial expression.!
Superposition = reference 5.



Early MD SimUIations PHYSICAL REVIEW VOLUME 120, NUMBER 14 NOVEMBER 15, 1960

Dynamics of Radiation Damage*

J. B. Gisson, A. N. Goranp,t M. MiLeram, anp G. H. VINEYARD
Brookhaven National Laboratory, Upton, New York

(Received July 14, 1960)

Radiation damage events at low and moderate energies (up to 400 ev) are studied by machine calculations
in a model representing copper. Orbits of knock-on atoms are found and the resulting damaged configurations
are observed to consist of interstitials and vacancies. Thresholds for producing permanently displaced atoms
(i.e., interstitials) are about 25 ev in the (100) direction, 25 to 30 ev in the (110) direction, and around 85 ev
in the (111) direction. Collision chains in the (100) and (110) directions are prominent; at low energies the
chains focus, at higher energies they defocus. Above threshold, the chains transport matter, as well as
energy, and produce an interstitial at a distance. The range of (110) chains has been studied in detail.
Localized vibrational modes associated with interstitials, agitations qualitatively like thermal spikes, ring
annealing processes, and a higher energy process somewhat like a displacement spike have been observed.
Replacements have been found to be very numerous.

The configurations of various static defects have also been studied in this model. The interstitial is
found to reside in a “split” configuration, sharing a lattice site with another atom. The crowdion is found
not to be stable, and Frenkel pairs are stable only beyond minimum separations, which are found to be

Purely repuls“/e poten_ very much dependent on orientation.
tial was used:

Vr) = Voeiﬁr

cohesion: inward force

on border atoms

» By current standards,
both features extremely
questionabile...

» But for 1960, very
impressice feat!

500 atoms on IBM 704:

1 minute/time step

OREC s (SN O
.@.@.@.@.G
© - O ® Q- O
OO0 ® -

I'16. 6. Atomic orbits produced by shot in (100) plane at 40 ev.
Knock-on was at 4 and was directed 15° above —y axis. Large
circles give initial positions of atoms in plane; small dots are
initial positions in plane below. Vacancy is created at A4, split
interstitial at D. Run to time 99. (Run No. 12).

Fic. 1. Two of the sets of atoms used in the calculations.
Set A is above, Set B is below.
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Simulation cell

* In practice in most cases the atoms are arranged in a
orthogonal simulation cell which has a size S X8, XS, e o o o o

* It is also perfectly possible to use a simulation cell with axes
than are not orthogonal. e o o o o

* Problem: what should we do with the atoms at the bor- e o o o o
ders. © ©° o ° o

1. Nothing: “free” boundaries

« This works fine if we want to deal with e.g. a molecule, nanocluster or
nanotube in vacuum.

« If we want to describe a continuous medium, this does not work: the
atoms are left “hanging” on the surface as if they would be on the sur-
face.
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Simulation cell

2. Fix the boundary atoms:

» Completely unphysical, this should be avoided if possible. Sometimes it is needed
and with a fairly large “sacrificial” region next to the fixed ones can be perfectly OK.

3. Periodic boundary conditions e o o o o

[ ]
®
[ ]
[

+ To implement this very important boundary condition two things have to be done

1. An atom which passes over the cell boundary comes back on the other side:

e e [ A
I |
| |
' A A '
| |
| "L~_§§" - __(} |
I |
I |
| |
L e e — — — AA--——————————————————  — — — — — |
Introduction to molecular dynamics 2015 2. Basics of molecular dynamics 9

Simulation cell

* In practice this can be implemented as follows (Fortran 90) (note that atomic coordinates are between fo/Z and

S./2):
Ix : particle coordinate
Iperiodicx : = true periodic, false free
Ixsize : MD cell size (S;)

if (periodicx) then
if (x < -xsize/2.0) x
if (x >= xsize/2.0) x
endif

X + Xsize
X - Xsize

* Similarly for y and z

2. When distances between atoms are calculated, the periodic boundaries
have to be taken into account:

* The solid box is the simulation cell, with atoms i, j, k and /. Because of the
periodic boundaries, all atoms have image atoms in the repeated cells, for

instance j', &', ['.

* When we want to get the distance between atom i and j, which distance should we use?

* Because here ri> rl.j', we use for the distance between atoms i and j the vector rl.j'.

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics 10



Simulation cell

+ As a pseudo-algorithm (Fortran 90) in the x dimension:

if (periodicx) then

dx = x(j) - x(1)

if (dx > xsize/2.0) dx = dx - xsize

if (dx <= -xsize/2.0) dx = dx + xsize
endif

and similarly for y and z

* Example in 1D

X.:—X:—>Xa—X. = —|:(§—x.) +(§+x.)J =x.—-x.—-S
J Jol 2 2 J

o

Jo i J

’ | ’ ]
AN NN NS S S SRR «----I . 1 .—I--------------------------------------
) 0 S
2 2

* Note that if the maximum distance by which atoms can interact r ;o > xsize/2 the atom i should actually interact both
with atom jand j’. To prevent unphysical double interactions we need to have xsize > 2 rqoff

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics 1"

Simulation cell

» Thus we get a system where the simulation cell has an infinite number of image cells in all directions, and
a model of an infinite system.

* However, be careful! e % o o & TeT T e e & TeT T e e & .

* Periodicity brings an artificial interaction over the simula-
tion cell borders. e o o o o o o e o o o o o o o

* For instance, a strain field arising from a point source, | ¢ o o o o o o o o o o o o o o
which is infinite, will obviously be distorted at the periodic 1®* ¢ ¢ ©® ¢ (& ¢ ¢ ¢ ¢ |0 o o o o
borders. Examples: e~ o Te o o fo o o o o fo v o o &1

* A single vacancy (one missing atom) in Si: in quantum | o o o o o ¢ o o o o o o o o o
mechanical calculations at least some 200 atomsare (¢ o o ¢ o fo o o o o (o o o o o
required to get the energy reliably [Puska 1998 Phys.

Rev.B] | ¢ o e e e e e o o o o o o o o

« And for instance a 5 nm Co cluster in Cu: about 108 :'0_ O R R ':
atoms needed to get the strain energy reliably. o o o o oo e e ettt

* Upper limit for the phonon wavelength. I | I I

* To test this: simulate with different N and monitor the con- [ © o o o o o o o o o o o o o
vergence. L. ®_ *_ 0% 0,0 0 0 08 0,0 _ 0 0 0 0
* In general, this kind of size scaling test is very impor-
tant in any simulations done for a finite-size system
aiming to mimic any real much larger system

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics 12



Simulation cell

» Simulating surfaces:

* periodic boundaries only in x- and y-directions
« free surface:
* the bottom either:
a) free: simulation of a free-standing thin foil with two surfaces
or b) fixed to model a bulk below:
* very bottommost atoms fixed
+ a few atom layers above fixed layers damped with e.g. a temperature control algorithm

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics 13

Simulation cell

» Simulation of energetic processes:

* In a simulation where a lot of energy is brought into
the MD cell in a local region, the energy has to be
scaled out from the system to model a much cooler
‘heat bath’ in a realistic system.

» The energetic processes may also introduce a lot of
momentum into the cell, which could cause the entire
cell to move.

« Solution: fix all boundary atoms except at the surface,

and do T scaling in a few atom layers above these, as
above.

» Here also: watch out the finite-size effects! Do some size-scaling tests!

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics 14



Initial conditions: creating atoms
* For cubic lattices (FCC, BCC, SC, DIA) it is easy to create the lattice. For instance FCC:

basis(1,1)=0.0; basis(1,2)=0.0; basis(1,3)=0.0;
basis(2,1)=0.5; basis(2,2)=0.5; basis(2,3)=0.0; To refresh your memory:
basis(3,1)=0.5; basis(3,2)=0.0; basis(3,3)=0.5;
4,1)=0

basis (4, basis(4,2)=0.5; basis(4,3)=0.5; FCC : face centered cubic

_ . _ . Coordinates between .
iiizizfi{ offset (2)=0.25; offset (3)=0.25; BCC : bodyoenUed cubic

N0 e S S SC: simple cubic
=0; —= and = .
do i=0,nx-1 2 2 DIA: diamond
do j=0,ny-1 HCP: hexagonal close-
do k=0,nz-1 paCked
do m=1,nbasis i
n=n+1
x(n)=-xsize/2+ (i+offset (1) +basis(m, 1)) *a
yv(n)=-ysize/2+ (j+offset (2) +basis(m,2)) *a
z(n)=-zsize/2+ (k+offset (3) +basis (m, 3)) *a
enddo
enddo
enddo
enddo

Ul o

0.25;

* The HCP lattice is also very common, but
not orthogonal in the conventional repre-
sentation. b’

* Because in the HCP structure a = b, and
because cos60° = 1/2, the HCP lattice can b
be transformed into an equivalent orthogonal
representation. Now the new unit cell (shaded

area) corresponds to two of the conventional a a
HCP unit cells.
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Initial atom velocities

* How do we set the cell temperature to a desired value?

» We have to generate initial atom velocities which correspond to the Maxwell-Boltzmann distribution (which
is surprisingly well valid even in crystals):

. \1/2
1
p(vl.a) = (ZﬂthTj exp(fzml.vl.za/kBT); o=xyz.

* This is just a Gaussian function with suitable scaling, and exactly correct within an ideal gas model for
atom velocities

» We usually also want to set the total

momentum of the cell to zero to pre- sigma2v=sqrt (kBx2*T/(m*u)) /vunit

do i=1,n

vent the entire cell from starting to vx (i) =sigma2v*gaussrandom (iseed)
move: vy (1) =sigma2v*gaussrandom (iseed)

vz (i) =sigma2v*gaussrandom (iseed)

N vxtot=vxtot+vx (1) ! If all atoms have the same mass,
P = vytot=vytot+vy (i) ! it is enough to scale the total v
- Z mivi vztot=vztot+vz (1) ! to zero
i=1 enddo

vxtot=vxtot/n

. . . i vytot=vytot/n

» So in practice all this can be achieved | vztot=vztot/n
with the code fragment on the right: do i=1,n

vx (1)=vx (i) -vxtot

2 vy (i) =vy (i) -vytot
Vio 2 kgT vz (i)=vz (i) -vztot
Note: exp| — > ,0 = — enddo
20 m;
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Initial atom velocities

* Note the factor of 2: if the sim- E)
ulation is started from per-
fect lattice sites, or bound \V(r) ro
equilibrium positions in a ! > aso
molecule, half of the initial |
kinetic energy will be &~
changed to potential energy 250 [

. 200 +
after a while. / P oaE ol
kin a4 Lpot

L L L L "
50 100 150 200 250 300

* It is also possible to get real- AN ’ 1 (£s)
istic initial random displace- Exin only
ments.
* This can be derived from the Debye model: the thermal
displacement in the direction of the axis i is a Gaussian distribution of the form

82 2
w8, T) = (2161 1/2e %729 where

2
c = 20.89 ﬁA,where 20.89 = %AJK
ﬁ@D A kgu

@D = Debye temperature of the material, 4 = Atomic mass

* The initial position can now be obtained with Gaussian-distributed random numbers as above.
* Note, however, that this does not account for quantum mechanical zero-point vibrations which give addi-
tional displacements near 0 K.
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Generating random numbers

(This topic is dealt with in much more detail on the Monte Carlo simulation course)

» Almost all kinds of simuations in physics use random numbers somewhere. As we saw above,
MD simulations need them at least for initial velocity generation.

» Computer-generated random numbers are of course not truly random, but if they have been
generated with a good algorithm, they start to repeat each other only after a very large (e.g.

1020 ) number of iterations. If the number of random numbers used in the entire simulation is
much less than the repeat number, the algorithm probably is good enough for the application.

* Random numbers can be generated for different distributions. This means that if we generate a
large number of numbers and make statistics out of them, they will eventually approach some
distribution.

» The most common is of course an even distribution in an interval, another very common is
Gaussian-distributed numbers:

24 2
A S

\j
\
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Generating random numbers

* Evenly distributed random numbers:

» Many programming languages offer their own random number generator (e.g. in ANSI-C rand()). A good
rule-of-thumb regarding these is:

Never use them for anything serious !

* The reason is simply that the language standard only specifies that the generator has to be there, not that it works sen-
sibly. Since there are no guarantees it does (there are famous examples of the opposite) it should not be used

* Most random number generators are based on modulo-arithmetics and iteration. In the simplest possible

form:

1

i1 = alj (mod m)

* Park and Miller ‘minimal standard’-generator: a = 16807, m = 231 -1

* In the beginning the number /, i.e. the seed number is chosen randomly.

* This can be done e.g. by using the current system time.
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Generating random numbers

* One practical implementation (Fortran90):

real function uniformrand (seed)
implicit none

. . . integer :: seed, IA,IM,IQ,IR,MASK
* The repeat interval for this routine ~ real :: ran0,AM
2 1.109 integer :: k
. . . . . . parameter (IA=16807,IM=2147483647,AM=1.0/1IM)
_ThIS rOUt_'n_e is easily good enough 'f_ for parameter (IQ=127773,TR=2836,MASK=123459876)
instance it is only needed for the choice of
random numbers in the beginning of an seed=ieor (seed, MASK)
R . k=seed/IQ
MD simulation. seed=IA* (seed-k*IQ) - IR*k

if (seed < 0) seed=seed+IM
uniformrand=AM*seed

« In a long Monte Carlo integration where seed=ieor (seed, MASK)

random numbers are used all the time, return
the repeat interval may be reached, after
which continued running will not improve
on the results (and for instance the error
estimate of the result will be calculated
outright wrong).

end function uniformrand

» More on this topic for instance from the book: Press, Teukolsky, Vetterling, Flannery: Numerical Recipes
in C/Fortran, 2nd. ed., chapter 7.

» The book is on-line in its entirety (see http://www.nr.com/).

* But see also: “Why not use Numerical Recipes?”, http://math.jpl.nasa.gov/nr/
and the reply to this: http://www.nr.com/bug-rebutt.html
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Generating random numbers

» To generate Gaussian random velocities we need to be able to generate Gaussian-distributed
random numbers.

* How to do this is dealt with in great detail in Numerical Recipes chapter 7.2. Here we only present the
most efficient accurate algorithm for this:

22
1° Obtain two evenly distributed random numbers v; and v, between -1 and 1, then calculate w = vitv,

2°If w>1 return to step 1°

3° Calculate » = ./—2logw
4° Calculate x = rvl/ﬁ and y = rvz/ﬁ

5° Return x and on next step y

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics

Choosing the MD time step

* Depends on the integration algorithm used, but not too strongly.

* The change in the atom position in the potential used should not Ep
be too strong.

Vir)
* A practical, rough rule-of-thumb: the atoms should not move "o
more than 1/20 of the nearest-neighbour distance. '

» Thermal velocity of atoms (Maxwell-Boltzmann distribution):

_3 1 2 _ 3kT
Enns_EkBT_EmV = Vims = o

 But the distribution continues much beyond this.

* Rough estimate of the time step needed: 300 K Cu (m = 63.55u):

* 5y = 0.017 Asfs

2.55/20

0017 fs = 7.5 fs

« Nearest-neighbour distance 2.55 A=> At =

* In practice for stability Ar<4 fs.
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Choosing the MD time step

* In pure MD there is no way to increase the time step above ~ 10 fs in atom systems at ordinary
temperatures (77 K and up).

* If we would want to simulate a process which, say, takes 1 s, we would need at least 10" time steps!

* This gives an easy way to estimate the order-of-magnitude of the upper limit for the time scale
MD can handle in a given time:

» Most realistic classical MD interatomic potentials require at least of the order of 100 flops/atom/time step.

» Say our time step is 1 fs, and we want to simulate a 10000 atom system.

« Hence we need 10° flops/time step. To getto 1 ns = 10° fs we would need 10"° flops. Assuming 1 Gflop/

s processor, the simulation would thus require 10'9/10° seconds = 108 s i.e. about 11 days. Togetto 1 us
would require some 30 years on this processor.

* Hence we see that ordinary MD is restricted to < 100 ns processes in most practical uses.
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Choosing the MD step

* In ordinary equilibrium MD At is usually constant throughout simulation

* But if the maximum velocity of atoms changes a lot during the simulation, it is best to use a variable time
step, which increases as the maximum velocity decreases.

« Simulations of energetic processes [K. Nordlund, Comput. Mater. Sci. 3, 448 (1995)]:

K E,

Atn i1 = mm(v , S CAtAtn’tmax)
max * max’ max

k, maximum movement distance/time step (e.g. 0.1A)
E, maximum allowed energy change/time step (e.g. 300 eV)
C A prevents too large sudden changes (e.g. ¢, = 1.1)
Vmax maximum atom speed in system
F .« maximum force on any atom in system
t time step once heat bath T' has been reached

max

» The example values above have been found to work well for binary collisions up to 1 GeV in
many materials.
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Choosing the MD step

* What happens if At is too long?
* The energy is not conserved.

* For instance solid copper (FCC lat-
tice, a = 3.615A, EAM potential,

code parcas) NVE simulation at 300
K:

* Hence the real criterion for selecting
the time step becomes energy con-
servation: for every:

* new kind of system

* new kind of process simulated
* new material

* new interaction potential

* For every new system, one needs to
check that energy is conserved ‘well
enough’ by some test simulations,
before starting the real production
runs.

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics

Acceleration methods

» Speeding up MD

Temperature

Change in total
energy

* This can be achieved at least in some cases where we are
interested in transitions induced by thermally activated pro-
cesses, i.e. processes which follow a behaviour of the type

~E, /kyT
v = 1)0 e

where v is the rate of the process occurring.

» System spends most of its time in local potential energy min-

ima B, (basins).

* Every once in a while it gets enough kinetic energy to go over

the barrier EA: rare events.

* Acceleration: increase v by increasing the probability for barrier crossing.

* Modify £, or T (??)
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Acceleration methods

» Art Voter has presented so called Hyperdynamics [A. F. Voter, J. Chem. Phys. 106 (1997) 4665;
Phys. Rev. Lett. 78 (1997) 3908]. It can in some cases speed up MD by a factor of the order of
100-1000, in others not at all.

* In this method, Ar does not increase, but the potential well is made shallower so that the probability of
processes with a large activation energy increases. The error which is thus formed is compensated by
transition state theory (which is beyond the scope of this course).

* The method is well suited for cases where we have to overcome a high potential energy barrier in an
ordered system, e.g. vacancy and adatom diffusion. But if the energy barrier is low (e.g. interstitial migra-
tion in metals) or if we have numerous local energy minima close to each other, like in most amorphous
and liquid systems, the method is useless.
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Acceleration methods

» Temperature accelerated dynamics (TAD)

* There is of course always is the Arrhenius extrapolation method: if we know that in our system there is
only one single activated process occurring, and nothing else, we can simulate at higher 7 and then
extrapolate the Arrhenius-like exponential exp(-£, /kgT) to lower T to know the rate or time scale at

lower T.

* A smart extension to Arrhenius extrapolation is Art Voter’'s TAD method [e.g. Sorensen, Phys. Rev. B 62
(2000) 3658; a review of Voters methods is given in Ann. Rev. Mater. Res. 32 (2002) 321]

* To understand the idea in this, let us consider a system with exactly 2 activation energies (this is just a
tutorial example, the method works in principle for any number of activation energies). We want to simu-
late what the system does at 300 K, but the processes are so slow nothing happens there. So we will use

a higher T, say 800 K.
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Acceleration methods

* Let us then assume that the Arrhenius plot of the system looks as follows:

B —E, /kgT B E\
V="V e = logv = 10gu0—l§,

-

log v, rate of event occurance

i ——
1/800 1/300
1/T (1/K)

O —

* Now when we simulate at 800 K, event type 1 will occur much more frequently than type 2. But we want
to know the behaviour at 300 K, so this is wrong. The idea in TAD is to recognize every transition that

occurs, determine its activation energy, and then leave out the events that would not occur at the lower T'.
In our example, this means that (almost) only events of type 2 would be accepted.
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Acceleration methods

* In principle this is an excellent idea, but in practice one needs thousands of force evaluations to recognize
a transition barrier. Hence the difference between the rates of occurrance needs to be very large for a sig-
nificant gain to be achieved. But the gain can be huge (Example: simulating growth of Cu (001) surface at

77 K the speedup factor is 107 1)

* Like hyperdynamics, if there are lots of shallow minima TAD tends to get stuck and never really gets any-
where.

» TAD is developing rapidly towards wider applicability, so it will be interesting to follow the progress

* As of 2015, Hyperdynamics, TAD and other similar-in-spirit acceleration methods have found many appli-
cations in close-to-equilibrium simulations, typically such involving diffusion and an underlying crystal
structure. In completely disordered, inhomogeneous systems (such as bio-systems) and far-from-equilib-
rium simulations, no atom-based acceleration method has found wide applicability.

* In biosystems, coarse-graining, i.e. replacing single atoms with larger objects describing e.g. part of a molecule, can
often give major speedups. These are beyond the scope of this coarse.
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Molecular dynamics 2015

Exercise 2 to chapter 2: Random numbers etc.

1. (6 p) Modify your program of
exercise 1 to construct a hexagonal
close-packed (HCP) structure (us-
ing an orthorhombic unit cell; i.e.
cell that has all three lattice vectors
orthogonal with each otherl). Us-
ing a visualization program dem-
onstrate the (small) difference
between the face centered cubic
(FCC) and HCP structures: the dif-
ferent stacking order of (111)

HCP
unit cell (non-orthorhombic)
a, = ai
a, = a/2i+ J3a/2j

a, = /8/3ak

basis
(atoms in the unit cell)

b, =0

1 1
b2 = §a1+§a2+§a3

crystal planes. Hint: the primitive
unit cell depicted on the right con-
tains two atoms, while the non-primitive orthorhombic cell contains four atoms.

2. (7 p) Write subroutines which generate random numbers with an even and a Gaussian distri-
bution. Generate 1 million Gaussian-distributed random numbers (with the standard deviation
¢ = 1 and mean | = 0), make a histogram of their distribution with a bin width of e.g. 0.01 and
the area normalized to unity and make a plot. Also generate the same Gaussian distribution

f(x) = [275]_1/2€_x2/2
analytically and plot in the same figure as the random plot.
Return the code and the figure as pdf, postscript or png, jpeg, or the like.
3. (7 p) Equipartition theorem states that?: Every degree of freedom of a body that contributes
a square term of a coordinate or momentum to the total energy has a mean energy of kgT/2

in that degree of freedom. Based on this explain why the temperature drops by a factor 2 in the
beginning of the simulation®. Would you expect the factor be 2 also at very high temperatures?

1. Lecture notes, chapter 2, page 15.
2. G. W. Wannier: Statistical Physics (Dover, New York, 1966), ch. 4-5.
3. Lecture notes, chapter 2, page 17.



Constructing a neighbour list

* In MD simulations (and actually many other applications) one of the central operations is the

calculation of distances between atoms.
* In MD this is needed in the energy and force calculation.

 Trivial calculation of distances between atoms:

do i=1,N
do j=1,N
if (i==j) cycle
dx=x(j)-x(i);
dy=y () -y (i) ;

dz=z(j)-z(i);
rsg=dx*dx+dy*dy+dz*dz
r=sqrt (rsq)
enddo
enddo

* This algorithm is O(Nz), i.e. very slow when N — oo,

« But in practice we know the atoms move < 0.2 A/time step. So a large fraction of the neighbours remain
the same during one time step, and it seems wasteful to recalculate which they are every single time.
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Constructing a neighbour list

- Solution: Verlet! neighbour list:

* Make a list which contains for each atom j the indices
of all atoms j which are closer to / than a given distance

r_.r_>r_  the cutoff distance of the potential

m-'m culr’

* The list is updated only every N time steps.
* Iy and Nm are chosen such that
"o~ Vout >Nm\7At,

m

where v is a typical atom velocity and 4t the time step

1. Loup Verlet, Phys. Rev. 159 (1967) 98.
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Constructing a neighbour list

» An even better way to choose when to update the interval: after the neighbour list has been
updated, keep a list of the maximum displacement of all atoms:

* Make a separate table dxnei (i)
* When you move atoms, also calculate dxnei (i) =dxnei (i) +dx
* Calculate the two maximal displacements of all atoms:

drneimax=0.0; drneimax2=0.0
do i=1,N
drnei=sqgrt (dxnei (i) *dxnei (i) +dynei (i) *dynei (i) +dznei (i) *dznei (1))
if (drnei > drneimax) then
drneimax2=drneimax
drneimax=drnei
else
if (drnei > drneimax2) then
drneimax2=drnei
endif
endif
enddo

* Now, when (drneimax+drneimax2) > Fm~ Teut the neighbour list has to be updated.

* When the update is done, do dxnei (i)=0.0

* This alternative has two major advantages: the simulation does not screw up if one atom suddenly starts
to move much faster than the average, and if the system cools down, the neighbour list update interval
keeps increasing.
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Constructing a neighbour list

* In practice the neighbour list can look e.g. like the following:

j1| 32 NNeiy| ji| 32 33

|NNe11

SHENER s, e

neighbours of atom 1 neighbours of atom 2 neighbours of atom N

* Here NNei; is the number of neighbours of atom 1i.
*j1, Jo, ... are the indices of neighbouring atoms (different for different atoms).

* So, if we would have a 64 atom system, where every atom has 4 neighbours, the neighbour list could look
like this:

41 2 3 163|64( 4|1 3 4|5 41 1 |61 62|63

neighbours of atom 1 neighbours of atom 2 neighbours of atom 64
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Constructing a neighbour list

* A practical implementation of creating the list:

nlistbeg=1
do i=1,N
nnei=0 - . . .
do j=1,N Periodic boundaries omitted for brevity. See
if (i==j) cycle lecture02 for how to include them in the dx,
dx=x(3) -x (1) dy, dz calculations.
dy=y(j) -y (1)

dz=z(j) -z (i)
rsg=dx*dx+dy*dy+dz*dz
if (rsqg <= rskincutsqg) then
nnei=nnei+1
nlist (nlistbeg+nnei)=j

endif
enddo
nlist (nlistbeg)=nnei ! Write in number of 1i’s neighbours into list
nlistbeg=nlistbeg+nnei+l ! Set starting position for next atom
enddo

+ With the neighbour list, we can achieve a savings of a factor ~_ in calculating the distances to
neighbours.

« But even using the neighbour list, our algorithm is still O(~?).
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Constructing a neighbour list

* Remedy: linked list / cellular method

* Using a linked list and cellular division of the simulation cell, we can make the algorithm truly
O(N):

* Let’s divide the MD cell into smaller subcells: M x M x M cells

* The size of one subcell / is chosen so that

[ = R}>>nn,

where L = the size of the MD cell, and Fm is as above.

* Now when we look for neighbours of atom i we only have to look through

the subcell where i is, and its neighbouring subcells, but not the whole sim- Al || e | k|

ulation cell. For instance if atom i is in cell 13: 6117 1 18 | 19 | 20

The average number of atoms in a subcell is N, = N/M>. 1 112 113 | 14 | 15

= We have to go through 27NN, atom pairs instead of N(N—1). 6 | 7 | 8 [9 |10

» For some interaction potentials (symmetric ij pairs) it is actually enough to

calculate every second neighbour pair (e.g. i > ;) whence the number of
pairs is further reduced by a factor of 2.
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Constructing a neighbour list

* A practical implementation:

¢ array HEAD: HEAD | 8 |10
. size = M3
« contains pointers to the table LIST 1 2 3 4 5 6 7 8 9 10
« tells where the neighbours in subcell m LIST | 0 | 1

0|3|2|4|5|7]|61|9
A N
* array LIST
*size= N
* element ; tells where the next atom index of atoms in this cell is

» So the example below means that subcell 2 contains atoms 10, 9, 6, 4, and 3
* This representation is indeed enough to give all the atoms in all cells.

* A two dimensional array would of course also work, but would require much more memory, or dynamic
allocation, both of which are less efficient.
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Constructing a neighbour list
* Building the list:

* assume a cubic case:

*MDcell size = size(3) HEAD | 8 | 3
* size of subcell =size () /M /1
3Y 4 5 6 7 8 9 10

* MD cell centered on origin

LIST|0 (1|0 (3|2 (|4 |5|7|6]|9

do i=1,N
head (i) = 0
enddo
do i=1,N
icell = 1 + int((x(i)+size(1l)/2)/size(l)*M) &
int ((y(i)+size(2)/2)/size(2)*M) * M &
int ((z (i) +size(2)/2)/size(3)*M) * M * M
list (i) = head(icell)

head(icell) = 1
enddo

* So the list LIST is filled in reverse order to the picture above.

» The above algorithm requires periodic boundaries. If the boundaries are open, an atom may get outside the cell bor-
ders, and the icell may point to the wrong cell.
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Constructing a neighbour list
* To account for possibly open boundaries properly things get a bit trickier:

* MD Cell size size (3)
* MD cell centered on origin
* Number of cells in different dimensions Mx, My, Mz

*Cellrange 0 — Mx-1 and sameiny and z

do i=1,N
dx=x (1) +size (1) /2
! Check that we are really inside boundaries

if (periodic(l) == 1 .and. dx < 0.0) dx=dx+size(1)
if (periodic(l) == 1 .and. dx > size(l)) dx=dx-size(1l)
)) *Mx)

! If not periodic, let border cells continue to infinity
if (periodic(l) == 0) then

if (ix < 0) ix=0

if (ix >= Mx) ix=Mx-1

ix=int ( (dx/size (1

endif o 21 22 | 23 | 24 | 25
(and same thing for y and z) :
icell=(iz*My+iy) *Mx+ix !
list (i) =head(icell) . 16 17 18 19 20
head (icell) =i '
enddo 11 12 | 13 | 14 | 15
* So the subcells at open boundaries continue out to infinity:
6 7 8 9 10
1 2 3 4 5
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Constructing a neighbour list

* Usually the linked list (LIST, HEAD) is used to generate a Verlet list

* Decoding a linked list into a Verlet-list, as pseudocode:
* Cell size size (3)
* Number of cells Mx, My, Mz

do i=1,N
do (Loop over 27 neighbouring cells: inx iny inz)
icell=(inz*My+iny) *Mx+inx
! Get first atom in cell
j=head (icell)
do
if (j==0) exit ! exit from innermost loop
(get distance r between atoms i and 7J)
if (r <= rneicut) then
(accept neighbour)
endif
j=list (3)
enddo
enddo
enddo
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MD code mdmorse

* A simplified MD code mdmorse has been written for this course:

* mdmorse simulates atom motion in a variety of metals (but only one metal at a time) with a simple Morse
pair potential model.

Dour— —ou(r—
V(r) = Dle o(r ro)—Ze o(r—ry)

» The code has a Verlet neighbour list (but not a linked list) and the equations of motion are solved with the
velocity Verlet method.

* The code is given in Fortran90 and C.

* The code can be downloaded from the course web page.
» The code has the input parameter and output routines included.
* Physically interesting subroutines have been removed from the code, so it does not work.

* During the course exercises, you get the task of writing the missing subroutines.
* Solutions will be provided and explained during the exercise sessions.
* You may either use your own or the provided solutions afterwards.
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Structure of the mdmorse code

* Program files:

main.£90 Main program

inout.£90 Miscellaneous input and output stuff

modules.£90 Global variables

physical.£90" Calculating T and E, and random number generators
neighbourlist.£90"  Getting the neighbour list

solve.£90" Solving the equations of motion

forces.£90" Calculating the forces

Makefile Makefile

(If you have used Unix or Linux systems you should know how to make programs.)

» Files marked with * contain the subroutines which are to be filled up during the exercises

» C version: *.c — *,.£90
modules.f£90 — global.h

» Compiling the code:
make

* This has been tested to work at least on Linux systems with a GNU compilers (gfortran and gcc).
* You may have to change the compiler command in Makefile.
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Structure of the mdmorse code

* Input files (file names are hardcoded):

mdmorse.in Miscellaneous parameters
atoms.in Atom coordinates in XYZ format

* Running the program:

. /mdmorse (or if you don’t want to disturb other users nice ./mdmorse)

» Should be done in the same directory where the input files are.

* QOutput files:

standard output T, F, P and other interesting output
atoms.out Atom coordinates at regular intervals

* Note also that during the program running, the code writes out a large number of atom coordinates to a

file atoms.out, which may grow very large.
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Structure of the mdmorse code

* Input file mdmorse.in

Sample input file for mdmorse md program
File format: -identifier, then value. Rest is arbitrary comments

Lines which do not begin with "-" are all ignored

Identifier | value

-initialT 600.0 Initial temperature

-desiredT 300.0 Variables for temperature control
-btctau 0.0 If btctau=0 no effect

-bpctau 0.0 Variables for pressure control

-bpcbeta 7.0e-4 If bpctau=0 no effect

-desiredP 0.0

-mass 63.546 For Cu

-xsize 18.126900793 Box size in each dimension

-ysize 18.126900793

-zsize 18.126900793

-periodicx 1 1 = periodic, 0 = non

-periodicy 1

-periodicz 1

-morseDe 0.3429 Morse potential parameters for Cu
-morsealpha 1.3588

-morseRe 2.866

-rpotcut 5.0 Potential cutoff

-rskincut 6.0 Neighbour list cutoff, must be > rpotcut
-nupdate 5 Number of steps between neighbour list updates
-nmovieoutput 100 Interval between atom movie output
-deltat 2.0 Time step in simulation in fs

-tmax 10000.0 Total simulation time

Introduction to molecular dynamics 2015 3. Neighbor lists and code mdmorse
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Structure of the mdmorse code

* Input file atoms.in

* The file is a normal XYZ atom coordinate file:

500

FCC cell made by makeFCC with a= 3.615 n= 5 5 5
Cu -8.13375 -8.13375 -8.13375

Cu -6.32625 -6.32625 -8.13375

...and so forth the remaining 498 atom coordinates....

Cu 6.32625 8.13375 8.13375
Cu 8.13375 6.32625 8.13375

* Note that the cell is centered on the origin.
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Structure of the mdmorse code

« Standard output (for the working code; F90 version):

——————————————— mdmorse V1.0 --------------------

Read in parameter -initialT value 1000.00

Read in parameter -desiredT value 2500.00

Read in parameter -btctau value 300.000

Read in parameter -bpctau value 3000.00

Read in parameter -bpcbeta value 0.700000E-03

Read in parameter -desiredP value 0.00000

Read in parameter -mass value 63.5460

Read in parameter -xsize value 18.1269

Read in parameter -ysize value 18.1269

Read in parameter -zsize value 18.1269

Read in parameter -periodicx value 1.00000

Read in parameter -periodicy value 1.00000

Read in parameter -periodicz value 1.00000

Read in parameter -morseDe value 0.342900

Read in parameter -morsealpha value 1.35880

Read in parameter -morseRe value 2.86600

Read in parameter -rpotcut value 7.00000

Read in parameter -rskincut value 8.00000

Read in parameter -nupdate value 5.00000

Read in parameter -nmovieoutput value 100.000

Read in parameter -deltat value 5.00000

Read in parameter -tmax value 50000.0

Using periodics (l=on, 0O=off) 1 1 1

Morse potential parameters: De alpha Re 0.342900 1.358800 2.866000

Movie output selected every 100 steps

Reading in 500 atoms described as FCC cell made by makeFCC with a= 3.62538
Initial atom temperature is 1970.4541462944828

Neighbour list update found 176.00 neighbours per atom

ec 5.000 1890.175 0.24432 -3.48740 -3.24307

bpc 5.000 26.025014 5956.400065997 18.127 18.127 18.127

Outputting atom movie at t = 5.000

ec 10.000 1652.943 0.21366 -3.45507 -3.24141

bpc 10.000 33.853085 5956.635315608 18.127 18.127 18.127

ec 15.000 1318.804 0.17047 -3.40893 -3.23846

bpc 15.000 43.555081 5956.937997643 18.128 18.128 18.128

Introduction to molecular dynamics 2015 3. Neighbor lists and code mdmorse
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Structure of the mdmorse code

* And so on. Here most things are self-explanatory.
* The “ec” and “bpc” lines contain the physically most interesting stuff in the following format:

time(fs) T (K) Ey. /at Epot/at. Etot/at' P (kbar) (energies in eV)
ec 4.000 594.069 0.07538 -3.03868 -2.96330 163.82195

time(fs) bx(A) by(A) bZ(A) V(A3) P (kbar) UBerendsen
bpc 4.000 18.132452 18.132452 18.132452 5961.69346 163.82195 1.00015

* Output file atoms . out
« This file is in the XYZ format, but with the exception that column 5 contains the atom potential energy:

500
mdmorse atom output at time 2.000 fs boxsize 18.1269 18.1269 18.1269
Cu -9.053407 -9.061041 -9.048299 -3.085270
Cu -7.236810 -7.239921 -9.048988 -3.033905
Cu -7.241191 -9.049845 -7.246436 -3.035222
Cu -9.038484 -7.238137 -7.241429 -3.031141
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Structure of the mdmorse code

 Testing the incomplete code:

» Even though the code is not complete, it should compile and run in the intermediate stages.
* The output should look something like:

Reading in 500 atoms described as FCC Cu; boxsize 18.1000 18.1000
Initial atom temperature is 0.000000000000000
Neighbour list update found 0.26928E+06 neighbours per atom

ec 2.000 0.000 0.00000 0.00000 0.00000 0.00000
Outputting atom movie at t = 2.000
ec 4.000 0.000 0.00000 0.00000 0.00000 0.00000

* l.e. the number of neighbours is nonsense, and the temperature is 0.

* When you start doing the exercises, this should change and interesting things will start to happen.
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* Structure of the program

inout.£f90

ReadParams
ReadAtoms
WriteAtoms

Introduction to molecular dynamics 2015

main.f90

Main program

physical.£f90

SetTemperature
(, gaussianrand
uniformrand

GetTemperature
GetEnergies

3. Neighbor lists and code mdmorse

\ Solvel

Routines printed in magenta
are written in exercises.

solve.£f90

Solve2

forces.f£90

GetForces

neighbourlist.£90

UpdateNeighbourlist

Warning: Remember that although routine and
variable names here have small and capital let-
ters, Fortran is case insensitive. l.e. symbols

SetTemperature
settemperature

refer to same routine (or variable).
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Molecular dynamics 2015

Exercises 3 to chapter 3: mdmorse: Setting initial temperature, building neighbourlist

You can obtain the mdmorse code from the course web page:

http://www.acclab.helsinki.fi/~knordlun/moldyn/mdmorse/

1. (8p) Complete the subroutine Set Temperature () inphysical.f90/.c inthecode
mdmorse. This also requires completing the subroutine generating Gaussian random num-
bers. You may use your solutions of the previous excercises as help.

Check your code by compiling and running mdmorse. The routine Get Temperature ()

(which is already provided) should return about twice the input value initialT.

2. (12 p) Complete the subroutine UpdateNeighbourlist () in neighbourl-
ist.f90/.c in mdmorse. The subroutine should generate a Verlet neighbour list tak-
ing account of the periodic boundary conditions. You do not need to use a linked list.

Hint: when the subroutine in the end outputs the number of neighbours, the answer should
be 176.00 with the input files provided in the program distribution.

When coding keep the subroutine parameters as they are given. This makes it easy (for the lec-

turer) to test them in the original code.

Return the source files physical.f90/.c and neighbourlist.f£90/.c. and the rele-
vant parts of the output (standard output).

When returning subroutines to the code for the exercises, the minimum requirement is that each
subroutine returned compiles on a standard Unix/Linux system with

gfortran -c filename.f90,
orinC
cc -c filename.c

Subroutines which do not compile, give 0 p.



Set the initial conditions r;(z,), v,(¢,)

\i
Update neighborlist

#

Get new forces F(r;)

y

Y

Solve the equations of motion numerically over time step A¢:
rl.(tn) - rl.(tn 1) vl.(tn) - Vl-(tn 1)

'

Perform 7', P scaling (ensembles)

Y
t— 1+ AL |

Y
Get desired physical quantities

'

o
/Ktmax Calculate results
—

and finish
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Solving the equations of motion

[Main source: Allen-Tildesley]

* In MD, what we really want to do is solve the equations of motion of N atoms (or particles in
general) interacting via a potential

« Lagrange equations of motion:
afo) a .
ds\9q. aql. ’

L(q,9) = K(q,q)~V(q, q)
q = generalized coordinate

* By using the cartesian coordinates

9; = 7
: 1 .2
K(r) = Zimiri’
I
V = V(r),

we get the familiar (Newtonian) form
myx; = f,
where f; = V_ L = -V 7V is the force acting in atom i

1 1
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Solving the equations of motion

* We can also start by considering the Hamiltonian equations of motion
P T}
' dp; ! dq;

where p. = gi is the generalized momentum

1
and H(q,p) = Zq'l.pi—L(q, q) the Hamiltonian function (we assume that ¢; can be given as a

1
function of p)

* If ¥ does not depend on the velocities, we get quickly back to the familiar form

H(q,p) = K(p) + V(q)
and if we again use cartesian coordinates the equations of motion will be:

P;
m;

r;

P; = —VriV = fi

+ So we have two alternatives: )
1. Solve a system of 3N 2" order ODE'’s (miri = fi) derived from the Lagrangian or Newtonian formalism

2. Solve a system of 6N 1%t order ODE'’s derived from the Hamiltonian formalism
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Numerical solution of equations of motion

* Finite difference method: from a system configuration (atom positions, velocities etc.) at time ¢
we calculate the configuration at time ¢ + 8¢
« &t can be constant or variable
« initial conditions r(0), v(0) have to be known (initial value problem)

» As an example a predictor-corrector -algorithm:

* Use a Taylor series to predict the system configuration at time ¢+ 6¢ using the
small deviation &¢:

1.2 1.3
P+ 81) = r(f)+ 8ev(1) + 580 a(0) + 28 b(1) + .. Equations of motion
not (yet) used.

Vp(t +0t) = v(t)+ dra(s) + %Stzb(t) + ...

al(t+81) = a(t) + dtb(0) + ...

bP(t+8) = b(e)+...

* v, a and b are higher time derivatives of r:
v = velocity, a = acceleration and b = the time derivative of acceleration.
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Numerical solution of equations of motion

* We can instead of b also use information from previous time steps:
{r(0), v(2), v(1-01), v(1-281)}
or l'(t), V(t)9 a(t)9 a(f—St)

 Correction step: we now have r?, from which we can get the forces

Equations of motion
Fi(l‘pi) at ¢+ ot now used.

. C
= accurate corrected accelerations a (¢ + 6¢)

= error in accelerations Aa(z+ 8¢) = ac(t +0t) — ap(t + 8t)

* Using this known error, one can calculate corrected positions, velocities and so on
r(t+81) = r*(t+81) + cyha(t+ 8r)
vt +81) = VP(t+81) + ¢ Aa(t + 8r)
a’(1+81) = aP(1+81) + cyha(r+ 1)

bE(t+81) = bP(1+81) + cyAa(r+ 1)

* The constants ¢, depend on how many derivatives of r we include and the degree of the equation, etc.

