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 Introduction to Molecular dynamics

Complete lecture notes for self-studies

Professor Kai Nordlund and University lecturer Antti Kuronen 1999 - 2015

• The idea of the course is to teach the students the basics of atom-level computer simulations, 
which are widely used in materials and atomic physics, chemistry and biology.

• The course deals with 2 basic simulation types: molecular dynamics (MD) and structural optimization (by 
using conjugate gradients (CG) and genetic algorithm (GA) methods).

• Course material home page: http://www.acclab.helsinki.fi/~knordlun/moldyn/
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Exercises

• Questions and exercises are provided among the materials

• Many of the exercises involve writing subroutines or full computer programs. 
•
• The programs are provided either in Fortran90 or C.

• Linux (or other Unix) is the preferable environment.
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Computer environment

• For exercises you need an computer environment with C or Fortran compiler.
• Good non-commercial (i.e. free) alternatives are the GNU compilers. 

• They can be easily installed in any Linux distribution. 
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Contents  
 

1. Introduction: Atomistic visulization
2. Basics of MD: Initialization
3. Neighbour lists; mdmorse code
4. Algorithms to solve equations of motion
5. Force calculation: Basics of potentials
6. Theory: P and T control
7. Quantum mechanical methods (very briefly)
8. Metal interaction models
9. Semiconductor interaction models
10. Molecular interaction models
11. Ionic interactions
12. Conjugate gradients, genetic algorithms, minimum energy paths
13. Comparison to experiments
14. Summary and end
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Literature

• Lecture notes
• Will appear on the web a bit before the lecture 
(http://www.physics.helsinki.fi/courses/s/atomistiset/lecturenotes/).

• The web page also has links to similar courses elsewhere in the world.

• As background information you can use e.g.: 
• M. P. Allen, D. Tildesley: Computer simulation of Liquids (Oxford University Press, Oxford,1989)

• The classical simulation textbook everybody refers to.
• Statistical mechanics approach.

• D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications,  
2nd edition (Academic Press, 2001) 
• Statistical mechanics approach.
• Note that the 1st edition has quite a few printing errors.
• Book home page (http://molsim.chem.uva.nl/frenkel_smit/) has exercises and case studies.

• R. Phillips: Crystals, defects and microstructure : modeling across scales (Cambridge University Press, 
2001)
• A nice textbook on computational methods in materials research in general; from atomistics to elastic continuum.
• Includes a chapter on interaction models.

• A. R. Leach: Molecular modelling: Principles and applications, 2nd edition (Prentice Hall, 2001)
• In addition to simulation methods includes also nice chapters on interaction models (classical and quantum mechani-

cal).
• Molecular mechanics and force fields.
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Computer simulations in physics

Basic theoryNature

Result
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Analytical
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prediction prediction
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    (model)

• Simulation can bridge the 
gap between theory and 
experiment. 

• Sometimes only choice 
(theory too complicated). 

• Sometimes simulation 
impossible: not enough 
computer capacity. 

• Also comparison between 
analytical theory and simu-
lation: if both are based on 
the same basic theory 
(e.g. Newtons laws), but 
analytical theory uses 
approximations, simula-
tion can be a perfect way 
to test the approximation.
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Atomistic simulation: What is it?

• Model where the basic object is (roughly) a spherical object.

• This object can be an
• atom 
• molecule
• nanocluster
• a particle in a fluid
• a planet or a part of a galaxy

• On this course, we almost always talk about “atoms”, but in many cases the algorithms are such that the 
“atom” could be almost any of the above.

• Application areas:
• atom movement in equilibrium: thermodynamics
• nonequilibrium phenomena: irradiation, material heat or pressure processing, phase transitions, nucle-
ation, surface growth (thin film deposition)

• properties of lattice defects

• nanostructures: Natoms ~ 104 - 109: can be simulated!
• interactions inside a molecule: vibration, rotation, protein folding
• intermolecular interactions
• chemical reactions

Introduction to molecular dynamics 2015                1. Introduction                                                                                                                                                       8

And what is it not?

• Continuum modelling (e.g. Finite Element Modelling, FEM)

• Fixed lattice or grid model 
• Although here the limit is sometimes hard to draw.
• Modeling of amorphous materials using continuous random networks: bond-switch simulations.

• Particle physics

• Electronic structure calculation (for fixed positions of nuclei)
• But these are often used as basis for atomistic simulation: ab initio MD.