* The correction can also be iterated in principle; but not sensuble in MD: calculating the forces expensive
= use an algorithm requiring only one evaluation of the force per time step (one correction)
* If the correction is not iterated, an obvious choice is ¢, = 1.
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Numerical solution of equations of motion

» Thus we reach the following approach to solving the MD equations of motion:
(a) predict r, v and a for the time ¢+ 8¢ using the present values
of the same variables

(b) calculate forces and hence a = f/m from the new r
(c) correct the predicted r, v and a etc. using the new a

* Requirements for a good MD algorithm

(a) fast (not that important)
(b) takes little memory (important)
(b) allows a long time step &¢ (important)
(c) reproduces the correct path (see below)
(d) conserves energy (and is reversible:
dt — —-8¢ = back to original state) (very important)
(f) easy to implement (not that important)
(g) only one force evaluation/time step (important for complex V)
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Numerical solution of equations of motion

* Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time.
Since all computers have limited floating-point precision, a small round-off error will eventually grow to a

large difference (Lennard-Jones system; in reduced units p* = 0.6, 7* = 1.05):
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* A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccura-
cies.
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Common algorithms
* In the following we present some of the most common MD algorithms:
* Verlet

* Derived from the following two Taylor series:

r(t+86) = r(t)+8rv(t) + %&za(t) .

r(t— 1) = r(z)—8tv(t)+%5tza(t)+
» Sum them up and rearrange:

r(t+86) +r(1—81) = 2r (1) + 81a(d)
—or(1+81) = 2r(£) - r(i— 1) + 81a(1)

* So we have an algorithm which essentially does:
{r(0),a(?), r(t—90t)} > {r(¢+dt),a(t+01)}.

* However, the velocities are missing; these can be calculated from
_ r(t+8t)—r(t—081)
t) = )
v 20t

* The error per iteration 0(8t4); in the velocities O(Stz).

* Memory requirement: 9N.
* Numerical problems, fluctuates heavily
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Common algorithms

* Leap-frog
» Mathematically equivalent with Verlet (not numerically)

{r(t), a(1), V(t— %&)}—) {r(H— o1, a(t+91), V(H— %St)}
v(z+ %St) = V(t—%ﬁt) + dtra(r)
r(t+0t) = r(l)+8tv(t+%8t)

* Velocity

v(t) = %[v(z—%&z} +v(t+%8tﬂ

for energies etc.
» Advantage: explicit v.

* Memory requirement 9N.

* But still velocities at different time than the positions.
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Common algorithms

* Velocity Verlet
» Eliminates the half-step velocity problem

{r(0),v(®),a()} > {r(t+81), v(t+d¢), a(t +d1) }
r(t+86) = r(6)+8rv(t) + %Szza(t)
v(t+93t) = v(t) + %St[a(t) +a(t+01)]
* If we would eliminate v we would get back to normal Verlet

* This can also be considered to be a simple predictor-corrector-algorithm:
(same as three stage Gear with r correction = 0):

1. Predictor stage:
r(t+0t) = r(t)+otv(t) + %Stza(t)
P+ Lls,) = 1
v (t+25t) V(t)+25ta(t)
2. Corrector stage:

c P P
v (t+0t) = v (t+25t) +28ta(t+8t)

* Memory requirement 9N .
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Common algorithms

» Schematic illustration of the progress of different Verlet algorithms:

(a)r—dt ¢+t =t ot Rt =8t ¢ t4dt —=dt ot
r i e =
-
Verlet v
af s
(b)
T B | C B 1 CEse 1 L1 K

Leap-frog v 3~ ] [ EZl L. N I.
o "T 1 CEEr ] (C B | [ B |

{e)

_ = I I
Velocity-Verlet
a 3 J

Source: Allen-Tildesley

* Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accu-
rate.
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Common algorithms

* Velocity Verlet as pseudocode:

do i=1,N
x(i)=x(i)+deltat*vx(i)+0.5*deltat**2*ax (i)
vx (i)=vx(1i)+0.5*deltat*ax (1)
((and same for y and z))

enddo

((get new forces F and accelerations ax(i)))

do i=1,N
vx(i)=vx(i)+0.5*deltat*ax (1) ”
((and same for y and z)) 2.9 L U UL T L
enddo 291 HOfs Velocity Verlet |
Verlet
202 | 0.1fs -
20 fs

» Comparison of performance
+ 500 Cu atoms at 300 K
* Euler: r(z+06¢) = r(z) +0tv(?)
v(t+81) = v(t)+éra(r)

0 10 20 30 40 50
1 (ps)
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Common algorithms
* Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.)

 Equivalent with Verlet if v eliminated, but velocity more accurate

{r(1),v(t),a(t),a(t—0t)} — {r(t+01),v(r+01),a(t+01)} :
r(t+01) = r(t)+8tv(t)+§5t2a(t)fé8t2a(t78t)

v(t+9t) = v(t)+ %8ta(r+ o) + %&a(r) - éSta(t— 0t)

* Memory requirement 12N
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Common algorithms

* lon irradiation physics
* Initially £ ~1-100 keV ;

*Intheend E_  ~kgT = variable time step

*Letusmarkr, = r(¢,);r, . | = r(z, +01)
* Smith & Harrison (Computers in Physics 3 (1989) 68):

{rn’vn’ a4, an—l}_>{rn+l’vn+l’an+l} :

2 3
ot dt, 4
*Taylor:r, ., = rn+vn8tn+an-—-—2-+a’n ; +0(8¢,)
. o a,-a, Time step ratio
« Estimate a' = ——S;’:—l—— +0(8¢t, ) - ot,
6tn—l
= Predictor for positions:
Stnz
r, = rn+vn8tn+[(3 +R)an—Ran71]—6—(1)
Velocity:
6tn2 Szn3 4
Vo= Vn+an8tn+a'n——2——+a"n 3 +0(dt,")
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Common algorithms

 Force calculation from roq

2 2
B a,  —Ra [ +(R -1a
=a' =
n Stn(1+R)

2 - 2R[an+1—Ran1+<R+1>an}
n

n

2
8t “(1+R)

* Let’s insert these into the Taylor series of v, , :

2
(3+2R)a, | R*a 181,
= =v +|——— 2" +(3+R)a ——L " |— (2
Ynt1 = Y { 1+R G+, =% % @
* Algorithm:
(a) calculate new positions r, , | using equation (1) [(d) correct the positions using
(b) calculate new accelerations a, . QAR Ra

Fpvr = rr1+vr16tl1+

R’ hel Sznz
1+R |12

but this demands two force evaluations per time step]

(c) calculate velocities using equation (2) I+R

* Memory 12N, error O(Stn4).
» With a constant time step this reduces to the fairly simple form.

2
o1, dt,
= + + — —_ = + _ —_—
= r,,=r,+tv 2o +[4a, —a ] 5 Vo1 =V, [5a, | +8a, anfl]12
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Common algorithms

« Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD'.

i

0] i .
» Using the notation: r; = r_(8) where r''= 9
i! 3
ro(t+81) o
r . ro(t)
Fersn |11 1110 o
p 01234 5|1
r,(t+ 0t r, (¢
we get the predictor r’: 2001 _ 1o 0 1 3 6 10/ P20
Lavsn| [0 00141050
P 00 0 O0 1 5 r4(t)
r,(t+ 0t) 00 0 0 01
) - *lrs(0)
rls)(t+61) S

* Note that the triangle is simply a Pascal’s triangle matrix.

« For 2" order (Newtonian) equations of motion, error term is dr, = ry— rlz).

1. G. W. Gear, Numerical initial value problems in ordinary differential equations, (Prentice-Hall, Englewook Cliffs, NJ, USA) 1971; Allen-Tildesley
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Common algorithms

3/16 0.1875

251/360 0.6972

. Corrector:rz = r5+ odr,, o = 1 _ [1.0000
11/18 0.6111

1/6 0.1667

| 1/60 | |0.0167

* Note that if the forces may depend on the velocities, we should have a,, = 3/20 instead.
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Common algorithms

ot
3 2 —1
* The fluctuations in energy of different 1? 1? l?
algorithms as a function of the time step
is illustrated on the right X
(Lennard-Jones system; in reduced units 110
p* = 0.6, T* = 1.05)
—107
* So the ‘better’ algorithms have much less 107
fluctuations for very short timesteps.
10
Velocity Verlet
107
-10°
Gear4d
- 107
Gear5 Gear6b
Source: Allen-Tildesley
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Common algorithms

* Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K.
Potential = EAM

15 . . . . . . . . . 50 . . . . . . . . .
I — 20fs
— 15fs

IS
@
oS
o

1.0 Gear5 2 £

@

[
w
S

Velocity Verlet

MO D v

—
(e}

AE, Jatom (107 eV)

AE,/atom (107 V)

-1.0 | 0 Velocity Verlet
iy v""w‘ L T Y Ve
-1 W
1.5 0 . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
t (ps) t(ps)
Curves are shifted in y direction in order
to make the figures clearer.
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Newer algorithms

* Tuckerman, Berne and Martyna developed around 1990 new reversible MD-algorithms using a
Trotter factorisation of Liouville propagators.

* The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms
[Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]

* It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accu-
racy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

* So, what algorithm should one use?
* A quick solution which works well with short time steps: velocity Verlet.

* If one wants minimal oscillations in the total energy: Gear5.

« If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.

Introduction to molecular dynamics 2015 4. Solving the equations of motion 20



Molecular dynamics 2015

Exercises 4 to chapter 4: mdmorse: solving the equations of motion
r

1. (12 p) Write the subroutine Solvel, which does the predictor part of the solution of the
equations of motion with the velocity Verlet-algorithm.

Add also periodic boundary condition control in the code. That is, if the variable peri -
odic%x (or periodic.x in the C version) is set to a nonzero value, the atoms which

move outside the cell in the x dimension should be correctly returned inside it, and same

for y and z.

3. (8 p) Write the subroutine Solve2, which does the corrector part of the velocity Verlet
solution of the equations of motion.

Return the exercises as the file solve.f90/.c and some output that shows that the code
works (e.g. screen dump of dpc output).

If you solve this exercise right, and have a working solution to the exercise 3, the atoms will
start moving when you run mdmorse. But since the force calculation is not yet implemented,
the atoms will move in straight paths.

You can animate the motion on with dpc:

dpc cube 9.1 xyz erase sort 2 3 4 5 atoms.out

More info on dpc in the first lecture notes or by giving the command dpc without any argu-
ments.



Set the initial conditions r;(z,), v,(¢,)

\i
Update neighborlist

#

Get new forces Fi(ri)

y

Y

Solve the equations of motion numerically over time step A¢:
rl.(tn) - rl.(tn 1) vl.(tn) - Vl-(tn 1)

'

Perform 7', P scaling (ensembles)

Y
t— 1+ AL |

Y
Get desired physical quantities

'

it 9 Calculate results
max -’ and finish
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Calculating the forces between atoms

» The forces between atoms can be calculated in many different ways

* This lecture:
« classical potentials.
* pair potentials, many-body potentials

* Quantum mechanics

* A classical potential can be written in the form:

V= Z Vir)+ Z Vy(r), rj) + Z Vi(r, rp i)t
i ij i,j, k

V' is the total potential energy of an N atom system.

In principle all sums loop from 1 to N

v, single particle potential: external forces

* V,: pair potential which only depends on the distance between atoms rij

« direct dependence on the vectors r;, rj => dependence on the choice of the origin

V5 three-body potential which may have an angular dependence

+ depends only on three variables, i.e. V3 = V3(rl.j, Yie el.jk)

* Four-body potentials, even five-body terms: chemical and biological applications
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Calculating the forces between atoms

* V, and V3 enough to describe the basic mechanical and structural properties of most elements and sim-
ple compounds

* In order that things would not be too straightforward, in many cases a environment-dependence (i.e.
implicit three-body term) is embedded into the two-body term V,. We will give examples on these later.

+ All terms which are not pure single particle or pair potentials are called many-body terms.

Introduction to molecular dynamics 2015 5. Calculating the forces 3

Calculating the forces between atoms

+ Classification of empirical interatomic potentials [A. E. Carlsson, Solid State Physics: Advances
in Research and Applications, 43 (1990) 1]

* Pair Potential V' = z Vp(r)
iJ

b . , _ _ If f(r) = ar
Pair Functional Potential V' = ZVPF(pi), p; = Zf(rl.j) _. back to pair potential

i J#*i

. i = Only clusters of
Cluster Potential 7 Z VCP(rij, e rjk) thregatoms S

i#j#k

* Cluster Functional Potential 7 = ZVCF(pl.), p, = Z g(rij, T rjk)
i Jk
i#zj#k

* Real potentials often combinations of these: e.g. EAM for metals V' = Z Vpp(p;) + ZVP(rl.j)
i LJj

Introduction to molecular dynamics 2015 5. Calculating the forces 4



Force calculation for pair potentials

* Pure pair potential V(ry)- The force acting on atom i from atom ;

i ) _ aV ~ oV ~ IV *
fij — _VriV(rl,j) _Vrl-jV(rij) |:Wl]x+ayl]y+7ljz:| y

(;, Y, z unit vectors)

oy _ Ay 9y xy
r

’le dr 8xl.j’ ox..

r.=r.—r., x.= xl.—xj etc.
gy oy

y J y

= f :_dVJ xr—ﬂ”
ij [a r=ryoor

* To be precise V operates on the position r; of atom i. (Makes a difference for many-body poten-
tials.)

» Cut-off radius r.. atom pairs with ry> T do not interact, ro=afew A.

Introduction to molecular dynamics 2015 5. Calculating the forces 5

Force calculation for pair potentials

* In case the potential extends to infinity, an analytical correction can be made to the energy, and
other quantities of interest:

oo

— - 2
Vit = Vot Veorr = E+ 21Np [ r2V(r)dr

t

e

where p is the atom density of the system.

* This obviously assumes that when r > r_ the atom density is constant everywhere, and thus does not
work when for example a surface is present.

Introduction to molecular dynamics 2015 5. Calculating the forces 6



Force calculation for pair potentials
* Discontinuity at »_ = jumps in energy
* Solution: take the potential to zero in [r,, 7, +Ar]

* potential and the force are continuous (3rd order polynomial) or
« displace the potential, as the zero point of V' is arbitrary but this changes the value of Vtot

* Many modern potentials are in fact defined so that they have a well-defined cutoff . where 7 and at least

the first derivative are = 0.

V)
r C
| >
/ }/'
Introduction to molecular dynamics 2015 5. Calculating the forces 7

Force calculation for pair potentials

» Example: cut-off of Lennard-Jones potential ro=23A& Ar =024
12 6 0.2 T . T
VL) = 48[(9) -(%) }
r r shift and tilt
0.0
« Shift and tilt the potential: V(#) and V'(r) continuous at Z_____ polynomial
7. 02 1
(¢
V(r) = Vi ;(r)=(r=r )V y(r)) =V () L-04F .
=
P(r)
* Problem: may change the potential at smaller » values 0.6 1
« Fit a polynomial P(r) = ar3 + br2 +cr+d from 0.8 V() .
[rc’ rc+Arc]: 21 22 2 24 15
-Lor 1 1 1 1 ]
P(r,) = Vi(r.) 1.0 L5 2.0 25 3.0
r(o)

P'(}"C) = VLJ(FC)
P(rc+AVC) =0
P'(rc-l-ArC) =0
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Force calculation for pair potentials

* Problem: high forces may result (see below)
« Brenner potential for carbon (Well, this is not a pair potential):

* Potential quickly to zero; doesn’t look too bad

* However: huge forces; effect seen in fracture simulations
(see also M. Sammalkorpi et al., Phys. Rev. B 70 (2004) 245416.)

potential
(a)

050,
1
]
i
\
i A
q 0 1 L i
© b P
- ] .-
?_ ] P -
= ! ’
1
g’ |
. = |
& 0.5 i
i
1 Brenner(1990)
: - = = = modified Morse
“ ] foon :
[}] 0.5 1
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Force calculation for pair potentials

force
b
40 (b)
Brenner(1990)
k11 ] o R N modified Morse
-
=
c
B’ 20}
o
-
10
o, il P | .“‘_~-.‘-I
C 0.25 0.5 0.75 1
strain

T. Belytschko et al., Phys. Rev. B 65 (2002) 235430.

* Force calculation without periodic boundaries or neighbour list:

do i=1,N
do j=1,N
if (i==j) cycle
rijx = rx(j)-rx(i)
rijy = ry(j)-ry (i)
rijz = rz(j)-rz (i)

rijsq = rijx**2+rijy**2+rijz**2

rij = sqgrt(rijsq)

if (rij < rcut) then

V = (Potential energy per atom)/2

dvdr = ...derivative of potential energy with respect to its only argument r...
a = -dvdr/m/2.0 ! Unit transformations may be needed. Note the factor 1/2!!
ax (i) = ax(i)-rijx/rij*a ! The application on both
ax(j) = ax(j)+rijx/rij*a ! i and j ensures that
ay(i) = ay(i)-rijy/rij*a ! Newton’s third law is
ay(j) = ay(j)+rijy/rij*a ! fulfilled
az (i) = az(i)-rijz/rij*a
az(j) = az(j)+rijz/rij*a
endif
enddo

Introduction to molecular dynamics 2015
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Force calculation for pair potentials
» Use of Verlet neighbour list (cf. lecture 3):

startofineighbourlist=1
do i=1,N
nneighboursi=neighbourlist (startofineighbourlist)
do jj=1,nneighboursi
j=neighbourlist (startofineighbourlist+3jj)

rijx = rx(j)-rx(i)

rijy = ry(j)-ry(i)

rijz = rz(j)-rz (i)

rijsqg = rijx**2+rijy**24+rijz**2
rij = sqgrt(rijsq)

if (rij < rcut) then
V = (Potential energy per atom)/2
dvdr = ...derivative of potential energy with respect to its only argument r...

a = -dvdr/m/2.0 ! Plus unit transformations ! Note the factor 1/2!!
ax (i) = ax(i)-rijx/rij*a
ax(j) = ax(j)+rijx/rij*a
ay (1) ay (i) -rijy/rij*a
ay(j) = ay(j)+rijy/rij*a
az (i) = az(i)-rijz/rij*a
az(j) = az(j)+rijz/rij*a
endif
enddo
startofineighbourlist=startofineighbourlist+nneighboursi+1
enddo
Introduction to molecular dynamics 2015 5. Calculating the forces 11

Force calculation for pair potentials
* Note that in the sum above every interaction is counted twice:

do i=1,N
do j=1,N
if (i==j) cycle

* That is, e.g. interaction 1-3 is counted both as 1-3 and 3-1. Hence the factor 1/2 in front of the potential energy summa-
tion and forces (this actually depends on the exact definition of the potentials, some already have a factor of 1/2 in
front).

* A straightforward solution:

do i=1,N-1
do j=i+1,N

(either in constructing the neighbour list or forces) reduces the calculation time to one half.
* For some many-body potentials this does not work.
* V(r) often is defined to give the total energy for a pair of atoms. When one wants the potential energy per
atom one thus may have to include one more factor of 1/2. But this additional factor is not needed in the

force calculation since the force always affects both atoms (Newton’s Il law).

* Note that the sign conventions in defining rii in the literature may vary.

Introduction to molecular dynamics 2015 5. Calculating the forces 12



Force calculation for pair potentials

» One practical way of checking that you have correctly derived the forces from the potential
energy and that all signs and factors of 72 are OK in you potential implementation:

1. Calculate Epot at 0 K and compare with an analytical prediction for some simple system, e.g. a dimer or

perfect lattice.

2. Simulate a two-atom system starting from a very small distance, so that £___ is very large, much larger

pot
than the equilibrium energy per atom (say 10000 eV). When you run the simulation with a very small time
step the atoms should explode outwards from each other so that the final Ekin/atom is the same as the

original Epot/atom. If you are uncertain what a ‘very small’ time step is, keep decreasing it until the
answer doesn’t change.

3. Another good test: numerical derivation of potential energy:

F(r)-s ‘i:

Move one atom in direction s amount As.
Directional derivative of the potential (assume \s\ =1) fs .
V() . V(r+hs)— V(r) - - ¢
—— = lim = VV(r)-s = -F(r)-s
oJs h—0 h
r

Computed from Computed from

potentialenergy forces as

as AV/As Fos + Fysy +tF,s,

Introduction to molecular dynamics 2015 5. Calculating the forces 13

Force calculation for a three-body potential

* For a pure pair potential for an interaction between atoms i and j Vi = Vi because
V(rl.j) = V(rjl.) and hence also ViVij = Vl.le. as described above. This symmetry simplifies the
force calculation.

* For a three-body potential things get trickier because v, may not = Vi To get the force F, act-
ing on an atom i one instead has to calculate

Fp==Viy Vi Vji”ZZijl} ) {Z(V”szvil/jiwzzv’l/fki
j j ok J Jok

* Many practical three-body potentials have been written such that
V3lrip T Oy) = Valryp rygo €050,0)

i.e. all angular information is in a cosine term.

Introduction to molecular dynamics 2015 5. Calculating the forces 14



Force calculation for a three-body potential

* In this case one can utilize the following equalities:

r..-r.
cose..k = ik
Y Tiil ik
F..oor. cos0.. cos0..
_ oy | Tik|_ | k1 ik 1
Vl-cosel.jk Vl-[ —y j ...... { > — rit 5 — |k
1j ik rij ij ik I"l.k lj ik

that is, no need to evaluate cos function.

* In many-body potentials there are often symmetries which can be used to reduce the number of
operations needed in the force calculation even more.

Introduction to molecular dynamics 2015 5. Calculating the forces 15

The physical/chemical origin of interactions

* Qualitatively a two-atom interaction looks like the following:

* The minimum, i.e. equilibrium distance, is

I”O.

» At small separations there is a strong
repulsion. Just below r this derives pri-

marily from the Pauli rule preventing elec-
trons being in states with the same

V)

quantum numbers, and from the electron- -
electron repulsion, whereas when the
nuclei are very close to each other, the

- -

Coulombic repulsion between the nuclei
dominates completely.

» Atlarger distances there may be an attraction, which can have different reasons: van der Waals
attraction, Coulomb attraction, a covalent bond, (due to pairing of valence electrons) or metallic
bonding

 Potential may also be purely repulsive

Introduction to molecular dynamics 2015 5. Calculating the forces 16



+ A few examples (1 bohr = 0.53 A)

(a) (b) (c)

80 2

3 o 3 40 2

£ AP = o R 3

§ -sotd g T £

= ] = -aoft-4 2. 400

g ¢ g g §

g ~loopg¥ 5 -80js & 200HL

“ 150 W ol 2 Yo cp o]
) 0 5 10 15 20 o 5 10

Internuclear distance { bohrs)
Fig. 1.2. Electron density distribution contours generated by computer solution of the
Schrédinger equation for interactions in three atomic systems (a) H, , (b) LiF, and (c) He, .

At the bottom is plotted the potential energy of interaction at the different stages of the
process a-h. The separation is in atomic units. (After Wahl [3}.)
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» Overview of bonding expected in different cases, and illustration of electron distributions [Kittel,
Introduction to Solid State physics]

I 11 I v v vi vl Noble
iod IA  IIA IIB IVB VB VIB VIIB VIIIB  VIIB IB 1B IIIA IVA VA VIA VIIA gases
T] weraus oNtC 1 2
: 1lH He
I —_ 1008 : 4.003
- _— 3 4 5 6 7 8 9 10
METALS — @2 T 2|Li | Be B [c |N |0 |F |Ne
It - c:\,o 6941 | 9012 10811} 12.011] 14.007{ 15.999 ] 18.998 ] 20.179
_ O“Vﬁ_T— 1|12 13 |14 {15 Jie [17 |18
w & A 3|Na | M Al |si |P s la |a
v SE g Y a g Si r
cON " O\)‘o 22990 | 24.305 26.982 | 281086 | 30.974 | 32.064| 35.453 | 39.948
PR ‘Ao?y 19 j20 (21 (22 |23 24 125 |26 [27 [28 [29 ]30 {31 32. 133 34 |35 |36
v — 41K Ca |Sc |Ti |V Cr {Mn |Fe |Co |[Ni |Cu |Zn |[Ga |Ge |As |Se Br | Kr
—_— ) 39.098 ] 40.08 | 44.956 | 47.90 [30942 | 51.996] 54.938] 55847 58933 | 5670 | 63546} 6538 | 6072 | 7250 | 74.922| 7896 | 79.904 | 83.80
VI I 37 38 39 140 |41 42 43 44 45 46 47 48 49 50 51 52 53 54
5|Rb |Sr |Y Zr |Nb (Mo [Tc [Ru [Rh {Pd |Ag {Cd |In |{Sn [Sb [Te |I Xe
IONIC MOLECULAR 85468 | 87.62 | 88.906 [ 9192 [02.006 | 95.04 | 9m | 101.07 | 102.905| 1064 |107.868] 11241 | 11482 | 11869 12175 127.60 ] 126.905| 131.30
v . CRYSTALS
55 {56 |57 |72 173 74 |75 |76 |77 |78 |79 |80 |81 82 183 184 |8 |86
6{Cs |Ba |La |Hf |Ta |W |[Re [Os |Ir Pt |Au |[Hg [Tl |Pb |Bi {Po |At |Rn
132.905] 137.33 |138.905 ]| 178.49 [1socnx] 183.85 | 1862 | 1902 {10222 | 19500196966 | 20050] 20437 207.00] 2082 | @10y | @210y | 222

87 188 (89 |104 |105 | 106 | 107 | 108 | 109 | 110 | 111
7|Fr |Ra |Ac |Rf(?)|Ha(?)
223) | 2260 22m) fee6n [262 | 2smy | em | 263 | ey | oesm | 2

58 |59 160 |61 }62 63 164 {65 166 |67 |68 [69 |70 |71

Ce {Pr |Nd |{Pm [Sm {Eu |Gd {Tb [Dy |Ho [Er |Tm [Yb {Lu
14002 | 140,907 144.24 L 145) | 15035 | 15196 | 157.95{158.925] 162.50 | 164.930| 167.26 | 168.934] 173.04 | 174,96

Crystalline argon Sedum chioride

G ) 90 |91 192 {93 94 |95 |96 |97 |98 |99 |100 }101 }102 | 103
Th |Pa {U [Np |[Pu |Am |Cm |{Bk {Cf |Es |Fm |Md [No |Lr
@2 fesn | @) @9 [@9 [ |2 |es | e | en | e | ese | oo | e

Diamond
(covalent)
1}
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» So for the pure elements we get the familiar division:

Li | Be

Ma | Mg

Rhb | St

Cs | Ba

Fr | Ra

Introduction to molecular dynamics 2015 5. Calculating the forces

Idealized potentials for theoretical and qualitative studies

(@) L ()

* Hard sphere: VHS(r) = {w’ r<o
0,r=20

* First MD simulations were carried out with
this potential. ,

* The equations of motion reduce to calcu-
lating where the next collision occurs: true
billiard ball physics

* Applications in packing problems © oo

» Square well:
o0, 7 <0

W
T (r) = 4-606,<r<o,

O,I’ZGz A r

Fig. 1.4 Idealized pair potentials. (a) The hard-sphere potential;

®)

G

v(r)

19

v(r)

r

(b) The square-well

potential; (c) The soft-sphere potential with repulsion parameter v =1; (d) The soft-sphere

potential with repulsion parameter v = 12.

v
* soft sphere: Vss(r) = e[(ﬂ

Introduction to molecular dynamics 2015 5. Calculating the forces

Source: Allen-Tildesley
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“Realistic” pair potentials

o - 90

* The attractive 1/r6- term can be derived from the dipole-dipole interaction, or as the interactions between
two oscillators (QM) [Kittel, Introduction to Solid State Physics, 7th edition, p. 62]. It is also known as the
Van der Waals or London interaction.

* Lennard-Jones (LJ)

* The repulsive term l/r12 chosen for convenience.
* Also other exponents used; notation for any two exponents A and B is LJ (A-B) potential.

+ ¢ and ¢ are usually chosen by fitting into experimental data. ¢ gives the equilibrium distance ¢ the cohe-
sive energy.

* A few Lennard-Jones-parameters for gases [Ashcroft-Mermin s. 398]:

Ne Ar Kr Xe
€ (eV) 0.0031 0.0104 0.0140 0.0200
o (A) 2.74 3.40 3.65 3.98

* Very weak interaction: e.g. V. = -3.1 meV for Ne.

* LJ (12-6) potentials have proven to be good for noble gases (filled electron shells = almost always neu-
tral) close to equilibrium. But they are obviously terrible for very small » (» <1 A) since the true interaction

is about e ' /r and not 1/r12.

Introduction to molecular dynamics 2015 5. Calculating the forces 21

“Realistic” pair potentials

* LJ potentials have been, and are used a lot, for instance in molecular modelling, in many cases even in
systems where there is no physical motivation to using the LJ functional form. But if the fit is good for
some purpose, using it may still be justified as long as the limitations are kept in mind.

* Reduced units

« If a potential only has a couple of parameters, evaluating it can be really efficient in reduced units

* Also, in reduced units the results are always the same, so the results can be transferred to different sys-
tems with straightforward scaling.

* For instance for the Lennard-Jones-potential:

Vir) = 48[(9)12_(‘;’)6} [or any V(r) = ef(r/))]

r

= Natural length unit = ¢
natural energy unit = ¢

= V' (x) = 4[x 12-x0)

Introduction to molecular dynamics 2015 5. Calculating the forces 22



“Realistic” pair potentials

« other units:

* 2 1/2
t =t/[(moc")/€]
* 3
ES
T = kBT/s
* 3
P = Po /¢
*
f =fo/¢

£
v = v/[e/m]?

* Reduced units were very popular when one had to save CPU time in every single multiplication, and

when potentials were still as simple as LJ.

Introduction to molecular dynamics 2015 5. Calculating the forces

“Realistic” pair potentials

* Morse potential

« Simple metals (sp-metals, e.g. Na, Mg, Al; and metals with the
fce- or hep-structure), are at least to some extent describable
with a pair potential

* A popular choice: the Morse potential [P. M. Morse, Phys. Rev.
34 (1930) 57.]:

Vir) = De—20c(r— ro) 2De—0c(r— o)
* Designed originally to describe vibrations in molecules.
» The Schrédinger equation happens to have an analytical solution for

this functional form.

« Efficient to evaluate, in the form above only one exponential
function needs to be evaluated.

* Decays faster at large » than Lennard-Jones: less problems
with cut-off.

+ A fit for many metals [Girifalco and Weizer, Phys. Rev. 114
(1959) 687.]

» Works decently for being a pair potential.

Introduction to molecular dynamics 2015 5. Calculating the forces
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Metal D o ro
[eV] (A [A]

Na 0.06334 0.58993 5.336
Al 0.2703 1.1646 3.253
K 0.05424 0.49767 6.369
Ca 0.1623 0.80535 4.569
Cr 0.4414 1.5721 2,754
Fe 04174 1.3885 2.845
Ni 0.4205 1.4199 2.780
Cu 0.3429 1.3588 2.866
Rb 0.04644 0.42981 7.207
Sr 0.1513 0.73776 4.988
Mo 0.8032 1.5079 2.976
Ag 0.3323 1.3690 3.115
Cs 0.04485 0.41569 7.557
Ba 0.1416 0.65698 5.373
w 0.9906 14116 3.032
Pb 0.2348 1.1836 3.733
Mo 0.997 1.500 2.800
Rh 0.7595 1.560 2.750
Rh 0.7595 1.080 2.750
w 1.335 1.200 2.894
Au 0.560 1.637 2.922

Girifalco and Weizer, Phys. Rev. 114 (1959) 687.
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“Realistic” pair potentials

» An ordinary pair potential has a close-packed structure as the ground state. (usually either
“face-centered cubic”, FCC or “hexagonal close packed”, HCP).

HCP

Introduction to molecular dynamics 2015 5. Calculating the forces 25

“Realistic” pair potentials

A pair potential can thus not describe well elements with other structures than FCC or HCP. But
this doesn’t mean people haven't tried:

» Diamond lattice: open structure, four nearest neighbours, very far from close packed.
« Still, it is actually possible to make diamond stable locally with a pair potential, but this will become rather
pathological (Mazzone potential for Si, [Phys. Stat. Sol (b) 165 (1991) 395.]):

|

A

* Does actually work close to perfect lattice.
* But what happens when atoms leave the har- V(r)
monic well due to e.g. a high temperature?
» System will collapse to close-packed structure =>

applicability of potential extremely limited Morse harmonic well
» Unfortunately this is not uncommon regarding
interatomic potentials: one has to be very crit- 7
ical of any new potential! Even well-respected | 0 |\ /A
>

physicists have presented potentials which | r
have some very pathological features...
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“Realistic” pair potentials

* lonic compounds

« Different ions, between which the electron density is very
small. The ions have filled electron shells, and are thus
unlikely to change their electron configuration

* An extreme examples: NaCl:

* A pair potential approximation works quite well, and poten-
tials abound in the literature, as there is much experimental
data available for the alkali halides which can be used in
potential fitting.

* Potentials typically contain a short-range (SR) term and the
Coulomb interaction:

2
z1z,€

V(rl.j) = VSR(rl.j) + ; z; = ion charges

4n80rl.j

* Vg repulsive force between electrons packed closely together and an attractive van der Waals (vdW)
interaction
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“Realistic” pair potentials
* Most common forms for the short range potential:

i : = gerp_ L
Buckingham: Vg, (r) = de™” p;

Born-Huggins-Mayer: Vg, (r) = 4eB07=0) - C_ 28

6

r r

Morse: Vgg(r) = De 2*U ") _ape 7o)

1/ r6 -term comes from the dipole-dipole interaction (again)

* The repulsion is usually significant only for nearest neighbours, and the vdW interaction for next-nearest neighbours.
Frequently for instance in oxides the only interaction assumed between cations is their Coulombic repulsion.
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Fitting of potential parameters
* In almost all classical potentials there is a number of free parameters, e.g. in Lennard-Jones 2
(e and o), Morse 3 (D, a, r,) etc.

» An extreme example: the ReaxFF model for hydrocarbons:
A.C.T. van Duin et al., J. Chem. Phys. A 105 (2001) 9396.

Esystem = Ebcmd + Ecrver + E'un(ler + E\'al + Epen + Ezlors +
Eccrnj + Evcl\\-"aals + ECcrulcrmI)
TABLE 1: General Parameters
— N TABLE 2: Atom Parameters As Used in Equations 2, 6, 7, 12, 13, and 147
parameter  value description equation
- TR o n bond radii under/over coordination Coulomb parameters heat increments
Al 50.0  overcoordination bond order correction 3c
ig 15.61  overcoordination bond order correction  3d units i rox A Tomn A Pover keal/mol Punder Kcal/mol nEV 2 EV yA Ikeal/mol
3 5.02 1—3 bond order correction 3e,f -
A 18.32  1—3 bond order correction Jef C 1.3?9 1.266 1.236 32.2 29.4 7.41 412 0.69 218.6
5 832 1-=3bond order correction 3ef H 0.656 - 175 9.14 2.26 037 94.3
As —8.90 overcoordination energy 6
Ar 194  undercoordination energy Ta
Ag —3.47 undercoordination energy Ta
A 5.79 1 linati gy T
ATO f2.38 ::E;:;Egg;a;:i::;gz ::g;g 7; TABLE 4: Bond Parameters (), in kcal/mol) As Used in Equations 2 and 3
A 1.49  valence angle energy ) 8b R
i 128 valence angle energy sh bond D. Prel Pre2 Prol Proz o3 Proa Pros Poos
Az 6.30  valence angle energy 8¢ C-C 145.2 0.318 0.65 —0.097 6.38 —0.26 9.37 —0.391 16.87
A 2.72  valence angle energy 8¢ C-H 183.8 —0.454 12.80 —0.013 7.65
Ais 33.87 valence angle energy 8c H-H 168.4 —0.310 10.25 —0.016 5.98
A 6.70  valence angle energy 8d
Az 1.06  valence angle energy 8d
Ais 2.04  valence angle energy 8d
At 36.0  penalty energy 9a TABLE 5: Valence Angle Parameters As Used in Equations TABLE 6: Torsion and Conjugation Parameters (¥ and V;
Ao 7.98  penalty energy 9a 8a—d in kcal/mol) As Used in Equations 10a—c
Az 0.40  penalty energy 9b - .
Az 4.00  penalty energy 9b \a]encg oo kf* k”_ ) torsion angle? Ve Vs P
Aos 3.17  torsion energy 10b angle units  degree  kcal/mol  (l/radian) Pt Pz C—C—C—C a7 000 oy
A 1000 torsion energy 10e Cc-C-C 71317 354 1.37 001 077 c—C—C-H 30.5 0.58 _281
Azs 0.90  torsion energy 10c _C— 5 5 5 i . g
fon er C-C-H 7156 20.65 5.29 HeC—Cop 265 037 333
Az —1.14 conjugation energy 1la —C— . : -
At 2.17  conjugation energy 11b I(-:l_ lg—g 63'94 %;? (1588
Ao 1.69  vander Waals energy 12b HoH-C 0 0 600
H-H-H 0 27.9 6.00 TABLE 3: van der Waals Parameters Used in Equation 122
atom units ruaw A € kcal/mol o A
C 3.912 0.0862 10.71 141
H 3.649 0.0194 10.06 5.36
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Fitting of potential parameters
* Two main approaches to develop a potential exist:
1. Derivation from so called ab initio (quantum mechanical) calculations

2. Fit to empirical and/or ab initio data

* Although the previous approach is better motivated physically, in practice the latter approach, or a combi-
nation of the two, often works better.

» A good classical potential is one which with a small number of free parameters can describe a
wide range of properties well (usually 5-20 % accuracy in condensed matter physics is consid-
ered to be “well”, since experiments seldom are much more accurate than this).

» A related concept is that a good potential should be transferable, which means that it should
be able to describe properties of other states of the material than those it was originally fitted to.
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Fitting of potential parameters

* Regarding fitting the parameters in a potential of type 2, there are two opposite extreme
approaches:

1. “Blind fitting” : choose a functional form and a set of data to which the parameters are fit. Then use some fitting
routine to obtain a best fit to all the data.

2. “Parameter choice by hand”: use reliable experimental or ab initio data of crucial data to set as many potential
parameters as possible exactly, then fit only the remaining (if any) parameters. For instance, the equilibrium separa-
tion, binding energy and vibration frequency for a dimer can be used to fix all the 3 Morse potential parameters.

* A pure approach 1 is dangerous in that quantities which are outside the original parameter set may obtain

completely pathological values.
» Example: some Si bulk potentials predict that the Si dimer is non-bonding.

* Also, if some potential parameter happens to be insensitive to all quantities in the data set, the fit may
give ridiculously small or large values for it, which may cause trouble elsewhere.

* To obtain transferable potentials, approach 2 is thus usually to be preferred. On the other hand, if optimal
precision in a limited set of systems (say, elastic properties of a perfect bulk crystal) is desirable,
approach 1 may still be the better way to go.

* Most authors use approaches somewhere between 1 and 2.
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Fitting of potential parameters

A functional form can sometimes be derived from experimental equations of state P(7). Exam-

ple: solid Ne and Ar:
= ¢ g 10

26%°
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Figure 5. Pressure-volume isotherms of Ne at Figure 6. Pressure-volume isotherms of Ar at
293 K. O, experimental data (after [19]); ®, cPMD 203 K. The upper isotherm is in the pressure
(Lennard-Jones 6-12); &, cPMD (Siskaeral[21]). region 0 to 10 GPa and the lower one in the region

01080 GPa. O, experiment (after [19]); V, exper-
iment (after [20]); @, cPmMD (Lennard-Jones 6-
12); A, cPMD (exp-6 [20]).
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Fitting of potential parameters

* Here is a short list of macroscopic, physical, properties which can and often are used to derive

or fit interatomic potentials:

Physical property

Atom-level property

4 Crystal structure

Balance of atomic forces.

Cohesive energy

Potential energy at the equilibrium
atom positions

Elastic constants ¢ PG

Long-wavelength acoustic vibrations
Elastic distortions of unit cell.

mechanical

Equation of state P(V)

Compression or expansion of material

Neutron scattering

Phonon ®(K) in the Brillouin zone.

Dielectric constant €

Electronic polarizability

Dielectric constant 80

Polarizarization of electrons and lat-
tice; long-wavelength optical vibration
modes;

electric

Infrared absorption

Long-wavelength vibrations with a
dipole moment.

Raman scattering

Long-wavelength vibrations which
change the polarizability.

* Out of these, the first five depend purely on the mechanical properties of the material, and are relevant to
almost all solids. The latter four involve electric properties and may or may not be relevant depending on
what kind of materials and properties are studied.

Introduction to molecular dynamics 2015

Fitting of potential parameters

* Crystal structure:

5. Calculating the forces

33

* The equilibrium crystal structure should be stable if one wants to describe any process where large atom
displacements may occur (melting, surfaces, deposition, etc. etc.).

* In equilibrium the force acting on every atom in the unit cell i should vanish:

Zfij =0
J

* Here the potential is only tested at a few rij values. (The smaller the crystal symmetry, the more values.)

» Any potential has a minimum potential energy con- _38
figuration, or many configurations with the same

energy.

» Example: Tersoff potential for Si [J. Tersoff, Phys.

Rev. B 38 (1988) 9902.]
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FIG. 3. Calculated cohesive energy vs volume per atom of
silicon in the diamond, simple cubic (sc), B-tin (B), simple hex-
agonal (sh), bee, and fec structures. For B-tin, the dotted curve
shows the result of the potential as given in Table I, while the
solid curve results from taking R =2.75 A and D=0.1 A, as
discussed in text.
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Fitting of potential parameters
* Local stability is easy to achieve in a classical potential. But global stability (that is, that the real crystal
structure is indeed the global minimum of the potential) may be surprisingly difficult.

» Even well-known authors make mistakes. For instance, the first Si potential of Tersoff [Tersoff, Phys. Rev.
Lett. 56 (1986) 632.] was well motivated, well derived, and published in the best journal in physics. But the
formation energy of the vacancy turned out to be negative, which means it did not have the right ground
state structure...

» A good way to test the minimum energy: start from random atom positions, and quench the cell slowly
enough so that it crystallizes. If the structure is the correct one, it probably is indeed the ground state.
Unfortunately doing this may take forever.

» Another test: simulate a liquid and solid in equilibrium at the melting point, and check that the solid

remains stable and the liquid recrystallizes to the same structure on slight cooling below 7. ..
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Fitting of potential parameters

* Cohesive energy (E_, = energy difference between free atoms and the solid):

* Directly related to the potential minimum energy level
 Often easy to get right exactly.

« Elastic constants’ s
* Related to deformation in the material
R(r) = ¥'—r = u (1)x+ u,(r)y +us(r)z

and to the external stress (pressure) c:
% = 2.%0%
(¢

* Voigt notation for p- and c-indexing: xx > 1, yy >2,zz—>3,yz—>4,zx > 5,xy > 6
* Here the strain (crystal distortion) components e;; are

e..:% : e..=l%+%
1 axl. U2 ij axi

1. See e.g. Kittel, Introduction to solid state physics, 7th edition, ch. 3.
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Fitting of potential parameters

* The stress component O, is the force which acts on the plane with the normal X; in the direction x;

* In principle there are 36 stress and strain components, but their number reduces to much smaller num-
bers in practice.
* For instance in a cubic crystal there are only three independent

elastic constants cp=c¢ and Caq =

xxxx’ €12 cxxyy nyxy'

* Particularly important if there are deformations (compression, shear, melting) in the simulations. Also
related to defect properties and the melting point = if we get the elastic constants about right we are
already on a good way to a good potential.
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* An example Of an (Unusua"y) F. ERCOLESSI et al.: INTERATOMIC POTENTIALS FROM FIRST-PRINCIPLES CALCULATIONS: ETC. 587
gOOd fit: F. Ercolessi, J. B. TaBLE L. — Experimental and calculated (with the potential optimized in this work, and with those in
Adams, Eur Ophys. Lett. 26 ref. [13,14]) values for equilibrium lattice spacing, cohesive energy, bulk modulus, elastic constants,
phonon frequencies at the points X, L and K of the Brillowin zone, vacancy formation and migration
(1 994) 583 energies, intrinsic (111) stacking fault energy, surface energy and surface relaxation between the two
outmost layers for the (111), (100) and (110) swrfaces, thermal-expansion coefficient at room
temperature, melting temperature, latent heat and volume change on melting. All the energies are at
T =0 and include relaxation effects.
Experimental This work ref. [13] ref. [14]
ay (A) 4.032 4.032 4.05(%) 4.05(%)
E. (eV/atom) 3.36 3.36 3.36 3.58(%)
B (MBar) 0.809(%) 0.809 0.79 (") 0.81
Cy, (MBar) 1.180(%) 1.181 1.07 1.08
Cy; (MBar) 0.624 (%) 0.623 0.652 0.68
Cy (MBar) 0.325(%) 0.367 0.322 0.45
v, (X) (THz) 9.68(%) 9.29 8.55 9.03
vp (X) (THz) 5.81(%) 5.80 5.20 6.23
vy, (L) (THz) 9.69 (%) 9.51 8.87 9.04
vp (L) (THz) 4.22(%) 4.02 3.70 4.26
v, (K) (THz) 8.67(%) 8.38 7.76 8.30
vy (K) (THz) 7.55(%) 7.50 6.87 7.32
vye (K) (THz) 5.62(°) 5.34 4.80 5.67
El.(eV) 0.66 (%) 0.69 0.63 0.62
ER. (eV) 0.62 (%) 0.61 0.30 0.54
Egr (meV/AZ) 75-9.0() 6.5 4.7 2.9
yiu (meV/AZ) 71-75(9) 54.3 51.4 31.1
Y100 (meV/AZ) 71-75 (%) 58.8 53.3 34.1
Y10 (meV/A2) 71-75(9) 64.7 59.9 36.5
dyp (111) (%) +09+07(" +0.9 -1.6 -0.38
dy (100) (%) -12+120) -15 -29 -1.7
dy, (110) (%) -85 +1.00) -46 -104 -54
(1/a)(da/dT)(107°K"1) 235 1.6 4.2 3.1
T (K) 933.6 939 +5 590 + 15 740 = 10
L., (eV/atom) 0.108 0.105 0.053 0.098
AV, (%) 6.5 84 4.9 9.5
(a) Fitted exactly on a different set of experimental data. (f) Ref.[19].
(b) Extrapolated classically to T =0 from data in ref.[15]. (g9) Estimates for an «average» orientation, ref.[20].
(c) Frequencies at 80 K from ref.[16]. (h) Ref.[21].
(d) Ref.[17]. (i) Ref.[22].
(e) Ref.[18]. (j) Ref.[23]. Ref.[21] reports —8.4 = 0.8.
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Weaknesses of pair potentials

* A pair potential can never describe well the directional properties of covalent bonds. For
instance in the diamond/zincblende structure (C, Si, Ge, a-Sn, many compound semiconduc-

tors) the ideal angle between bonds = 109.47° . Similarly, in almost all molecules the directional
properties of covalent bonds is of crucial importance.

* Also longer-range angular dependence is completely neglected. For instance in the structure of
polymers torsional terms are important. Also, recent calculations of BCC metals have shown
that 4-particle interactions are about 50 % of the bond.

* Pair potentials also do not account for the environmental dependence. They predict that the
strength of the two-atom bond is as strong in a dimer as inside a material, which almost never is
true.
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Weaknesses of pair potentials

* For instance the Ga-As interaction:

Ga-As 2-atom interaction

5 . . : : :
4| Ga-As ! T2 Dimor imaracion (oma
3t : .
2
> 1t “._ \/ -
2} L e i
4} feamee?” i
-5 1 L 1 L L
0 1 2 3 4 5 6
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Weaknesses of pair potentials

* Moreover, a pair potential always predicts

ELASTIC CONSTANTS FOR SOME CUBIC CRYSTALS*®

that the elastic constants Cly = Cyy for

REFERENCE®

SUBSTANCE Ciy Cis Cus

cubic crystals. but in reality: Li (78 K) 0.148 0.125 0.108 1

Na 0.070 0.061 0.045 2

. ; : Cu 1.68 1.21 0.75 3

Also, vacancy forn"'natlor? energies are often o Lo 053 04 3

completely wrong in pair potentials (see Au 1.86 1.57 0.42 3

below). Al 1.07 0.61 0.28 4

Pb 0.46 0.39 0.144 5

. . . Ge 1.29 0.48 0.67 1

* Pair potentials also usually give bad sur- Si 1.66 0.64 0.80" 3

face properties. \% 2.29 1.19 0.43 6
Ta 2.67 1.61 0.82 6 .

. . Nb . .

» Summa summarum: the pair potential 247 139 0.287 6

. o Fe 234 1.36 118 7

approximation: o _ Ni 2.45 1.40 1.25 8

* may work wgll close to equilibrium structure in -~ [, | 0.494 0.228 0246 9

many materials NaCl 0.487 0.124 0.126 9

« is good for noble gases e 095 o o ?

* is rather good for ionic compounds such as : i i el 1

alkali halides ¢ Elastic constants in 1012 dynes-cm~2 at 300 K.

* is rather bad for FCC and HCP metals
* is terrible for covalently bonded materials

» But for all these groups much better, and only slightly slower, models exist. These will be

described later on this course.
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Weaknesses of pair potentials

» Simple estimate of vacancy formation energy using pair potentials:

f
E .. = E(vacancy, N) — Etot(perfect, N)

vac
* nearest neighbor pair potential, energy/bond=V(r_)=¢

* no relaxation
» fcc structure = 12 neighbors

E,(vacancy, N) = %[(N712)12¢+ 12(12-1)0] = 6(N—1)0

1

Etot(perfect, N) = >

N12¢ = 6NO
:>Ef =60 = -F
Vac_fq)_*coh

* However, ab initio calculations:

f
Element ‘Ecoh’ ev) | E,. (V)
\Y 5.31 21+0.2
Nb 7.57 26+0.3
w 8.90 4.0+0.2

* Relaxation: only minor effect (far less than 1 eV).

1. A E. Carlsson, Solid State Physics: Advances in Research and Applications, 43 (1990) 1.
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Source: Ashcroft-Mermin
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Molecular dynamics 2015

Exercises 5 to chapter 5: mdmorse: calculating the forces

1. (12 p) Write the subroutine GetForces () in the file forces.£90/.c in mdmorse. It
should calculate the interaction between atoms with the Morse potential with the input
parameters morseD, morsealpha, morser0 giving the parameter values. Use the
neighbour list created previously. The resulting subroutine should output the accelerations
in the array a (i) and the potential energies in the array Epot (i) . The units are as
described inmain.f90/.c.

2. (8p) Using subroutines written for the previous exercises (your own or the official solutions
on the web page) , and the GetForces () routine you should now have a working MD
code. Demonstrate that the code works by

(a) Running it with the test inputs for 10 ps. After the initial 50 fs, the total energy (column
6 on the “ec” output lines) should fluctuate or drift less than 0.01 eV over 10 ps with a time
step deltat of 2 fs. The temperature (column 3) should fluctuate less than about 100 K
from the average around 600 K.

(b) Running it as above, but with a free surface in all dimensions. Now the temperature and
energy will be different, but the total energy should still be conserved within about 0.02 eV
after the first 1 ps. Describe what happens.

Be careful not to use too small nmovieoutput, so that you don't fill up the disk!

Return the exercise as the file forces.£90 and a plot of the total energy vs. time and the
temperature vs. time for cases (a) and (b).

After passing these tests your code is probably correct. (But you can never be absolutely
sure...)



Molecular dynamics 2015

Exercises 6 to chapter 5: mdmorse : effect of cut-off radius and time step

1. (10p) Simulate a Cu fcc system with periodic boundary conditions and at temperature of 300
K for 10 ps using mdmorse. Do the simulations with the following values for the potential
cut-off radius (rpotcut in mdmorse): r, = 4.0, 4.5, 5.0, 6.0, 8.0 A . Investigate the
energy conservation by calculating the average fluctuation' in total energy. Remember to
skip say 200 timesteps from the beginning of the simulation when calculating the averages.
Why do the fluctuations behave as they do as a funtion of r_? Hint: See the figure below,
where the pair correlation function g(7) of Cu at 300 K is plotted. Also plotted is the Morse
potential used in the simulations.

Hints: Check that the temperature really is 300 K from your simulation output; no hassle
with the infamous factor of two. For all simulations set the neighbourlist cut-off radius
(rskincut) to 1 A larger than the potential cut-off. The default value of MAXAT*MAX -
NEIGHBOURS (100000) in modules.f90/global . h should be sufficient.

g(r)

V(r), g(r) (arb. units)

2. (10p) Check the effect of the time step deltat on energy conservation in the code
mdmorse. Use time steps of 1, 3, 10, 30 and 100 fs to simulate thermal motion in Cu at 300
K over 10 ps. Plot the total energy as a function of time for each time step in the range in
which it still behaves sensibly. What happens with the atoms for the largest time steps?

Return the appropriate figures and answers to the questions.
Remember that data visualization is your friend. Never just calculate the final results without

first checking how the system configuration looks like (dpc and rasmol) and how the temper-
ature and energies behave as a function of time.

1. Variance or the like.



Set the initial conditions r;(z,), v,(¢,)

\i
Update neighborlist

#

Get new forces Fi(ri)

y

Y

Solve the equations of motion numerically over time step A¢:
rl.(tn) - rl.(tn 1) Vl-(ln) - Vl-(tn 1)

'

Perform 7', P scaling (ensembles)

Y
t— 1+ AL |

Y
Get desired physical quantities

'

o
/Ktmax Calculate results
—

and finish
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Theory behind atomistic simulations

[main source: Allen-Tildesley]
* An atomistic simulation (MD or MC) gives atom positions and velocities {q, p;}
* {q,,p;} (orin cartesian coordinates {r, p,}) = macroscopic quantities (This is what statistical
physics is all about!)
» system Hamiltonian H(q, p)
* equations of motion:g, = iH(q p) p, = —aH
k apk ’ k aqk

N particles = the system state at any given time is a point T" in a 6 N-dimensional phase space.

* The evolution of the system from one point T" to another is determined by the MD equations of motion or
a Metropolis Monte Carlo simulation.
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Theory behind atomistic simulations
* One point in phase space {q,p,} =T

* Measured (macroscopic) quantity 4 , = corresponding to (microscopic) physical quantity
A = A(T) from MD simulations as a time average:

t

obs

Agy = (A), = (AT®), = lim i [ acayar
0

ZLcobs — e

« All practical simulations are of course over discrete steps, so the integral has to be rewritten

T

obs

> AT(D)

T=1

1

Aobs - <A>t: T

obs

and because an MD simulation often fluctuates strongly in the beginning, we skip the first, say, 100 time

steps:
Tobs
1
Agps = 7m0 A(T'(1))
obs _
Typs — 100 2
T =101
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Relation between simulations and statistical physics

* In MD a time average gives the experimental quantity 4.
* However: in statistical physics we use ensembles
« a set of points I" in phase space
« the likelihood of system being in the dT" neigborhood of point I" is given by the probability distribution p(I")dT"
* p(I") depends on external conditions: (constant) NVE, NVT, NPT:

e.g. with p (1)
or generally, for any ensemble, Pens(I)-

* In statistical physics the time average is replaced by an ensemble average (why?)
* go through all the points {q;, p;} in the ensemble phase space.

* In a Monte Carlo simulations the time average is replaced by going through a large set of
points in phase space (using a Markov chain):

N,

sim

Aobs - <A>ens - Z A(Fi)pens(ri)
i=1

* If p () is independent of time (thermodynamic equilibrium), and the system is ergodic
(A); = (A epg
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Ergodicity

* In an ergodic system a long enough simulation will go through all points in phase space {q,, p;}-

* An example of a non-ergodic system (each hexagon represents one point phase space

{q,p;}):

* In the darker area, the simulation moves in a close
path, and can never get out of this area = the simu-
lation does not test all of phase space, i.e. is non-
ergodic.

* In case there would be a single path which would go
through the whole system, the system would be
ergodic.

* Is it possible to prove that some system is
ergodic? Not in the general case, and even for a

given system it is usually very difficult in practice.

* In practice the system may not only have regions
which are impossible to reach, but also regions
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which are surrounded by a high potential energy barrier so that reaching them in a finite simula-
tion may be very unlikely (such a barrier is illustrated by the grey thin regions in the figure). This

may distort the simulation averages badly.
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Ergodicity

* A practical example:

 Simulate diffusion in Cu at high temperature, around the melting point. In equilibrium the lattice has, say,
10 vacancies which cause diffusion at a rate of e.g. 1 atom/1 ps. Hence in a 100 ps simulation one gets
about 1000 atom jumps, which appears to give a good time average of the diffusion constant.

But: about once in a ns a Frenkel pair, that is a pair of one vacancy and one atom at an interstitial posi-
tion, may be created. Because the interstitial moves very much faster than the vacancy, it can cause thou-
sands of atom jumps before it recombines with some vacancy. Because the interstitial causes a huge lot
of diffusion, its presence can completely change the diffusion constant which would have been obtained in

100 ps.

So the system must be simulated for tens of ns’s to get a reliable estimate of the diffusion coefficient - and
if one does not realize the possibility of Frenkel pair formation, one would probably never notice this in a
single 100 ps simulation. [Nordlund and Averback, Phys. Rev. Lett. 80 (1998) 4201]

* To get reliable results one not only has to burn away computer time, but also understand the

physics in the system well!
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Ergodicity
+ Sometimes (in MC simulations) it is useful to use a weighting function w_ (") to weight the

ensemble and speed up getting the desired results:
Wens(r)

penS(F) ) Qens

Oens = O Wens(D) (partition function)
r

3 Wens(DA(D)
<A>GIIS - L

Zwens(r)
r

* MC integration: the flatter the function, the faster it is to obtain a precise average
* 0., Will depend on the macroscopic properties of the system.

* Connection to thermodynamics: ¥ . = —InQ__ - = thermodynamic potential

* In practice: set up the MC simulation Markov chain such that it generates points according to
the desired weighting function.
* A simple choice: w_ (') = p_(T')
* How this is achieved in practice will be dealt with in the MC course.

Introduction to molecular dynamics 2015 6. Different ensembles 7

Ergodicity

» So, to summarize the purpose of equilibrium simulations can be stated as:

* go through phase space as efficiently as possible to get averages which correspond to experimentally
observable quantities 4, .

* molecular dynamics: (4),

* Monte Carlo: (4) . (importance sampling)

* In MD only the NVE ensemble is obtained by solving the ordinary Newton/Lagrange/Hamilto-
nian equations of motion. For the other ones, one has to generate equations of motion which
behave according to the desired ensemble p_ (T

Introduction to molecular dynamics 2015 6. Different ensembles 8



The most important ensembles

[source: L.E. Reichl, A Modern Course in Statistical Physics]

* As in thermodynamics, the ensembles are denoted by letters which indicate which physical
quantities are conserved. The names are also the same.

1. Microcanonical (NVE)

2. Canonical (NVT)

3. Isothermal-isobaric (NPT)
4. Grand canonical (uVT)

* Here N is the number of atoms, ' the system volume, T the temperature, P the pressure, and u
the chemical potential [cf. e.g. MandI “Statistical physics” chapters 2 and 11].

* Microcanonical: NVE constant (isolated)

PyyeT) = 8(H(T) - E)

Oyyp = S 8(H(T) ~E) = ]—Vl—,h%N drdpd(H(r,p) - E)
I

* Thermodynamical potential is the entropy: S - IOy
kg

* The & function selects the states I where the total energy = E.
* Natural for MD in the sense that the total energy is conserved.
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The most important ensembles

» Canonical: NVT constant (closed but not heat-isolated) -
pNVT(F) o< eXp(—H(F)/kB T) eat bat

1 1
Ovyr = Zexp(—H(F)/kBT) = Mﬁvj‘drdpexp(—H(r,p)/kBT)
r

- Thermodynamical potential is the Helmholtz free energy:

A _ —
@ = *IHQNVT, A=FE-ST

* Isothermal-isobaric: NPT constant

P=P,
pNPT(r)oc eXp((—H(r)-i—PV)/kBT) @
Onpr = . exp((~H(D) + PV)/kyT) =

r
]TIIT%VVL jdrdpexp((— H(r,p) + PV)/kgT)
! j heat bath
» Thermodynamical potential the Gibbs free energy:

k—GT = —InQypp, G = E-TS+PV
B

* In MD the volume has also to be made variable.
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The most important ensembles

* Grand canonical: uVT constant

heat bath

Py (D) = exp((— H(T) + uN)/kg T) o

1 |

= —H(T) +uN)/k = b—==
QuVT IZ]:VGXP(( (1) + uN) kg T) “particle reservoir”

1 1
Zﬁh—sNexp(fuN/kB T 'fdrdp eXP(*H(r,p)/kB 7)
N

* Thermodynamic potential is the grand potential:

-Q _ —— _
@— anuVT’ Q=E-TS—uN PV

* Now the number of atoms is changing: we have to have an algorithm to add or remove particles [not trivial
in most practical (condensed matter) systems].

* In the thermodynamic limit (system size N — «) all the ensembles are
equivalent (but the fluctuations around the average may not be).

Introduction to molecular dynamics 2015 6. Different ensembles
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Calculating thermodynamical quantities

* Internal energy, that is, total energy (in the mamorse code etot):
2
P
E = = = —_—
(H) = (K)+({U) <Z 2mj) +(U(q))
1
* U(q) is obtained directly from the potential energy calculation.

* Temperature

3 _ 2k _ 1 P
Eyin = (K) = SNkgT = T_3NkB_3Nk > ,

* So, on the average there is k3 7/2 of energy per degree of freedom, as the classical equipartition theo-
rem predicts.

Introduction to molecular dynamics 2015 6. Different ensembles
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Calculating thermodynamical quantities

* Pressure (refer to Hamiltonian equations of motion):

» Generalized equipartition theorem for atom positions:
N N

oH, 1 1 tot, )
<qka_qk> = kT = Sor (V) = (Y 0 = Nk
i=1 i=1

tot t
* Divide the force into two components: fl.0 = f?x +f.

1
N
external pressure: %( Z r; f?Xt> = _PV

i=1

N N
internal virial: W= - %Z r (Ve U) = % Z r;-f,
i=1 i=1
N N
= %( Z r,-f) +%( Z rl.-f?Xt> = —NkgT which can be rewritten (W) — PV = —NkgT
i=1 i=1

= desired pressure PV = NkgT + (W)

Introduction to molecular dynamics 2015 6. Different ensembles 13

Calculating thermodynamical quantities

* Pair interaction V() and periodic boundaries:

1 d
W = —3ZZW(7"U-); w(r) = riJ'FV(rij);
i j>i v

 Calculation in the force routine:

! dvdr is the derivative of V, i.e. the force
virial=virial+dvdr* (dx/r*dx+dy/r*dy+dz/r*dz)
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e Calculating thermodynamical quantities

* Thermodynamic potentials (free energies)
» Quantities which depend on the entropy

* Energy/potential differences can be ‘easily’ calculated by integrating over a reversible path:

B> T,
(N:BT)z_(N:BT)l B j(ﬁ%%)% B _J.(N_fB_T)CiTZ
T
. ;
mr), ), - e 8 - 1)
Py Vi

» So one has to calculate a thermodynamic average for a large number of intermediate steps, then inte-
grate over the path.

« Calculating absolute values with the Frenkel-Ladd method:
« Construct a potential energy which is dependent on a parameter A: U = U(r, A)

Introduction to molecular dynamics 2015 6. Different ensembles 15
Calculating thermodynamical quantities

A4 _ , 9 B
== kBTm[ln Jarexn( U(r,k)/kBT)}

14
J'drﬁexp(fU/kBT)

J‘drexp(fU/kBT)

_,0U,
= (5

* Construct U so that for A = 7»0 the absolute value of A can be calculated analytically or numerically: e.g. an ideal

gas or a harmonic lattice.

« Then get the absolute value of 4 for any A using:
A
oU.
A ~Ahg) = [ (Srdh
7\’0
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Calculating thermodynamical quantities

* Real potential function, for which we want A4, is UO

« construct U = U(r, L) to interpolate between U0 and a harmonic lattice (Einstein’s model) with

N
Ur, W) = Uy +4 'Y (r,—1,0)
i=1

A

= AA=0) = A(X)—I(S—;]MN

0

- At large values of A we have harmonic lattice: e.g. Helmholtz free energy is:

—hw/k, T
AN = i]l’zf@—w;cBTlnu—e L RIS,

and hence the free energy for our ‘real’ system UO is A(A = 0) and can be calculated by integrating over (9U)/ (1) .
[Frenkel-Ladd, J. Chem. Phys. 81 (1984) 3188]
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Calculating thermodynamical quantities

* Response functions
* How does the system react to a change in some thermodynamic variable?

* Some of the most important response functions:

constant volume heat capacity Cy = @—?) .
constant pressure heat capacity Cp = (g_;’)P
thermal expansion coefficient op = V_l(g—gp
. i ~1(0
isothermal compressibility Bp=-V (E_Z)T
bulk modulus B =1/B;

- _ (0P
thermal pressure coefficient Yy = 37

* Because a, = By, itis enough to get one of these three coefficients

Introduction to molecular dynamics 2015 6. Different ensembles 18



Calculating thermodynamical quantities

* How can one get these from simulations?
* Direct simulation

* E.g. heat capacity CV can be obtained by doing simulations at different temperatures, thus obtaining E(7) =

Cp(T) = @_@V

» From the fluctuations in the system (remember from basic thermodynamics that for a finite-sized system
of N atoms, there should be fluctuations of the order of /v in thermodynamic quantities such as 7'and P!)

*E.g. CV from a single simulation in the canonical ensemble:

(8H2>NVT = kBTzCV (H is the momentaneous enthalpy)

* Because (3KoU),,r = 0, C), can be separated into a kinetic and potential energy part:

<5H2>NVT = <5U2>NVT+ <5K2>NVT

* Kinetic energy part: <8K2>NVT = 37N(kBT)2 = —3% = ideal-gas heat capacity Cilf = %NkB.

2B
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Calculating thermodynamical quantities

* By combining these we get
(SUHNIT = kBTZ(CV— %NkB)

* So we can calculate C;, solely from the fluctuations of the potential energy.

« Similar fluctuation identities can also be derived for many other response functions
(see e.g. Allen-Tildesley chapter 2.5.)

* These identities really depend on the ensemble used.
E.g. in the microcanonical ensemble:

) 2 3Nk
(SKNVE = (SUSNvE = SNk T7 1- ——B
2B 2C,,
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Calculating thermodynamical quantities

 Structural quantities

——r———7—
) _ _ Pair correlation function of EuF,
* Pair correlation function from MD simulation
+ 324 particles — 600 K
_ _ « ZBL + ionic potential wonn 1900 K
gZ(ri’ l‘]) - g2(rij) - g(r) Y. eAt=11s -——-- 1950 K n
* tinit = tmax = 2 PS
which tells at what distances atoms are from each el
other. Al eliosaat
« It can be calculated as Eu--Eu £
co
2 5(r,)8 “g
= r. r.—r B
g(r) = p (33 8(r)8(r; 1)
]\32 J#i
= ;(Zzs(r*rlj» 4r
i i#j
* g(r) gives information on the structure of the mate- g B
rial. For instance melting:
0
0
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Calculating thermodynamical quantities

* In practice it is of course not handy to use a delta function on a computer. So what is done instead is to
collect statistics of what atom distances exist in some finite interval Ar:

integer :: stat(0:10000)

do i=0,10000
stat (i) = 0
enddo

binwidth=0.01
do i=1,N
do j=1,N
if (i==j) cycle
dx=x(3j)-x (1)
dy=y (j) -y (1)
dz=z(j) -z (i)
rsg=dx*dx+dy*dy+dz*dz
r=sqrt (rsq)
ir = int(r/binwidth+0.5)
if (ir > 10000) ir=10000
stat (ir) = stat(ir) + 1
enddo
enddo

* Note: no boundary condition checks.

* The normalization factor 47tr2Ar can be added afterwards, when printing the statistics.

* In practice if N is small (say 100 or less) the statistics will be poor = time averaging.
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Calculating thermodynamical quantities

* g(r) is also useful because the average of any pair function can be given in the form:

1
(a(r, rj)> = I—/Idridrl.g(rl., rj)a(rl., rj) or

(4) = <Zza(rij)> = %ija(r)g(r)4nr2dr

1 j>i 0

* E.g. the energy (pair interaction V(r))E = szBT'i‘ 2anJ- V(r)g(r)rzdr

2
0
2 2
or the pressure PV = NkgT - ganJ.w(r)g(r)r dr
0
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Calculating thermodynamical quantities

» Structure factor in reciprocal k-space (Fourier transformation of positions):

N

Pt = 3 exp(ik- 1)
i=1

» The square of p(k) gives the structure factor S(k):

~1
S(k)y = N (p(k)p(=k)),
which can be measured with x-ray or neutron scattering
* This quantity can be shown to be related to g(r) through a 3-dimensional Fourier transform:

S(k) = 1+pg(k) = 1+4mp|
0

sinkr

kr

g(r)rzdr

» Because g(r) is a measurable quantity, it is often useful in testing how realistic a potential energy function
is in describing some structure, especially a liquid or amorphous phase.

* However, this test is actually not all that sensitive to the detailed structure.
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Calculating thermodynamical quantities

» Transport coefficients
* The correlation between any two quantities 4 and B is

. _ (3408

4B 5(4)6(B)

o7(4) = (84 = (4D —()° ;
84 = A—(A)

OSCABSI

* The time dependent correlation function cyp(): 4 and B at different times, e.g. A(¢) and B(0)

* Autocorrelation function ¢ , ,(¢)

* Correlation time 7, = ICAA(t)dt
0

* These give information on
- the dynamics of the material
- transport coefficients
- can be related to experimental spectra by Fourier transformations
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Calculating thermodynamical quantities

» Transport coefficients: system response to an external disturbance p(¢) = +8p(2)

pens

« For instance diffusion coefficient: particle flux <> concentration gradient.

* p(¢) — time dependent averages.
» Comparison to transport equations — transport coefficients.

oo

« Coefficients usually of the form y = J- (A(1)(A(0)))dt
0

* For a large time there also always exists an Einstein relation

2607 = ((A(1) - 4(0))%)

Introduction to molecular dynamics 2015 6. Different ensembles
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Calculating thermodynamical quantities

» Some transport coefficients for the NVE-ensemble:

» Diffusion constant D = %J. (v;(1) - v;(0))dt
0
« Simple form to evaluate: 2tD = %((ri(t) - rl.(O))z)

» Thermal conductivity Ap = -——V——J' (jf(t)jf(O))dt,
kBTZO

v

kg T

de, = ;Zrm(ei— (€);

26, = ((8e,(1) — 8e,,(0))%), where

& dde,

Lot

pZ
i 1

g = + = Z V(r..

1 2m 2 ( l])

Loz
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Algorithms for simulating ensembles

[most material from Allen-Tildesley ch. 7.4]

* Pure NVE: see lectures 2-5

* NVE-scaling or constraint methods:

» Often even in an NVE simulation one does some simple tricks to control temperature and/or pressure.
This gives something of an NVT or NVP and NVE hybrid: 7 and P fluctuate, and the system does not
behave as a true NVT or NVP ensemble in the thermodynamic sense. But on average 7 and P have the

desired value. In true NVT or NPT algorithms it is possible to have T and P have exactly the desired
value, and the simulation directly corresponds to the thermodynamic ensembles.

* Temperature scaling

» Trivial scaling: force during every time step the system temperature to be exactly 7. This may be a rather
severe perturbation of the atom motion especially if there are only a few atoms. It suppresses the normal
T fluctuations, and does still not correspond to a true NVT ensemble. But the error in ensemble averages
usually is O(1/N) so with a large number of atoms one may get away with it.
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Algorithms for simulating ensembles

* The Berendsen method: essentially a direct scaling but softened with a time constant. [Berend-
sen et al. J. Chem. Phys. 81 (1984) 3684].

+ Coupling to heat bath, Langevin dynamics: mv = F —m<yv + R(¢)
« Global coupling + local noise

dE
* Replace the local noise by its average behvior in i

= (g_D b 10T

TO
> my = F+my(7—l)v

e Let TO be the desired temperature, Az the time step of the system and T = 1/27 the time constant of the control.
In the Berendsen method in order to change the temperature in one timestep by 2yAt(T0 -1 = ﬁ—;( T0 =T) all
atom velocities are scaled at every time step with a factor A, where

- [E B
T
* Note: if 1> 100A¢ then the system has natural thermal fluctuations about the average.
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Algorithms for simulating ensembles
« The derivation above lacks a factor 2.

* Let’s write the temperature behavior as % = TL(T0 —T). From this we can solve 7(¢) as
T

T(t) = Ty+ (T, Ty)e ™7, where T, = T(0) is the initial temperature.
» On the other hand when we scale velocity v — Av the change in the internal energy is 0E = (kz - 1)%NkBT,

* Now the heat capacity is CV = 2—? From this and from the differential equation of the temperature we get

oT _ —l—(TO—T) =0T = §—t(T0—T).
o  Tp Tr
sp (2= D3NET
* From the definition of heat capacity we obtain CV = ST = 5
_(T()_T)
tr

2C)0t (T,
« By solving A from this we get A2 = ———-(— - l) +1.
3kgNt,\ T

* Let's make the bold assumption that the heat capacity is given by the Dulong-Petit law: C}, = 3Nkg

1. Ideas for this derivation are from Kalevi Kokko’s lecture notes at http://vanha.physics.utu.fi/opiskelu/kurssit/XFYS4416/
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Algorithms for simulating ensembles

« Finally we obtain the expression for A.:

A? = 2—5’(;0—1)“. (**)

T
T
* As we shall see in exercise 7, this is the right expression in the sense that it reproduces the behavior dictated by the
. dT 1
equation — = —(T,—-T).
a dt 1 (To=1)

T
« Effect of parameter Tpon time development of T

700
600
FCC copper
— no scaling Morse potential
< 900 1 —1.0ps 1
&~ — 0.3 ps
400 0.1 ps
300 A\J\\A}J’\f\ m l‘—/\\,/ WV ,‘QWJ \(\,u‘ A(,M/\\\,, \/ J\QWW
200 L 1 L
0 1 2 3 4
1 (ps)
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Algorithms for simulating ensembles
e ...and on T fluctuations
7 (fs)
1000 30 10 2
9  p— T
- 9 T T T T
8 F 8 I N - -
L . simulation
7k r 1 time = 50ps
6 - -
6 _ 5F - _ first 10ps
L 4+ ] i skipped
)
< st o 1 -
S L 2 L i o
l.'f; 4 F s 1 7
B 0 d 1 d 1 h
3r 12 5102 5102 51002 51002 5100 7
2 7 (fs) _
1 -
0 [ 1 L 1 1 | 1 1 L | L 1 ]
0.0 0.1 0.2 0.3 04 0.5

/7y (L/fs)

> : simulation for Ty = o, i.e. no temperature control
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Algorithms for simulating ensembles

* Pressure scaling (Berendsen)

* Pressure is put to a desired value by changing the cell size.
« If the desired pressure is P0 and Tp is the time constant, the scaling factor is

n = 3/1—%%’(P0—P>

where [ is the isothermal compressibility of the system = 1/bulk modulus.

« B only occurs in the division over the time constant Tp it is just a factor which makes the typical time constant values

roughly independent of the material.

« Scaling implemented by changing all atom positions x and the system size S every time step
x(t+At) = ux(¢)
S(t+ At) = uS(¢)

+ Also the system volume ¥ changes:
3
V(t+At) = W V(e)
* Pressure scaling done after the solution of the equations of motion

* 1,> 100A¢
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Algorithms for simulating ensembles

* Another (better) way to derive u:

P _ 1., .
Wewanta = ‘CP[PO P)] (%)

* Volume scaling V' — u3 V. Definition of compressibility: § = —Il/g—g = g—j; = —%3.

P _dPdr_ 1@ -1Hr _1-u3

* Now = :
Vu T ard Vg At BA¢

RTE
* From this and (*) we get 1-p” L[PO — P(?)], from which we solve LL:
BAt Tp

wd = 1-BAp _py)
Tp
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Algorithms for simulating ensembles

« Effect of parameter 1,

18.9
18.8 |
* The Berendsen scaling can be used to
control 7 and P. If the system is in 18.7 ¢
equilibrium the total energy E should 18.6 |
still be conserved, but if phase transi- 0518 5| — 1.0ps
tions, such as melting occur, E does S 8-? Ez
not necessarily stay conserved until 18.4 | '
equilibrium is reached again. 183
18.2 |
* In the Berendsen method P, 7', V' and 181 . . ‘ .
E ot all fluctuate, and because the 0 1 2 3 4 5

time constants 1 have to be fairly large
it can take quite a while to reach a
desired pressure or temperature.

* But in equilibrium and with large enough time constants, the method gives quite realistic fluctuations in T

and P. And it is almost as trivial to implement as direct scaling. Hence it is much to be preferred over
direct scaling.
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Algorithms for simulating ensembles
* True NVT algorithms

* The Andersén method [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)].

* Give the atom with some probability a new velocity which corresponds to a desired heat bath temperature

T

* Physical interpretation clear: connection to external heat bath

« Suitable for calculating thermodynamic averages, but not for looking at atomic processes in detail, since
the random velocity is obviously an unphysical perturbation on the motion of a single atom.

* Nosé-Hoover-method [W. Hoover, Phys. Rev. A 31, 1695-1697 (1985).]

+ A fictional degree of freedom s which has its own kinetic and potential energy is added to the system, and
this degree of freedom controls the temperature. The system total energy, i.e. Hamiltonian:

_ P 02
H = Zz—ml +V(q,)+ 5Py + gkTlns

1

where p_is the momentum associated with the degree of freedom.
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Algorithms for simulating ensembles

* Now the Hamiltonian equations of motion become:

. . . dp, P;
— = _— = ., et = — —gkT |/
at  m; dr dg, TP @ (Zml ghT)/Q
1
» These can be solved with some suitable algorithm.

* O is afictional mass related to the extra degree of freedom, which describes the rate at which the temper-
ature changed.

* Nosé suggested O ~ ngT where g is the number of degrees of freedom in the system, typically 6 N. For large Q the

connection to the heat bath weakens, and for small QO the energy £ may oscillate too much.

* Nosé-Hoover chains [Tobias, Martyna, Klein, J. Phys. Chem. 97 (1993) 12959]

* Also control the new degree s of freedom with another Nosé-Hoover-algorithm and so forth, i.e. form a
chain of these.

* At least in simulations of proteins this can give a very good temperature control.

» “Massive” Nosé-Hoover-chain: add a Nosé-Hoover thermostat chain to every degree of freedom (!)

« Advantage: as Nosé-Hoover, but in addition very efficient in equipartitioning the energy and thus getting the system
into equilibrium. Disadvantage: even more coding

Introduction to molecular dynamics 2015 6. Different ensembles 37

Algorithms for simulating ensembles
* True NPT algorithms

* Andersén pressure control [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)]

* The cell size V' a dynamic variable, but the system shape may not change. The size is controlled by a fic-
tional piston which has a mass Q (in units of m/I4). The kinetic and potential energy of the piston are:

E

1.2
kianiQV and E PV

potV -

and if the atom positions r and velocities v are written in reduced units s such that » = V1/3s and

v = V1/3$ we get the equations of motion

173 3V
mV
i Pt—P
0

where f are the forces acting on atoms, P, is the momentaneous pressure and P the desired pressure.
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Algorithms for simulating ensembles
* Parrinello-Rahman-pressure control [Parrinello and Rahman, J. Appl. Phys. 52 (1981) 7182]

* This method also allows a variable simulation cell shape, that is, the angles between the axes do not
have to be 90°.

* The cell size and shape is given by vectors a, b and c. If we form a 3 x 3-matrix h out of these the atom
positions r can be written in the form
r = hs.

where s is an ordinary vector.

* The equations of motion can be derived to be:

av 1 G.
s __Zdrmr i_f)_és

= (P—pl)c—hE

where G = hTh, ¢ is a tensor which defines reciprocal space, and P is the generalized 3 x 3 pressure

tensor:
my.v, 1 du
Z 22 dn, i |
1 j>i
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Algorithms for simulating ensembles

» The diagonal elements of P are the pressures in x, yand z, the other elements are shear elements.

» The hydrostatic “ordinary” pressure P = (trP)/3 = (P + Pyt P33)/3.
* ¥ is a quantity which depends on the external pressure tensor S:
-1 T-1
Z=hy (S-phy Q
where h, and Q, are the original (reference) shape and volume of the system.

* I is a fictional “mass” which is used to control the rate of change of the pressure (compare with Q in the
NVT algorithms above).
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Algorithms for simulating ensembles

* This allows us to simulate a system which changes shape, for instance a cubic to hexagonal phase trans-

formation.
SR e
] a
f : q i ’
| - 5-7 b{ , e
("™
2 = b
U g -
E - Helx10™ kg [RERNT
o1
I i)
Fig. 7.3 Changing box-shape. U Il 1/ Aﬂj\p \[\A/ l\/\/\/\/\/\/\/\/\/ E
Source: Allen-Tildesley §
=] [ T
- =
. We5x 207 kg PR R g
* An example of the effects of the mass il l
parameter Q:A Lennard-Jones-system ) U
(Ne); T=0.1 K; constant pressure-MD: z , ‘ S
0.g 200.G 400,0 60G.0 800.0 100.0
AIKA (At)

Kuva 4.1  Massaparametrin W vaikutus paineen fluktuaatioi-
hin. Aika-askeleen At pituus on eri ajoissa vaih-
dellut valillg 30 ~ 40 fs. t, on painevédrdhielyn ly-
htmmidn jakson pituus.
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Algorithms for simulating ensembles
* uVT-methods

» Chemical potential pu stays constant, number of atoms fluctuates

* Rarely used in MD, more often in MC simulations where it is more natural to add and remove atoms from
the system.

* An alternative to adding or removing atoms is to add or remove “control volume”.

* In condensed matter simulations the problem is that just adding an atom on a random place can easily
lead to completely unphysical configurations.

* Also adding or removing control volume without distrorting the system state too much may be tricky.

* If you need this, see e.g. [Lynch, Pettitt: J. Chem. Phys. 107 (1997) 8594] or [Heffelfinger, J. Chem. Phys.
100 (1994) 7548].
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Algorithms for simulating ensembles

 What 7 and P control to use?

* For T or P scaling: Berendsen is fast to implement, and does work well provided the time con-
stants are large enough.

If one wants accurate T control or needs to do NVT thermodynamic averaging, one of the Nosé-
Hoover methods is probably best

For orthogonal box NPT simulations: Andersén

If one wants needs to deal with shear pressure or changes in crystal structure = Parrinello-
Rahman
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Other types of MD simulations

* Non-equilibrium MD (NEMD)

» Any MD simulation of a system which is not in thermodynamic equilibrium.

» Usually some perturbative term is added to the equations of motion.

* For instance for simulating viscosity, heat conductivity and atomic diffusion there are special NEMD algo-
rithms.

* At its simplest, the perturbation can be an external force acting on some of the atoms.

» The external force heats the system up, which can be compensated by temperature control.

* Brownian dynamics or Langevin dynamics

* Random forces are let to act on some atoms some of the time. This can be useful e.g. in speeding up
infrequent events.

* This can also correspond to e.g. a large protein molecule in a liquid solvent. If the protein atoms do not
react with the solvent atoms, and the solvent atoms are not interesting in themselves, their effect on the
protein can be thought to reduce to random Langevin forces.
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Other types of MD simulations

e Multiple time step methods

* In these methods the simulation is sped up by using different time steps for different atoms or parts of the
system.
* A simple example of where this may be useful: a molecule which has light and much heavier particles.

The light particles move much faster, so their motion can be simulated with a short time step At, and the
heavy ones with a longer time step Az, .

* Another possibility: count near interactions acting on atom / with a short time step Az, and those farther
away with a longer one Az, . In here, we assume the movement of the atoms far away is so small that they

do not move significantly with respect to atom i during the shorter time Az, .
* MD far from equilibrium

* Many processes of modern interest involve physical interactions which occur very far from thermody-
namic equilibrium.
» E.g. two nanoparticles colliding in vacuum, or an energetic ion from an accelerator hits a material.

* In both cases very violent interactions occur over ps timescales, and the surrounding medium does not have time to
equilibrate the system into anything close to thermodynamic equilibrium during the time when the interesting pro-
cesses occur.

« Simulating such a system is simple: simply use ordinary NVE with no 7 or P scaling.

* But watch out for possible finite size effects!
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Other types of MD simulations

* An example of NEMD: heat conduction in crystalline and amorphous Si [von Alfthan et al., MRS Sympo-
sium Proceedings, 703 (2002) V6.2.1]

« Straightforward way: impose a T gradient = heat flux J = &k = —J/g—z.
« Problems: large fluctuations in J => large d7/dx needed.
c-Si a-Si ¢-Si
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Other types of MD simulations
» Another way [Muller-Plathe, J.

Chem. Phys. 106 (1997) N R AR
6082.]: impose heat flux by =T 1 ol
exchanging particle velocities 3sr 1 ast
between hot and cold parts of 23w 1 sief
the system ws| 2. 1 b
* Flux ‘exact’, controlled by ool : o T
exchange interval e - crystaline s10F
* dT/dx's for different simula- S E— A 1@(;0 S0 20 0 0 20 40 aslo 0 100 120 0 20 40 Qslo 50 100 120
tion system sizes: (a) (a) e ®) r © Sl
L, =296 A, L, =100 A,
d=32A
(b) L, = 187 A, L, =38 A, * Results for c-Si size dependent, moreover experimental
d=16A k, = 160 W/mK !
(c)L,=187A,L, =38A, + Phonon mean free path in c-Si ~ 1000 A
d=132A * Results for &, reasonable.
* No thermal boundary resistance observed.
System | k, (W/mk) | k_ (W/mk)
(a) 0.93 13
(b) 0.85 9
() 0.80 15
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Molecular dynamics 2015

Exercises 7 to chapter 6: mdmorse : T control
return date Wed 29.10., exercise session Fri 31.10. (Note the exceptional times due to mid-term break.)

1. (10p) Simulate the distribution of the velocity v of atoms in Cu at 300 K. Make a histogram

of the velocities obtained, and compare with the analytical Maxwell-Boltzmann distribution
[see e.g. Mandl, Statistical Physics, 2nd ed., equation 7.59a]. Plot the simulated and analyt-

ical distribution in the same figure, both using a linear and logarithmic scale on the y axis.
Comment on the agreement of the two distributions.

Hint: use the actual (rather than desired) average temperature of your simulation run in the
comparison.

Return the exercises as the plots or data requested (in ps or png format) and an answer to the
questions asked.

2. (10 p) Implement Berendsen temperature control into mdmorse.
Use the readin parameters bt ctau and desiredT for this. The first one is the tempera-
ture control time constant, and the second one the desired temperature towards which the
temperature is taken. Implement the change so that the control is not performed at all if
btctau=0.
Test the control by simulating morse Cu with the default inputs but using

desiredT=0.0, initialT=300.0 and btctau=1000.0.