 

• Since the basic object is an atom, and a computer memory is limited, atomistic simulations are 
always somehow size limited.
• Hence usually simulating macroscopic (mm size and up) objects is usually out of the question.
• 100 million atoms is doable: quick estimate of what physical system size this corresponds to:

• E.g. silicon: volume/atom v 5.43Å( )3

8 at.
---------------------- 20.0Å3

at.
-------= =          

V 108atoms( ) 2.0 9×10 Å3=                                                

cube edge 2.0 9×103 Å 1260Å 0.126μm= = =   

• Time scale of normal MD limited to tens of nanoseconds (but more about that later).
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Important types of atomistic simulations

• Molecular dynamics (MD)
• Simulate the dynamic atom motion based on some interaction model.

• Monte Carlo (MC) 
• MC is in the broadest sense any simulation which uses random numbers.
• Even most MD simulations do use random numbers, but they are still conventionally not considered true 
MC simulations.

• There are a few varieties of MC which are often used for atomistic simulations. The most important are 
maybe:
• Metropolis MC (MMC)

• Simulate a thermodynamic ensemble, energy minimization by simulated annealing.
• Kinetic MC (KMC)

• Simulation of activated processes (e.g. diffusion)
• The MC courses deal with all this. (http://beam.acclab.helsinki.fi/~eholmstr/mc/)

• Structural optimization
• Find the equilibrium state of of an atomistic system 
based on some interaction model: energy minimization. • Binary collision approximation (BCA) 

• In nuclear and ion beam physics (and 
almost nowhere else)

• Event-driven simulations in general (e.g. 
interaction of electron and photon radiation 
with matter)

• Global vs. local minimum: simulated annealing.
• Conjugate Gradient (CG) method

• An efficient way to find a local minimum.
• Can also be used for atoms.

• Genetic algorithms (GA)
• Sometimes an efficient way to find a global minimum.
• Can also be used for atoms.

• Minimum energy path determination
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How to present atomistic data From program babel:
alc -- Alchemy file 
bgf -- BGF file 
bmin -- Batchmin Command file 
box -- DOCK 3.5 box file 
bs -- Ball and Stick file 
c3d1 -- Chem3D Cartesian 1 file 
c3d2 -- Chem3D Cartesian 2 file 
caccrt -- Cacao Cartesian file 
cache -- CAChe MolStruct file 
cacint -- Cacao Internal file 
cdct -- ChemDraw Conn. Table file 
contmp -- Conjure Template file 
csr -- MSI Quanta CSR file 
cssr -- CSD CSSR file 
diag -- DIAGNOTICS file 
dock -- Dock Database file 
dpdb -- Dock PDB file 
feat -- Feature file 
fhz -- Fenske-Hall ZMatrix file 
gamin -- Gamess Input file 
gcart -- Gaussian Cartesian file 
gotmp -- Gaussian Z-matrix tmplt
gr96A -- GROMOS96 (A) file 
gr96N -- GROMOS96 (nm) file 
gzmat -- Gaussian Z-matrix file 
hin -- Hyperchem HIN file 
icon -- Icon 8 file 
idatm -- IDATM file 
m3d -- M3D file 
maccs -- MDL Maccs file 
macmod -- Macromodel file 
macmol -- Mac Molecule file 
mdl -- MDL Molfile file 
micro -- Micro World file 
miv -- MolInventor file 
mm2in -- MM2 Input file 
mm2out -- MM2 Ouput file 
mm3 -- MM3 file 
mmads -- MMADS file 
mol -- Sybyl Mol file 
mol2 -- Sybyl Mol2 file 
mopcrt -- Mopac Cartesian file 
mopint -- Mopac Internal file 
pcmod -- PC Model file 
pdb -- PDB file 
psc -- PS-GVB Cartesian file 
psz -- PS-GVB Z-Matrix file 
report -- Report file 
sdf -- MDL Isis SDF file 
smiles -- SMILES file 
spar -- Spartan file 
tinker -- Tinker XYZ file 
torlist -- Torsion List file 
unixyz -- UniChem XYZ file 
wiz -- Wizard file 
xed -- XED file 
xyz -- XYZ file 

• There exist about a zillion different file formats for presenting 
atom positions.
• An example: how should we present the coordinates?

• For 8 Cu atoms in the corners of the unit cube
• Trivial format 1 “x y z”:

0.0 0.0 0.0 
1.0 0.0 0.0 
0.0 1.0 0.0 
0.0 0.0 1.0 
1.0 1.0 0.0 
1.0 0.0 1.0 
0.0 1.0 1.0 
1.0 1.0 1.0 

• No information about time (for a dynamic system)
• Trivial format 2: “x y z t”

0.0 0.0 0.0 3.0
1.0 0.0 0.0 3.0
0.0 1.0 0.0 3.0
0.0 0.0 1.0 3.0
1.0 1.0 0.0 3.0
1.0 0.0 1.0 3.0
0.0 1.0 1.0 3.0
1.0 1.0 1.0 3.0

• Downside of both formats: All file has to be read in before we know how many 
atoms there are.
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How to present atomistic data

• In this course we use the XYZ standard format.
• First line has number of atoms at this time
• Second line is comment
• Then come the coordinates of the atoms with the element symbol as the 1st column.