How long does it take until the cell temperature has decreased below 10 K? How about
when running with btctau=100.0?

Return the exercise as the modified subroutines and answers to the questions.



Molecular dynamics 2015

Exercises 8 to chapter 6: mdmorse : P control
1. (12 p) Implement Berendsen pressure control into mdmorse.

Use the read-in parameters bpctau, desiredP and bpcbeta into the code. The first
one is the pressure control time constant T, the second one the desired pressure P, towards
which the pressure is controlled, and the third one the compressibility B (1/bulk modulus)
of the material. Implement the change so that the control is not used at all if bpctau=0.
Implement a pressure/virial calculation in the force routines, and then the control in the
main routine. Use kbar as the external pressure unit.

Return the modified subroutines. Mark the pressure-related modifications in the code with
comments with the string “bpc”.

Test your code in the following way: Set 7 = 300 K and P = 0. Find the equilibrium box
size for the system by simulating 10 ps and using T, = 300 fs and T, = 300 fs. Then per-
form two simulations where the box size (in file mdmorse . in) and the coordinates of
atoms (in file atoms . in) are scaled 2% up and down (i.e. scaled by 1.02 and 0.98) from
the equilibrium values you obtained from the first simulation. If your code works then all
the three simulations should yield the same final box size and the instantaneous pressure
fluctuating around zero. If your system explodes try using a longer time constant Tp.

Return figures of the box size and instantaneous pressure as a function of time for all three

simulations.

2. (8 p) Determine the thermal expansion coefficient of our copper model near NTP by simu-
lating the system in constant pressure P = 1 atm = 0.001013 kbar ! and at temperature
range 200-400 K for 10-20 ps. Use the canonical value 5.0 A for cut-off radius. Remember
that the thermal expansion coefficient (in constant pressure) is defined by

= 1)

As always, when calculating averages from simulation data check how many points you
have to skip from the beginning before starting to collect the average by plotting e.g. the
system volume as a function of simulation time.

Compare your result to the literature value.

Return the curve a,(T) as a figure, explanation how you got o, and of course its value.

1. Well, the results for P = 0 and P = 1 atm = 0.001013 kbar are practically the same.
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Atomistic interaction models

* The true interaction energy between N nuclei and 7 electrons could be obtained by solving the

Schrédinger equation for the system compris
» Assumes: interactions between the nucleons

ing the N+ bodies.

Almost always true

neglected
* This is also assuming relativistic effects can be Not always true for heavy elements
ignored
* Time-dependent Schrédinger _ N
equation: dynamics without MD Model Type Scaling max
alogrithm Full solution of quantum mechanical, N 1
Schrédinger equation ab initio O(e )
* But solving the full equation is HF (Hartee-Fock) qzantum mechanical, O(N4_ 8) 50
_ o
extremely expensive computa- ap i o
tionally, and hence one always
: DFT (density functional  quantum mechanical, 1000
has to _reso_rt to various levels of . not always ab initio ON)
approximation O(N)

' TerrT ab initio” or “first princi- TB (Tight-binding) quantum mechanical . 1000
ples” much used in this context (often semiempirical) O(N) 10000
to mean methods with no empiri- O(N)
cal input MBP (Many-body poten- classical, semiempirical O(N) 108

« But may have several, even dubi- tial)
ous, approximations! PP (Pair potential) classical, semiempirical O(N) 109

* semi-empirical= some empirical
input used in choice of parameters
or model
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Atomistic interaction models

* O(N) variants of all classes of methods
» The quantum mechanical O(N) methods new = work (so far) well only in a limited set of problems

« Prefactor in the efficiency, i.e. the factor 4 in speed=4 xN* for an O(N") method.
* A rule-of-thumb:
A

Arg = 100 x4y mp

App orpgp = 100X 4 pg

MBP ~ 3 X4pp

* Quantum mechanical models (HF and DFT): ~ 100 atoms = e.g. small molecules, bulk proper-
ties of common phases, and point defect properties.

» TB, a minimal quantum mechanical model works well in a few materials (e.g. C, Si, Ge) but is
problematic in many others.

* Classical models: possible to simulate very large systems, such as large protein molecules, 2-
and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc.
* No information on the electronic properties of the material.
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Atomistic interaction models

» This chapter is a short overview on the methods; more information on other, specialized
courses on the subject
* A huge topic in itself! Mainly outside the scope of this course

* Literature:
* R. Phillips: Crystals, Defects and Microstructures, (Cambridge University Press, 2001), Chapter 4
* A. Sutton: Electronic Structure of Materials, (Oxford Science Publications, 1996)
* M. Finnis: Interatomic Forces in Condensed Matter, (Oxford Series in Materials Modelling, 2003)
* R. M. Martin: Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press,
2004)

* There is a large number of review articles. A good one for those who do DFT calculations but
are not quite experts in the field is

Designing meaningful density functional theory calculations in materials science—a primer
Ann E Mattsson et al. Modelling Simul. Mater. Sci. Eng. 13 (2005) R1-R31.
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Overview of quantum mechanical models
* A system of N nuclei and 7 electrons with coordinates r, (»
» Schrodinger equation

HY = EY
* Hamiltonian operator H

N5, ) T
h__ 9 ) 1 e
H__ZZMnF_Zz_ma? +§Z Z‘—r—‘ (7.1)
nl v 1! i v o Tl ’
) Z,,,e2 1 anlez
Z_: ; i 2 Z Z_: L
n=1i=1 I=1n=1

- T1’1+TC+VGC+VI’IG+VHH

* Here:
. Tn and T‘3 are the kinetic energies of the nuclei and electrons, respectively.

. Vee, Vne and Vnn are the electron-electron, electron-nucleus and nucleus-nucleus Coulomb interactions =

Schrédinger equation.
(Tn+ TtV tV,et Vnn)‘P = E¥Y (7.2)

« ¥ is the total wavefunction of the full nucleus-electron system.

Introduction to molecular dynamics 2015 7. Quantum mechanical potential models

Born-Oppenheimer approximation
» For any given configuration of the nuclei one can assume that the electrons find their ground

state before the atoms move significantly.
* Classical simulations also based on the Born-Oppenheimer approximation: interatomic potentials do not

depend on the atom motion.

* Mathematically: the wavefunction ¥ is separated into a product

Y=y(nrm(n),

* y(n, ;) is the electron wave function, which is a function of the positions of the electrons r; and the posi-

tions of the nuclei n
* 1n(n) is the wave function of the nuclei.

*y(n,r;) fulfills the wave equation

{T AVt Vo tW(nr) = E (n)y(n,r) (7.3)

where V. is the nucleus-electron potential of the original Hamilton operator.
» Solution of this gives the electronic total energy of the system as a function of the positions of the nuclei.
 Can also be used to give the forces acting between atoms = atom motion can be simulated using the classical MD

algorithm (ab initio MD)
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Hartree-Fock methods

* In the Schrddinger equation (7.3) the most difficult part is the electron-electron interaction
2
e

Vee - ZZ‘T‘
i J

y

» The basic solution in Hartree-Fock (as well as in DFT) is to create some sort of average elec-
tron density with which every electron interacts independently:

Vee - ZV?V
I

» Pauli exclusion principle: a Slater determinant of one-electron wave functions

O (r) ¢04(ry) e 0y(ry)
Oy(r) 0y(ry) . dy(ry)
‘{I(rly l'2, ’ rN) =
Op(ry) Op(ry) oo Op(ry)
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Hartree-Fock methods

* Hence the Schrodinger eq. for electrons reduces to an equation to get a one-electron wave
function ¢.:

v
S (T i Ve i T Vi WXy x,)) = EW(x ), xg, s x,)
)

(T i ™ Vhe,i ™ Vi0,0r)) = Fo,(x)) = £,0,(x))
where F is the so called Fock-operator. The equation is the so called Hartree-Fock equation.

» Thus the new central problem becomes to find a good form for the average potential V?V.

* Iteration: initial guess for the wave functions ¢,, plugged into the equation, solving to get a new ¢, , and

keeping on iterating until the solution does not change any more, i.e. until a self-consistent field has
been found (HF-SCF).

» The eigenvalues of the energy have a clear physical interpretation: ionization energy of the
electron

» The SCF method fulfills the variational principle:

* The eigenvalue of every inaccurate wave function is larger than that of the most accurate one.
* So the smallest found energy is also the ‘most correct’ one.
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Hartree-Fock methods

* The molecular orbital (MO) of every electron ¢. is written as a sum over atomic orbitals (LCAO -
Linear Combination of Atomic Orbitals):

¢ = > Ciuky
M

* In the most straightforward approach the basis functions Xy can be so called Slater type orbitals (STO)

Ryg = Nle—Cr
X = R(F)Ylm(ea q))’ C_,
R, =R d

25 = Nzre

2p
which somewhat resemble orbitals of the hydrogen atom:
Y, (7,0, 0) o< e/ 2(0r) L2 (ar) Y8, 0), o = 2Z/nay, ay = h2/me>.

* Integrating these STO orbitals is numerically difficult, however.
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Hartree-Fock methods

» Computationally it is much more favourable to use Gaussian-type orbitals (GTO)
GTO —ar’
x (n=e
because a product of two Gaussians is a Gaussian:
2 2 2
e—(x|r -R,| e—B|r -Ry|” _ KABe—y|r -R(| ,

Y= o+f,
:ocRA+[3RB
C a+l3 ’
af
3/4 ——LE|R, —R,|?
KAB:[ 2oc[§ } . Y|A B|
(o +p)

* But real electron wave functions are not Gaussian in shape = use a sum of GTO'’s to describe the wave function:

STO GTO
X =D kX,
v
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Hartree-Fock methods

* An example of an STO and how it can be approximated with one or more GTO’s. One GTO only
is not very good, but 4 GTO'’s already are quite close.

4GTO
3GTO

2GTO N,

1GTO |~

A.R.Leach, Molecular Modelling

| J

* The most popular basis function sets {y ! are the Gaussian functions developed by the group of
J. A. Pople (Nobel prize in chemistry 1998):
* In the so called minimal basis set there is one orbital for two core electron orbitals, and one orbital for
each valence electron. Every STO is replaced by a sum of N GTO-functions (STO-nG). The most com-

mon minimal set is the STO-3G set.

» To improve on the results the basic approach is to increase the size of the basis sets. In the so called
“Double Zeta” set there are twice as many orbitals as in the minimal set. If the doubling is made only with
valence electrons (which are usually the most interesting ones) one obtains the “Split Valence” set of

basis functions.
* In the so called 3-21G set the first row elements have 3 GTO'’s for 1s electrons, 2 GTO'’s for 2s, 2p and so

forth electrons, and the extra valence electrons are described by one GTO. This set is quite popular now-

adays.
* Other even larger basis sets: 6-31G, sets which have polarization functions, etc. etc.
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Hartree-Fock methods
» Limitations of the basic Hartree-Fock method

» The method does not at all account for electron correlation, that is, the correlation between the momenta-
neous motion between electrons. This energy is usually only of the order of 1 % of the total, but can
sometimes be comparable to the total binding energy of the system and hence quite significant. Several
methods have been developed to take this into account:

* In the Configuration Interaction (Cl) method a linear combination out of Slater determinants is formed. This is a very
good approach, but unfortunately also very slow.

* In Mgller-Plesset perturbation theory a perturbation series is made out of the error in the correlation energy. The most
popular approach is MP2, which takes into account the lowest-order correction.

* In Multiconfiguration SCF (MCSCF) a small Cl term is included in the HF iteration.

Introduction to molecular dynamics 2015 7. Quantum mechanical potential models 12



Density functional theory

* Density functional theory (DFT) is one of the most widely spread method to calculate elec-
tronic structure in materials.

» Because it is computationally more efficient than HF, it has become especially popular among solid state
physicists who need many atoms to describe a solid.

» Starts with the Schrddinger equation for electrons

_ - " + Z z e 2+ Ve (¥ (n,1) = E (n)¥(n,x) O

Z(Te+ Vee ¥ Vo)V = EY

1

where v is the so called external potential acting on the electrons due to the nuclei.
* The basic idea of DFT: instead of manybody wavefunction ¥({r,}) use electron density n(r)

* Only need to calculate a scalar function of one vector variable not 7 vectors
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Density functional theory

* DFT is based on the Hohenberg-Kohn theorems [Hohenberg and Kohn, Phys. Rev. 136 (1964)
B864]:

Theorem I: For any given set of electrons which are in an external potential 7_, , this potential is
determined uniquely, except for a trivial additive constant, from the electron density n(r).

Corollary I: Because the system Hamiltonian is thus fully determined short of an energy shift,
the electron density can be used to fully derive the many-particle wave function and thus all
desired system properties.

Theorem II: It is possible to define a universal functional for the energy E[»] depending on the
electron density n(r). The true ground state energy is the global minimum of the energy func-

tional, and the density »(r) which minimizes the functional is the exact ground state density.

Corollary II: The functional E[#] is enough to determine the true ground state energy and elec-
tron density. Excited states must be determined by other means.
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Density functional theory
* Kohn-Sham ansatz [W. Kohn and L. J. Sham, Phys Rev. 140 (1965) A1133]

[see http://www.fysik.dtu.dk/~bligaard/wwwdirectory/phdthesis/phdproject.pdf]

* The idea of the ansatz is that the original, complicated Hamiltonian can be replaced by another Hamilto-
nian function which is easier to solve. This effective Hamiltonian describes non-interacting “electrons” in
a system which is assumed to have the same density as the true system with interacting electrons.

* To put it in another way: We assume that there exists a system of non-interacting electrons that produce

the same electron density n(r).

* The orbitals w,(r) of the non-interacting electrons are called Kohn-Sham orbitals.
* Apply Hohenberg-Kohn variational principle to the Kohn-
Sham orbitals = the Kohn-Sham orbital equations
E[n] =T [n]+2”

where 7,[»] in now the klnetlc energy of non-interacting elec-

Note that the Hartree atomic units are

n(l‘)n(l‘) '
drd’r +_[Vext(r)n(r)d r+E [n], used here:e = m = # = 4me; = 1

trons.
* All the problematic terms are collected under E  [n]:

error in the kinetic energy: T[n]— Tyln]

error in the Coulomb interaction between electrons: E e 2”n(r)n(r )d d r

correlation and exchange energies (quantum mechanical effects).
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Density functional theory

* What we have gained here is that the above terms in £, . are (usually) small corrections and can be cal-
culated in an approximative way.

* The variational principle gives then

oF
—851—”1 - 0= (— v2iy ff(r)) W,(r) = ey (r)
where i runs over all electrons, g; is the Kohn-Sham eigenvalue of electron i, and the effective one-parti-

cle potential is:

SEXC[n(r)]
Veff(r) = Vext(r) + q)e(r) + T(r)

* Here V., is the external potential and
N

0r) = [ Th, nr) = 3 fu(r)]?
i=1
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Density functional theory

* Pictorially this can be presented as’

Real system Independent particle system
HK HK,
Vst (1) | < | 715(T) ny(r) |V (T)
¥.({r}) ¥o({r}) () (1)

1. Adapted from R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 2004), Fig. 7.1
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Density functional theory

* If the exchange-correlation energy is known, these equations can be solved by self-consistent
iteration
* Note, however, that the Kohn-Sham orbitals and their eigenvalues ¢; do not have a clear physical inter-

pretation. There is no guarantee that they have any relation to real electron energies and wave functions,
but it appears that they are in fact a surprisingly good approximation of the real electron properties.

* Local density approximation (LDA)

» So far the DFT approach has not made any approximations.
+ To obtain the exchange-correlation functional Exc[n] the local density approximation, (LDA) is used:
E_[n] = jdrn(r)sxc([n],r)

where 8XC(n(r)) is the exchange and correlation energy of a homogeneous electron gas per one electron.

» The exchange functional can be as simple as (Dirac LDA)

LDA 33173 4/3
Ex, Dirac _Z(r_) J-n(r) dr
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Density functional theory

* Once an exchange and correlation energy for a homogeneous gas is introduced (several exist),
the equations can be solved with an iteration process:
1) Start with some 7 _¢(r).

2) Calculate the one-electron wave functions y; = new density »(r)
3) New n(r) = new ¥ g(r).
4) Repeat steps 2 and 3 until we have obtained a self-consistent solution.

» Spin in the exchange and correlation term: local spin density approximation, LSDA.
* DFT-LDA results compared with experimental data:
1) Generally too large cohesive energies for solids
2) Too large total energies for atoms
3) Too small energy gaps for many semiconductors (LDA actually predicts zero gap for Ge!).
4) Unstable for negative ions and gives a too diffuse electron density.
» To improve on the accuracy of DFT people have introduced exchange-and-correlation function-
als which also depend on the variation of the electron density:
E  In(r), dn(r)].

» There are numerous of these so called Generalized Gradient Approximations (GGA).
* In practice there are a large number of GGA's around, and people choose one which for some reason has been “found
to work well” in their system. This gives a semi-empirical character to the methods, i.e. they are not pure ab initio

* The DFT solution method does not restrict the way we express the Kohn-Sham wave functions.

* Below are given two nowadays common ways to build the basis sets used in DFT calculations:
plane waves and atomic-type orbitals.
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Plane-wave methods

* In plane-wave methods the basic algorithms are as in DFT but:

* The outer valence electrons are described as a sum : —
of plane waves: Search for wave functions — search for coefficients

Nl
K, -
V= ShKpe

l
where the wave vectors K; are chosen to that they have the same periodicity as the simulation cell.

» Any shape of the electron wave functions can in principle be described with this sum provided the sum
has enough terms N, .

* Names of some common plane wave methods:
- APW = Augmented Plane Wave
- LAPW = Linear APW
- FLAPW = Fully LAPW
- SAPW = Spline APW
- OPW = Orthogonal Plane Wave

» The main measure of the accuracy of plane-wave methods is the number of plane waves used to
describe the system.
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Plane-wave methods
* Examples of results of DFT / plane-wave calculation results:

Atomization energies of molecutes (eV).

Molecule HF LSD PW31 ' Expt.
C,° 0.73 7.51 6.55 6.36
CeHg® 4519 68.42 61.34 59.67
H," 3.29 4.65 452 4.49
H,0" | 5.71 11.00 959 951
0,° 1.25 748 593 5.12

*From [19], using a basis set of 18 s-type, nine p-type, and
four d-type single Gaussians on each atom. For C, and
CeHg. the zero-point vibrational energy has been omitied
Lrom the calculated and experimental values.

PWI1, wusing a triple-zeta valence plus polarization basis
set, and Expt. are from [38]; 1r, using a 6-316* basis, from
[[28]]; and tso, using a basis-free numerical method, from
23]. '
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LCAO methods

21

* In the LCAO (Linear Combination of Atomic Orbitals) method the basis set consists of orbitals
localized around each atom in the system.

» Compare with plane waves that are as non-localized as possible.

* Orbitals can be obtained from quantum mechanical atomic calculations. (Or pseudo-atomic; see below)

* The accuracy is not so straightforward to adjust as in the plane wave method.
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Pseudopotentials

* In most cases the filled inner electron shells of atoms do not
have any effect on the behavior of the system. A

* The idea is to remove the core electrons and the strong
nuclear potential and replace them with a weaker pseudo-
potential.

* Outside some cut-off radius r the pseudo wavefunctions

and the pseudopotential are indentical to those of the real
atom..

~Y

» The counterpart to pseudopotential methods are the all
electron methods.

* Pseudopotentials are commonly used with DFT calculations
both with planewaves and atomic type orbitals.
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Pseudopotentials
» Results for the lattice constant a and bulk modulus B for C and Si:

Examples of Results - Diamond Structure

Carbon Silicon
a(d) B{Mb) a(A) B(Mb

Experiment 3.56 4.42 543 099
Ab inftio Pseudopotential .

Yin, Cohen, 1980-2 3.60 4.33 - 545  0.98

Biswas, et. al., 1984 3.54 4.94 - --

Nielsen, Martin, 1983 -- - 540 093
LMTO

Glotzel, Segall, Andersen, 1980  3.53 4.90 5.41 0.98

McMahan, 1984 3.55 ‘4.64 545 095
LCAO ’

Harmon, Weber, Hamann, 1982 - - 5.48 0.87

* So it is quite possible to obtain the quantities to an accuracy ~ 1 %.

e Car-Parrinello MD

* The Car Parrinello method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] is a method where
the electron and atom motion is updated at the same time. The method has become very popular
because it is highly efficient and can also be parallelized well.
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Example of scaling of a DFT calculation

« CPU time usage of a SIESTA! calculation:

* Si with simple SZ basis set.

« CPU time for one energy calculation 5000 - T
(~ time step). 4500 F i
b
r fopu = a Ny '
« Simulations by E. Holmstrom. 4000 I 7
—_ - —— fitall N, b=2.5+08 1
£ 3500 ' —— fit: Ny > 500, b=12.8+0.3 .
= L
751
E 3000 [ -
o — 2500 7]
g s
~ 2000 -
E L
O 1500 .
1000 .
500 -
0 [ L L L N 1
0 200 400 600 800 1000
N at
1. Spanish Initiative for Electronic Simulations with Thousands of Atoms.
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Commercial HF and DFT programs

* In practice, a large fraction of modern HF, DFT- and empirical simulations are carried out with
commercial codes.

* In commercial codes, the algorithms are typically 5-15 years or old. This is a mixed blessing: the state-of-
the art methods may not be available, but on the other hand the algorithms in there are usually well
tested. Roughly speaking especially the methods favoured by chemists have moved over to commercial
codes, whereas physicists tend to stick to their own or non-commercial codes.

» The commercial codes have flashy and easy-to-use graphical user interfaces. This is good in one sense,

but also makes the risk to do garbage in—garbage out kinds of simulations very large. So don’t blindly
start using a commercial code, you should understand its inner workings and the physics in there first!
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Commercial HF and DFT programs

e HF-codes:

» Gaussian The code deriving from Poples work. Very popular and versatile code.
Nowadays also a DFT version is part of the package.
* TurboMole

 DFT-codes
« CASTEP Plane-wave DFT code, commercial

- DMol®  DFT code based on numerical basis sets, rather than Gaussian Sets

* VASP  Semi-commercial plane-wave DFT code developed in Vienna. Very widely used.
http://cms.mpi.univie.ac.at/vasp/

* Quantum Espressohttp://www.quantum-espresso.org/
Open Source, Free

* GPAW Python-based code, under active development. Real-space, scales well.
https://wiki.fysik.dtu.dk/gpaw/

* SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)
- Home page: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/
- A fully self-consistent O(N) DFT code. Uses LCAO basis sets.

- Source code available, can be used as a force routine in your MD code (parcas_siestal)
- Free for academic use.

e Other important stuff
* Insightll The graphical user interface of Accelrys Inc., from which most codes of Accelrys
and some non-commercial codes such as DMol and Gaussian can be run.
http://www.accelrys.com
* See also http://electronicstructure.org/
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Tight-binding methods

[Main source: Foulkes et al., Phys. Rev. B 39 (1989) 12520.]

* Tight-binding (TB) models can be considered “minimal” quantum mechanical models. They
are most often semi-empirical, and the quality of the results varies a lot. At best, one can
achieve results comparable to DFT with a 100 times less computer capacity, at worst they are
no better or even worse than semi-empirical models but a 100 times slower!

* In semi-empirical TB one starts with the assumption that total electronic energy £ can be written
as

N

1

£= T ety Uy
i=1 i J

where U is a repulsive classical pair potential acting between the atoms, and the ¢, are eigen-

values of some self-consists Schrédinger-like equation,

iy ) = [ 372+ 70 i) = )

* This resembles the DFT formalism, and can be derived with various approximations.

* The eigenvalues ¢; are negative, and the repulsive energy positive. U(r) is either constructed
by empirical fitting to give the desired total energy, or derived from DFT.
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Tight-binding methods
» Bonding of Hy

* Wave function: |y) = a;[0,) + a,[0,)

» Schrodinger equation
Hly) = Ely)

* Project to states |¢,) and [9,)

O 1HI) = (0,|Elw) {anl +hay = Ea,
; = :
(0| H|w) = (&,|ElW) ha, +Ega, = Ea,

h = (0,|H|0,) = (0,|H|0,) (We know (?) that /1 <0.)

* Let’s shift energy origin so that £, = 0 = we get the equation
0 Al %1 = g|“

« Solutions E = £[A|, |y) = L

2
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(0, F0,)

Tight-binding methods

* The TB Schrodinger is solved with the variational principle for some set of basis functions {¢}
which leads to a secular equation

[H—eS| =0
where
Hyg = (0o/H|0p)
and
SO‘B = <¢a|¢[3>
+ Often one still assumes that the set of basis functions is orthogonal, in which case S reduces to the unit
matrix.

» Usually the basis set is put to contain only the outermost electrons, with all others treated with
the repulsive potential U(r). The elements in the basis function set are usually also fit to experi-
mental data.

* For instance, to treat a material where only the outer s and p electrons are important, one can get away
with using only for basis functions (ssc, spc, ppc and ppn). If one want to also describe d electrons, one
needs at least 10 basis functions.

* Roughly speaking it seems that TB methods usually works well in materials with only covalent bonding.
Systems where much work has been done and which have been found to work well are at least C, Si and
their hydrogen compounds.

» See for example Foulkes et al., Phys. Rev. B 39 (1989) 12520, and Sutton et al., J. Phys. C:
Solid State Phys. 21 (1988) 35. for the DFT foundations of the TB model
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Tight-binding methods
* An example of a 0(~) TBMD application [G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994) 3471]

+ A fullerene Cg colliding with a diamond surface with different kinetic ener-

gies Ek (the surface is a reconstructed (111) surface with no dangling
bonds):

* When E, < 120 eV no bonds are formed between the fullerene and the
surface, and the fullerene simply bounces off it.

- When 120 eV < E, < 240 eV a few bonds are formed between the fuller-

ene and the surface, and the fullerene may stick to the surface. The bonds
may also be quickly broken again and the fullerene can bounce off again.

- When E; > 240 eV several bonds are formed between the fullerene and
the surface, the fullerene breaks down almost completely, and sticks to the
surface.
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Very brief mention of a few other methods

* Quantum Monte Carlo (QMC) methods are a set of DFT-related methods where Monte Carlo
simulation techniques are used to minimize the correlation term of DFT.

» Computationally very expensive, but they can give very accurate results, especially for the correlation
term which is difficult to treat otherwise.

* The most common varieties: Diffusion Monte Carlo (DMC) and Variational Monte Carlo (VMC)

+ Just an example on results [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870]:

TABLE I. Binding energies (eV) of small hydrocarbons cal-
culated using the HF, LDA, and DMC methods. Experimental
values are listed for comparison.

HF LDA DMC Exp.
Methane (CH,) 14.20 20.59 18.28(5) 18.19
Acytylene (C,H,) 12.70 20.49 17.53(5) 17.59
Ethylene (C,H,) 18.54 28.19 24.44(5) 24.41
Ethane (C,Hy) 23.87 35.37 31.10(5) 30.85
Allene (C5Hy) 22.63 35.87 30.36(5) 30.36
Propyne (C;3Hy) 22.70 35.70 30.55(5) 30.45
Benzene (C¢Hy) 44.44 70.01 59.2(1) 59.24

* DMC gives all energies correct within the uncertainties, and clearly outshines HF and plain LDA.
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Very brief mention of a few other methods

* What is the minimum-energy configuration of Cyq [Grossman et al., Phys. Rev. Lett. 75 (1995)
3870.]7

4.5
4.0 | .
A e
35t HF .~
—_— R
% 30° oy
2 . LDA s
B 25¢ T
2
bowl o 20r
[
_é 15 F
R
D L
& 1.0
05 5 <
00} @7 GGA A
cage -0.5
ring bowl cage
FIG. 1. The three isomers of Cyo and their corresponding HF FIG. 2. The relative energy differences for the ring, bowl, and
valence electron density isosurfaces. There are ten triple bonds cage Cyg isomers (DMC error bars are 0.2 eV). For each theory
in the ring and five in the bowl, and a much more covalent the lowest energy structure is taken as a reference. BLYP refers
bonding character in the cage. to calculations done with the Becke-Lee-Yang-Parr functional.

* According to QMC:n it is the “bowl!” shape
* Note the large differences between the supposedly reliable DFT and HF methods, and that none of the
agrees with the QMC behaviour.
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Very brief mention of a few other methods

* Path Integral Molecular Dynamics

* Path Integral MD (PIMD) is a DFT / Car-Parrinello type of method which uses a Feynman path integral
representation of the density matrix.

* Also hideously expensive computationally, but claimed to be the only really good method to describe
water-related reactions.

* A rough rule of thumb for both QMC and PIMD is that the number of atoms is limited to ~ 20 or so...

* Time-dependent HF, DFT, TB

» The methods described until now are all normally used to obtain the ground state. This means one
assumes that the electron system has time to come to rest before the processes of interest happen. Since
electronic relaxation times are typically of the order of femtoseconds, this is often a very good approxima-
tion.

* However, if one is interested in e.g. electronic excitation, this approximation is not valid, and one has to
actually solve the time-dependent Schrédinger equation. This can be done by iterating over time.

+ Time-dependent (TD)-methods are somewhat of a hot topic in electronic structure calculations now, and
there are TD variations of all the main methods: HF, DFT and TB.

* A rough rule of thumb is that a TD-method is at least a factor of 100 slower than the corresponding ordi-
nary method
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Set the initial conditions r;(z,), v,(¢,)

\i
Update neighborlist Potential

models for
¢ metals

Get new forces Fi(ri)

y

Y

Solve the equations of motion numerically over time step A¢:
rl.(tn) - rl.(tn 1) Vl-(ln) - Vl-(tn 1)

'

Perform 7', P scaling (ensembles)

Y
t— 1+ AL |

Y
Get desired physical quantities

'

t>t

) Calculate results
max ’ and finish
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Classical potentials for metals

» About 80 % of all elements are metals. The crystal structures of all the elements are distributed
as follows:

] _te |
[ se | B | c| n] of | ne]
ME Al si| p| s ala]

KlCa‘Scl Ti| VlCranl FelCcl NilCulanGalGe|A5‘5e‘ Br|Kr|

RB| sr | v ||z | Wb |[mo | % | mu|[mn| Pd|[Ag|[ca]| n| sn| so| T | 1| x|
« e |7 | w | Re | [os | i | Pt | [Au| Ha | T | po | Bi| Po| at| Rn|

C3| Ba
Frl Ra| % Rfl Dbl Sgl Bhl Hsl Mtl Dsl Rgll.lubl Uutl Uuql Uupl Uuhl Uu5| Uuol

Program gelemental

* LalCel Prl NlemlSml EulGdl Tbl Dyl Hol Er|Tm| Ybl Lu|

“ Ac| Th| pa| u| Np| Pu| Am| em| k| cf | Es | Fm | Md| No| Lr |

= Legend (Series)

Nonmetals MNoble gases Alkali metals Alkaline earth metals Semimetals

Halogens Post-transition metals Transition metals Lanthanides Actinides

FCC 19 HCP 26 BCC 15 (quick counting from inside cover of Ashcroft&Mermin)

* If we can describe the FCC, HCP- and BCC structures with interatomic potentials, already
some 60 % of all stable elements are described well at least with respect to the structure.
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Classical potentials for metals

» The crystal structures are as follows:

FCC HCP BCC

* FCC Face-Centered Cubic (close packed)
atoms at the corners of the cube and in the center of each side face
HCP Hexagonal Close-Packed (close packed)
Angle between x and y unit cell axes is 120°.
One atom at each corner of the unit cell,
one (atom E) above the middle of the triangle ABC.
BCC Body-Centered Cubic (not close packed)
Cubic unit cell, atoms at the corners of the cube and in the center of the cube
FCC and HCP are close packed = can be stabilized with pair potentials (although getting the small HCP-
FCC energy difference right is a bit tricky).
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Effective medium theory

» The effective medium theory, EMT, is an approximation in which models based on density-func-
tional theory are used to describe the properties of solids, usually metals.

 Today there exist numerous many-body interatomic potentials which are based on EMT, in which the total
energy is written in the form

E, = ZF(nl.(Rl.)) +%Z<I)(Rl.—Rj) ,
i ij
where F is a function of the electron density, and @ is a (usually purely repulsive) pair potential.
« Sort of a generalization of DFT: local electron density can be used to deduce the energy.

* EMT can be used to directly derive a potential but many potentials only obtain the motivation of their func-
tional form from EMT.

* In EMT the real material is replaced by jellium which consists of
1) a homogeneous electron gas, formed by the free electrons of the metal
2) a constant positive background density (metal ions)

* When an atom is ‘embedded’ into this medium in a position r, the change in energy is as a first approxi-
mation

AE(r) = E E )=AEMM(n (1))

atom+jellium ( atom T E jellium

where AENM() is the embedding energy into a homogeneous electron gas with density », and no(r) is

the electron density at r.
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Effective medium theory

« The embedding energy AEN®™ (1) is a universal function of the electron density. Below is a list of exam-
ples [Puska, Nieminen, Manninen Phys. Rev. B 24 (1981) 3037].

30+ Mg Mg
25+
) q,

_20F - .
> Ne Ne
°
=15 . —
2
LJ
<10+ E — . .

0 001 002 003 0 001 002 003 0 001 002 003 0 001 002 003
N, (au) nolau) N (au} N (g,u.)

« From the pictures we see that for noble gases AEN®™M(y) is linear for all values of #, i.e. the closed elec-
tron shell only causes a repulsive interaction. (Some noble gases do have bonds, but this interaction
derives from van der Waals effects which are not included in DFT/EMT).

* For other elements there is a minimum in the curves, which describes their propensity to form bonded
materials.
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Effective medium theory

* How do we get from this to the total energy of the whole system? [Manninen, Phys. Rev. B 34
(1986) 8486.]

* The total energy of this “atoms in jellium” N-atom system is
N _ pN
Bior = Eglnl

where n is the electron density of the ground state of the system.

* The energy difference when an atom i is removed is

_ N N—-1 _
AEi - Etot_(Etot +Eatom) - AEi[ni] J

where n; is the electron density in the system after atom i has been removed.

* The idea of EMT (motivated by DFT):
Both Et]Xt and E{X{l can be stated as a functional of the same electron density 7;.

* The energy of the whole atom system can be stated as

E = EN-Un]+AE[n]+E

tot tot atom
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Effective medium theory

» By removing more and more atoms, one at a time, we obtain for E,
N

Etot - NEatom+ z AEi[n123...i]
i=1

* Here Ny is an electron density in the system after atoms 1, 2, 3, ..., i all have been removed.
* By rearranging the terms in the electron density this can be written as

Eior = NEgiom

+ ZAE.[n ]
L In sums with many indices the
i terms with at least two same indi-
ces are left out.

1
n EZ(AEJ["U] —AE[n])
ij

+ éZ(AEk[nijk] - AEk[nik] - AEk[njk] - AEk[nk])
ijk

 Terms with distant atom pairs is are small, so the sums converge rapidly.
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Effective medium theory

* The electron density n,,; ; is approximated as a superposition of atom (or pseudo-atom) electron den-

sities n,(r)
N
np3. (X = Z na(r;=R;) .
j=i+1

» The atomic densities can be densities for free atoms or for atoms in the solid state where the surrounding compresses
the electron shells.

* As mentioned above, in the first approximation
AE[n;] = AEM™(n(R))
i.e. the functional is replaced by a function.
* By superposition the density M is now
nij(Rj) = nj(Rj) _na(Rj_Ri) .

» The embedding energy AEhom(nij) can be calculated from AEhom(nj) by developing it as a Taylor series

BAEhom(nj)
—_— 1t ...

AEhom(nl.j) = AEhom(ni)fna(Rl,ij) =—
J
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Effective medium theory

* If the same is done with the other terms in the expression (*), we find that the total energy:

N
By = 3 FPM(RY)

i=1
where

1 _9AEhom (1) +1n282AEh°m(n) .

+ AEhom(,;y
L 6 o2

Fhom(n) - Eatom
* Pair potential is completely missing!

» Can be used to some extent, but it is not completely satisfactory as it e.g. tends to lead to wrong values
for the elastic constants [Daw, Baskes, Phys. Rev. B 29 (1984) 6443.]

* A better model is obtained by taking account of the electron density induced by an atom in the material
Ap(r) = An(r)—Zd(r)

and by considering the difference between the real external potential and the jellium external potential
SveXi(r) .
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Effective medium theory
* By using perturbation theory one obtains
AE(R,) = IdrAp(r— R)&X(r)
which can also be written as

AEDR)) = [drap(r—=R)o(r) |,

where ¢(r) is the electrostatic potential of the system (without the potential of the embedded atom).

* By the superposition principle this can be stated as a sum over single-atom potentials:
Ap(r—R)Ap(r'~R))

r—r|

AEDR)) = Zjdrdr'

i#]

* By using instead of the electron density at a point some average over the electron density in a region the
model can also be improved. One suitable average is

Ap.(r'—R))
_ 1 , P
n,(R;) = —&jdrdr ni(r)ﬁ ,
where
Ap.(r'—R))
o = —J‘drdr';
|r—r
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Effective medium theory

* Now the total energy of the system is of the form
Ap(r—R)Ap(r'-R)

r—r|

_ 1 \
Eyy = Y FYM@A(R)) +3 Y [drdr
i i#j
* A density-dependent term and a pair potential term!
- Changes in the single-electron states in the system = correction term AE| ;.
« Affects things mostly in the case of transition metals (unfilled d shell)

* As an example measured and simulated potentials for a few metals:
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Effective medium theory

* As an example of an application to metals the properties of Al and Cu studied by constant pres-
sure MD:
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Embedded-Atom Method (EAM)

* The EAM method [Daw, Foiles and Baskes, Mat. Sci. Rep. 9 (1993) 251] is based on the same
ideas as EMT.

* The functional form has been deduced primarily semi-empirically and in part by fitting.
* Despite its poorer physical motivation EAM usually works as well or better than EMT.

* The EAM total energy is written in the form

1
By = 2 FiP)+32 Vy(ry) (EAMA)
i ij
where

p, = Z pj?‘(rl.j) is the electron density at atom i,
J#i

pja(r) is the electron density of atom ; and

F, is the embedding function.
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Embedded-Atom Method (EAM)

* This resembles a lot the EMT total energy, the main difference being that the argument of F is the elec-
tron density in a given point.

* Note that the embedding function Fi is universal in the sense that a same function can be used to embed the atom to

different materials; material dependence only comes through the argument p .

» Daw, Baskes and Foiles obtained the functions Fi and Vij by fitting experimental results (lattice parameter, elastic

constants, cohesive energy, vacancy formation energy and difference between fcc- and bcc- structures).
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Embedded-Atom Method (EAM)
* Here is an example of all the terms in the original Foiles Cu EAM potential:

Electron density Embedding energy Pair potential

10°
10*
10°F
10
10'F
1°F
0k
10§
10°F
10*F 1
10* b

a
]
\0

10°
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45
ril

10°
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 45
ril

* Let’'s compare the expression above with the general expression for a many-body potential
given earlier:

V= ZVl(ri)+ZV2(ri’ rj)+ z Vy(rs rp )t
I i,j i,j, k

* Vi is clearly a pair potential V, . But what is the embedding term?
» The embedding term is easiest to understand as a pair potential whose strength is affected by the local
environment: an environment-dependent pair potential.

* It can not be directly written in the form shown above.
* Maybe, by Taylor expansion, it could be done. (Haven't tried it.) In that case the series in the above-men-

tioned would be infinite.
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Embedded-Atom Method (EAM)
* The pair potential is further interpreted as

b 1 LWZ0)
ij(r) C 4nm

80 r
where the Z?(r) are effective screened charges of the nuclei of atom type «.

* This has the advantage that if instead of Vij the Z?(r) are used as the starting point in evaluating the potential, form-

ing the EAM potential for an alloy is straightforward:
* The mixed Vij is given by the equation above, and since p]'?‘(r) only depends on the type of atom j and Fi on the

type of atom i, the embedding term can also be evaluated directly for the mixture.

* The electron densities p]?‘(r) are obtained from modified HF electron

densities for the outermost electrons of the material.

* In many cases the embedding function F(p) is obtained by fitting to
universal binding energy relation [Rose et al., Phys. Rev. B 29 (1984)

2963 :
E(a*) = ~E_,fla*)

SCALED BINDING ENERGY E*

fla*) = (1+a*)e ™

« _ [a Ecoh 172 = bulk dul Q = ; | 10 .Lé';.-,"‘" TN T R O B
a* = | =-1 950 , B = bulk modulus, Q = atomic volume TN 1 2 a4 s 6 7 8

ao SCALED SEPARATION a*
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Embedded-Atom Method (EAM)

» So in practice the EAM potential has three 1-dimensional functions.

* In analytical form or a set of points to be used with spline interpolation

* The standard “Universal 3” format for elemental EAM potentials of Daw, Baskes and Foiles looks like:

Arbitrary comment line

Z1 m a latticename

nrho drho nr dr rcut

((nr points of F(rho) data))

((nr points of z(r) data, V(r)=1/(4 pi epsilon 0) Z(r)2/r))
((nrho points of rho data))

where Z1 is the atomic number, m the mass and a the lattice constant.
* A real example (Foiles Cu potential):

Cu functions (universal 3)

29 63.550 3.6150 FCC
500 5.0100200400801306e-04 500 1.000000000000009e-02 4.9499999999999886e+00
0

-3.1561636903424350e-01
-5.2324876182494506e-01

and so on, with 1497 more data points.

» The advantage of using a code which reads this format is that any potential which can be given in the

functional form (EAM 1) can then be made into a set of spline points and read into the code without any
modifications necessary in the code itself.
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Embedded-Atom Method (EAM)

* Non-uniqueness of EAM-like potentials: Note that in EAM-like potentials the division of the
energy into the pair potential and embedding term is not unique.
* In the formalism (EAM 1) one obtains the same
total potential energy for any configuration with the
transformation
{Vlj(r) = Vlj(r)+27vpj(r,~j)
F(pl‘) = F(pi)_xpi
trary real number.

, where A is an arbi-

» Forces in EAM (embedding part; force on atom F, = -V, > F(p;) = -V, > F| > p(r;))
k): i iy

_ _VkF[Z p(rkj)J -y F(Z P("ij)J

j#k izk j#i

= P Y P - S F(pIp (T
j#*k izk

= S [F(pp) + F'(pi)]P'(”,-k);'ki
i#k
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Glue models

* Like EAM but physical interpretation of the functions more or less thrown away

» For instance Ercolessi et al. gold potential: [Phys. Rev. Lett. 57 (1986) 719 , Phil. Mag. A 58 (1988) 213.]
* Nearest neighbors only

* Functions are usually polynomials

* In here instead of an embedding function a ‘glue function’ U is used, which depends on the atomic coor-
dination

Eig = 33000+ Y Un)

i#j i
where

n; = Zp(rl.j) :

%]
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Glue models

» Example: glue model for Au

r\
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The three functions ¢(r) (a). p(r) (b)Y and U(n) (c) optimized for Au.

* Note that here the pair potential is no longer purely repulsive (Non-uniqueness of EAM-like potentials!)
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Glue models

* A few properties of the potential:

Table 3. Comparison between some experimental quantities of gold and the same quantities
as predicled by the glue model. The fit is not always exact, owing 1o the procedure used
(s lext), o (relerring 1o a non-reconstructed (111) surface), T and EM are caleulated at
T=0 and include relaxation eflects, «, T, 5, and AH , are determined by zero-pressure
molecular-dynamics simulations, For the experimental o, the T=0 estimate of

Miedema (1978) has heen wsed,

Cuantity Bxpenimenlal  Glue model
T=0 Latlice parameter @ {A) 407 407t
Cohesive enargy . (eV/atom) 378 378t
Surface energy o (meV A ™) 968 D661
Vacancy formation energy ET (e¥) 094 126
Vacancy migration energy £ (e¥) 0-85 a7
Bulk modulus B (10'? dynecm™?) 1-803 1-803¢
€y (107 dyneem ™) 2016 2203
Ca (102 dyneem ™ ) A 1687 1-603
Caa (102 dyneem ™) 0-454 - 600
v (X} (THz) N 4-41 389
vl X) (THz) 275 2-75%
vt W) (THz) 363 337
(W) (THz) 263 275
v (L) (THz) 470 389
wr(L) {THZ) 1-86 194
Thermal expansion coeflicient x at 15-2 13-8¢
TIHEK0TCK™Y
Melting temperature T, (K) 1336 1357+
Entropy of melting 8, (kgfatom) 113 10
Latent heat of melting AH_, (e¥ /atom) 013 0-12
1 Fitted.
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Glue models

* Phonon dispersion relation:

r X w X K r
50
T H
L .. : R
. . : . ‘: R
* . 1 - i)
e s -1 i E
= L K 1 \ Ol
E f XK P 's“ o
S 30 ” . { A (O
|} ¢ 0 - ' v
Z - ’ AR A “ 'l ]
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3 20r f; : AN 3 4
= f ! ! | : 9
&~ . ' | p AV SR
= 3 ! oA
ro A : ' . "/ 1
y i 1 A
1 J 1
00 :
WAVE-VECTOR

*» Gold (100) surface reconstruction

* Thermal expansion
from MD simulations

Lattice Parameter

N R §
0 200 400 600 800 1000 1200 1400

Temperature {K)

points: experiment
solid line:  with glue function
dashed line: without glue function
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Rosato group potentials

» The group of Rosato et al. (first ones by Cleri and Rosato) has formulated a large group of
potentials based on the second-moment approximation of the tight-binding Hamiltonian (TB-
SMA). [Cleri and Rosato, Phys. Rev. B 48 (1993) 22]:

» The method starts from the knowledge that a large set of properties of transition metals can be derived
purely from the density of states of the outermost d electrons:

* The second moment of the density of states is 1, , and experimentally it has been found that the cohe-
sive energy of metals is roughly proportional to the width of the density of states, which in the second-
moment approximation is simply Ju_z

* When only the ddo, ddr and ddd orbitals are taken into account, the band-energy of atom i can according
to the model be written as:

Ep= J;ﬁzexp{2q(gg ﬂ

which only depends on the distance and which formally is exactly the same as the F(p) part of the EAM
potentials (with the square root operation being the embedding function F).
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Rosato group potentials

* In addition the model has a repulsive Born-Mayer-term:

Ef = %“A exp{—p[r—ij— 1”

)

so the total energy of the system becomes
i i
E, = (Ep+Ep)
i

* Here r,is the equilibrium distance between atoms, and 4, &, p and g are fitted parameters. Despite its sim-

ple functional form, the model can be used to describe quite well elastic, defect and melting properties of
a wide range of FCC- and HCP-metals.

 Later work in the Rosato group has given also extensions to alloys, e.g. [Mazzone et al., Phys.
Rev. B 55 (1997) 837].

* One practical caveat about the Cleri-Rosato potentials: at least in some of their papers they
have been sloppy with factors of 1/2 and minus signs, you may have to correct these yourself.
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Finnis-Sinclair potentials

* One more important group of EAM-like potentials are the so called Finnis-Sinclair potentials
[Phil. Mag. A 50 (1984) 45; for an improvement see Phil. Mag. A 56 (1987) 15]. They model tran-
sition metals based on ideas derived from the tight binding method.

* The form of a Finnis-Sinclair-potential is

1
Eigp = 3 2,004y Jn;

i#j i
where

n; = Zp(rij) :

i#]

i.e. this is the same functional form as in EAM where the embedding function is simply F(n,) = —Aﬁ.

The square root function can be motivated by the tight-binding model, as in the Rosato potentials.

* The potential parameters are obtained purely by fitting to experimental data.
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Vacancy formation energy revisited See o.9. Rob Phillips, Crystals, De.

fects and Microstructures.

* Definition of the formation energy:

f
E = E,(vacancy, N) — Etot(perfect, N)

vac

Remember pair potentials:
E,(vacancy, N) = %[(N—12)12¢+ 12(12-1)0] = 6(N—1)0

E,(perfect, N) = %N12¢ = 6N

* EAM-type potential

E = S F0)+33 V0,
I ij

p; = 3Py

J#*i

= E' =60 = —E_,/atom

* Perfect fcc lattice atoms, only NN interaction, equilibrium bond length r:
1
E, (perfect, N) = NF(12p0)+§12N¢ = NF(12p,) + 6NO

E, (vacancy, N) = (N—12)F(12p,) + 12F(11p0)+%[(N712)12q)+ 12 % 1161,

where p, = p(ry), 0 = V(ry)

= E. = 12[F(11py)~ F(12py)] - 60
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Vacancy formation energy revisited

* Note that now cohesion energy per atom is

B E, (perfect, N)
coh N

* Substitute 6¢ in expression for Eiac

£
= E, = 12F(11py) - 11F(12py) — E

A%

NOTE: Pure pair potential means that F(p) =
linearity =

f
A\

E . = 12(1lapy) —11(12apy) - E_, = —E

op,ie.

coh
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Vacancy formation energy revisited

f
* So now we at least have EVaC i’Ecoh

f .
*Tohave £, . <-E_ requires

F(11p,) <F(12p0)

12F(11pg) - 11F(12p) <0 = —

. " FPFE
i.e. positive curvature — > 0:

alp2

12

Introduction to molecular dynamics 2015 8. Potential models for metals

P/ Py

= F(12p) + 60 = 6 = E_yy — F(12p)

Element ‘Ecoh| E, . (eV)
(eV)
\% 5.31 21+£0.2
Nb 7.57 2.6+0.3
W 8.90 4.0+0.2

Typically for metals

E,/E. = 0.2...04
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Vacancy formation energy revisited

* Glue model for Au
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Daw & Baskes for Ni, Pd
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Pd

8. Potential models for metals

Some EAM-like potentials

F(p)

Foiles et al.

0.06

» Below are listed some EAM potentials. It is impossible to list all of them, so this is just a list of

some commaon ones.

* FCC metals

* “Original” EAM-potentials [S. M. Foiles,
Phys. Rev. B 32 (1985) 3409; ibid. 33

(1986) 7983]:

29

TABLE III. Alloy heats of solution for single substitutional impurities used to define the functions.

The top number is the value calculated with these functions and the lower number is the experimental
energy from Ref. 23. The energies are in eV.

Host

» Good potentials for Ni, Cu, Pd, Ag, Pt, Au

and all dilute alloys of these. Good in many
ways, surfaces the most commonly men- Au
tioned shortcoming. But surfaces tend to be a

problem for most EAM potentials

* Decent potential for Al.
* Very widely used and tested, and almost no
fatal shortcomings have been reported, so

Cu Ag Au Ni Pd Pt
Cu 0.18 —0.12 0.06 —0.33 —0.38
0.25 —-0.13 0.11 —0.39 —0.30
Ag 0.11 —0.11 0.42 —0.36 —0.18
0.39 —0.16 —0.11
—0.18 —0.11 0.30 —0.15 0.07
—0.19 —0.19 0.28 —0.20
Ni 0.04 0.38 0.08 -0.15 —0.25
0.03 0.22 —0.09 —0.33
Pd —-0.34 —0.24 —0.12 0.07 0.03
—0.44 —0.29 —0.36 0.06
Pt —0.54 —-0.07 0.09 -0.28 0.04
—0.53 —0.28

these can be used with good confidence.

TABLE V. Calculated surface energies of the low-index faces and the experimental average surface
energy from Ref. 33 in units of ergs/cm>

Cu Ag Au Ni Pd Pt
(111) 1170 620 790 1450 1220 1440
(100) 1280 705 918 1580 1370 1650
(110) 1400 770 980 1730 1490 1750
Experimental 1790 1240 1500 2380 2000 2490

(average face)

Introduction to molecular dynamics 2015

8. Potential models for metals

Foiles et al., Phys. Rev. B 33 (1986) 7983.
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Some EAM-like potentials

* Glue potentials: [Ercolessi, Adams: Europhys. Lett. 26 (1994) 583]: good potentials at least for

Au and Al.

+ [Cai and Ye, Phys. Rev. B 54 (1996) 8398]: Alternative EAM potentials for Al, Ag, Au, Cu, Ni, Pd
and Pt. May be better than original EAM in particular for alloys and surfaces.

* [Johnson, Phys. Rev. B 37 (1988) 3924]: Analytical EAM model for most FCC metals

* [Sabochick, Lam, Phys. Rev. B 43 (1991) 5243]: Potential for Cu, Ti and their compounds

* [Zhou, Johnson, Wadley, Phys. Rev. B 69 (2004) 144113]: EAM potentials for numerous metals
that can be mixed for a huge number of alloys using a special mixing rule.
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Some EAM-like potentials

* The Cu part of this potential seems to be very good for
point defects
[Nordlund and Averback, Phys. Rev. Lett. 80 (1998)
4201] (see on the right).

* [Voter and Chen, Mat. Res. Soc. Symp. Proc. 82 (1989)
175]: NiAl system potentials

* Cleri-Rosato parameters (see above) for FCC metals
exist at least for Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al and Pb.

* [Ackland and Vitek, Phys. Rev. B 41 (1990) 10324]: EAM
potentials for Cu, Ag, Au and alloys. Improvements in
[Deng and Bacon, Phys. Rev. B 48 (1993) 10022].

Introduction to molecular dynamics 2015 8. Potential models for metals

TABLE L. Defect properties obtained in the present work,
and experimental values where ones are available. The ste-
tistical uncertainty is given ouly for quantities for which it
is significant compeared to the number of digits given. The
subscript v denotes the vecancy, 2v the divacancy and ¢ the
interstitial. The relaxation volumes AV are given in units of
the volume per atom in the lattice £ = 11.8 A3,

Quantity Present work Experiment
— AW, 0230 -0.25 + 0.05 ©2 [10]
Hi 1.27 eV® 1.28 + 0.05 eV [10]
— 5 23+02% 2.35 K [1]
HP 0.77 eV* 0.70 + 0.02 ¢V [10]
wo,» 510 + 10 juraps/ps
AV, 0.46
e, 2.37 eV
st 5+1k
HE 0.26 &V
W, 10.0 + 0.2 jumps/ps
— AV, 200 1.56 + 0.20 Q [10]
— Hf 3.2 eV 2.8 - 4.2 €V [10]
Sf 15+ 2k
—> HP 0.081 eV 0.117 eV [10]
g,i 7.6 + 0.3 jumps/ps
— dInCujdes 31 30
— 3y dInC fdes -1 15 [7]
— 3 dluB/dg -2 0+1[7
3 Tonett 1295 + 5 1356

2 Potential fitted to this property
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Some EAM-like potentials

HCP-metals

Compared to both FCC and BCC metals, the HCP metals have been studied relatively little,
both experimentally and with simulations.

In fitting potentials for an HCP one should take care to ensure that the HCP phase is lower in
energy than the FCC phase, and that one can obtain the required ¢/« ratio (which experimen-
tally seldom equals exactly 573, which is the “ideal” value calculated for close packing of hard
spheres)

In addition there are 5 elastic constants, rather than 3 as in cubic metals.

Pasianot and Savino [Phys. Rev. B 45 (1992) 12704] have made EAM-like potentials for HCP-
metals Hf, Ti, Mg and Co. But they also showed that an EAM-like model can not reproduce all
elastic constants correctly for those HCP metals which have

1
€137 C4q<0 OF SQBcpy—cp)<ec3—cy
» Such metals are e.g. Be, Y, Zr, Cd and Zn.

Cleri and Rosato (see above) derive parameters for the HCP metals Ti, Zr, Co, Cd, Zn and Mg.

Oh and Johnson [J. Mater. Res. 3 (1988) 471] have also put their fingers here, for the HCP met-
als Mg, Tiand Zr.
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Some EAM-like potentials

BCC-metals

When one constructs potentials for BCC metals, one has to take into account that the BCC
structure is not closed packed. A pair potential would most likely make the BCC phase unstable
compared to FCC and HCP, unless carefully constructed. Or one can attain unwanted effects
such as a negative thermal expansion.

In BCC metals the Finnis-Sinclair potentials (see above) have been much used. Originally they
were formulated at least for Fe, V, Nb, Ta, Mo and W. In the five latter ones serious problems
were later found, which were corrected in [Ackland and Thetford, Phil. Mag. A 56 (1987) 15].

Johnson and Oh [J. Mater. Res. 4 (1989) 1195] have been active in BCC as well. They derived
potentials at least for Li, Na, K, V, Nb, Ta, Cr, Mo, W and Fe.

But in BCC metals one should take into account the recent theoretical work which showes that
in them 4-body interactions can have an important role, and these can of course not be
described well by EAM-like potentials [J. A. Moriarty, Phys. Rev. B 42 (1990) 1609].

» Moriarty has developed 4-body potentials at least for a few metals [e.g. Phys. Rev. B 49 (1994) 12431].
These have shown for instance that the migration energies of the Finnis-Sinclair model are probably 3-15
times too large [Phys. Rev. B 54 (1996) 6941].
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Some EAM-like potentials

* Metal-hydrogen potentials

+ Finally, we mention that it is possible to construct a somewhat sensible EAM-like potential for
metal-hydrogen interactions. Of course these can not describe delocalized hydrogen in metals,
but they can still reproduce well e.g. the cohesive and migration energy of hydrogen in solid
metals and hydrogen on solid surfaces.

» Just one example: [Rice et al., J. Chem. Phys. 92 (1990) 775]; EAM potential for Ni-H.
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Fitting a repulsive potential to EAM models.

* When one wants to describe high-energy processes (E;, > 10
eV) one almost always has to modify the repulsive part of the

Pd-Pd —— ZBL repulsive potential

. : - 10 ’ Foiles E{\M pair po_temial'
potential. One can for instance use the so called ZBL universal =~ o} 7 domedinelpotenta
potential for this, which describes the repulsive part with ~ 10 L

% accuracy for all material combinations, or even better an i N

accurate potential derived from ab initio - calculations.

* A special feature for EAM-like potentials is that one still has to 0 T e s T as i
remember that the electron density has to be set to a constant r&)
value in the same r range where the high-energy repulsive
potential is fit to the pair potential part.

* Example: fitting the Foiles Pd-potential to the ZBL repulsive
potential. With the same fit also the high-pressure properties
and melting point of the potential was obtained almost exactly
right, whereas the properties of the interstitial atom became
worse. [Nordlund et al., Phys. Rev. B 57 (1998) 13965]. e

0.2f

0.6 T T T T T T T
Pd-Pd - Foiles EAM electron density

0.5 | --- Joined final electron density _|

0.4

00 05 10 15 20 25 3.0 35 4.0
r (&)
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Two-band EAM model

 EAM is often used to model
transition metals:

* Their bonding is characterized
by the free-electron-like s
orbital and the narrow d
orbital.

* In the original EAM potential
the effect of these two orbitals
was taken into account by
assuming the electron density
be a sum of contributions from
s and d shells:

pa(r) = np (r)+np (1),
* The ‘occupations’ n; and n

were obtained by e.g. fitting to
H heat of solution or such.
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Two-band EAM model

* In the two-band EAM model the s and 4 orbitals (or bands) are explicitely taken into account.

* Energy of atom i is written as

1
Ep = Fyp; )+ Fypy )+ 53 V),
J

where Pip = Zq)b(rl.j) is the electron density contribution from band 5.

J

* The original formulation of the EAM model in the form of fitting the s band density

* A two-band EAM potential has been developed for elemental caesium [G.J.Ackland et al., Phys. Rev. B

67 (2003) 174108.] and for the binary alloy FeCr [P.Olsson et al., Phys. Rev. B 72 (2005) 214119.]

» For many transition metals the cohesion is determined mainly by the d band but the s band affects the

elastic properties by providing repulsion.

» On the other hand for alkali and alkaline-earth metals are normally close-packed metals with bonding

determined by the s electrons.

37

- However, at large pressures electrons are transferred to d band which is — although higher in energy — more com-
pact, allowing lower atomic volumes.

» With these models the isostructural transition of Cs and the thermodynamical properties of Fe-Cr alloy

were reasonably described.

Introduction to molecular dynamics 2015 8. Potential models for metals
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Set the initial conditions r;(z,), v,(¢,)

Y
Update neighborlist Potential

models for
¢ diamond and
zincblende

Get new forces F (r;) structures

y

Y

Solve the equations of motion numerically over time step A¢:
rl.(tn) - rl.(tn 1) Vl-(ln) - Vl-(tn 1)

'

Perform 7', P scaling (ensembles)

Y
t— 1+ AL |

Y
Get desired physical quantities

'

t>1 ) Calculate results
max and finish
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Diamond and zincblende structure potentials

* Only three elements have the diamond (DIA) structure: C, Si, Ge

* However, since almost the whole semiconductor industry and micromechanical engineering
industry is based on Si technology, the interest in studying diamond-structured semiconductors
is immense.

* In addition, the most common compound semiconductors (GaAs, AlAs, InAs, etc.) have the
zincblende structure, which is essentially the same as diamond except that there are 2 atom
types. This further increases the interest in describing this crystal structure.

| Groups: Il IV V _te |
ilﬂ B|C|N|O|F|Ne|
ilﬂ Al si| e s alla|

K|Ca|5c| T | VlCranlFelCclNilCulanGalGe|As|5e|Br|Kr|

Rb | 5r| Y | ze| no| mo| | ru| rn| Pa| Ag | ca In|Sn|5b|Te| I|Xe|

&l sa| + [ |7 | w |[Re|[os| i | Pt |/ Au|lHg| 7 | po| Bi| po| at| mn|

f| ra| == [ ”f| ob| sg|[Bn | Hs | mt| bs | Ro | ub| uut| uug| Uup| Uun| vus| vuo|

*tla| ce| pr| na|Pm|sm| Eu| Ga| ™| Dy| Ho| E | Tm| vo| Lu|
= ac| | pa| u| np| pu|am| em| k| cf | Es | Fm | ma| No| v |

= Legend (Series)

Nonmetals Noble gases Alkali metals Alkaline earth metals Semimetals

Halogens Post-transition metals Transition metals Lanthanides Actinides
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Diamond and zincblende structure potentials

* The diamond structure is (2 ways of looking at the same thing)

DIAMOND, CONVENTIONAL UNIT CELL

DIAMOND

110

* Essentially two FCC structures inside each other which have been displaced by (% i—:, E—D from each other.

* The unit cell has 8 atoms

* In terms of bonding the crucial feature is that every atom has exactly 4 neighbours. The bonds are
covalent or predominantly covalent, and the nearest neighbours are distributed such that one atom is in
the middle of a regular tetrahedron

* The angle between any two bonds of the same atom becomes cos(-1/3) = 109.47°. Chemically this cor-
responds to the sp3 hybridization of electrons.
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Diamond and zincblende structure potentials

* The zincblende structure is the same except that one FCC sublattice has atoms of one type,
the other of the other type. One unit cell thus has 4 atoms of type A and 4 of type B.

®Ga

ZINCBLENDE, SUCH AS:
As

R

\\\

)
o

/'V

« If the (111) stacking is ...ABAB... instead of ..ABCABC... we have wurtzite

* Note the analogy: fcc <> hep
zincblende—wurtzite
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Diamond and zincblende structure potentials

» Covalent bonds . I

* |In a covalent bonds atoms share electrons and thus in some M weries
sense achieve a filled electron shell. n ==

* In solids covalent bonds typically form between elements which ks o
have a similar outer electron structure. wi o S

t=

» Some elements: C, Si, Ge, S, Se, Te v m‘;‘;’%
* [lI-V-componds (GaAs, InP, ...) n —
* lI-VI-compounds (ZnSe, CdTe, ...) vl 1oe vl

* various compounds such as SiC
» molecular crystals (e.g. oxygen where the basic element is the O,

molecule, H,O etc. etc.)

* The electrons extend to the space between the atoms.
* The electron structure of the Si, dimer is compared to the superpo-
sition of the density of two Si atoms:

(b}
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Diamond and zincblende structure potentials

» Because of the nature of the hybridization of the electron orbitals, the covalent bonds typically
have a strong directional dependence, with some preferred angles between the bonds. For
instance, the energy of three atoms will depend not only on the distances P Tig and Cik but

ii

also on the angles between them 6

el.jk andel.kj:

kij’

« Si has 4 outer electrons, and these can form 4 bonds with sp® hybridization, i.e. the angle of
109.47° .

* From this directional dependence, it also follows that the crystal (or amorphous) structure of
covalent solids is often fairly open:

* Number of nearest neighbours only 2-4, (12 in close-packed structures!).
» Packing fraction in diamond is only 0.34, whereas it in FCC is 0.74.
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Diamond and zincblende structure potentials

* Dealing with covalent bonding: explicit angles vs. bond order

» Before we proceed with semiconductors, let us think quite generally about the angular proper-
ties of covalent bonds.

» Since we know for any given covalently bonded material that there is one or a few angles
between the bonds which give a minimum in the energy, one can immediately see a purely
geometrically motivated way of constructing a potential: simply put in an explicit angular term
which gives a minimum at the equilibrium angle 6,,.

* For instance, consider a single water molecule H,O. We know that the angle between the two O-H bonds

is about 105°. Thus if one wants to construct an interatomic potential to describe water, one could get the
structure right simply by including an explicit angular energy term of the form

o2
Eangular = Ky (6-105°)
into the potential. (Let’s call these potentials “explicit angular”.)

* There is a problem: The minimum always at only one angle, and nowhere else.

* However, for instance, consider the carbon allotropes graphite and diamond. In one the angle between

bonds is 120°, in the other 109.47°. The energy difference between the two phases is vanishingly small.
An explicit angular potential can not possibly describe carbon in both allotropes correctly.

* Thus although it is easy to construct explicit angular potentials for a known geometry, they do not have a
fundamental physical motivation.
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Diamond and zincblende structure potentials
* The Keating potential

Ep — W)s + vab (2)

where Vi,. and V), are the bond-stretching and bond-bending
contributions, respectively:

1
Voo = D SKI0F — b}
icbonds
1 9
1Vbb = Z 5;??) [bqu CcOoS ij — b;‘[]bj[) CcOS 9,&'(')}2. (3)

ijcangles ~

Here b, is the equilibrium distance of bond ¢ and 6, 1s the
equilibrium angle between bonds i and j. k¥ and k¢, are pa-
rameters of the potential model and obtained by fitting to elas-

FIG. 1: The bond-switch move in a 2D example. On the left:
The situation before the switch. Center: The bonds have

tic properties of the material. been switched. On the right: The atoms have been moved to
their minimum energy position.

* Can be used when near to the equilibrium configuration and no bond breaking occurs.

» Example of application: build amorphous Si and SiO, using bond-switching MC
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Diamond and zincblende structure potentials

» An alternative, physically motivated approach to construct potentials for covalent systems is
through the concept of “bond order”.

* By bond order one means is that the strength of a single chemical bond is affected by the chemical neigh-
bourhood: the more neighbours an atom has, the weaker are the bonds which are formed to these atoms.
This can be described in potentials of the form

V= Vrepulsive (rij) + bij Vattractive(rij)
by constructing an environment-dependent term bl.j which weakens the pair interaction when the number

of neighbours (coordination number) Z of an atom is increased.

- For simplicity we here deal with cases where only bonds to nearest-neighbour atoms are considered.

* This idea is well motivated qualitatively from basic chemistry: if an atom has N outer electrons, these can
form (with other atoms of the same type in a symmetric configuration):
« a single (dimer) bond with N pairs of electrons
- two bonds with N/2 pairs of electrons

- three bonds with N/3 pairs of electrons
and so forth

« Since for every larger number of bonds one bond has less pairs of electrons, it is quite natural that the
strength of a single bond tends to decrease.

* However, the strength of the bond is not directly proportional to the number of electron pairs in it, and the
behaviour of the energy/bond may vary quite a lot from one material to another.

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures 9

Diamond and zincblende structure potentials

* If the energy/bond decreases very rapidly with the coordination number, the most stable form of
the atom is a dimer. If, on the other hand, the dependence is weak, the material wants to maxi-
mize its coordination number and will end up in a close-packed configuration.

* In the limiting case of bl.j = constant we get a pure pair potential.

* We can thus think that the strength of bond is a monotonously decreasing function of the coor-
dination number. The equilibrium structure is determined by the balance between the number of
bonds and the single bond strength, since the total energy is the product of the two.

* This formalism allows us to adjust how many numbers of neighbours an atom “wants to have”. This now
gives a physical motivation to the preferred angles between bonds: if e.g. the ideal coordination is 4, and
the bonds are arranged symmetrically about an atom, one automatically gets the tetrahedral bonding con-

figuration with an angle of 109.47° between the bonds.

» The great advantage here is that now the angle needs not be fixed, because it is perfectly pos-
sible to construct potentials which give the same energy for 2 different configurations. Thus one
can (and as we shall se people have) constructed potentials which e.g. give local energy min-
ima of equal depth for both the graphite and diamond configurations, thus solving the carbon
problem!

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures 10



Diamond and zincblende structure potentials

» Based on pseudopotential theory Abell [Phys. Rev. B 31 (1985) 6184.] has argued that the term

bl.j should be of the form bl.].oc Z_S where Z is the coordination number and 8§ some number.

More specifically, in the so called second-moment approximation of tight binding one obtains

~1/2
bl.jocZ .

* Let us make all this concrete with an example: carbon.
The table below shows the energy/bond and energy/
atom for a number of different coordinations of carbon.
The values for Z = 2, 3, 4 are from experiment and the
values for the hypothetical phases 7z >4 from a DFT cal-
culation which also reproduces the experimental values
well [Furthmduller et al, Phys. Rev. B 50 (1994) 15606;
data compiled in Albe et al, Phys. Rev. B 65, 195124].

Energy (eV)
n w B [6;] (o] ~ oo

=

T T T
B — Energy/atom, Expt/DFT
e —— Energy/bond, Expt/DFT -
/A — Energy/bond, bond order model

Coordination Z

7 Phase Energy/atom | Energy/bond Energy/bond
(eV) (eV) bond order model
2 dimer 5.10 6.20 6.32
3 graphite 7.36 491 491
4 diamond 7.30 3.65 3.67
6 simple cubic 4.74 1.58 1.75
8 BCC 3.00 0.75 1.01
12 FCC 3.00 0.50 0.43
Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures

Diamond and zincblende structure potentials

For comparison: en-
ergy/atom for alu-
minium [Phillips,
Fig. 4.5]. Curve is a
fit of the form
E=E,+az/?+pzZ.

Note the different
sign convention!

1

« The last column shows a fit to the data obtained with a bond order model of the 1/./Z form. As
you can see, a quite good fit is obtained for all phases, and especially the most important ones

are described very well.

* Note also that the bond order model correctly predicts that graphite and diamond are almost

equal in energy.

Introduction to molecular dynamics 2015

9. Potential models for diamond and zincblende structures
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Diamond and zincblende structure potentials

* The generality of this approach was shown by Brenner [Phys. Rev. Lett. 63 (1989) 1022.], who
proved that this form is mathematically equivalent with the EAM formalism (after suitable trans-
formations), and specifically that if 8 = —1/2 one can obtain exactly the Finnis-Sinclair / Cleri-
Rosato-like metal potentials:

E = ZEZ JE, = 2Z[Vpa‘r( Dt )

];fl

. b _ Ayt _ Ay (ry=ry) [N
+ Tersoff: th = - ZBb 7, b = {1+ z G(8,)e ! }
j¢z k,j#i

23—\ (20)
(orbU::{1+[ > 0@ ””] } )

k,j#i
« EAM: ™ = B S om0
1 1y
JZi
Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures 13

Diamond and zincblende structure potentials

» Assuming Finnis-Sinclair form F(p) = —Apl/z, p(r) = e " we get

O g P
yER] VED k#i
—ar, 172

:—A{Ze 1z

VEX! k#i
= —A{Zearl{earlhr Z ear'ﬂ_l/z}

j;ti_ P kii’ir ISR
——fEZAeCZ { + 22 JIU M}

J#i k#i,j

Thus if B = 24, x3 =q = 2%2, n = 1/2, G(6) = 1 we get the Tersoff potential!

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures 14



Classical Si potentials
[One important source: Balamane, Phys. Rev. B 46 (1992) 2250]

» Because of the directional dependence of the bonds, all decent Si potentials have some sort of
an angular dependence, and hence they are at least 3-body potentials.
» Some potentials have an explicit 3-body form, i.e. the potential has the shape:

V= Z Vylrprp)+ Z Va(rp ¥y ry)
iJj i, j, k
* These potentials are called by Balamane cluster-potentials. They typically also are explicit angular poten-
tials.
* In other potentials the angular dependence is hidden in the 2-body part so that there is no explicit V5 part.

These are called by Balamane cluster functionals.
* The philosophy of the cluster functionals is similar to the EMT/EAM potentials: calculate a pair
potential, but let its strength be affected by the environment. A common formulation is
V= Vrepulsive (r ij) + bij Vattractive(r ij)
which is the same as for bond-order potentials.

* Here the attractive and repulsive parts themselves are pure pair potentials, but there is a coefficient bl.j

which has an environment-dependence. The main difference to EAM is that although they can be cast in
the form above, in them bl,j has no angular dependence, whereas in the Si potential there must be one.

* Hence in the Si potentials there also has to be a three-body loop Z (rij’ r;) Which gives the angles.
i,j, k

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures 15

Efficiency of semiconductor vs. metal potentials

* Assume the number of atoms is N and the average number of neighbours per atom is m
* A pair potential and an EAM potential is then O(~NM)

* A three-body potential is O(NM2 )
» So it would appear like the Si potentials are a factor of s slower than EAM potentials.

 But this is most of the time not true in reality. This is because for covalent bonding, long-range
interactions are weak compared to the nearest neighbour-ones, so it is often enough to only
include nearest-neighbour interactions. So for Si & = 4. But in metals long-range interactions
are important (e.g. for surface properties and to get the difference between the FCC and HCP
phases right), so often M ~ 50 in metals.

« Because 42 < 50 the Si potentials with three-body terms may in fact be faster than EAM poten-
tials without one!

» But there are additional funny effects. For some Si potentials the cutoff is set so that in the crys-

talline phase M = 4, but it increases strongly in a disordered (amorphous or liquid) phase. So
the speed of the potential may be strongly affected by what phase of a material is simulated!

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures 16



The Stillinger-Weber-potential

« Stillinger and Weber [Phys. Rev. B, 31 (1985) 5262] (SW) developed a potential, which
describes fairly well both crystalline and liquid silicon - they in fact constructed it to give the
melting temperature right. The potential has become quite popular over the years because it
turned out to describe well several properties which it was not really designed to describe origi-
nally (such as point defect energies and surface properties).

» The potential is an explicit angular potential, and has the form

V= Z Vy(r;, rj) + Z Vi(r, rp )
ij ij, k
Vy(ry) = efy(r;;/©)
Vi(r; I, r,) = 8f3(rl./(5, rj/c, r,/c) .
where 7, is the pair potential and 7, the three-body part. The f, are

- _ - —1
fz(r):{/(l)(Br Dexp[(r—a)™'], r<a

R r=za

f3(rl" rj3 rk) = ( l] Zk’ ]lk) h( ]l’ ]ks l]k) + h(rkl’ ij’ elkj) )
where ejik is the angle, which the vectors r and r make at the atom ;i and the function # is

_ _ 1\2
, o ~ kexp[y(rl.jfa) 1+y(rl.kfa) 1](cosejik+§) , r<a and r, <a
ip Tige Ojin) =
0, rl.jZa or rl.kZa
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The Stillinger-Weber-potential

* So, in practical calculation all atom triplets being within the cut-off radius from each other must
be handled.
* As a hypothetical example take the triangular lattice:

YAVAVAVAVA
AVAVAVAVAN
NN
AVAVAVAVAN

* Here the potential energy for one atom term takes the form:
Vo=3V,(ryy) t6h(r s 7o 60° )+ O6h(r T 120° )+ 3h(r

* Note that in this case the Stillinger-Weber would not work!
* However, in the diamond lattice all the bond pairs of a single atom have the same angle.

180°).

nn’ nn’
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The Stillinger-Weber-potential

* The constants 4, B, p, a, A and y are all positive and were determined by demanding that the

diamond structure is the most stable one and that the melting point, cohesive energy and lattice

parameter are about right.

» According to rumours the potential was also fit to the elastic constants (which are reproduced
fairly well), although the authors never stated this in the paper!

* The actual parameter values are

= 2.0951A,e = 2.1672eV,
= 7.0496,B = 0.60222,
4, a = 1.80,

21.0 and y= 120 .

> N Q
I

» The melting point was fit to be almost exactly right with a rather dirty trick: the authors modified

the cohesive energy to get the melting point close to the right value of 1685 K. The cohesive

energy of the potential is 4.334 eV, when the right value is 4.63 eV. So this is a 7% mismatch. If

this is corrected by direct scaling, the melting point will go wrong.

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures

The Stillinger-Weber-potential

» The authors examined the structure of molten Si by comparing the maxima and minima of the

structure factor S(k) to measured values:

MD measured
1. maximum 2.53 2.80
1. minimum 3.25 3.25
2. maximum 5.35 5.75
3. maximum 8.16 8.50
4. maximum 10.60 11.20

» The potential describes fairly well melting and liquid Si. However, it is important to realize that
the angle between bonds is ‘forced’ to the ideal tetrahedral angle with the cosine term

(cosejik+ (1/3))2. This is not a good feature, because of the reasons given above for “explicit

angular” potentials.

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures
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The Stillinger-Weber-potential

* However, SW describes the Si (001) surface better than the Tersoff potentials [Nurminen et al.,
Phys. Rev. B 67 (2003) 035405.]

(a) (b) (©)

(N NN NN NN NN NNN NN
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seesaOBBSESEEEEBEDES
LE N R N NN NN NNENENDERN)
saasSsssssapsesass
I IE N RN NN E NN ENNE NN FIG. 2
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s SsOPBOIOISTIOIOOEORTS . Y §

from a regular MC run at T

eddbdbdbdbocsnsvrenosae
=116 K (upper row) and at T

& 8 60 65 a8 88 &2 & 80 &
5 00 & 08 40 & 80 & 0 &
a8 88 S5 Su 5 =8 =& 89 B

=812 K (lower row) using the
SW potential (a) and (d), the 72

potential (b) and (¢), and the 73
potential (¢) and (f). The configu-
rations are averages over 20000

(d) (e) ®

s e S5 6 40 S8 & Ge8 @& N o s08 s 40 40 00 u s wn @ e - RS . -
.o es s 2es oo 90 » ses o :-3. ol so4, vee e . 86 50 % 8a & 58 o8 ua ® MC step{ after initial run of
*e 20 eee o0 90 o0 w0 o e 8 0" esd see 80, ® s 58 o0 w8 & e o8 e 20 000 MC steps. All atoms were
® 99 & o9 o0 & S0 we w0 .'.....-......- ... o 6% 80 4% &8 & &0 &8 & 8 -"t-l]' l*d d - 11“_1
88 9% 29 % 4 T N B . as ... * o0 98 o 49 © 9% Se 80 R S0 0 Be mitially placed m diamond lattice
® 9% 80 0% 0 0O 68 @ see -oo et g8 a® a8 & 84 58 &5 &5 &8 & a0 ositions
® 880 60 & 40 06 v W @ es 85 °5 oav as aty,* 6 80 48 & 68 4 88 & S5 0 & pos o
® 85 08 85 3% SR E W0 @ o uva %0 Ysne %ene saase 86 0 a 08 80 00 00 B0 o
see o0 00 o0 oo 0e @ o ss ge® atgy sse oo ee o8 as 80 o0 & se s 00
80 45 300 85 8% 20 0 [T a® @ ... a0 & 80 0 00 0 00 OF 9P @8
99 ¢ 99 OV P 9 SF WO -9 -.. L4 .} 40 & 00 &% 40 &6 &) 0 e
e ees o0 20 00 eve 0o o o0 se use --i ... *® ® 0 o0 ¢ 40 & 08 e e
99 $8& 08 20 49 58 § 0 . @ ged® 0 ® gee .II e 80 & 80 08 68 9 & 80 @
" 58 o9 sse cSer o0 e @ S as e s s e e 48 S8 & 88 68 08 & BE &8
*ee 08 900 20 0 G en o &% “een 20 8 o, "0ne e o 2% 00 00 0e 08 W @
ntroauction to molecular dynamics . Potential models Ttor dilamond and zincblenae structures
Introduction t lecular dy ics 2015 9. Potential models for di d and zincblende struct 21

The EDIP potential

» The EDIP-potential is fairly similar to the SW one, but it has been derived from an ab initio-cal-
culated database of the cohesive properties of Si both in the diamond and graphite phases.

* The potential is:

E=2 V(R Zi)+ 2 Vi(R, R, Z), (1) ViR Rk Z)=g(R VR (5, Z), (6)
= %) ‘

jFi k#Ei k=)

Z=3 f(R,,) @) g(r)=exp|

m=i Vr—d

T(Z)

1 ifr<e, h.Z)= H‘ =) )
flr)= exp( ) it e<r<a, (3)
0 .ifr>a, hl,Z)=N(1— —0(D)U+2)) V+ pO(Z)(I+ 7(Z2))*].

(9)

s
xp =], @

[ B\P
,:2(,-,2)14[11—_] ~p(2)
\ 7 T Z)=u,+u,(use V44— 242 (10)

p(Z)=e P7 (5)

with the choice w(2) %= Q(2) = Qye **
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The EDIP potential

» So the main difference to SW is the environment-dependence in the form of the effective coordi-

nation number Z, which modifies the terms.

* The potential is available in the web
http://www-math.mit.edu/~bazant/EDIP/

including Fortran and C codes by which it can be evaluated efficiently.

* The parameter-values are:

TABLE 1. Values of the parameters that define the potential,
obtained from a simulated annealing fit to the database described in

the text.

A=7.9821730 eV B=1.5075463 A p=1.2085196
a=3.1213820 A c=2.5609104 A o=0.5774108 A
A =1.4533108 eV y=1.1247945 A 7=0.2523244
0,=312.1341346 w=10.6966326 B=0.0070975

a=3.1083847

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures

The EDIP potential

» As required in a good fit, a large number of other
properties have also been tested in the potential,
the most important of which is that the diamond
structure is the minimum of several common crys-
tal structures:

» But note that EDIP does overestimate the energy
of many other phases fairly much compared to
DFT.

» Among the best properties of the EDIP potential is
that it reproduces the elastic constants very well,
gives both good point defect, stacking fault and
dislocation properties, and describes amorphous
Si well. Also the melting point is described well,
the potential predicts 1550 + 50 K [Nord et al, PRB
65 (2002) 165329], quite close to the experimental
value of 1685 K.

* The thermodynamical properties of EDIP-Si have
been studied by P. Keblinski et al.,[Phys. Rev. B
66 (2002) 064104.]

TABLE II. Energy and lattice parameters for high-symmetry
structures. Here we consider the ground-state diamond cubic (dc),
face-centered-cubic (fec), body-centered-cubic (bee), simple cubic
(sc), and hexagonal-close-packed (hcp) crystals. For de, the cohe-
sive energy per atom E;I“ is given in eV, while for the other crystals
the difference of the cohesive energy E. from the ground state dc
crystal, AE=F — E:"‘. is given. All lattice constants a,, are for the
conventional unit cells in A. For the hexagonal crystals we also give
the ¢/a ratios. We also compute the lattice constant and binding
energy of an isolated hexagonal plane (hex). For this comparison
we use the SW potential with the rescaled cohesive energy for the
ground state, as described in Ref. 2.

DFT/LDA  EDIP SW T2 T3
de E —4.65 —4.650 —4.63 —4.63 —4.63
a, 543 5430 5431 5.431 5.432
sC AE 0.348 0.532 0.293 0.343 0.318
a, 2.528 2.503 2.6012 2.501 2.544
bce AE 0.525 1.594 0.300 0.644 0.432
a, 3.088 3.243 3.245 3.126 3.084
fee  AE 0.566 1.840 0.423 0.548 0.761
a, 3.885 4.081 4.147 3.861 3.897
hep  AE 0.552 0.933 0.321 0.551 0.761
a, 2.735 2.564 3.647 2.730 2.756
cla 1.633 2.130 0.884 1.633 1.633
hex AFE 0.774 0.640 1.268
a, 3.861 4018 4.104

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures
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The EDIP potential

* For example the radial distribution function
of amorphous Si compared to experiments 2 .
is reproduced fairly well:

10 [~ n

* The EDIP potential clearly is one of the best ¢
Si potentials available now, most tests of its
properties have been quite favourable to it.

ro(A)

FIG. 11. Radial distribution function ¢(r)=4mprg(r) for the
amorphous phase at room temperature and zero pressure using our
model, compared with the results of neutron-scattering experiments

. . L on pure evaporated-beam-deposited a-Si thin films by Kugler et al.
Another Si potential is [Lenosky et al., (Ref. 68).

Modelling and Simulation in Materials Sci-

ence and Engineering 8 (2000) 825]. This is a combination of EAM and SW models, which
gives truly excellent fits to a large number of elastic constants, different structures and defect
properties. However, it contains some questionable features (such as a negative electron den-
sity for some distances r) so its transferability outside the parameter database to which it has
been originally fit is questionable.

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures 25

Tersoff potential

» The Tersoff potential [first good Si fit in Phys. Rev. B 38 (1988) 9902] is a cluster-functional and
bond order potential which has an environment dependence and no absolute minimum at the
tetrahedral angle. Tersoff based his potential on the ideas presented by Abell a few years ear-
lier. The Tersoff or more appropriately Tersoff-Abell formalism is probably the most widely
used bond order potential formalism and has become the basis or inspiration for a huge number
of potentials developed since then.

Tersoff-like potentials are pure bond order potential motivated by the approach presented a few
pages back in these notes, i.e. of the form:

V=1

repulsive (rij) +b

ijk Vattractive ( rij)
» The original Tersoff potential has the following form. The total energy is
E=isy
22
i)
where

Vij = fC(rij)[ai/(R(rij) + biij(rij)] .
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Tersoff potential
» The various terms have the following forms:

repulsive part fr(r) = de M7 ,

attractive part £, (r) = —Be ™",

potential cutoff function

1, r<R-D
1 1.(nv—RD
= - —=sin| 2—= - +
fb@) 3 2mn2 o ) R-D<r<R+D
0, »2R+D
and

_ -1/2
by = (1+prgn) /2

Cij = Z fc(rik)g(ejik)exp[x‘%(rij_rik)3] ’
k#1i,j
2 2
g(0) = 1+< - -
d? d?+ (h- cos8)?
aij — (1 + annlrjz)—l/Zn and nlj = Z fc(l"lk)eXp[y\‘g(rU—rlk):s]
k#i,j
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Tersoff potential

* Here, as above, the distance between atoms i and j is i and the angle between bonds ij and
ik is ejik.

* Inspection of the terms shows that there is an angular dependence, but because is embedded
inside the b, term, it does not give a fixed minimum angle between bonds.