 8
Molecule name or comment or whatever (Might, however, be used by some applications.)
Cu 0.0 0.0 0.0 320.0
Cu 1.0 0.0 0.0 310.0
Cu 0.0 1.0 0.0 305.0
Cu 0.0 0.0 1.0 280.0
Cu 1.0 1.0 0.0 290.0
Cu 1.0 0.0 1.0 320.0
Cu 0.0 1.0 1.0 310.0
Cu 1.0 1.0 1.0 320.0

• The fifth column can also hold other information, or be empty.

• It is a very good idea to include useful information on the second line (a non-standard feature), e.g. 

 8
Frame number 1 3.0 fs boxsize 3.0 3.0 3.0
Cu 0.0 0.0 0.0 320.0
Cu 1.0 0.0 0.0 310.0
...
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How to present atomistic data

• For dynamic information, the info for each time can simply be put after each other in the same file:

 2
Frame number 1 0.0 fs boxsize 3.0 3.0 3.0
Cu 0.0 0.0 0.0 320.0
Cu 1.0 0.0 0.0 310.0
 2
Frame number 1 2.0 fs boxsize 3.0 3.0 3.0
Cu 0.1 0.0 0.0 330.0
Cu 1.1 0.1 0.0 300.0
 2
Frame number 1 4.0 fs boxsize 3.0 3.0 3.0
Cu 0.2 0.1 0.0 340.0
Cu 1.2 0.1 0.0 290.0
...

 

 

• For very large simulation systems this text format may become too inefficient (both from the 
point of view of space and time).
• Binary formats exist, but are not standardized at all...
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Visualization of atomic data

• Visualization is fun but also useful. 

• Plot each atom as a sphere, either statically or dynamically. 

• Plot bonds between atoms: ball-and-stick model. 

• As with file formats, there are about a zillion programs which can do that. 

• One much used visualization program is RasMol. It is

+ free and open source (easy to modify for your needs)
+ works at least in Linux, Unix, Windows, and Mac
+ fast 
+ supports many of the most common chemistry formats, including XYZ
+ can produce publication-quality output
- poor at adding text to the graphics
- can not draw much else than atoms, bonds and protein backbones
- no perspective transformation

• Home page: http://rasmol.org/
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Visualization of atomic data

• Useful Rasmol commands (see also http://www.physics.helsinki.fi/courses/s/atomistiset/refcardUS.pdf):

load xyz file Read in a file

When started, rasmol reads the 
file ~/.rasmolrc for initial set-
tings.

write gif image.gif Store an image in the gif format
write ppm image.ppm Store an image in the ppm format
write ps image.ps Store an image in the ps format
zap Remove all data, needed before new load command
quit
wireframe <on/off/value> Adjust bond width
spacefill <on/off/value> Adjust atom size
spacefill temperature Get atom size from column 5 in XYZ file
zoom 150 Zoom display, default=100
set ambient <value> Ambient light strength
set specular on Use a nice 3D shade on atoms
set specpower <value> Remove the 3D shade
set shadows on/off Use/don’t use atom shadowing (slow)
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Ovito

• Ovito is a very powerful software for atom (not molecule) visualization and analysis
• Maintained and developed by Alex Stuchowski of the TU Darmstadt
• It has a very nice graphical user interface and many very advanced modern analysis methods 
• Filters for selecting only parts of atoms
• Available for Unix/Linux, Windows 

and Mac OS X
• Very quick guide to get started for 

XYZ files:
• Start ovito
• From top right corner, select “Import 
data” button  
and then open an XYZ file

• In “File column mapping” set (at 
least)
• Column 1: Particle Type
• Column 2: Position X
• Column 3: Position Y
• Column 4: Position Z
• Column 5: Particle Type

• After this the atoms should display
• Analysis options in menus on right

• Can be scripted via python
• http://www.ovito.org/ 
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“Quick and dirty” command line animation tool: dpc 

• A simple way to make animations is to use program dpc by Kai Nordlund
• It reads XYZ files that have many frames concatenated.
• dpc is available from the course web page 

• Compile it according to instructions
• Run it by command: dpc
• Basic usage for XYZ files:  
dpc xyz erase sort 2 3 4 5 moviefile.xyz
• “2 3 4” tells that the x, y- and z- info is taken from columns 2, 3 and 4.
• “5” does not mean anything for XYZ, but must still be there.
• All options are between “dpc” and “2 3 4 5”  

• The program is not as flexible as rasmol, but it is very fast (it is written under plain Xlib) 

• Help is given by command dpc with no options. 