» The relation to the bond order potential basic formalism is as follows: if » = 1,¢c=0,p = 1,and
A, = 0 we get the “pure” bond order potential with

-1/2 1
bij = {1 + Z fc(}"l.k):| oc ﬁ

k#1i,j

Note that the sum excludes atom ; that is taken into account by adding one.
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« Tersoff could not find a parameter set {4, B, A,, L,, o, B, n, ¢, d, I, Ay R, D} which would describe
well both the reconstructed Si surfaces and its elastic properties. Because of this he gave two

parametrizations: Si C, which describes well elastic properties, and Si B, which gives good sur-
face properties. Tersoff’'s Si A is the original potential which proved to be unstable. Si(B) is also
known as Tersoff 2 and Si(C) as Tersoff 3.

Si(B)/T2 Si(C)/T3
A (V) 3264.7 1830.8
7\'1 (A'l) 3.2394 2.4799
}\’2 (A'l) 1.3258 1.3722
o 0.0 0.0
B 0.33675 1.0999x107
n 22.956 0.78734
c 4.8381 1.0039x10°
d 2.0417 16.218
h 0.0 -0.59826
Ay (A 1.3258 1.7322
Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures
Si(B)/T2 Si(C)/T3
D ( A) 0.2 0.15
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Tersoff potential

* The parameter A, is an interesting case: it does not affect the equilibrium properties at all, only

properties far from equilibrium. Tersoff himself said it can be set to 0, and this is often done.
However, in far-from-equilibrium studies it has proven to be best to include 2.

* Note also that since o = 0, the two last equations in the potential form are meaningless (give

exactly 1). Although Tersoff have these two equations, | am not aware of any case where they

would actually have been used.
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Tersoff potential

» Below is a comparison of the energies and bond lengths obtained
with Tersoff for different coordination numbers compared to exper-

imental and ab initio-calculations.

-1
-2

-3

energy (eV)

-4

-5

2.6

bond length (A)

24

T 2.2

n n N L

0 2 4 6 8 10 12

coordination
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Why should anyone care about e.g.
12-fold coordinated Si?

Although some coordination numbers
may not exist in the ground state, they
may still be present e.g. in defects,
surfaces and metastable molecules.
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Comparison of Si potentials

» Balamane & co have done an extensive comparison of Si potentials, looking e.g. at bulk, sur-
face, defect and small molecule properties. [H. Balamane, T. Halicioglu, W. A. Tiller, Phys. Rev.
B 46 (1992) 2250.]. Unfortunately EDIP was not part of this comparison.

* Included were the SW, and Tersoff potentials Si(B) [T2] and Si(C) [T3]. Also included were the
Biswas-Hamann potential (BH) [PRL 55 (1985) 2001, PRB 34 (1986) 895.], the Tersoff-like
Dodson potential [DOD; Phys. Rev. B 35 (1987) 2795.] and the potential by Pearson et al.
(PTHT; Cryst. Growth. 70 (1984) 33.].
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Comparison of Si potentials

* Below is the pair term of the potentials 7,(r). The spheres are ab initio results.

11 |PTHT SW BH

Vo(r) (eV)
s

-2.25 F

1.5 2.5 3.5 4.5 5.5
r (&)

* We see that except for DOD the potentials are fairly similar. BH and PTPH have a long range
compared to the others.
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Comparison of Si potentials

* Here is the energy of three Si atoms/atom:

3.0

2.5

2.0 F

3-Body Energy (eV/atom)

0.0

-0.5

1.5 ~

1.0 b

0 30 60 90 120 150 180

0 (deg)

* Note that the energy becomes fairly large for small angles for all the potentials.

Introduction to

molecular dynamics 2015 9. Potential models for diamond and zincblende structures

Comparison of Si potentials

* In the adjacent picture the cohesive energies of different structures are shown, compared to

DFT calculations.

* Note

that PTHT predicts that the simple hexagonal struc-
ture is the most stable one.
DIA = diamond
B-tin HD = hexagonal diamond
BC8 =bc-8
I BTIN = p-tin
SH = hexagonal
T SC = cubic
BCC = body-centered cubic
HCP = hexagonal close-packed
FCC = face-centered cubic
GS = graphite

Introduction to

Good source of crystal structures:
http://cst-www.nrl.navy.mil/lattice/index.html

molecular dynamics 2015 9. Potential models for diamond and zincblende structures

DIA HD BC8 BTIN SH SC BCC HCP FCC GS

i

DIA

HD BCs BTIN SH SC

1 1
BCC HCP FCC GS
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Comparison of Si potentials

* And below are the elastic properties of the potentials

experiment | PTHT | BH SW | DOD | T2 T3
B 0.99 2.788 | 1.692 | 1.083 | 0.884 | 0.98 | 0.98 dB
[B], [c..] = Mbar, [v] = THz, B' = —
B 42 7.82 | 5.66 | 2.93 | 427 | 458 | 4.30 v dp
cll 1.67 2969 | 2.042 | 1.616 | 1.206 | 1.217 | 1.425
0.65 2.697 | 1.517 | 0.816 | 0.722 | 0.858 | 0.754
‘12
0.81 0.446 | 0.451 | 0.603 | 0.659 | 0.103 | 0.690
€44
0 1.11 2.190 | 1.049 | 1.172 | 3.475 | 0.923 | 1.188
c
44
C 0.74 1.03 | 0.74 | 0.63 | 1.06 | 0.83 | 0.67
VTA(X) 4.4 4.5 5.6 6.7 2.7 9
VTO(X) 13.9 19.3 145 | 159 15.3 16
Vi oA () 123 13.8 | 122 | 13.1 1.7 112 * We see that T3 and SW give good
v (D) | 153 |3 | 16 | s o5 | 16 glastlc properties. Lattice vibra-
LTO tions are described well by the BH

Introduction to molecular dynamics 2015

Comparison of Si potentials

* And here are a bunch of energies for

lattice defects.

potential.

9. Potential models for diamond and zincblende structures

DFT | PTHT | BH | SW | DOD | T2 T3

V| 34| 077 | 212 | 2.82 | 2.57 | 2.81 | 3.70

45 | 250 | 3.83 | 4.63 | 3.23 | 2.83 | 4.10

38.5 | -25.7| -24 | 147 1 10.5

VS 4.19 | 2.83 | 2.30 | 3.36 | 4.17 | 1.40 | 3.50

501 | 453 | 472 | 6.00 | 812 | 4.15 | 10.5

9.5 | -159 | -125 | -11.8 | -14.5 | -149 | -8.8

IT 5-6 | 0.63 | 1.56 | 525 | 3.03 | 5.03 | 3.45

1.91 | 457 | 1221 | 5.00 | 5.85 | 6.92

3.8 8 9 9.1 73 |10.5

I 4-5 | 0.84 | 2.89 | 695 | 2.61 | 3.67 | 4.61
H

532 | 931 | 17.10 | 5.1 1 | 539 | 822

7.4 11.5 | 147 | 73 7.6 |10.2

[B 4-5 1.92 | 254 | 599 | 439 | 2.84 | 5.86

IS 1.47 | 3.30 | 3.66* | 3.49 | 2.32 | 4.70

Introduction to molecular dynamics 2015

V = vacancy

y

S:split vacancy

1 T=tetrahedral interstitial

1 7 =hexagonal interstitial

1

1

B

S

=bond-centered interstitial

=split interstitial.

The first number is the energy of the ground state, the second the energy of the ideal

(non-relaxed) structure, and the third gives the radial relaxation of the nearest neigh-

bours in percent (negative value inwards, positive outwards).

* Note that Balamane had an error here, this is determined by K. Nordlund.

* The table tells predominantly that the short-range
potentials (SW, DOD, T2, T3) describe defects best.
SW is good in that it predicts that the simple vacancy
and split interstitial are the ground state defects, which
agrees with ab initio results for uncharged defects.

9. Potential models for diamond and zincblende structures
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Comparison of Si potentials

* Finally a table of the properties of the Si (100)

surface: ‘ DFT ‘ PTHT ‘ BH ‘ DOD ‘ T ‘ T3 ‘
c2x2
DFT |PTHT| BH | SW | DOD | T2 T3
o Ay -0.839 | -0.703 | -0.824 | -0.720 | -1.143 | -0.753
Y 2.5 1.805 | 2.080 | 2.315 | 1.779 | 2.015 | 2.126 o -1.356 | 0.898 | 1.691 | 0.274 | 1.517 | 0.865
XX
o | 2335 | LI76 | 1421 1 0 0 0 0 -1.419 | 0851 | 0.574 | -0.866 | 0.567 | -0.344
XX (¢
yy

o 0.855 | 2.363 | 1.683 0 0.145 | 0.625 | -0.236

yy Si 1x1 Si 2x1

1x1 relaxed

AY -0.03 | -0.077 | -0.027 0 -0.085 | -0.004 | -0.037
o -0.427 | 0.848 0 0.515 | 0.023 | 0.076

XX
o -2.176 | 0.273 0 -2.775 | 0.080 | -1.693

yy

A -5.1 -7.0 -5.5 0 -10.2 -23 -7.2

2x1 . . .
Si ¢(2x2): buckling of dimers
Ay | 093 | -0.690 | -0709 | -0.899 | -0.714 | -1.258 | -0.759
- 0.693 | -0.808 | 0.669 | 1.167 | -0.094 | 0.703 | 0.367 Y=surface energy (eV)
XX Ay=change in surface energy from 1x1
S 1945 | 1731 | 0.008 1 -0.051 | -1.709 | 0.190 | -1.236 G, =surface tension tensor (J_c in the dlrgctlon of the dimer
yy bond and y in the direction of the dimer row)
=di o
A a4 | 233 | 133 | 83 | 229 | -146 | 156 A= distance change between 1. and 2. layer (%).
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Comparison of Si potentials

» The conclusions of the authors are that no potential is clearly superior. Different potentials
describe different properties well.

SW, T3 and to some extent DOD are good for elastic properties

T3, SW, DOD, T2 and BH give fairly good values for the point defects, to the extent this is pos-
sible to judge considering that the experimental values are not known very well either!

The (100) surface is described best by BH, SW and T3. No potential describes the complicated

reconstructions of the (111) surface.

« EDIP was not part of this comparison, but it is clear it would be among the best at least for the
elastic and defect properties.

Introduction to molecular dynamics 2015
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MEAM models

* There also exist so called MEAM (modified EAM) models for Si. This is basically EAM to which an angular

term has been added:

1
Eg = D FiP) 35> Vi(ry)
i ij

P; = Zpa(rl-j)+ Z pa(’”ij)pa(’”ik)g(coseljk)
J#i k,j#i

» Baskes has developed some models, but is apparently not quite satisfied with them.

* Applied (in addition to metals) to e.g. silicides (TaSi, MoSi; electronic components!)

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures

Potentials for semiconductor alloys

» The alloys of Si are something of a hot topic.

41

« Silicon carbide is interesting both for its mechanical hardness as well as its possibilities in high-

voltage or high-current electronics.

+ Silicon-germanium compounds (Si4_,Ge,) again are very interesting

because by adding some 20 % Ge to Si one can get the electron mobil-
ity (and hence integrated circuit speed) about as high as in GaAs, about
twice the value in Si. But because the device is still based on Si, one
does not have to change to the more complicated GaAs manufacturing
technology.

* In Siy_ Ge,-compounds there is, however, the problem that their lattice
constant does not match that of Si (on top of which the SiGe is grown).
The latest promising word is then Siy_,.,Ge,C, where x ~0.2 and y ~ x/
10. That is, only a few years ago someone realized that by adding a lit-
tle bit of carbon one can get a perfect lattice match to Si.

Sig.gGeg 2

Si

Sig.8Geg.2Co.02

Si

* For instance because of this it is interesting to have models for SiGe-, SiGeC and SiC-com-

pounds.

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures
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Potentials for semiconductor alloys

» The Stillinger-Weber potential has two Ge-parametrizations [Ding and Andersen, Phys. Rev. B
34 (1986) 6987 and Wang and Stroud, Phys. Rev. B 38 (1988) 1384]. Out of these, the Ding
and Andersen potential has: ¢ = 2.181 A and ¢ = 1.93 eV; the other parameters are identical to
Si. Wang-Stroud is like Ding-Andersen except that L = 31.

* One can construct a SiGe compound potential simply by taking the geometric average of the Si and Ge
parameters:

OsiGe =~ 4/9siCGe
€5iGe ~ AEsifGe
- A/XSQ‘G

XSiGe

a

* There is also actually a SW-parametrization for C [Pailthorpe and Mahon, Thin Solid Films 192/
193 (1990) 34], but this should normally not be used - since SW has a minimum for sp2 bond-
ing, but carbon also can be favourably in the triply bonded graphite sp2 configuration, with bond
angles of 120°°, the SW parametrization is of very limited usability.

» But in describing the lattice compensation of Siy_,.,Ge,C, fory ~ 0.01 the combination of the
three SW potentials actually does correctly reproduce the good lattice match to Si.
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Potentials for semiconductor alloys

* Tersoff has also developed potentials for SiC and SiGe [PRB 39 (1989) 5566.]. The formalism is
almost the same as for his Si potential:

E = %Z VU ’ Vl] :fc(rij)[fR(rij)+biij(rij)] ,
1#]

. —W;. 7
fR(rij) = Aije iy fA(rij) = ,Bije Myl

1, rUSRU
felry) =13+ 3008w S;— k) TR
0, rZSU

~1/2n,

bij = Xl'j(l + Bf’CZ’) ) Cij = z fc(Vik)mikg(eijk) )

k#i,j

cl.2 ¢; 2
sy 1+{3) |
ik d, a’l.2 +(h;— cosel.jk)
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Potentials for semiconductor alloys

* Here the indices i and j on the parameters denote the atom types. The mixed parameters
xl.j, i Al.j, Bl.j, Rl.j, Sl.j are obtained by interpolation from the elemental parameters:

:)”i+7‘j “i+uj

Ay i 44, B, = [BB; R = [RR , S; = ][S5S, .

A new parameter is x by which the mixed potential can be finetuned. Tersoff set ., = 1 and

Xij = Xji » SO there is only one free parameter for the mixed interactions, all the others are deter-
mined from the elemental parameters. Moreover, o, could be used to finetune the mixed inter-
actions but Tersoff set w,, = 1
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Potentials for semiconductor alloys

» The parameter values for C, Si and Ge were obtained from a fit to the properties of different
structures, and the finetuning parameters y were obtained from the cohesive energies of SiC
and (hypothetical) zinc-blende SiGe. The Si parameters are just Si(C) without %,.

C Si Ge

A V) 1393.6 1830.8 1769

B (eV) 346.7 471.18 419.23

A A) 3.4879 2.4799 2.4451

i (A) 22119 1.7322 1.7047
B 1.5724x107 | 1.1000x10° | 9.0166x107
n 0.72751 0.7873 0.75627
c 3.8049x10% | 1.0039x10° | 1.0643x10°
d 4384 16.217 15.652
h -0.57058 -0.59825 -0.43884

R (A) 1.8 2.7 2.8

S (A) 2.1 3.0 3.1

Tesi = 09776 YgiGe = 1.00061
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Potentials for semiconductor alloys

« The potential gives the following properties for SiC:

Tersoff Expt.
a (A 432 436
B (Mbar) | 2?2 22
012 (Mbar) 1.2 L5
Cqq Mbar) | 26 1.5
* Tersoff also calculated the energies for a few stoichiometric defects Here
(eV):
V; is the Si vacancy,
Tersoff | DFT
C.. is a carbon atom
4+ 74 | 127 Si i
Vsit Ve on an Si site, and
4 Qi 72 | 84
Csi T8¢ Crg; @ C atomon a
S +C.| 26 |23 te{rahedral site, sur-
TC " ~TSi rounded by C atoms.
: 232 | 26.0
Sirgi + Crg
3.0 | 24
Crc—Crsi
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Potentials for semiconductor alloys

» The potential predicts the properties of SiC fairly well, especially considering that the potentials
has only one parameter which is really fit to the properties of the compound (). And even this
parameter is fairly close to 1. Only the shear modulus ¢,, and the formation energies of vacan-

cies are pretty bad.

* One problem here is that in reality SiC is partly ionic in its bonding, which is not accounted for at
all in the Tersoff potentials. One potential where this is taken into account is [Shimojo, Phys.
Rev. Lett. 84 (2000) 3338] but this potential uses explicit angles so it is also problematic

* Nowadays also a wealth of reparametrizations exist for the Tersoff formalism SiC potential - it
seems almost every group working on SiC has made their own parametrization...
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C potentials

» Constructing a potential for elemental C is complicated (as noted above) because it has two

structures which are practically identical in energy: diamond and graphite. Both have a cohesive
energy of about 7.4 eV. The structure of graphite is:

» As noted above, this situation clearly can not be described with an explicit angle potential, but a
bond order potential like Tersoff can handle this.
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C potentials

» The Tersoff parametrization for C does, however, describe both bonding types well [Tersoff,
Phys. Rev. Lett. 61 (1988) 2879], and is clearly the most used C potential in the materials phys-

ics community.

» But it describes the graphite-to-diamond potential poorly. But simply by increasing the parame-
ter S in the potential to 2.46 A [Nordlund et al., Phys. Rev. Lett. 77 (1996) 699] one can make

this transition much better described:

£ -7.36 | 4 e Present work
— Experiment

S 737} Xperime E
(]

S 738t

I

> -7.39 |

o

H

Q2 74r

w

T4

55 60 65 70 75 80 85
c (A)

FIG. 1. Total energy per atom of graphite as a function of

the graphite lattice ¢ parameter. The solid line shows the

experimental curve, the triangles and dotted line result from
our potential.

—_ X ¢ Tersoff pot.
E osf !\ & Presentwork
E v = LDA
\
d
>
=)
@
c
i

R (A)

FIG. 2. Total energy per atom of the diamond to rhombo-
hedral graphite transformation as a function of the interlayer

distance R parameter. The squares show the energy given by
ab initio calculations in Ref. [22], the circles the result of the
original Tersoff potential, and the triangles the result of our po-
tential. The lines are drawn to guide the eye.
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C potentials

/l/ ‘\
PN N 1.54A
/|| ARr=3354A
% i . 1Ry 8510947
m //// /0\\:90" N
T ] >b . “B=1.54A
I
(a) (b) KB= 142 A
FIG. 1. The crystal structure of (a) hexagonal and (b) rhom- & ()
bohedral graphite showing the different stacking of the layers. FIG. 2. The local structure of (a) rhombohedral graphite (b)
diamond. The dashed lines indicate the basis vectors of the
Fahy et al. Phys. Rev. B 34 (1986) 1191. rhombohedral lattice. The [111] direction of the usual cubic
description of the diamond lattice is vertical.
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C potentials

» But there is a significant problem with the Tersoff C potential: because of its short cutoff, it does
not describe the interaction between graphite layers at all.

* There are two good solutions to this.

* Nordlund et al. have made an extension to the Tersoff potential which does describe the interaction
between graphite layers well [Phys. Rev. Lett. 77 (1996) 699]. However, the additional terms are very
weak except precisely for configurations very close to the flat graphite layers, and do not have a deep
physical motivation

* A more general formulation which includes Lennard-Jones-like long-range potentials for many carbon
bonding types (including polymers) by Stuart et al. [J. Chem. Phys. 112 (2000) 6472].
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Ge-potentials

* As we saw above, pure Ge has two almost identical SW-parametrizations, and the Tersoff
parametrization, which are all fairly good in the crystalline phase.

» But they all severely overestimate the melting point of Ge, giving about 2500 - 3000 K when the
experimental value is 1210 K.

* Nordlund et al. tried to solve this in the same way as Stillinger and Weber obtained the right
melting point for Si, i.e. decreasing the cohesive energy [Phys. Rev. B 57 (1998) 7556]. By
decreasing the cohesive energy in the SW potential by 18 % (i.e. setting ¢ = 1.56 eV) they
obtained a melting point 1230 + 50 K, and at the same time the threshold displacement energy
and mixing coefficient (important in ion irradiation physics) obtained reasonable values.

* But it is clear that this kind of solution is problematic.
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Potentials for compound semiconductors

+ Compound semiconductors are an interesting alternative to Si in some applications, especially
opto-electronics.

* A Keating-type potential [Schabel and Martins, Phys. Rev. B 43 (1991) 11873] has been
designed which can describe a large variety of semiconductors when the atoms are close to the
ideal sites, but the model is absolutely terrible when the atoms are farther because it has a a

harmonic (“r2 ")-potential well.

» For GaAs there is the Smith potential, based on the Tersoff formalism [Nucl. Instr. Meth. Phys.
Res. B 67 (1992) 335], which uses all the normal Tersoff parameters for Ga-Ga, Ga-As and As-
As separately, except that 1, = 0. But this potential has a vanishingly small angular term, and

hence all shear moduli are almost exactly 0.

» Sayed started from the Smith parametrizations, but fitted anew the Ga-As-interactions, and con-
structed an AlAs-potential. The GaAs potential is terrible because the zincblende-structure is
not its ground state! However, by setting A3 = 0 it becomes fairly decent.

* Ashu made a potential for InAs following Sayed’s approach, but this potential even has the
wrong lattice spacing! However, Janne Nord has later made a reparametrization which
describes InAs stably [Nordlund et al., Comput. Mater. Sci. 18 (2000) 283].
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Potentials for compound semiconductors
» There also exist a tight-binding-based Tersoff-like parametrization by Conrad et al, [Phys. Rev.

B 58 (1998) 4538] but this potential is terrible far from the ground state, it collapses into a state

with at least a factor of 2 lower energy than the correct zincblende structure.

» The most recent approach is a modified Tersoff-like parametrization which gives the correct
ground states for Ga, As and GaAs, as well as good melting properties for all three [Albe et al.
Phys. Rev. B 66, 035205 (2002)]. The only major problem is As-rich surfaces and defects.

* There is also a potential for GaN in this formalism.
* Modeling also like-ion interactions: e.g. Ga and As has many complex structures

Introduction to molecular dynamics 2015 9. Potential models for diamond and zincblende structures

Potentials for compound semiconductors
» Ground state of the Sayed potential for GaAs:

K. Nordlund, A. Kuronen | Nucl. Instr. and Meth. in Phys. Res. B 159 (1999) 183186 185
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Fig. 2. Structure of erystalline GaAs described by the Sayed potential alter a 4 ns simulation at 600 K. The Ga and As atoms are still in
the same planes; for clarity the Ga planes are marked by thick black lines in the upper part of the figure. The bonding information is
calculated using a distance cutoff of 3.5 A, corresponding to the Saved potential cutoff parameter R for Ga-As interaction [8]. Note
that Ga—Ga and As-As bonds (which would not be present in the correct zincblende structure) have formed between the atoms. The
potential energy of this phase is about —3.30 eV, less than the zincblende value of —3.25 eV.
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Bond order potentials for metals and compounds

* As noted in the description of bond-order potentials above, they are actually equivalent to the
basic EAM form. Hence nothing actually prevents from constructing metals potentials from a
bond order, e.g. Tersoff-like form.

* People in the Nordlund and Karsten Albe groups have done this, so far for Be, Fe, Cr, Au, Pt
and W, obtaining potentials which are at least as good as the common EAM-like potentials for
the same metals and a nunmber of their carbide and oxide compounds, showing that the bond
order concept carries further even to complex compounds. The basic methodology and PtC part
is published in [Albe et al., Phys. Rev. B 65, 195124 (2002)].

+ Other references to these mixed potentials:

* Au: M. Backman, N. Juslin, and K. Nordlund. Eur. Phys. J. B, 85:317, 2012.

* GaN: J. Nord, K. Albe, P. Erhart, and K. Nordlund, Journal of Physics: Condensed Matter 15, 5649 (2003).

* WCH: N. Juslin et al, J. Appl. Phys. 98, 123520 (2005).

* ZnO: P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Muller, and K. Albe, J. Phys.: Condens. Matter 18, 6585 (2006).

* BeCWH: C. Bjorkas et al: : Condens. Matter 21, 445002 (2009); J. Phys.: Condens. Matter 22, 352206 (2010).

* FeCrC: K. O. E. Henriksson, C. Bjérkas, and K. Nordlund, Enabling atomistic simulations of stainless steels: A bond-
order potential for Fe-Cr-C system, J. Phys. Condens. Matt. 25, 445401 (2013).

» FeH: Kuopanportti et al, Interatomic Fe—H potential for irradiation and embrittliement simulations, Comput. Mater. Sci.
111, 525 (2015).
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Set the initial conditions rl.(to), Vl.(t())

Y
Update neighborlist Potential

models for
¢ molecules (and
hydrocarbons)

Get new forces Fi(ri)

y

Y

Solve the equations of motion numerically over time step A¢:
rl.(tn) - rl.(tn 1) vl.(tn) - Vl-(tn 1)

'

Perform 7', P scaling (ensembles)

Y
t— 1+ AL |

Y
Get desired physical quantities

'

t>1 ) Calculate results
max and finish

Introduction to atomistic simulations 2015 10. Potential models for molecules and hydrocarbons

Molecular interaction models

» Since molecules are bonded by covalent bonds, at least angular terms are needed,
* In many cases many more complicated terms as well: e.g. carbon chains the difference between “single”
and “double” bonds often is important = at least a four-body term is needed.

» To describe complex molecules a large set of force fields have been developed.
* Molecular mechanics: use of force fields, no reactions (i.e. bond breaking or creation)
* Fixed neighbor topology (except for so called non-bonded interactions).

* The total energy of a molecule can be given as

_ E
E=E bond tE angle tE torsion tE oop tE Cross +E nonbond o bond PY
E\ .q: €nergy change related to a change of bond length (V)

E

Eangle: energy change associated with a change in the bond angle,(7;) O@m
E\ ion: torsion, i.e. energy associated with the rotation between two parts

of a molecule relative to each other (also termed dihedral) E{ rsion
Eoop: “out-of-plane” interactions, i.e. the energy change when one part

of a molecule is out of the plane with another (keeps the molecule planar) U
E . <" Cross terms between the other interaction terms
E_nbond: Interaction energies which are not associated with covalent bonding (e.g. Lo

ionic or van der Waals terms) do/\@/g

* In the following we describe the terms, using notation more common in chemistry rather than the
physics notation used earlier on the course.
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Molecular interaction models

¢ The term Epond

* This term describes the energy change associated with the bond length. It is a simple pair potential, and
could be e.g. a Morse or LJ potential.
* At its simplest, it is purely harmonic, i.e.

~ | 2
Epona = D, 5kp(b=Dp)
bonds

where b is the bond length.
* If we write this term instead as

ol 2
E; = Zﬁk(rij_ro)
J

we see that it is the same thing as the pair potentials dealt with earlier.
Can be good enough in problems where we are always close to equilibrium, since any

smooth potential well can always be to the first order approximated by a harmonic \
well.

+ But harmonic potentials obviously can not describe large displacements of atoms or S
bond breaking reasonably.

* In solids, the harmonic approximation corresponds to the elastic regime, i.e. the one
where stress is directly proportional to the strain (Hooke’s law).

+ A historical footnote is that Hooke presented the law already in the 1678 as “Ut ten-
sio, sic vis."! so it did not originally have to do much with interatomic potentials...
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Molecular interaction models

« To improve on the bond model beyond the elastic regime, one can add higher-order terms to it, e.g.

2 3 4
Epond = Y, Ky(b=bg)" +K3(b—bg)” + Ky(b—by)
bonds

« Larger strain can be described, but not bond breaking: if here 5 — « thenalso E — -« => bonds cannot
break

* The familiar Morse potential

2
—a(b-b,)
bonds bonds
is much used to describe bond energies.

This is shifted in £ axis
2a(b-b,) _ —a(b-by) so that
_ + _

2e 1} Ebond(bO) = 0.

1. The Power of any spring is in the same proportion with the Tension thereof.
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« Itis good in that £ — constant when b — < so it can describe bond breaking.

* But on the other hand it never goes fully to 0, which is not quite realistic either as in
reality a covalent bond does break essentially completely at some interatomic distance.
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Molecular interaction models

* Angular terms E yngle

» The angular terms describe the energy change associated with two bonds forming an angle with each
other. Most kinds of covalent bonds have some angle which is most favoured by them - for sp® hybridized
bonds it is ~ 109°, for sp? 120° and so on.

* Like for bond lengths, the easiest way to describe bond angles is to use a harmonic term like

1 2
Eangle - z EHO(efeO) ’

angles
where 6, is the equilibrium angle and H a constant which describes the angular dependence well. This

may work well up to 10° or so, but for larger angles additional terms are needed.

* A typical means for improvement is, surprise surprise, third-order terms and so forth, for instance

2 3

angles

* An example: by taking the simplest possible bond length and angular terms, it is H H
already possible to describe one water molecule to some extent:

0 2 .0 2 0o 2
Ep,o = Kou(0—bop) +Kop(0' ~boy) +Kyou(® - Oyon)

where b and b' are the lengths of the two bonds and 6 the angle between them.
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Molecular interaction models

* Torsional terms Eorsion

» The bond and angular terms were already familiar from the potentials for solids. In the physics and chem-
istry of molecules there are many important effects which can not be described solely with these terms.

» The most fundamental of these is probably torsion. By this, the rotations of one
part of a molecule with respect to another is meant. A simple example is the rota-
tion of two parts of the ethane molecule CoHg around the central C-C carbon

bond.

* Torsional forces can be caused by e.g. dipole-dipole-interactions and bond conju-
gation.

« If the angle between two parts is described by an angle ¢, it is clear that the function fwhich describes the
rotation should have the property f(¢) = f(6 +2m), because it is possible to do a full rotation around the
central bond and return to the initial state. The trigonometric functions sin and cos of course fulfil this
requirement, so it is natural to describe the torsional energy with a a few terms in a Fourier series

E = V1(1+cos(q)))+ V2(1+cos(2q)))+ V3(1+cos(3¢))

torsion

Introduction to atomistic simulations 2015 10. Potential models for molecules and hydrocarbons 7

Molecular interaction models

* Out-of-plane terms Eoop

» With the out-of-plane-terms one describes the energy which in (some cases) is associated with the dis-
placement of atoms out of the plane in which they should be. This is relevant in some (parts of) molecules
where atoms are known to lie all in the same plane. The functional form can be rather simple,

2
Eoop = 2y
X
where y is the displacement out of the plane.

* Cross terms E,oss

» The cross-terms are functions which contain several of the above-mentioned quantities. They could e.g.
describe how a stretched bond has a weaker angular dependence than a normal one. Or they can
describe the relations between two displacements, an angle and a torsion and so one.

* Non-bonding terms Enonbond

» With the non-bonding terms all effects which affect the energy of a molecule but are not covalent bonds
are meant. These are e.g. van der Waals-terms, electrostatic Coulomb interactions and hydrogen bonds.
For this terms one could thus further divide

E E E

nonbond ~ “vdw + Coulomb +tE hbond

* The van der Waals term is often a simple Lennard-Jones-potential, and £ ..., @ Coulomb potential for

some, usually fractional, charges g;.
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Molecular interaction models

« If all of the above are included except for hydrogen bonds, the total energy expression can for
instance look like
Ebond Ean rle E

torsion

[ [ |
V(R) = ZD [1-exp(-a(b- bo))]2+ZH (8-6,)2+ ZH [1+ scos (n0)]

E()()p + ZHIIZ ZZbe’(b - bO) (b~ bIO) + ZZFBB’ (0- ﬁo) (07 - elo)

ZZFbe(b bo) (6~ BO)+ZZ Fogrg (8- 80) (8~ 67) cosd | Foross
ZF i |:_J Zify _J:|
; A ZE !

[ | E—

EvdW ECoulomb

F

» There are many popular force fields in the literature:
AMBER, CHARMM, MM2, MM3, MM4, ...

* GROMACS is a GPL’ed MD code able to use various force fields.
* Home page: http://lwww.gromacs.org/
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Brenner potential

» The Brenner potential [D. W. Brenner, Phys. Rev. B 42 (1990) 9458] is a ‘simple’ potential for
hydrocarbons, which is based on the Tersoff potential but developed further from this.

» The ideas behind the potential show how information on chemical bonding can be added in a well-moti-
vated way to a classical potential.

* The Brenner potential is also attractive in that it can describe chemical reactions, which the potentials with
harmonic terms can not.

* The basic Tersoff potential contains a bonding term £, |, and an angular term E But these can not

angle "
describe alone e.g. conjugated bonds.

» The issue here can be understood as follows. Consider first graphite:
cC—2¢C

/ AN

* Here all the carbons have an identical local neighbourhood. Because carbon has 4 outer electrons, but
only three bonds, every bond has 1 1/3 electrons.
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Brenner potential

* Then consider the following molecule:

H;C CHs

/

* Here there is a double bond between the two C atoms marked in blue. But the local neighbourhood of
these two atoms is identical to the two C atoms in blue in graphite. Because the Tersoff potential only
accounts for the nearest neighbours, it describes the middle bond here in the same way as the bonds in
graphite, although in reality there is a clear difference in bond character, strength and length.

 To improve on problems like this, Brenner added terms which depend on the chemical environment into
the Tersoff potential.

* Brenner starts with the Tersoff potential

=2 2 [Vr(r 1/ EijVA(rij)]

i ji>1i)

and defines the repulsive and attractive parts Vg and V, just like Tersoff. But the environment-depen-
dence obtains additional parts.

Introduction to atomistic simulations 2015 10. Potential models for molecules and hydrocarbons "

Brenner potential

. B is now:
- () Ar(D) prconi
B =(B;;+Bj;) /2+F;(N,",N;", NV /2

where

]
(r»‘R.(e}—*(r. AR(E)) !
By= |14 3 G0, fulrge ™o 5 T RO g, yic)

Kk (#i, )
* The first part is almost as Tersoff’s formulation (except no power of three in the exponential), but the Hl.j

and F are new. Here l\f( ) are the number of H neighbours of one atom, N( ) the number of C neigh-

bours of one atom, and Nf ) the total number of neighbours. The number of neighbours is calculated by
utilizing the normal Tersoff cutoff-function

1, r<R}"
r_R(l)
fi(r) 1+cos /2 R} <r<RpP
(R(Z) R(l
0, r>R.
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Brenner potential

* The sums over fl.j thus gives an effective number of neighbours (coordination!):

Ni(H)z > Silry),

Jj(=hydrogen)

N9= 3 fylry),
Jj(=carbon)
* The values of Ngt) can be used to deduce whether some C atom is part of a conjugated system. If any C
atom has even one neighbour which does not have 4 neighbours, it is interpreted as conjugated.

(because all quantities are continuous, the precise requirement is in fact N( ) 4)

Introduction to atomistic simulations 2015 10. Potential models for molecules and hydrocarbons 13

Brenner potential
* The continuous quantity N WhICh describes whether a bond ij is conjugated is calculated as

NPv=1+ 3 falra)F(xg)

carbons k (#1, j)

+ 2 f_,[(rﬂ)F(Xﬂ)

carbons [(#1, )

where
1, x,<2
F(x, )= {{14cos[m(x,; —2)]1} /2, 2<x; <3
0, x; =3
and
= NP flri) .

* So if one carbon atom has exactly 4 bonds we get

= 3= Flx;) = o:N“’nJ

« If the bond on the other hand is conjugated, Nf;mj >2.

COIIJ H) (C)) 2

) and H, (N(

* Brenner does this simply by fitting into a large set of experlmental data. As many as possible of the values
for integer indices are set to some values directly derived from experiments, and thereafter spline interpo-
lation is used to interpolate values smoothly for non-integer arguments.

* The remaining question is how to form the functions F; (N(t) N(.t)
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Brenner potential

* For instance, the values for integer arguments determined in version 1 of the potential for the function H are:

Hcc(1,1) —0.0175 CC bond energy in benzene
Hcc(2,0) —0.0070 CC double bond in ethylene
Hcc(3,0) 0.0119 CC single bond in ethane
Hcc(1,2) 0.0115 CC single bond in isobutane
Hce(2,1) 0.0118 CC single bond in cyclohexane
Hcy(1,0) —0.0760 Atomization energy of CH,
Hcy(2,0) —0.2163 Atomization energy of CH,
Hcy(3,0) —0.3375 Atomization energy of methane
Hcy(0,1) —0.1792 CH bond energy in acetylene
Hcy(0,2) —0.2407 CH bond energy in benzene
Hcy(1,1) —0.2477 CH bond energy in ethylene

Hcy(2,1) —0.3320 CH bond energy in ethane

Hcy(0,3) —0.3323 Tertiary-HC bond energy in isobutane

Hcy(1,2) —0.3321 CH bond energy in cyclohexane

OHcyu(1,1) .

ac —0.12805 Centered difference

0Hcpu(2,0) 5

“3c —0.076 55 Centered difference

dH4(0,2) o .

“aH —0.13075 Centered difference

OHcu(1,1) .

TTaH —0.0764 Centered difference

Introduction to atomistic simulations 2015 10. Potential models for molecules and hydrocarbons

Brenner potential

* And for function F':

£(1,1,1) 0.1511 CC triple bond in acetylene
F(2,2,1) 0.075 Average energy of bonds in (CH;),C=C(CH;)
and (CH3;)HC=CH(CH,;) equal double bond
F(1,2,1) 0.0126 Atomization energy of HC=CH,
F(1,3,1),F(1,3,2) —0.1130 Single bond in H;C—CH
F(0,3,1),F(0,3,2) —0.1220 Single bond in H;C—C
F(0,2,2) —0.0445 Conjugated double bond in C=CH(CH,)
Fl0,2,1) 0.0320 Double bond in C=CH,
F0O,1,1) 0.1100 Atomization energy of C,H
F(1,1,2) 0.0074 Atomization energy of CH,CCH
GL;}I,Q —0.1160 Centered difference
—“F(z’iz’“ —0.13205 Centered difference
w ~0.0610 Centered difference
8F(2,3,2) 3‘1_3’2) 0.02225 Centered difference
aL(g-i’z—) —0.03775 Centered difference
1
aF—(';"i‘t;zl 0.0565 Centered difference
ﬁap(';’%’;) 0.0565 Centered difference
I3
8Ll;,i2ﬁ —0.1065 Centered difference

* In addition, Brenner also presented another parametrization of his potential.
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Brenner potential

* Crucial here are not the exact values, but the principle used: that as many parameters as possible are set
to well-defined experimental quantities. Also the H values are largely derived from experimental data:

Hydrogen R, 0.74144 A Gas-phase diatomic
Dk 4.7509 eV Gas-phase diatomic
Bun 1.9436 A~! Gas-phase diatomic
SHu 2.3432 Barrier for reaction (19)
Sun 0.804 69 Set equal to carbon value
AHHH 3.0 Remove spurious wells from (19)
Gun 4.0 Barrier for reaction (19)
RYL 1.1 A Near-neighbor interactions
R, 1.7 A Near-neighbor interactions

* Also the parameters for pure carbon were refitted by Brenner.

* Brenner tested his potential by calculating atomization energies for a large group of simple hydrocarbons.
The results are listed on the next page.

* The potential was also shown to describe well the reconstructed and H-terminated diamond (111) surface
and molecules chemisorbed on the surface.
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Brenner potential

TABLE IV. Atomization energies for various hydrocarbon molecules. Experimental values were derived from heats of formation
using energies of 7.3768 ¢V for carbon and 2.375 eV for hydrogen.

Potential I Potential IT Experimental value
Molecule (eV) (eV) (eV)
Alkanes methane 17.6 17.6 17.6°
ethane 29.7 29.7 29.7°
propane 42.0 42.0 42.0°
n-butane 54.3 54.3 54.3°
i-butane 54.3 54.3 54.4°
n-pentane 66.5 66.5 66.6%
isopentane 66.5 66.5 66.6°
neopentane 66.8 66.8 66.7*
cyclopropane 355 35.0 35.8°
cyclobutane 48.7 48.5 48.2*
cyclopentane 61.4 61.3 61.4*
cyclohexane 73.6 73.6 73.6"
Alkenes ethylene 23.6 23.6 23.6°
propene 36.2 36.2 36.0%
1-butene 48.5 48.5 48.5°
cis-butene 48.8 48.9 48.6°
isobutene 48.4 484 48.7°
(CH;),C=CI(CH;), 73.2 73.3 73.4®
cyclopropene 28.2 27.3 28.8°
cyclobutene 42.4 42.0 42.4°
cyclopentene 55.7 55.7 55.6°
1,4-pentadiene 55.0 55.0 54.8°
CH,=CHCH=CH, 41.8 41.9 42.6°
CH,CH=C=CH, 40.4 40.5 42.1°
H,C=C=CH, 27.8 27.9 29.6°
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Brenner potential

Alkynes acetylene 17.1
propyne 294

1-butyne 41.7

2-butyne 417

Aromatics benzene 57.5
toulene 69.6
1,4-dimethylbenzene 81.8

ethylbenzene 81.9

ethenylbenzene 76.2

ethynylbenzene 69.8

naphthalene 91.4

Radicals CH, 7.8
CH; 12.7

H,CH, 25.7

H,C,H 18.9

CH 122

CH,CCH 245

n-C;H, 379

i-C;H; 383

t-C4Ho 50.5

phenyl 52.7

Introduction to atomistic simulations 2015
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17.1
294
41.7
41.7

57.5
69.6
81.8
81.9
76.2
69.8
91.4

7.8
12.7
25.7
18.9
12.2
245
38.0
383
50.5
52.7

17.1*
29.7°
42.0°
42.2°

57.5°
70.1°
82.6°
82.5°
76.5°
69.9°
91.2°

7.8
12.7¢
25.5°
18.9¢
12.2f
25.8°
37.8°
38.0¢
50.5°
52.7¢
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* Later Murty and Atwater [Phys. Rev. B 51 (1991) 4889] have made a Si-H version of the Brenner poten-

tial, and Beardmore and Smith [Phil. Mag. A 74 (1996) 1439] a combined C-Si-H-version.

* Brenner himself has later added a torsional term to the potential, and at least two groups have added

long-range interactions (intermolecular interactions) into it: [Stuart et al., J. Chem. Phys. 112 (2000) 6472]
and [Che et al., Theor. Chem. Acc. 102 (1999) 346].

Introduction to atomistic simulations 2015

10. Potential models for molecules and hydrocarbons

20



Brenner potential

» Example application: Beardmore and Smith examined in their paper how a fullerene Cg hits an Si sur-
face.

* Case |: 250 eV Cgg — virgin Si, incoming angle 80° i.e. the fullerene forms bonds with the surface and rotates along it
for a while (note the periodic boundary conditions).

Fig. 11

Starling. @ 00 fs.
20

800 fs. 1200 fs.

RO

)

) LRGN

o.C G 0 0 ¢ 08 E
2 0-5.0

96%6%6%% % %

1600 fs. 2000 is.

0%, ;a;c:eqes;
0% 8 6 o0
R e

Atomic positions for a 250 ¢V Cg molecule incident at 30° to normal on bare Si{100} during a 2ps simulation.
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Brenner potential

+ But if the Si-surface is H-terminated (all dangling bonds are filled with a H) the behaviour changes:
Case II: 250 eV Cgy — H-terminated Si, 80°.

Fig. 12

Starting. @ 400 1s.

S B
@ G R
2 S N Someue]
a;o B?@;ﬁ;ﬁg&gﬁ Co
8.0 870 0 B0 6Cq
2.9 5 X
e
L]
-
»
1 ) .‘_ s |-=
2™
800 fs. 3 ® o el 1200 fs.
-

;T R
a e el

1600 fs. 2000 is

PN R R
& o
%% g%

Atomic positions for a 250eV Cg, molecule incident at 80° to normal on 1 MLH Si{100} during a 2 ps simulation,

So the H protects the surface such that only a couple of bonds are formed with the surface, and the fuller-
ene bounces back almost impact, having only taken up one Si atom.
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« Case llI: 250 eV Cgy — doubly H-terminated Si, 80°

Fig. 13

Starting @ 400 f5.

L
800 fs 1200 fs.

1600 fs 2000 Is.

Atomic positions for a 250V Cg, molecule incident at 80° to normal on 2MLH 5i{100} during a 2 ps simulation.

» So now the protective H layer is so thick that there are no C-Si bonds formed at all, and the fullerene bounces back
intact.
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Stuart potential

* Long range interactions are important also in graphite and in multiwalled carbon nanotubes (MWCNTSs)

« Stuart et al. [J. Chem. Phys. 112 (2000) 6472] used the Lennard-Jones potential to
model the dispersion and intermolecular interaction:

o =) -(GH]

r 02
* However, LJ should be switched off when molecules approach E ! o, 2 :
« Switching depends on interatomic distance [S(¢ (7.))], bond order Connectivity: no LJ interaction

Ty among 1,2,3,4, LJ possible be-

[S(tb(bl.j))], and connectivity [Cij]: tween 1 and 5
3
E, = Vo(r )+ BV (r) + E 2 1
b= DO O VR T BV A(r )+ E]
ij>i
1 5
L] ] J

Ej = S, Sty (b)) CV s () + 11 = S(1,(mDIC V) ()

* For C-C interaction Gij = 3.40 A (graphite interlayer distance) = large neighbor lists (" cutors = 11 A)l
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« Example: Load transfer between shells in MWCNTs [M. Huhtala et al., Phys. Rev. B 70 (2004) 045404]

-F

™_|ntershell bond

No intershell bonds

0.9
<086
@ Constant . . Capillary component
g03 interaction n appears
$0. !

area) B
Rhataliiads
y

10 20 30 40 50
Displacement (A)

FIG. 1. Force vs displacement plotted for intact nanotube slid-

ing. The displacement is measured from the point where the tube
ends are even.

E=e,(im)md(L —x) — AGi, i) md(L x)cos|: 2 } .
N(n2,m)

FIG. 2. Two views of a covalent intershell bond in tubes with
different chiralities. Such bonds can be formed, for example, due to
on-shell vacancies or intershell interstitials. The bonds shown are
due to vacancy-pair reconstructions. As can be observed, the bond
orientation is chirality dependent and there are several possible ori-
entations in each particular tube.

Defect type

Force (nN)

Single vacancy

0.08—0.4

Two vacancies

6.4—7.8

Intershell interstitial | 4.9—6.3

Intershell dimer

3.8—73
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Set the initial conditions rl.(to), Vl.(t())

\i
Update neighborlist Potential

models ionic
¢ compounds

Get new forces Fi(ri)

y

Y

Solve the equations of motion numerically over time step A¢:
rl.(tn) - rl.(tn 1) vl.(tn) - Vl-(tn 1)

'

Perform 7', P scaling (ensembles)

y
F>t+ A ‘

Y
Get desired physical quantities

'

Ny 9 Calculate results
max and finish
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Potentials for ionic compounds

* There is a wide range of materials where ionic interactions are important:

* In hard condensed matter many, if not most, compounds have at least some degree of ionicity.
« Partial ionic charges are also very important for organic materials

* In ionic compounds one can simply describe the long-range interaction with a Coulomb pair
potential. But one should add a short-range interaction 7, to describe repulsion at short dis-

tances:

V) = Ve + 1525
r..) = r.. —_—
ij SR ij 471:80’”1']"

* The charges z, are often fractional charges, depending on the degree of ionicity of a material (e.g. NaCl:
1, GaN: 0.5, GaAs: 0.2, Si 0.0).

* Vgg contains the repulsion of the electron shells and possibly an attractive van der Waals-interaction.

Common forms:

. _ C
« Buckingham: 14 = Ade"P - =
uckingham SR(r) e :

r

* Born-Huggins-Mayer:  Vgp(r) = AeB(r-o)_ c_

D
6,8

+ Morse: Vap(r) = De 270 _ape ®r=70)
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Potentials for ionic compounds

* The repulsion is usually significant only for nearest neighbours, and the van der Waals interac-
tion for the 2-nd neighbours. In oxides frequently the interaction between cations is assumed to
be only the Coulomb repulsion.

* In many real compounds the interactions are a mixture of covalent, metallic and ionic interac-
tions (e.g. many carbides and nitrodes).
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Potentials for ionic compounds

* Such potentials have been formed for many ionic compounds. We present here briefly the potential by
Vashista et al. for SiOy [Phys. Rev. B 41 (1990) 12197.] which comes up in many different contexts.
+ Silicon dioxide also has many different structures, which makes it difficult to model:

TABLE 1. Density, crystal structure, bond lengths, and bond angles for a few crystalline forms of Si0,. Names of the structures
are given in the first column. In the second col the upper ber denotes the mass density in g/cm’, whereas the lower number
in parentheses represents the number density in units of 1022 cm™>. Group symmetry and number of SiO, molecules per unit cell
(mol/u.c.) are given in the third column. In the fourth column the upper numbers give Si—O bond lengths and the lower numbers,
(Si—O0), represent the average bond length. In the last column values of bond angles Si—O—Si, average value {Si—O—Si), bond
angle 0—Si—O, and its average value {O—Si—O) are given.

Mass and number

densities Bond Bond
g/cm’ Crystal length angles
Name (102 cm™?) structure (A) (deg)
B-cristobalite* 2.20 cubic dg_o=1611 LSi—0—Si=146.7
(6.618) (Fd3m) (ds,_o)=1611 ( LSi—0—Si)=146.7
8 mol/u.c. 40—Si—0=107.8,112.8
a-cristobalite® 2.35 tetragonal dg_olD=1.602 LSi—0—Si=144.7
(7.088) (P4,2)) dg_o(2)=1.617 {d8i—0—Si)=144.7
4 mol/u.c. J0—Si—0=108.1-111.3
(40—Si—0)=109.5
keatite® 2.50 tetragonal ds,_o=156-1.62 <LSi—0—Si=148.2-159.5
(7.526) (P4,2) (ds,_o ) =1.590 {4Si—0—Si)=155.2
12 mol/u.c. <0—Si—0=103.7-113.8
B-quartz? 2.52 hexagonal ds_o(1)=1.591 48i—0—Si=150.9
(1.57) (P6,2) dg_o(2)=1.606 {<LSi—0—Si)=150.9
3 mol/u.c. S 0—Si—0=108.0-110.5
a-quartz® 2.65 trigonal dgi_o(1)=1.605 4 8i—O0—Si=143.7
(7.956) (P3;21) ds;_o(2)=1.614 (LSi—0—Si)=143.7
3 mol/u.c. (dgi_o ) =1.609 40—Si—0=108.7-110.4
coesite’ 292 monoclinic ds;_o=1.60-1.62 <8i—0—S8i=137.4-180
(8.784) (P21/a) (ds_o)=1.609 {4Si—0—Si)=148.4
16 mol/u.c. 40—Si—0=107.9-110.5
{L0—S8i—0)=109.5
stishovite® 4.29 tetragonal dg_o(1)=1.809 4L Si—O0—Si=81,90,106"
(12.88) (P4,/mnm) ds,_o(2)=1.757 < 0—Si—0=100,130
2 mol/u.c.
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Potentials for ionic compounds

* But all of these have the common feature that they can be under-
stood as tetrahedra with Si in the centre and O atoms in the joint cor-

ners:
o. cristobalite B cristobalite B tridymite keatite

FIG. 9. A schematic view of corner-sharing tetrahedra in a-
SiO,.
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Potentials for ionic compounds

« Simulation of a 40-A diameter SiO, beam in equilibrium (left) and strained.
« Colorcoded is the ratio between the shortest and longest edge of a face of a tetrahedron.
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Potentials for ionic compounds

» The potential is of the familiar form:

V=3 W+ 3

1<i<jSN 1<i<j<k<N

V3(rij,rjk,rik) .

* The two-body part V,:

o r r

ey Z}+a;Z))
- . 5

* The three-body term:
V3 ':Bﬁkf(rij!rik )p(9j1k1§jik ) ’

=r/ry
bl

The first part is the “steric” repulsion due to the ion size, the
second the Coulomb term and the third a charge-dipole
term, which takes into account the large polarizability of O.

where the f-function describes how the bond lengths and the p-term how a change of the bond angle

affects the interaction.
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* These are

+
Fij—ro Tk~ Fo

exp
f(rij’rik):

0 for TisTike > To »

for rijt

11. Potential models for ionic compounds

TABLE II. Constants in thae interaction potentjal for SiO,,
Egs. (1)-(5). Unit of length is A and of energy e?/A=14.39 eV.
Z is the effective charge, a the electronic polarizability (which

x <Tp has the dimension of volume), 7 the repulsive exponents, and H

the repulsive strength. The constants B, [, 8, and r, pertain to
the three-body part of the interaction potential, where B is the
strength, and /, 8, and r, are constants defined in Eqgs. (4) and
(5). The range of the three-body interactions is < r,.

P(6,8, )=(cosb;; —cosB; )*, z a
Si 1.60 0.00
o ~—0.80 2.40
n H
* Parameters are shown on the right. Si-Si 11 0.057
Si-0 9 11.387
* A corresponds to Si and X to O in the three-body parts. 0-0 U 51.692
Note that only the AXA- and XAX-three-body terms are _
defined - the potential would not describe sensibly e.g. B ! o To
pure Si since there is no AAA-term. A-X-A 1.40 1.0 141.00 2.60
X-4-X 0.35 1.0 109.47 2.60
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Potentials for ionic compounds

* The Si-Si and O-O-interaction are just a purely repulsive pair potential:

1.5
— 1 -
<<
N 05 L
b O
— 0 B
.05 | i
= Si-0
-1 ‘

FIG. 1. Si-Si, Si-O, and O-O contributions to the two-body
part of the interaction potentials, Eq. (2), for SiO,. Total in-
teraction potential is a sum of two-body, Eq. (2), and three-body

contributions, Eq. (3). Unit of length is A and of energy
e?/A=14.39 eV.
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Potentials for ionic compounds

* The potential describes well the most common forms of SiO :

-0.60

S\ Keatite
N

oy

-0.66

-0.72

Ey I (€% /A)

. o;C L .
6 7 8 9 10
p (10%2cm-3)

-0.78_
5

FIG. 2. Total potential energy (two plus three body) per par-
ticle, E, /N in units of e2/A=14.39 eV, for various crystalline
phases of SiO; as a function of density: ideal B-cristobalite (i-8-
C), B-cristobalite (B-C), a-cristobalite (a-C), B-quartz (B-Q), a-
quartz (a-Q), and keatite.
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Potentials for ionic compounds

* A newer potential was developed by Watanabe et al. [Appl. Surf. Sci. 234 (2004) 207.].
* One of its strengths is the ability to describe also the so called sub-oxides of SiO,; e.g. SiO.
* Because of this it is suitable for describing interfaces between Si and SiO, and to be used in defect studies and ion
bombardment simulations.
* The potential is based on the Stillinger-Weber potential and the Si-Si interaction is the original Si-SW.

« Examples of its use in nanocluster bombardment can be found in J. Samela’s PhD thesis’.
* However, its elastic properties are not very good, strongly overestimates e.g. bulk modulus

* An SiO2 potential in the Tersoff formalism: [Munetoh et al, Comput. Mater. Sci. 39 (2007) 334]: better than
Watanabe in some elastic and melting properties

1. Electronically available at http://urn.fi/URN:ISBN:978-952-10-3927-0
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Charge-transfer potential models

* There is a clear fundamental problem with the description of ionic bonding and covalent bond-
ing described above.
* Consider the following (schematic 2D representation) of an Si-SiO, interface system:

S © © © © (s (s (s
SR LI I .
S o | e | el |l o [ _ - | e |l o o

sio, & © © ) ©), © ) ©
© © © © © © © ©

© © © © © © © ©
© © ©) ©, © ©) ©) ©)
© © © © © © © ©

© © © © © © © ©
) ) © © (s © ©, ©)
© © © © © © © ©

* On the Si side of the interface, zg; = 0 — ordinary Si potentials. - —— - -
1 To be more precise, ab initio calculations give

* On the SiO; side zg; = 2 — ionic model. for SiO,:
ZSi = lde, ZO =-0.7¢e
* What happens if we move an Si atom from the SiO, to the Si

side This could easily occur in reality by diffusion
or a radiation process. Which model should be used to describe the interactions of this atom??
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Charge-transfer potential models

* Here we get to the charge transfer model for the atoms, where the environment-dependence of
the ionicity of the atom is built into the model.

» There are extremely few models like this, since charge transfer processes are difficult to deal with and
poorly understood.

* One fairly well motivated approach is that of Alavi et al., Phil. Mag. B 65 (1992) 489.

* The idea is to formulate an environment-dependent term which gives the charge state of atoms:
% = Z(ZfAiBj(rij)J
VER

. fAB(rl.j) is some function of the atom distances and types 4, and Bj

« Z(x) is a function which could e.g. limit the charge state to reasonable values (like say between -4 and +4 for Si).

* Some thought reveals that the /, , functions would be likely to have the properties

fua =0
fpp = 0
Jap(rp) = Tpa(ry)

* The first two criteria ensure charge neutrality in a pure elemental region, the latter one global charge neutrality.
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Charge-transfer potential models
* Once the z; have been determined, one could use an expression of e.g. the form
zZ.Z 82
= VAR v
Vi 24758 r g(Zl-)Z manybody
. 0% ij "
J J
to obtain the total interaction energy of an atom i.

vV

manybody could be some many-body potential for an uncharged system.

* The function g(z;) would be used to switch this potential on and off depending on the ionicity:

= 1 when z; = 0
Z.
&) { — 0 whenz;#0

* The big and difficult question is how to choose f(rl.j). It should be constructed to ensure global charge
neutrality, and give correct ionicities in known environments.
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Charge-transfer potential models

« For instance in the SiO, case presented above, it obviously should be constructed such that if an Si atom has four O
atoms at the equilibrium distance, it should give z; = 1.4¢. Since every Si atom has 4 O neighbours and every O atom

2 Si neighbours this would mean that in case only nearest-neighbour interactions are counted and the equilibrium
atom distance is ¥(» one could have

Jsisi =0

Joo =0

fsi.o = 1035 (remember: Zg, = 1.4e, Z=-0.7¢)
Jogi = -0.35

Z(x)=x, whenx<4

» One way to deduce the functional form could be to use quantum mechanical schemes to deduce ionicity,
such as Mulliken charge analysis.

« Since little work has been done on this topic there is not much more to say, except that this is a wide-open
topic with lots of room for new and interesting research.

» See also F. H. Streitz, J. W. Mintmire, Phys. Rev. B 50 (1994) 11996; X. W. Zhou et al., Phys. Rev. B 69
(2004) 035402.
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Potential models for ionic compounds

» Sometimes rather simple models may be sufficient.

* An example: Si/SiO, interface (again!) [Y. Tu, J. Tersoff, Phys. Rev. Lett. 84 (2000) 4393.]
« Simple VFF potential (sum over bonds; only Si-O and Si-Si bonds; no defects: continuous network of bonds):

1 2.1 2
E{r} = szb(bi—bO) +52ke(cos9ij—cos60) +U
i ij

+ Suboxide penalty U allows to study other environments of Si atoms than the perfect SiO,. It gives the energy cost of
having less than 4 O neighbors:

Number of O
neighbors Ulev
0 0.00
1 0.47
2 0.51
3 0.24
FIG. 1: The bond-switch move in a 2D example. On the left:
4 0.00 The situation before the switch. Center: The bonds have

been switched. On the right: The atoms have been moved to
their minimum energy position.

* Interface structure was optimized using bond-switching Monte Carlo.

« For every bond topology the atom positions {r} were obtained by minimizing the potential Phase space =
energy ensemble of bond
E = mm{r}(E{r}) topologies
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Potential models for ionic compounds
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FIG. I (color). Plan view illustrating two Si-SiO, interface

structures. The last three layers of Si are shown in gold, with
atoms farther from the interface shown smaller. The first layer
of O is shown in red. (a) Stripe phase, having (2 X 1) symme-
try. (b) Check phase, having ¢(2 X 2) symmetry.

’h e s
NS ‘.‘{ "“‘JT)
e {g‘ ph she_ofe
o »8 ‘bd '...’ w!
‘-' e rie oo
N S » Rt PN PN
g e _sie ol

*-’3’ 1S _a N PN PN

0.3
>
2
>
on
e
2
m 0.0
0 0 20 30
z (A)
FIG. 4 (color). Interface between Siand tridymite, as in Fig. 3,

to illustrate similarity of interface regions.
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Repulsive potentials for high energies

Results: interfaces Si—amorphous SiO2
and Si—tridymite

0.2

Energy (eV)
=}

S
o

FIG. 3 (color). (a) Side view of canonical interface, for 4 X 4
cell of stripe phase, in [110] projection. The Si and O atoms are
represented by gold and red spheres, respectively. Each arrow
points to a row of oxygen atoms that form the bridges at the
interface. Notice the substantial voids above each bridge bond.
(b) Energy of each atom versus its z coordinate. Red circles
represent oxygen atoms and gold circles represent silicon atoms.
The green line is the local energy per atom, averaged over 20
configurations (and over a z range of ~1 A for smoothness).

* When talking about repulsive potentials there is first reason to clarify the concepts:

* Repulsive part of equilibrium potentials: Constructed to obtain a minimum in the potential, and to
describe states close to equilibrium, at energies ~ 0.1 - 100 eV above the minimum.

* E.g. the short-range potentials VSR mentioned above belong to this category.

* lon ion irradiation and nuclear physics one frequently is interested in very high-energy collisions.

* An ion with a kinetic energy of 100 keV makes a head-on collision with a target atom — the C.M. energy is 50 keV

17

« In this regime the equilibrium potentials are not valid, and there is a reason to fit a high-energy repulsive potential to

them.

* Repulsive potentials are usually written in the form

7.7 e?
2l

4n80r
where @(x) is a screening function and a =

screening length.

* @ is formed such that ® — 1 when x — 0, so the potential
reduces to the Coulomb potential between the nuclei at high
energies.

* At normal interatomic distances the electron shells screen the
nuclei so that the nucleus don’t “see” each other almost at all

(@ =~0).

Vir) =

a(Z,,Z,) a
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Repulsive potentials for high energies

* At very small distances the nuclei are so close that the electron clouds do not screen them. The interac-

tion is then purely Coulombic and ® = 1.

* The most used repulsive potential is that formulated by
Ziegler, Biersack and Littmark (ZBL).

Completed Interatomic Potentials

80
T
!

* They used free-electron gas (FEG)-calculations to obtain the

60
g

NUMBER
|
|

repulsive interatomic potential for 522 randomly chosen atom

pairs, and sought a shape for the screening length which makes 2

the screening function be as similar as possible for the different

atoms:

[ B

0.8856 x a, _
a = ———— ,where q, = 0.529A is the Bohr length.
Z?~23 n 28.23
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Repulsive potentials for high energies
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* Onto these curves they fit a universal function (right figure above) of the form

4
D(x) = Z al.efb"x .
i=1
and obtained the parameter values shown on the right.

* This potential is generally called the ZBL universal potential. The advantage of
using it is that it is extremely easy: the only information needed of it are the atom

Reduced Radial Separation ( x=r/ay )

30

60 80
NUMBER
i al- bl
1 0.1818 32
2 0.5099 0.9423
3 0.2802 0.4029
4 0.02817 0.2016
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numbers Z, and Z, . The disadvantage is that this is an average potential, from which each specific case

can vary easily 5-10 %.

* It is also possible to reproduce the FEG calculations for any atom pair based on information in the ZBL

book The Stopping and Range of lons in Matter (Pergamon, New York, 1985). This gives so called ZBL

pair-specific potentials. These seem to be accurate to a few % or so.

Introduction to molecular dynamics 2015 11. Potential models for ionic compounds
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Repulsive potentials for high energies

* In case the best possible accuracy is desired, one can use Hartree-Fock- or DFT-calculations of
the energy of a dimer, or even better an atom inside a solid.

» With dimer calculations by using certain HF- , HFS- and DFT methods it is possible to obtain the high-
energy repulsive potential to ~ 1 % accuracy [Nordlund, Runeberg and Sundholm, Nucl. Instr. Meth.
Phys. Res. B 132 (1997) 45].
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Efficient ways to calculate ionic interactions

» So far we have assumed that the sum giving the energy of each atom always converges easily.
This is not true always, however.

* Let us consider potentials of the form ' ~ r_d. Far from the central atom in a homogeneous material the
number of atoms in a thin shell dr is 4nr2pdr, where p is the atom density, so the total potential in this

layer is proportional to 4Tcr2pdrr7d. If we now integrate the total potential for all », we obtain

(o)

V= .[ 4Tcpr2r7ddr = 4np 3-d

1 r
3-d
Finin min

* This vanishes in infinity only if 4 > 3. So in three dimensions we obtain convergence trivially only if the

potential decays faster than r_3 .
* Exponentially decaying potentials (Morse, Tersoff etc.), as well as LJ potentials are OK in this resprect,

but not the Coulomb potential which is r_l
— When one simulates a periodic system with an ionic potential one can not use a simple cutoff
distance < cell size/2.

* To circumvent this many methods have been developed: 1) Ewald summation [Ann. Phys. 64 (1921)

253]. It is much more efficient than direct summation, but is still an O(NZ) method. 2) A newer method is
the so called Fast Multipole Method, which can be parallelized and is O(N).
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Ewald-summation

* Take into account all interactions to an atom both from the MD cell itself as well as all the periodic image

cells.
* The potential energy due to the Coulomb interaction is

N N
VZz = l )
DI

nlj=1=1

Note: cgs units

* z; and z, are the atom charges, and cgs units are

used for brevity. The vector n is now in principle a sum
over all image cells (n L, nyL, nlL), where

n, = —oo,...,—1,0,1,.., 00 and the indices i and j

loop over atom pairs inside the cell (except of course
noti = j whenn = 0).

* This sum does not necessarily converge!

» Change the summation order: A natural way to
achieve this is to add image cells radially outwards
from the origin.

* Physically the reason this leads to convergence is
easy to understand: since each cell has to be charge
neutral the charges in it give at a long distance a
dipole, quadrupole etc. interaction, which vanishes during symmetric summation.

o] o| of o[ o[ ol o[.o| .o
0”0”0 |0" [0" |07 |0 [07 |0
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Ewald-summation

» The surrounding medium also affects the energy of this ball. In a perfect conductor (metal)
(e = =) and in vacuum (¢ = 1) the results are different; in vacuum a dipole layer will form at the
surface. The correspondence between the two quantities is:

2
VeE(e = o) = VZE(e = 1) 2
313

DA
i

» Ewald summation enables calculation of V??(e = «).

« If we want our system to be surrounded by vacuum, we can add the dipole term.
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Ewald-summation

* In the Ewald method the charges z, are given in the form

pil(r

of a charge density p7 . This p7 is given us the sum of a
Gaussian and delta function electron density:

pE(r) = pZ (1) + p5(r)

—x2(r—r;)?

pfl(r) - Zi[s(r—rl.)_](3n*3/2e 1

_ —K2(r—r;)?2
P (r) = zx3n3/2e (r=r)

pl.z(rA

A

» r

|
VAV
JAWAN

VARVA

* p7; is now a sum of delta functions located at the atom positions, and Gaussian-shaped densities of cen-

tered on the same position but of opposite signs, formed so that the integral is 0. Because p7 now has a

finite range, we can calculate the energy and force due to is using a cutoff radius.

* On the other hand, we also use the function p?, to correct for the error made in introducing the Gaussian

functions. But this function is now smooth, and can be calculated in reciprocal space: the Fourier-transfor-
mation of p are summed, and then an inverse Fourier transformation is used to obtain back the real-

Space answer.
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Ewald-summation

* The result (“after a few steps of algebra”) is an equation
which has a real-space term r, a k-space term and the
inverse value of the self-energy and the surface energy:

« Term 1 is the short-range part. erfc(x) = (2/n1/2)J.:e*’2dt is

the complementary error function and L the side length of the MD-
cell. We assume here that the cell is cubic. Again in the n sum the
term i = j whenn = 0.

» Term 2 is the sum over reciprocal space vectors k = (2n/L)n.

*Term 3 Vself is the self-energy of pfz which has to be removed

o . -
because it is included in the Vrecipr.

» Term 4 is the surface term of the sphere.

part.

* By setting x (the width of the Gaussians) large enough we

can restrict ourselves to the term n = 0, which corresponds
to the normal ‘minimum image’ convention.
* The real-space term can be calculated in the some loop as

the short-range forces. Then VZZ , is of the form

erfc(Krl.j)
2| |
)

i<j

zZ  —
real
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Z(e — - yzz zz _pzz z2Z
Ve =1) real T Vrecipr. Vse1f+ surf
N N
1 erfe(k|r;; + n|)
= 2 — 'y
DIDNIDI e
i=1j=1Lln/=0
L zz4—ﬂ%e*k2/4K cos(k-r.)| 2
L5 '
k#0
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Ewald-summation

» Using complex numbers the reciprocal-space term can be written in the simpler form

Zzieik - r; 2

i

V?écip - ZA(k)
k

2mexp(—k2/4x?)

A(k) = e 2

* The force acting on atom i is

j — —ik-r; ik -r;
fll“ecip = —221. Z kA(k)Im{e sze J}

k#0 J

« Note that the force calculation takes time as O(N?).

* Does this sound highly complicated? Fortunately there are several implementations of Ewald summation
easily available, see e.g. Allen-Tildesley program F.22 or N. Anastasiou and D. Fincham, Comput. Phys.
Commun. 25 (1981)159.

* It is easy to generalize the equations to non-cubic cells.
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Ewald-summation

* In applying the method one has to choose three parameters:
cutoff radius r

width of Gaussian charge densities k

upper limit for k summation |k|12nax.

* Itis best to start by setting r fairly large, e.g. L/?2. From this a suitable value of ¥ can be obtained, on the basis of

which a suitable limit for the k-summation can be obtained. Typicallyx ~ 5/L, in which case the calculation is con-
centrated in k-space. The k-summation would then involve 100-200 vectors.
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Ewald-summation
» Example: EuF, :

N = 324
L = 174A
KL 52
re = L/2

2 _ SA_Z

max

LN

V recip (@rb.units)
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Ewald-summation

MD simulation of EuF, |

KL: —— 35 ]
e 4.4 :

- 52 |

SETERN: R
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~ AT

\
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LAY } -
1
1 L V™.
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* Application of MD in neutrino-induced Doppler broadening (NID) [A. Kuronen, et al. Phys. Rev. B 52, (1995) 12640.]: K
electron capture of '%?Eu — v emission — 3.0-eV recoil energy to '2Sm — y rays Doppler broadened

TABLE I. Parameters for the short-range potential (1) used in the
simulations. For Sm, same values as for Eu were used. - . —
Interaction A (eV) p (A C (eVA% 2000 ]
- — EuF,
Eu-Fu 1715.0 0317 0.0 r & EuF; 1500 1
EuCl
-F 3429. 0.2 14.0 - 3 -
" Eu 429.1 80 1500} T EuO, 1000 1
s F-F 369.1 0.280 125 = L J
§ Eu-Cl 3886.0 0.349 169.6 3 [
CI-Cl 7911.5 0.383 20268 >1000
Eu-0 5045.4 0.290 34.0 +
0-0 22764.3 0.149 279 ;.
500 -
(0] 100 200 300
t (fs)

AE (V)

FIG. 1. Experimental (filled circles) and simulated (solid line)

FIG. 2. Average magnitude of the velocity vector of the recoil-
ing Sm ion as a function of time after the nuclear decay of '5?Eu as
obtained from the MD simulations for different target materials.

y-ray line shapes for the 842-keV transition in '>2Sm measured in
different target materials. The instrumental response function is also
shown (dashed line). The simulations were performed with the re-
coil charge equal to the charge of the Eu atom in each lattice.

Introduction to molecular dynamics 2015

TABLE IL Lifetime of the 963-keV state in '*2Sm obtained
from NID measurements in different target materials using the equi-
librium charges of Eu (2+ for EuF, and 3+ for the others) for the
Sm ion in simulations. Lifetimes are weighted averages of the val-
ues for the 842- and 963-keV transitions. In addition to the statisti-
cal uncertainty, the quoted errors include uncertainties of the target
temperature (0.9 fs), simulation statistics (2.0 fs), and instrumental
response function (1.2 fs for EuF; and Eu,0;).

Target material Lifetime (fs)

EuF, 24.2+27
EuF, 224+29
EuCl, 36.8+2.8
Eu,0; 27.8+2.8

11. Potential models for ionic compounds
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Charge state of the Smion
FIG. 3. Depend of the fitted lifetime of the 963-keV level in

152Sm on the charge state of recoiling ion in different target mate-
rials.
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Ewald-summation

* If the periodicity of the Ewald summation causes trouble, one can use the particle-lattice (or par-
ticle-mesh) method:

* The reciprocal space part is calculated by smoothing the ion charges in a regular lattice and solving the potential from

the Poisson equation V2¢ = —p/e0 with Fourier methods.

« The advantage is that this scales as O(N).

* The disadvantage is that the program gets more complicated

Introduction to molecular dynamics 2015 11. Potential models for ionic compounds 31

Reaction field method

* In this method neighbours farther than »_ are approximated as continuous medium with some ¢..

* The forces and energies inside the cavity are calculated normally.

» The continuous medium polarizes, which leads to a force on molecule i in the cavity R

E _Z(SS_I)I includes i
;= 2SS—+I,BZMJ (sum includes i)
CjeR

* The problem here is &g, which has to be known in advance.
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Field Multipole Method (FMM)

* The FMM method [Greengard and Rokhlin, J. Comput. Physics 73 (1987) 325.] is based on looking at dif-
ferent regions of space with different resolutions.

» The advantage of the method is that it is O() and also can be parallelized [Nakano et al. Comput. Phys-
ics Commun. 83 (1994) 197.]

» The method uses an electrical multipole method to describe the influence of a region far away on an
atom.

« Potential outside a localized charge distribution p(r) can be written as a multipole expansion:

Y, (6, 0)
®r) = Z Z 21+1 Tm™ 151

I=0m=-1
where the multipole moments are defined as

Qi = [ V(85 0P Ip(rar.

« In practice, the sum over [ can be truncated to some finite value:

Y, (6, 6)
®(r) = Z Z ™,
21 - 1 mo I+ 1
I=0m=-I]
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Field Multipole Method (FMM)

* Why is this useful, then ? Let us consider as a simple example two sets of points x; and Vi which are
inside two circles of radius R:

m points

n points

* Let the points x; have charges g; . If we now want to calculate the forces from points x; on the points Y

we could of course calculate the Coulomb interaction from all the m y-points to all the » x-points. This
would require nm interaction calculations, i.e. the algorithm is O(nm).

« But if we, instead of this, first calculate the p2 factors q;,,» requiring mp? operations. After this we could

calculate the sum for all points y, which requires np2 operations. Hence this method is O(mp2 + npz). If
the two circles are far away, p can be relatively small. If the number of points is large then clearly

mp? + np? « nm, so we can gain lots of simulation time.
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Field Multipole Method (FMM)

In the actual FMM-method space is divided into different levels of cell sizes.

. cell b

. b‘s near neighbors: cell at the same level as b that have a common point with b

‘ ‘ b‘s far neighbors: cells at the same level as b that are children of b'‘s parent’s
near neighbors but are not 5 ‘s near neighbors

Tevel0 Cells that are not each others near neighbors are well separated.

Level 1 Level 2 Level 3 Level 4

* Level 0 is the normal, ordinary simulation cell, and the higher index levels finer divisions of it.

* Multipole expansion is used to calculate interactions between cells that are well separated.

* At level 1 (see above) there are no well separated cell pairs, so that we have to go to level 2 to be able to use the
expansion.

« At level 2, in order to calculate interactions between a cell and its near neighbors, we divide the box further to smaller
cells. Now each new cell has far neighbors for which the multipole expansion is applied. (Note that interaction between
a cell and those cells that are not its near or far neighbors has been taken care of in previous levels.)

» At some stage division is so fine that interaction between near neighbors can be calculated by normal sum over atom
pairs.
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Field Multipole Method (FMM)

* This calculation scales as O(NlogN) (where N is the number of atoms):

1) at every level the calculation of multipole expansions scales as O(p2N)
2) number of levels is O(logN)

* To obtain the O(V) behavior multipole expansion is calculated from atom positions only at the smallest

scale divisions.
* These results can be compined to calculate the expansions in coarser levels by so called translation of a multipole
expansion.

» An accurate algorithm, the equations and boundary condition solutions can be found from the paper of
Greengard and Rokhlin.

* In practical calculations numerical noise may become a problem.

* In addition, as in Ewald summation it is also possible to take into account the effect of periodic image cells
with the same principle.

* It is also evident that this algorithm can be parallelized well, since for the far cells it is enough to know
only the multipole expansion, which is relatively easy to pass around.

* The FMM-model is also very general: in addition to the calculation of atomic interactions it can also be
used in plasma dynamics, fluid mechanics and in astronomy!
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Field Multipole Method (FMM)

» Sample application: R. Kalia et. al. simulated the fracture of about a million atom SizN4 crystal [R. Kalia,
TMS conference proceedings 1997].

Note that in the picture above the atoms are so small they can not be distinguished from each other!!

* After the original FMM formulation, variations often called Fast Multipole Algorithms (FMA) have been
developed.
* Basic idea same as in FMM, but tree-like data structures and FFT’s are used to optimize the interactions even further.
* E.g.: dpmta method, W. T. Rankin, PhD Thesis, Duke University, 1995
« In principle better, but very complex leading to numerical accuracy problems (“numerical noise”

* A comparison: [J. A Board, C. W. Humphres, C. G. Lambert, W. T. Rankin and A. Y. Toukmaji, "Ewald and
multipole methods for periodic N-body problems”, "Proceedings of the Eighth SIAM Conference on Paral-
lel Processing for Scientific Computing 1997]; says that for small numbers of particles and processors,
PArticle-Mesh Ewald (PME) faster than dpmta
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Energy minimization techniques

» The task of minimizing the energy of a set of atoms is a very common, yet surprisingly complex
problem to solve efficiently.

* N atoms, set of atomic coordinates x = (r,, STTR STy P ...), system potential energy V(x)

* Find x that minimizes V(x)

» Examples: the equilibrium shape of a protein, the ground state configuration of an atom cluster, a mini-
mum-energy configuration of a defect, ...

* A large variety of energy minimization techniques in numerical mathematics.

* For large sets of atoms, one has to require that the memory requirement of the method scales as O(N),
which rules out many efficient techniques which require O(Nz) memory.
2
4

¢ In these O(Nz) methods the Hessian matrix A, Aij = 3 is usually needed.
X.0X.
L
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Energy minimization techniques

* At least the following approaches can be used to atomistic
energy minimization:
1. Monte Carlo simulation: Do an MC-simulation letting 7— 0.
- Can be good e.qg. in finding the equilibrium coordination in a

liquid.
- Not very efficient in finding the closest local minimum.
- Good when non-physical moves needed to reach the equi- \
librium. Simulated

annealing

2. MD simulation: Do an MD-simulation letting 7— 0.
- Can be made more efficient by setting all v = 0 if the energy
grows, or by setting v, = 0 if the force f. is in the opposite direc-

tion to \7

- Sometimes quite efficient in finding a local minimum
- Sometimes also good tool to find a global minimum: simulate at high 7
first, cooling down in cycles.
3. Conjugate gradient
- Very efficient method to find a local minimum.
4. Genetic algorithm
- Probably best method to find a global minimum from a random initial
configuration.
* In this lecture package conjugate gradient and genetic algorithms are presented.
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Energy minimization techniques
* A sidenote: optimization at ‘constant pressure’ : Usually the potential energy V is written as a function of the coordi-
nates {xl.}, {yl.}, {Zi} (i = 1, ..., N)of the atoms in the system. When the cell edges are taken as variables it is
easier to write the energy as a function of reduced coordinates {Si}’ {ti}, {”i} and sizes of the simulation box in x,

y, z directions: o, B, y: V= V({s;}, {t;}, {u;}, 0, B,y) where s, = x./0, ¢, = y./B,u; = 2,/

—F_ 0
—F_ o
v/ ds, F x1
X
ov/ds, e
~F, 1B e
y _
oV /o, Fyob
* Now the gradient of the potential energy is VU = = kv = F
oV/ou, Fy Y
z
v/ u, ¥
/oS Fox| |
v/ do 2 W/ @
oV/ 9B ~1/BYFu; -W,/B
av/dy -W__/
~I/YYF iz =
Introduction to molecular dynamics 2015 12. Energy minimization techniques 3

Conjugate gradient

» The conjugate gradient (CG) method is a general method to minimize function f(x), where f can
be any function of points x in N-dimensional space [Numerical Recipes, 2nd ed. ch. 10]

* For N atoms we can write their coordinates r as a 3 N-dimensional vector x of the form
X = (rlx, rly, r,,r, o))

* The function f{(x) corresponds now to the potential energy function 7 (r).

* In the CG method the gradient (force) of the function is used as a help in finding the minimum.

 The gradient tells in which direction the function changes the most rapidly.
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Conjugate gradient

* An obvious, but not very efficient way to minimize the energy is to always move in the direction
of the negative gradient.

* This is the so called steepest descent method, which for atoms can be described as follows:

0. Start from point ry,seti =0.

1. Calculate Vy(r;), F, = =V (r,).

2.1fV,_,-V,<eend

3. Minimize ¥(r; + oF,) with respect to the scalar quantity o.
4.Setr,, , =r,+toF,andi = i+1.

5. Return to stage 1.

* The algorithm resembles MD, but: no time, velocity or acceleration.

* The line minimization in stage 3 a 1-dimensional operation in which the minimum of a function is sought
by moving in a predetermined direction o.F .

 The line minimization is a relatively straightforward operation which is carried out in two steps.

1. Make sure that there is a minimum and bracket it.
2. Search it with a given accuracy.
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Conjugate gradient

« Stage 1 is in principle easy to carry out. Starting from a point r and known direction F, move forward
some direction BF. If V(r + BF) > V(r) and in addition V(r + BF/2) < V(r) and V(r + BF/2) < V(r + BF)
the minimum is bracketed with the three points (1) ¥(r) (3) V(r + BF/2) and (2) V(r + BF). If these crite-
ria are not fulfilled, increase B and try again.

V(r + BF)

V(r)

Y Vir+BF/2)

|

« After the minimum has been bracketed, one could of course use ordinary binary search to find it. A
slightly better method turns out to be to use a golden section, i.e. let the new minimum be 0.38197 from
either end.

» Often much better is to use so called inverse parabolic interpolation. In this method, a parabola is fit to the
points a, b and ¢ (corresponding to (1), (2) and (3) above), and the estimate of the minimum is the mini-
mum of the parabola x:

C1(b—a) 1V (b) = V()] - (b— ) [V(b) - V()]

S V(b)) = (b= )V (b) — P(a)]
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Conjugate gradient

* When the minimization is done once, either point a or ¢ is replaced by point x (depending on which side
of b x is), and the minimization step is repeated.

_______ parabola through @ @ @
............... parabola through @ @ @

* The iteration is continued until the minimum has been found with the desired accuracy.

* A combined method: try the inverse parabolic search, but switch to the golden section if this fails.
* One such method is the so called Brents method, which is presented in Numerical Recipes1 (program brent () ).

1. http://www.nr.com/
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Conjugate gradient

» By combining the Steepest descent (SD)-algorithm and the Brent line minimization the energy of an atom
system can be minimized. But this is still not very efficient in many dimensions. The reason is that the SD
method easily winds up in a zig-zag pattern which does not move towards the minimum efficiently as in
the figure below:

(a)

(b)
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Conjugate gradient

* In the Conjugate gradient (CG) method the problem is solved by choosing a new “conjugate”
direction of movement so that it depends on the previous direction, and does not lead to the zig-
zag-pattern above.

* What is really meant by two directions being conjugate to each other? Consider an arbitrary function f{(x)
of N dimensional argument, and construct its Taylor-series around a point P:

o) = 0+ 3 Ly s 15
il i,j

2
f x.x.+...chb~x+lx-A~X
ialel 2

9’ f

axiaxj ,

where c=f(P) b = —Vf]P A =

» The matrix A is the so called Hessian matrix. In this approximation the gradientof f is V/ = A-x-b, and
a change in the gradient V/ over some distance dx is again
O(VS) = A (8x)

* The previous direction in which we have moved is u, gradient is g. How to construct the next direction v?

* In the current point: g L u

* After the next step we still want g' L u — the change in the gradient (V) should be perpendicular to u:
u-d(VH=0=>u-A-v=0

« If this is valid, the directions u and v are considered to be conjugated.

Introduction to molecular dynamics 2015 12. Energy minimization techniques 9

Conjugate gradient

* In the conjugate gradient method two vectors g and h are used to calculate the new direction
into which to move. h is the actual direction into which the line minimization is carried out.

* In solving linear equations, these are iterated as follows:
giy1 = & A(A-h)andh, | =g +yh,

where

2 = i 8 :hgiz'&hih i ,Yi:gi+l'gi+l
h;-A-h; h;-A-h; g g

» The vectors g and h fulfil the orthogonality and conjugation requirements:

g2 =0 h-A-h =0 g-h=0

* Not suitable for atomistic systems: the N x N matrix A!

* The crucial, saving statement is the following: if we have just minimized £ in the direction h to some point
X, , 1, the new g can be obtained simply with

8iv1 = VX
and the end result corresponds to the above equations!
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Conjugate gradient

* In principle this iteration algorithm gets one to an energy minimum in a system of N atoms with a memory
requirement O(N) and a number of iteration steps O(N).

* This sounds like a problem for large numbers of atoms: if say N = 100000 we definitely do not want to
iterate 100000 times.

* In practice the atom motion in large systems is almost always strongly correlated, and much fewer itera-
tion steps are enough to get to a minimum.

* Typically ~ 200 steps in periodic systems and ~ 1000 steps in systems with a surface is enough to find an
energy minimum with 15 digits of accuracy regardless of system size.

Introduction to molecular dynamics 2015 12. Energy minimization techniques 1

Conjugate gradient

* Using these equations we obtain the following algorithm for conjugate gradient energy minimization:

0. Start at point ry, seti = 0, V, = V(r(), xg = =VV(ry), g, = Xg, hy = x;-

1. Minimize V(r; + ax;) with respect to the scalar o, then set r; , | = r; + ax; and evaluate
Vier = V(i q)-

2.1V, | —V,<e, quit.

3. Calculate x, = -VV(r;, ) and V, = V(r;, ).

4. Calculate vy = (x;-x;)/(g," g,)

5.Setg, .| = x;.

6.Seth;,, =g +tvh; andx; . | = h; .

7.Seti = i+ 1 and return to phase 1.
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Conjugate gradient

» The above is the original, so called Fletcher-Reeves - algorithm. In some cases it is more efficient to use
the so called Polak-Ribiere- version, which is identical to the above except that step 4 is:

(x;+g.)- X,
1 1 1
4. Calculate vy = ——8M —
g8
Introduction to molecular dynamics 2015 12. Energy minimization techniques 13

Conjugate gradient

* The above algorithm is already a very efficient way to look for a local minimum. ——————
It also does not have anything specific to atomistic simulations; the function ¥ (r) variant of CG is from
can be any N-dimensional function f(x) which has a well-defined gradient.

* In typical atomistic simulations there are special features (especially the knowl-
edge that the atoms do have a smooth minimum) which can be utilized to optimize the algo-
rithm, at the possible expense of generality.

* In atomistic simulations the calculation of the potential energy ¥(r) is very slow, and the calcula-

tion of forces even slower.

* In the above algorithm the line minimization-step 1 is the only step where forces are actually calculated.
This step had two parts (see above):
1. Make sure there is a minimum, and bracket it.
2. Search it with the desired accuracy.

» The bracketing requires at least 3 evaluations of the potential, and the Brent method line minimization
typically 5-10 evaluations.

* In atomistic systems we know, however, that the length scale is rather limited.
« Unless the initial atom positions are really unphysical, the atoms are almost certain to be ~ 0.2 A from the ground state
position, or even closer. If we simply assume that the minimum is never farther than say 0.5 A, we can simply get rid of
step 1. But this is clearly a bit dangerous, and still does not gain us more than 20 % or so of the efficiency.

* It would be even better if we could get rid of the 5-10 potential evaluations needed in the Brent method.
This can be achieved rather simply.
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Conjugate gradient

* In this speed-up method (called ACG for reasons apparent below) we start by assuming that the ‘mini-
mum is out there’.

* The main point in the ACG method is the observation that when the original CG method line minimization
of V(r;+ oF,) with respect to the scalar o, for most steps the optimal value of the scalar o is about the

same, ~ 0.05.

* This is of course no natural constant, but seems to be valid for common Si and metal potentials. If the scalar o is
almost the same in any case, it does not seem sensible to optimize it separately every time.

» So the method is as follows:

* Set initially a0 = 0.05.
* For every step move forwards by ocFl. .

« If the potential energy goes down, increase optimistically o a bit.
« If the potential energy goes up, disregard the previous step, decrease o/ and repeat the same iteration.

Introduction to molecular dynamics 2015 12. Energy minimization techniques 15

Conjugate gradient

» Because of the optimization of a the method might be called adaptive conjugate gradient, ACG:

0. Start from ry, seti =0, Fy = —VV(rO), gy = Fy, hy = Fy, o = 0.05

1. Store old r,— r?rev
2. Set r, = rl.+0cFl.
3. Calculate V; , | = V(r;, (), F; = -VV(r,).

pre

4.1f vV, >V, returnr; AN r;,seta = a/2,return to step 2.

S. MV, —V,<e, quit.

(Xi+gi) - X

6. Calculate y = ! (Polak-Ribierre)
g8

7.Set g, =-F;

l
8.Seth,, , =g ,+vh,andF,, , =h .

9. Increase a = 1.050¢, seti = i+ 1 and return to step 1.

* Here the constants 0.5 and 1.05 were optimized for Stillinger-Weber Si.
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Conjugate gradient

» Written in this way the method usually needs only one potential evaluation per iteration step, except when
the energy increases. In practice the energy decreases almost always, so on average the number of
potential evaluations still is only about 1.1 / iteration. In the ordinary CG method this value is about 10, so
in the ACG each iteration step is about 10 times faster than in CG!

» On the other hand, the ACG loses the perfect match of conjugate directions, so it needs more iterations.
Still, the overall speedup of ACG vs. CG is almost always a factor of ~ 3-5.
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Conjugate gradient

« As an example a 40 A diameter Co-nanocluster in a 16x16x16 unit cell periodic Cu cell was created, and
relaxed this system with EAM potentials with different methods. These calculations (in larger cells) are
useful in understanding the energetics of Co nanoclusters.
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* The figure above shows the atom displacements due to the minimization, but so that the displacements
have been exaggerated by a factor of 3. The open circles are the original atom positions, the closed cir-
cles the final positions after minimization.

* The blue atoms are Co, red Cu. Because Co has a smaller equilibrium nearest-neighbour distance than
Cu, the atoms move inwards.
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Conjugate gradient

*» The simulation results were as follows (computer ~ 400 Mhz Pentium’ Linux):

Method Et (eV) Niter Final E (eV) Simulation time (s)
SD Plain 0.001 227 -59927.160 2684.20 SD= Steepest Descent
SD Adaptive 0.001 172 -59927.052 323.56 CG= Conjugate gradient
) MD= Molecular dynamics.
CG Plain 0.001 27 -59927.193 363.03
CG No bracketing 0.001 27 -59927.193 251.98 Et is the energytolerance
ACG 0.001 70 -59927.194 128.34 Niter the number of iterations
MD btctau=70 fs - 250 -59927.169 390.25

» We see that all methods give essentially the same result, as they should. The 0.1 eV differences may be shifts in the
position of a single atoms, and hence not likely to be a significant problem.

» The SD method with line minimization is very slow, as expected. The number of iterations is clearly the smallest in the
CG methods, but they are still ~ 3 times slower than ACG.

« A bit surprising is that the adaptive SD method is in fact faster than straight CG, and that ordinary MD is almost as fast
as straight CG or adaptive SD.

* But the ACG method clearly beats all the others by a factor of 3 or more.

* However, in a new minimization problem it is best to first implement the full CG method. After that, one
can check whether it can be optimized for the particular range of problems, e.g. by a scheme similar to the
one above.

1. 1 know, this should be updated :-)
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Genetic algorithms

* Genetic algorithms (GA) are a popular method for looking for a global minimum, which have not
been used too much in the physical sciences. They are, however, well suited at least for looking
for the minimum of a fairly large set of atoms.

» Groups of atoms typically have a fairly large set of energy minima, so the ordinary methods are
not well applicable for looking for a global minimum: CG only looks for the closest local mini-
mum, and MD and Monte Carlo (simulated annealing) are fairly easily stuck to one minimum or
a local region.

» But the GA method is well suited for looking for global minima, at least for dilute atom systems.

* Genetic algorithms have obtained their inspiration from Darwin’s theory of evolution.

» The idea is to perform natural selection for some group of parameters G which describes well the real
system.

» The group is allowed to breed by mating, after which natural selection is carried out (i.e. the poorest
adapted species are killed).

» The parameters G can be considered to correspond to a gene sequence, DNA.

» Here we present the Deaven and Ho approach to genetic algorithms for atoms [Deaven and Ho,
Phys. Rev. Lett. 75 (1995) 288].

* Let us state the problem as follows. We have N atoms in free space, and want to find their minimum-
energy configuration. The parameter set is now simply the set of atom coordinates G = {x;, x,, ..., Xyt

» We illustrate there the algorithm with 2D figures; in reality it of course usually is in 3D. The difference
between 2D and 3D is trivial.
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Genetic algorithms

* Deaven and Ho genetic algorithm:

0. Start. Create random initial positions for structures, each with exactly N atoms.
1. Mating and breeding. Select two well-adjusted parents for breeding. This is
done by selecting a given parent i with state G, with the probability

_E(G)/T,,
P(G,)<e

where the mating temperature’ 7_ is selected as the range of energies among the

whole population {G;}. Split the two parent structures along the same line. Take L /
L. Y
one half of one parent, and another half of another parent, and join them together. re % e
Here the added complication that a child may have a different number of atoms than the parents comes in. In o N L4
this case, the lines creating the two parents are moved in opposite directions until a state where the child has 3 \
equal numbers of parents is found. <

2. Mutation. With a probability @ perform a mutation on the child. There are two
possible kinds of mutations:

a) Move atoms in a random direction by a random distance a random number of times.

The distance is of the order of the bond length, and the number of times ~ 5 - 50.

b) Move an atom up along the potential energy function. (Try to move over potential barriers.)
3. Minimize the energy of the child to the closest local minimum. This is done by CG or MD.
4. Natural selection. If the child has lower energy than any of the parents, allow it to stay alive. Then
check that its energy does not match the energy of any parent within an energy range 8E. If this is true,
include it in the population, and kill the least-well adapted parent (the one with the highest E).
5. Convergence test. If convergence has not been reached, return to stage 1.
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Genetic algorithms

* The energy range oF is included to prevent the population from having several identical or very similar
structures.

» The mutation operation can sometimes be completely left out.

* The mating temperature reduces the probability that poorly adjusted parents get to breed. Hence they are
more likely to die without giving rise to any offspring.
T » Emax all parents get to breed by about the same probability. If on the other hand T’ | « EmaX only the best

adjusted parents get to breed. (Even this can be seen to have a biological interpretation, although not a very good one:
in warm climates it is easier to survive, whereas in harsher, colder climates only the best adjusted individuals can sur-
vive and breed...)

* The size of the population does not have to be very large. With Deaven and Ho, who used TB, had it usu-
ally at 4. Jura Tarus found that somewhat larger numbers work better for the Tersoff C potential.

» Deaven and Ho used their code to find the equilibrium structure for a fullerene Cgn and other small carbon

clusters, starting from random atom coordinates.
* No other simulation method had at that time been able to produce a fullerene ‘from scratch’ .
 Chelikowsky got close with MD [Phys. Rev. Lett. 67 (1991) 2970.], but using a to-say-the least suspicious bond-bend-
ing part in his potential.
+ Simulated annealing (a Monte Carlo method) can find the structure of molecules of the order of Cyq , but not larger
than that.

* Deaven and Ho used a Tight Binding force model, which was known to describe fullerenes well.

* Parameters: mating temperature 7, = 0.2 eV/atom, energy resolution 6£ = 0.01 eV, population p = 4.
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Genetic algorithms

* Fullerene Cgq . The algorithm finds a per-
fect fullerene after about 6000 mating
operations starting from random coordi-
nates, without mutations (u = 0) :

» The upper curve is the maximum energy
of the population, the lower the minimun.

8.9
9.0
9.1
9.2-
-9_3 _-
9.4 -

* We see that fairly fast (1000 mating opera-
tions) a fairly well-adjusted state (a) which
still has defects (a 12-membered atom
ring and two 7-membered atom rings).

* A large fraction of the time, about 5000

mating operations, goes to removing the
last defects.

energy (eV/atom)

* In stage (b) there is still left a 7-atom ring,
and in state (c) there already is the correct
amount of pentagons and hexagons, but
two pentagons adjacent to each other.

Introduction to molecular dynamics 2015 12. Energy minimization techniques

Genetic algorithms

» Carbon cluster C,,. When the genetic algorithm

is run for 20 carbon atoms, the effect of mutations
becomes apparent:

« States 1 a-c and the solid line describe the results
when the code is ran without mutations.

* The structure is stuck in a round carbon circle.

* But some u = 0 -states do find the correct structure.

*Instates2a-cand 3a-b u = 0.05.

* Now the structures find fairly fast the lowest-energy bowl
form.

« State 2 c is already close to the ground state, but the rings
on the side have 5 or 7 atoms.

« State 3 b is the correct ground state, with only 6-membered
atom rings.
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Genetic algorithms

» Carbon cluster C;

» Most runs end up in the correct state, but some of the
u = 0 states do not in 4000 mating operations found
the ground state, but get stuck in state (1c).

» With p = 0.05 almost all states end up in the correct
cage structure (2b) and (3b).

 The intermediate configurations (2a) and (3a) show
that the correct final state can be reached in several
different ways.

» Only mutation, with no mating, does not lead to the
correct state.
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Genetic algorithms

energy (eV/aton)

9,0 -

(3a) (2b3b)

1000 2000 3000 4000

mating operations

* Here it is important to realize that the development of the GA minimization process does not
necessarily contain any physically meaningful information.

* The real path to the ground state probably has no relation to the GA path.

25

» So only the ground state found by GA may correspond to real life (in case the experimental situation has

had time to reach the ground state).

* You probably remember: This same note applies to equilibrium MC simulations.

Introduction to molecular dynamics 2015 12. Energy minimization techniques
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Genetic algorithms

* In the original way of realizing GA the information on the state is coded in a binary “gene
sequence” which corresponds to DNA.

* Let us consider the interaction between two molecules A and B [Xiao and Williams, Chem. Phys. Lett.
215 (1993) 17]. Both molecules can be described with a position and rotation angle, so the information

needed (x, y,z o, 0, 0) .

* If we now discretize the possible positions and angles, using e.g. 16 possibilities for each dimension, the
state of the molecule can be described with 24 bits of information, for instance

(4.5A,5.0 A,9.0 A,120°, 100°,60°)=(1001:1010:1110:0110:0101:0011).

» The breeding operation is defined such that the binary string is exchanged from some point forward
(“crossover”). So if we have two parents

P1=(1001:1010:1110:0110:0101:0011)
P2 =(1001:1010:1110:0100:1011:1110)

and the exchange position is chosen to be 17, we get the children

C1=(1001:1010:1110:0110:0101: {1110)
C2=(1001:1010:1110:0100:1011: 0011)
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Genetic algorithms

* In this case stage 1. in the above algorithm simply becomes.

1. Mating and breeding. Exchange the gene sequence of a parents with another starting from a random
position.

» The mutation operation now becomes simply

2. Mutation. With a given probability u exchange the state of a bit (0—1 or 1—0) for all bits in all individu-
als.

» Because a bit corresponds to a position or rotation angle, this directly changes the state of the individual.
* Otherwise the algorithm is essentially as that of Deaven and Ho.

* Xiao used the algorithm to search for the ground state configurations for simple hydrocarbon molecules
such as the benzene dimer. He used a population of 100 and 8 bits to code each position or angle.

« But this approach has the problem that during the mating and mutation the state of the molecule can
change quite radically, and the properties of the parents are not transferred to the children. Hence Deaven
and Ho say that their method is better for optimizing atomic structure.

* GA has been applied in physics particularly in studying equilibrium structure of small clusters.
[See e.g. K. M. Ho et al., Nature 392 (1998) 582; D. M. Deaven et al., Chem. Phys. Lett. 256
(1996); J. Zhuang, et al., Phys. Rev. B 69 (2004).]
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Reaction (or minimum energy) path determination

* Thermally activated atomistic processes
* Need to know the transition rate (events/unit time) for B, — B, .

* If the probability for the event is not too low direct MD simulation is pos-

sible.
* For really rare events transition state theory (TST) can be used.
~E,/kgT
* Rate can be written in form v = Voe — need to know the activation

energy £, = ES —E,, where ES is so called saddle point energy.

» From TST one can also get an estimate for the prefactor Vo based on vibra-

N N-1
i ies: v, = . ' . ' ibrati A3
tional properties: v, H v,/ H V'., where v, and V' are the vibration ; E, = Eq—E,
i=1 i=1 )
frequencies at B1 and the saddle point, respectively. Note that at the saddle S
point there is one less frequency compared to the local minimum B1 .
+ Quite often the prefactor is simply set to a typical vibration frequency in the g
system: v, =~ 1012571, 2 po
E . -|- 1 reaction
1 : ! path
* Exactly £, is defined as the maximum energy along the path with low- 31 1'32

est energy
(minimum energy path; MEP) going from B, to B, (local minima; blue dots).

« Path here means a line in the 3N dimensional configuration space.
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Reaction (or minimum energy) path determination

* There are many methods to do this; one of the most often used in atomistic systems is the Nudged Elastic
Band method or NEB. [G. Henkelman, H. Jonsson, J. Chem. Phys. 113 (2000) 9901.; G. Henkelman, H.
Jénsson, J. Chem. Phys. 113 (2000) 9978.]

* In NEB images of the system are created by interpolating the atomic coordinates between the initial and
final configurations (that are usually local minima).

» Every image is connected by a spring force to its neighboring images. (End points are fixed.)

» The spring force prevents all images to fall to the nearest local potential energy minimum.

Initial NEB images Final

- --.-“
E

1 >
Reaction coordinate x
(=NEB image index)
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Reaction (or minimum energy) path determination

* The total force on the atoms in image i is calculated as

S
F,=F, -VIR), ,

i L
R, is the 3N dimensional vector of atom coordinates in image i.

* The first term is the spring force which acts only in the tangential direction
of the image chain:
S

F. = k[‘R

l7

petRI-R R [I,

where £ is the spring constant and t; is the tangent vector of the image
chain:

+ .
T; if Vi+1>Vl.>Vl._1

T, AV <V.<V_4

* When the middle image is the minimum or maximum of the three the tan-
gent is calculated as

. ; Every image has N atoms.

+ ax mn .

T AV? +TiAV;n BV >V Number of images M (in-

R i - ax : cluding the end points).
AV TAVTY, AV <V

VIIlaX
AV = max (Vo = Vil Vo =V
n .
V;n _mm(|Vi+l_Vi’ Vieg =V,
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Reaction (or minimum energy) path determination

* The second term is calculated from the potential energy model of the system:
\% V(Rl.)J_ = VV(R)-VV(R)T; T,

* When calculating the tangent on has to take into account all the six energy config-
urations of the three neighbor images shown on the right.

* The spring force tries to keep the images in the chain evenly spaced.
* The potential force is there to find the minimum energy of all images in the direc-
tion perpendicular to the image chain (=reaction path).
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Reaction (or minimum energy) path determination

Let’s illustrate NEB by a simple 2D po-
tential energy surface shown on the
left [G. Henkelman, H. Joénsson, J.
Chem. Phys. 113 (2000) 9978.]

 Solid line: the real MEP

* Dashed line (magenta): initial
configuration for NEB (inter-
polated)

» Dotted line with circles: the
path obtained by NEB

Introduction to molecular dynamics 2015 12. Energy minimization techniques

Reaction (or minimum energy) path determination
* Running a NEB simulation:
+ Create the end points by optimizing the two configurations by e.g. CG of cooling-MD.
* Interpolate the images and remove atom overlaps.
* Find the minimum energy path by optimizing the image system by applying the forces described above.

» Modifying an existing MD code for NEB is not difficult:

* Input the coordinates of the image chain.
» When calculating neighbor list skip atom pairs that belong to different images.
» Add the calculation of tangent T;

* The inter-image distance is calculated simply as

N
2 2 2 2
Ri=Ry | = D 0= ) F 0 =y o) 4 Gy =z )]
j=1
where r; j is the position of the jth atom in the ith image.

+ Add the calculation of the spring force.
» Modify the force routine to calculate only the perpendicular component of the force.

- The only parameter is the spring force constant k. Fortunately, calculation is rather insensitive to its value.

Introduction to molecular dynamics 2015 12. Energy minimization techniques
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Reaction (or minimum energy) path determination

©

(e

(@

(b)

(2

100

» A simple example: surface diffusion in a 2D Lennard-

Jones system

e (=) A= [\
'

(A9) (0)*7-(x)*%7

80

60

40

20

0

Reaction coordinate x

Difficult to jump down from the
step: Erlich-Schwoebel barrier
— surface growth instabilities.
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Molecular dynamics 2015

Exercises 9 (not to any specific chapter): mdmorse : applications

1. (10p) Determine the bulk modulus

__pdp
B = VdV

B of your Cu model. Is the excellent agreement you obtain with the experimental value of
1420 kbar surprising?

2. (10p) Test the melting of bulk Cu using the temperature and pressure controls. Simulate a
block of Cu at different temperatures, using pressure control to keep the pressure at 0 kbar,
and find the temperature at which the cell melts. Try to determine the melting temperature
with an uncertainty less than 100 K. It is enough to estimate when the cell melts by visual
inspection of the atom positions. How does the value compare with the experimental melt-
ing temperature?

Note that since the initial kinetic energy of atoms is set to twice the temperature, the cell
may melt instantaneously (within 1 ps or so) before it has time to equilibrate to a given tem-
perature. You can circumvent this by using initialT < desiredT and let the temper-
ature control set the cell to the correct temperature. Report the obtained melting
temperature, compare the result to experiment and comment on the difference.



Molecular dynamics 2015

Exercises 10 (not to any specific chapter): mdmoxrse : surface and defect energies

1. (10 p) Surface energies of Cu.

Periodic in all directions: no surfaces Periodic in x and y: surface=2A

Determine the surface energies y of - : : :
our Morse copper at 0 K for the (001) : A4 Lo E,

and (111) surfaces'. Surface energy P SEEEEEEEr 7 :

can easily be calculated by compar- - 1

ing a simulation with periodic bound- ;----"" S R E _E
. e . . . . ' ' ' ' z . 2 — Ly

ary conditions in all directions with - : : : "‘ Y =

one having e.g. z direction open. Xy

Use system sizes of 5 X 5 X 5 unit cells for the (001) surface and 7 x 4 x 4 for the (111)

surface. Give the result in units of J/m?.

Compare the energies you obtained to experimental and ab initio results found in article?:

Q Jiang, H M Lu and M Zhao, J. Phys.: Condens. Matter 16 (2004) 521-530.

What happens to the outermost atomic layers? What would happen if atoms only interacted
with their nearest neighbors?

Plot the potential energy of atomic layers as a function of z (or distance from the surface).
Do the systems seem to be large enough to be used in this kind of calculations? Check your

result for (001) surface by doubling the system size® and calculating the surface energy for
it.

Can you explain the possible difference or equality of the energies of the two surfaces?
2. (5 p) Vacancy formation energy of Cu.

Determine the vacancy formation energy of copper. How does it compare with the cohesion
energy? Calculate how large is the effect of relaxation of atoms around the vacancy.

3.(5p) FCC vs. HCP
a) How large must the pair potential cut-off radius be (in units of nearest-neighbor distance)
in order to get differences in potential energy between the FCC and HCP lattices?
b) When only the nearest neighbors are included in energy calculation do the energies of the
two lattices differ when the potential energy model is (i) EAM or (ii) a model with explicit
angular dependence (i.e. has bond-angle dependence)?

To build the (111) system use the program of exercise 1.

. The journal is available on-line from University computers at http://www.iop.org/EJ/abstract/0953-
8984/16/4/001 .

3. In which direction(s)? Decide yourself.

N —



Molecular dynamics 2015

Exercise 11 (not to any specific chapter): mdmorse : melting temperature by the interface
method

1. (14 p) Determine the melting point of Morse Cu by constructing a cell which has both liquid
and solid parts, and finding the temperature at which these are more or less in equilibrium.
The most accurate way to determine the melting point is to estimate the speed of the move-
ment of the liquid-solid interface as a function of temperature and determine the tempera-
ture where it crosses zero. In this case, however, visual inspection is enough.

Use temperature and pressure control the way you think is physically best motivated. When
done properly, this is the best possible way to determine the melting point by direct simula-
tion.

Hint: create the liquid and solid part in separate simulations which end at the same temper-

ature close to the expected melting pointl, then merge these into a joint simulation cell
which you first equilibrate a little while before starting longer simulations.

Comment on the difference to the result you obtained in exercise 9.2. Why is the answer
you obtain here more reliable than the one you obtained previously?

2. (6 p) Assume a Finnis-Sinclair type EAM model of a metal with only nearest neighbor inter-
action. The energy of atom i is expressed as

E = 3¥00) - Afn, n= Y ptry).

J#i J#i

Show that it is possible to parameterize the model such that it gives BCC lattice as the equi-
librium structure instead of FCC. Hint: When only nearest neighbor interaction is included
the nearest neighbor distance is the same for all structures, only the coordination varies.

1. Note that this method should give a better value for T, than the simple heating simulation of exercise
9.
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Exercise 12 (not to any specific chapter): mdmorse : application to nanoclusters
Note: This is the last exercise.

1. (15 p) Spontaneous sintering of nanoclusters.
Simulate the spontaneous sintering of nanoclusters by creating two Cu spheres which are 20

A in diameter. Rotate them by a random anglel, and place them after that next to each other
so that the minimum distance between atoms in the two is 4 A%, After this simulate them for

100 ps at 600 K and cool after that slowly to 0 K. Repeat the whole process starting from
picking a new random angle a few times to get a representative idea of what is going on.

Describe the behaviour of the system, and return a series of images which illustrates your
description.

(The observed behaviour actually underlies the manufacturing of materials using powder
sintering. See e.g H. Zhu, R. Averback, Phil. Mag. Lett. 73 (1996) 27).

2. (5 p) Stillinger-Weber potential for Si.
Express the energy of one silicon atom in a diamond lattice in the form given in the lecture
notes (chapter 9, page 18).

1. Euler angles; see e.g. http://mathworld.wolfram.com/EulerAngles.html
2. l.e. less than the potential cut-off.



Repetitia mater studiorum

Atomistic simulation types

* Molecular dynamics (MD)

- Simulates atom motion as a function of real time based on some inter-
action model

e Monte Carlo (MC)

- Atomistic Monte Carlo: calculate thermodynamic averages by letting
particles move randomly according to certain rules.

- Metropolis algorithm for NVT ensemble
- Metropolis-based algorithms for NVE, NPT, uVT

- Energy minimization
* Conjugate gradient energy minimization

- Efficient way to find a local minimum
* Genetic algorithms for atoms

- Possibly efficient way to find a global minimum



The basic MD algorithm

— 1.

dft<t

. Set initial conditions r; (¢y) and v;(ty)

If necessary, calculate new neighbour list

. Solve equations of motion over a short time step At

(predictor phase)

d
i (tn) — ripred(tn-f—l)
v; (tn) — lere (tn+])

. Calculate new forces F; (r/" ed)

. Solve equations of motion over a short time step At

(corrector phase)

d
rtpred (tn-i-]) > r; (tn-i-])
,
v (4 1) = vilty )

. Do temperature or pressure scaling, if appropriate

. Calculate desired physical quantities

.Sett=1t+ At, n=n+1

max» return to phase 1.

. Calculate final results and end simulation




Most common boundary conditions in MD

» Free boundaries: simulate matter in empty space

* Periodic boundaries: describes a continuous medium

<— box(1) —»

- Because here Fii> Ty " the vector rij’ 1s used for the distance between atoms i

and j (minimum image convention)

if (periodic(l)) then

dx = x(j) - x(1i)
if (dx > Dbox(1l)/2.0) dx=dx-box(1l)
if (dx <= -box(1l)/2.0) dx=dx+box(1l)



Choice of time step

* In choosing the time step one could rule of thumb is that an atom should not
move farther than ~ 1/20 of the nearest-neighbour distance during one time
step

« In practice for atoms with Z > 10 or so At ~ 0.05 x 10.18./m (u) fs has been
found to work well for most materials in classical simulations with the Gear V
- algorithm.
- For very hard materials (Pt, W) slightly smaller time steps may be needed

» The choice of time step should still be checked by checking the conservation
of energy (in NVE) for every new type of system or interaction model.

» If At is too large, energy is not conserved:

| | | | | | 1
A MD simulation of Ne  mdpp
A ..p' e =l e T T o e o e T e o e o ] e e i ]
B LA LTI
o v\i\- ................
\"V"\ '\-\_H_\_“ N Pt .
) N e S
S48 ¢ RN W .
) N2, )
S— ™\,
L \.ﬁ;" .
o p W
- = W4 X PY oy AL - \. -
LL] 5 0 ;;’_";‘F‘Ill’.ﬁ!‘::"“ll l.zlf , T N
465 .::]'l Ii: :In I‘,H‘““ 'il]lll l] _ 1 f
DT R w5 fs

ERL T T 10fs
50| R HAM “‘\-’g"#“:iuﬁj, j| e 200

S l|| \“= —_—— 30 fs

4 66 UL ' ' | == 40 fs

[ | [ | 1 [ |




Construction of a neighbour list

» To save time in classical MD, and often CG and MC as well, it is worth con-

structing a neighbour list. If there are more than ~ 1000 atoms, it is worth con-

structing it with a linkcell method.

* Verlet neighbour list

- 1 1s the potential cutoff
radius

- Construct a list which con-
tains the atom indices for all

neighbours within »_>r .

- The list should be updated as
soon as two atoms may have

moved further than » m e

¢ Cellular method

- Divide the MD simulation cell into
M x M x M subcells

- Neighbours for an atom in cell 13 is
looked for only in the darker subcells.

The size of the subcells / is chosen such that

l= M>7"m

where L = the size of the whole MD cell.

21 22 23 24 25
16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5




Solving the MD equations of motion

» The basic idea of MD is to solve the motion of N atoms by numerical integra-
tion over a short time step At

- The basic 1dea 1s:
a(t) = VV(r(t))

F(t+ At) = r(t)+v(t)At+%a(t)At2

v(t+At) = a(f)At

but these equations are very inaccurate. A good general algorithm is veloc-
ity Verlet

r(1+81) = r(1) + 8tv(1) + %Atza(t)

v(t+9t) = v(1) + %St[a(l‘) +a(t+ 0t)]

* A highly accurate algorithm for small time steps is 5th order Gear:

(i), « i
Denote r, = m

7!

The the predictor is:

ro(t+ 8t) -
p - - ro(t)
r(t+ 1) 111111 (B
P 01 23 4 5||1
r,(+89) 1o 0 1 3 6 10|F2(
r13>(t+8t) 00 0 1 4 10||ry(1)
; 0000 1 5/
r,(t+91) 00000 1

N - ~rs()
rs(¢+0t)



and the corrector:

error term 8R2 = a—a’

) P
correction: r, = r, +0c8R2 where o =

3/16 |

251/360

1
11/18
1/6
1/60 |




Force calculations

* In a classical model the potential between atoms can be written as:

V= ZVl(r)+ZV(r,r)+ ZV(rl, P T

i,j i,j, k

where V, 1s a pair potential which only depends on the distance between atoms
r;jand V3 is a three-body potential which may have an angular dependence,

Vs =Vs3(rij, rig, O35

* Force calculation for a pair potential:

Say we have a pair potential V' (r ij) . The

force acting from atom i on atom j is
fz‘j = _VriV(rij) = —VrU_V(rl.j)

rl.j = l'l.—l'j

f.. = —[ﬂ/} xr—ij
y dr lr=r; rij

* The potentials usually have a cut-
off radius r . Atoms separated by V) A

a distance > r . do not interact.

Usually r =afew A .

In a good potential both ¥ and all
its derivatives go continuously to
zero when r = r.(dashed lines in

figure).



General form of the interaction

Vi)

» At small separations there is a repulsive force due to the overlapping of elec-
tron shells (Pauli rule and electron-electron Coulomb repulsion) and at very
small distances due to the Coulomb repulsion between the charges of the
nuclei.

» At larger distances there may be an attractive interaction, which may have sev-

eral different causes: van der Waals, Coulomb, metallic bonding, covalent
bonding, hydrogen bonding

* Potential minimum is at a distance ro-



Fitting of potential parameters.

* Important parameters to which a potential can be fit:

Physical property

Atom-level property

Crystal structure

Balance of atomic forces.

Cohesive energy

Potential energy at the equilibrium atom
positions

Flastic constants ¢

po

Long-wavelength acoustic vibrations
Elastic distortions of unit cell.

Equation of state P(V)

Compression or expansion of material

Neutron scattering

Phonon ®W(K) in the Brillouin zone.

Dielectric constant €,

Electronic polarizability

Dielectric constant 80

Polarization of electrons and lattice; long-
wavelength optical vibration modes;

Infrared absorption

Long-wavelength vibrations with a dipole
moment.

Raman scattering

Long-wavelength vibrations which change
the polarizability.

* Out of these, the four first ones are usually the most important in solids.

 In addition, it is also possible to fit potentials to or even derive potentials from
data obtained from (hopefully) realistic quantum mechanical calculations.

10



Pair potentials

Taylor expansions

Vir) = Ky(r— r0)2 +K5(r— r0)3 + Ky (r— r0)4

No physical motivation whatsoever, but can work close to equilibrium separa-
tion 7 since any smooth function can be approximated with a Taylor series.

Lennard-Jones (LJ)

o= +{(0) ()

The attractive 1/r° - term can be derived by considering the induced dipole-
dipole interaction of two electrically neutral spheres, or for quantum mechani-
cal oscillators. It is also known as a Van der Waals or London interaction.

The LJ potential describes well at least interactions between noble gases or
dipole-dipole interactions between molecules.

Morse potential

V(I") — De—za(r—ro)_zDe—a(V—ro)

Can describe fairly realistically chemical bonds and the breaking of chemical
bonds.

Parameters available e.g. for most metals in the solid state.

11



Potentials for ionic compounds

» The interactions between ions can of course be described with Coulomb inter-
actions. To get a sensible short-range interaction one has to add a separate
short-range potential.

 This gives a potential of the form

v v z 122‘32 e ch
L) = L)+ . Z. =10nic cnaregcs
(rlJ) SR(rlJ) 4Tc£0rl.j > i g

The short.-range potential V¢ can be e.g.

_ C
Vep(r) = Ae V/P——6

r

* In modelling ionic compounds, the sum over neighbours does not converge
automatically. Then it is best to use some special algorithms to form the sum
efficiently. For small numbers of atoms the Ewald sum or Ewald mesh meth-
ods are probably fastest, for large number of atoms there are the truly O(N)
scaling fast multipole algorithms (FMA’s).

12



Metal interaction models

» Metals can be described well by considering the atoms as positively charges
ions which are embedded into a surrounding free electron gas. The density of
the electron gas depends on the local environment.

» These models can be derived from effective medium theory (EMT).

* Most models used now are given in the Embedded Atom Method (EAM) func-
tional form.

* In EAM the total energy is given as

|
Egi = Y Filp)+5> Vii(ryp)

where

p; = Z p j?‘(r ij) is the electron density at atom 7 ,
i%i
) ]?‘(r) is the electron density distribution of atom j,

F; is the embedding function and

Vl.j is a repulsive potential

* In Finnis-Sinclair and Rosato models F,(x) = Jx

* In glue models the functional form is the same as in EAM, but Vij is not
purely repulsive.

* EAM-models can describe quite well the basic mechanical and thermody-
namic properties of most pure FCC metals, fairly well most BCC metals and

fairly well those HCP metals for which

Ci13-C44>0and 1723 Cpp - Cyp) > Cy3- Cyy

* Also many metal alloys can be described well with EAM models.

13



Semiconductor and carbon potentials

» For Si at least three good potentials exist:
» Stillinger-Weber (SW)

- The potential has a pair term ¥, and a three-body term V5 . The three-

body term has an explicit minimum when the angles between the bonds

correspond to ideal sp3 bond hydridization, i.e. for the diamond crystal
structure.

- Describes well melting and surprisingly many other properties as well.

 EDIP

- An SW-like formulation which is also environment dependent. Probably
the best potential for bulk Si now.

e Tersoff

- The form of the potential is

Vij N fc(rij)[alij(rij) + biij(rlj)]

where f is the repulsive and f the attractive pair potential part. b; mod-

ifies the strength of the pair interaction depending on the local environ-
ment and angles between bonds.

- The Tersoff potential can also describe reasonably non-tetrahedral bond-
ing configurations.

- Two parametrizations, out of which Tersoff C or III best in non-equilib-
rium applications.

- Two SW parametrizations, but terrible description of melting.

- Also a Tersoff-parametrization, but also with bad description of melting.

14



* For C in the bulk states (graphite and diamond) as well as fullerenes several
parametrizations exist.

- Tersoff works fairly well in all of these.
- The Brenner potential (based on the Tersoff formalism) also describes

conjugated bonds and small hydrocarbon molecules well. But it is clearly
slower than Tersoff.

15



Molecular interaction models (classical force fields)

* The total energy of a molecule can be written as

E= Ebond + Eangle + Etorsion + Eoop + Ecross + Enonbond

E},na describes the energy change related to a change of bond length, and
thus 1s simply a pair potential V,

E

angle
angle, i.e. is a three-body potential V;

describes the energy change associated with a change in the bond

E,,,sion describes the torsion, 1.e. energy associated with the rotation
between two parts of a molecule relative to each other.

E,,p describes “out-of-plane” interactions, i.e. the energy change when
one part of a molecule is out of the plane with another

E. o5 - are cross terms between the other interaction terms.

E

Lonbond de€scribes interaction energies which are not associated with cov-

alent bonding. Can be ionic, hydrogen bonding or van der Waals terms.

* An example of a real molecular potential:

E bond E

angle

| | | |
V(R) = Y D, [L-exp(-a(b-b )12+ Y Hy(6-6)2+ Y H,[1+scos (nd)]
) IR

ZH w2 Xb“;ﬁbb,(b—ba) (B - b7g) + XB“;FBB,(B— 8,) (8" 6,)

ZZ‘FM(b by) (8- BD)+Z‘Z‘ 007 (8- 80) (8" 67)) cosd
q
F ooy B B § B P
+ZZ Ixxx +ZZ|:r11J2 rfj—l_ rll..i":|

| I |

EvdW ECoulomb
16




Overview of classical interatomic force models
as a function of the branch of science

van der Waals :
Classical force
fields
Second gen.
_ force fields
Torsion

(Hyd rocarbon pot)

Lowest-energy terms in potential model

Angular (Semiconductor poD
Environment ( Metal pot. >
(Ionic and noble gas pot.>
Pair ( Repulsive pot. >
nteraction | )

GeV MeV keV eV meV

Important interaction energy range

Nuclear physics Physics Chemistry Biochemistry

Branch of science

17



Quantum mechanical models

* Inthe Schrodinger equation (7.1) the computationally most complicated part is
the electron-electron interaction

lJ

which is a sum from all electrons to all electrons. This can not be directly eval-
uated except for the very smallest system.

* The basic solution in both Hartree-Fock (HF) and density functional theory
(DFT) is to create some sort of an “average” electron density, with which
every electron interacts separately.

e HF- and DFT methods are much better motivated than classical models.
Unfortunately they are also very much slower. The limit for common HF

methods is maybe 50 atoms, and for DFT calculations maybe 200 atoms on
ordinary computers.

* In the DFT method the so called LDA-approximation is often applied. In this
approximation the electron exchange and correlation energy is calculated for
small density elements as if the density were constant in this element.

* In the so called Plane wave methods the outermost electron wave function are
written as the sum of periodic plane waves.

v = Zfl(K)e—lK r
/

These methods are well suited for describing periodic systems, i.e. bulk matter.

18



Tight binding-methods

 Tight-binding (TB) models are so called minimal quantum mechanical mod-
els. They are usually semi-empirical, and the quality of the results varies a lot.
In the TB method the total electron energy E is

N
DA )AL
J

i=1 i
where U is a repulsive pair potential acting between atoms, and the €; are the
eigenvalues of some Schrédinger-like equation

iy, ) = [ 392 1) i) = &)

The TB-Schrddinger is solved in some set of basis functions {¢,} which only
includes the outermost valence electrons.

19



Efficiency of different force models.

* Crucial in selecting a model is to find one which is efficient enough to do what
you want, yet realistic enough to describe the essential physics in your prob-
lem correctly. Below is a summary of the situation today:

Model Type Scaling Npax.

HF (Hartee-Fock) quantum mechanical, O(N4'8) 50
ab initio

DFT (density functional quantum mechanical ON?) 200

theory

TB (Tight-binding) quantum mechanical O(N3)/ 1000
(often semiempirical) O(N) 10000

Many-body potential classical, semiempirical O(N) 107

Pair potential classical, semiempirical O(N) 107

IThis is a rough estimate of how many atoms can be simulated in a reasonable time, i.e. a week or so, on a single-
processor machine.

» Hence, typical application areas:

- The number of atoms of quantum mechanical models (HF and DFT) ~
100 1s enough to simulate e.g. small molecules, bulk properties of com-
mon phases, and point defect properties. HF and DFT can give informa-
tion on the electronic structure of the material.

- Tight-binding is a “minimal quantum mechanical” model which works
well in a few materials (e.g. C, Si, Ge) but is problematic in many others.
The O(N) tight-bonding works only in a very limited set of applications,
such as a-Si.

- With classical models it is nowadays possible to simulate even very large
systems, such as large protein molecules, 2- and 3-dimensional defects,
whole nanoclusters, surface growth, grain boundaries etc. etc. The main
limitation is that they do not usually directly give information on the
electronic properties of the material.
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MD Simulation of different ensembles

* Ensembles are denoted by the thermodynamical quantities which are con-
served in them. N=number of atoms, V=volume, E=energy, P=pressure,
T=temperature

* microcanonical: NVE (isolated)

- Algorithm: direct solution of equations of motion

. ical: NVT (closed
canonica (closed) heat bath
- Algorithm: Berendsen “quick and dirty”,
not true NVT ensemble.
True NVT: Nosé-Hoover, or N-H chain or
massive N-H chain.
P= PO

* jisothermal-isobaric: NPT

- Heat control as above, pressure control:

- Berendsen “quick and dirty”, not true NPT

- Andersén-pressure control if pressure is hydrostatic
(e.g. in liquid) heat bath

- Parrinello-Rahman-pressure control for non-hydrostatic stress (e.g. in
crystals)

» Berendsen temperature scaling: scale velocities every time step with

T,
L= 1+ A—t(TO —~ l) , where 7)) is the desired T.

Tr

* Berendsen pressure scaling: scale atom position and the box size every time

step with a factor p = 3«/ I—Bt—it (P, - P), where P is the desired pressure and 3

=1/B
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Energy minimization techniques.

» There are at least 4 ways to approach minimizing the energy of an atom sys-
tem:

1. Monte Carlo-simulation:

- May be good in looking for a global minimum, if only one very strong
minimum exists
- Not very efficient in looking for a local minimum

2. MD-simulation: Do an MD simulation letting 7 -> 0 K.

- Sometimes quite efficient in finding a local minimum, especially by us-
ing the trick of setting v;=01ifv; « F; = 0.

- May sometimes be good for looking for a global minimum, but tends to
get stuck if a high barrier exists.

3. Conjugate gradients (CG)
- Very efficient way to reach the closest local minimum
. - Works by movement down a potential well, but so that the
new direction is conjugated with respect to the previous to prevent zig-zag

motion.

- The new direction x;; ; into which one moves is evaluated as
x;i =V V(riy .
8it1=-%;; vy =gy T Yh; and x; ;= hiyg
where v = ((x;+g,)-x)/(g;-8)

- In the CG method for atoms it is often even more efficient to use an
adaptive step length instead of line minimization.
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4. Genetic algorithms

- An efficient way to look for a global minimum in dilute systems
- Not much tested in atom systems yet.

The basic idea comes from evolution theory; a population is formed, this is
allowed to breed, and the best-adjusted species are allowed to stay alive.

Deaven and Ho genetic algorithm for atoms, slightly simplified.

0. Start. Create random initial positions for p struc-

. o %o °
tures, each with exactly NV atoms. ° e
° ° o o
°® ° o

1. Mating and breeding. Select two well-adjusted

parents for breeding. This is done by selecting a

given parent i with state G; with the probability

~E(G)/T,,
P(G)o<ce

where the mating ‘temperature’ 7, is selected as the

range of energies among the whole population {G; }. Split ‘\& NV
the two parent structures along the same line. Take one half *n N :
of one parent, and another half of another parent, and join | ® °

. LN
them together. Make sure the child has as many atoms as the <
parents. »

2. Mutation. With a probability L = 0 perform a mutation on the child.

3. Minimize the energy of the child to the closest local minimum. This is
done by CG or MD.

4. Natural selection. If the child has lower energy than any of the parents,
allow it to stay alive. Then check that its energy does not match the energy of
any parent within an energy range OF. If this is true, include it in the popula-
tion, and kill the least-well adapted parent.

5. If convergence has not been reached, return to stage 1.
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Comparison to experiments

» Atomistic data can be seldom compared directly to experiments. Most often
some intermediate analysis code is needed to enable a sensible comparison.

* A special caveat should be taken with STM and TEM: in both methods, what
may look like an atom may in fact be something entirely different.
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Final comment of the course

You can't do (] You can't do Not us
physics without

anything without anyway |
a computerl J  a computer!

Hope you have enjoyed the materials
and have happy simulation-times !
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