• Most important options
s 600 800 Window size
sd 600 600 Draw area size
x 0 83 x limits
y 0 65 y limits
z 37.8 43.6 Color (z) limits
m 1 Form of atoms: 0 rect, 1-4 circle
d 4 Dot size 
gifdump Make gif file dump of each window frame
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Making presentation animations

• To make animations for the web or a presentation:

• Use rasmol, ovito or dpc to make a separate a bitmap image of every single time step.
• Each image should be stored with a name having the frame number encoded;  

e.g. frame001.png, frame002.png, ... 

• Make an animation from these separate frames by using any animation program (many of them available 
freely; e.g. ffmpeg). 

• With new versions of ffmpeg a typical atom animation can be made using something like: 
 
ffmpeg -framerate 2 -i dpcdump%3d.png -qmax 5 -b 1800k -dframes 1 test.wmv 
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“Quick and dirty” data-analysis: awk

• Swiss army knife of Unix: awk (or gawk)
• A lot can be done using simple ‘one-liners’.
• Example: we have a XYZ file:

2632
Time (fs)       74500
C       3.14286         5.13682         9.99465         -7.30347 
C       3.54844         3.00536         11.1538         -4.55679 
C       4.20179         5.13682         12.1936         -7.30347 
C       5.07013         3.00536         13.0619         -4.55679 
C       6.10993         5.13682         13.7152         -7.30347 
C       7.26903         3.00536         14.1208         -4.55679 
C       8.48933         5.13682         14.2583         -7.30347 
C       9.70963         3.00536         14.1208         -4.55679 

• And want to check the potential energy (5th column or so-called temperature column) distribution:
cat file.xyz | 
gawk ’$1=="C" {i=int(10*$5+0.5); e[i]++} END {for (i in e) print i/10,e[i]}’|
sort -n | xgraph

• Quick and dirty plotting: xgraph
• This is also installed on mill at /usr/local/bin. 

• These tools reduce the need to build C or F90 programs or to launch Matlab for every small 
task.
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Other visualization programs

• OpenDX 

• A commercial IBM program package which was later made open source

• Philosophy
• build a network of modules through which data flows
• data analysis and visualization in the same program package

• Home page: http://www.opendx.org/
 

• VMD 

• More features than in RasMol. 

• Slows down for large systems. 

• Home page: http://www.ks.uiuc.edu/Research/vmd/ 
 

• And many many more...
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Molecular dynamics 2015

Exercises 1 to chapter 1: Visualization

a 001[ ]

a 100[ ]

a 010[ ]

The face-centered cubic (FCC) lattice structure is as follows: a 
lattice has an number of cubes next to each other. Each cube has 
an atom in each corner, and in addition there is an atom on the 
center of each side of the cube. One cube is called the unit cell, 
and it thus has 4 atoms in total (Why only 4?). By displacing the 
atoms a bit it is possible to make a cube which has four atoms in-
side it. 

FCC is one of the two close-packed structures in 3D, the other one is hexagonal close packed 
(HCP). The statement that FCC and HCP are the tightest ways of packing spheres in 3D is called 
the Kepler conjecture. All physicists know it’s true but mathematicians only recently have been 
able to prove it (http://mathworld.wolfram.com/KeplerConjecture.html).

1. (12 p) Write a program which creates a 3-dimensional Cu FCC-lattice and prints it out in the 
XYZ format. As input the program should read the size of the system in unit cells in each 
direction (x , y , z ). Coordinates of the atoms in the XYZ file should be in Å. Make a figure 

4 4× 4×out of a  system and visualize this with rasmol, ovito or dpc1 so that at 
least three sides of the cube are visible. The lattice constant of Cu (side length of unit cell) is 
a 3.62 Å= .

2. (8 p) Modify your program so that you can visualize the 111( )  surface of the Cu FCC lat-
tice. You can do this either by cutting the cube in the right direction or building the system 
from unit cells with the right orientation (i.e. a unit cell with one side in the 111( )  plane; it 
is possible, we come to that later in the lectures). Check that you get the right symmetry in 
the 111( )  plane (hexagonal).

The exercises are returned by emailing the source code creating atoms and one rasmol-pic-
ture/exercise in the gif format.

For additional information about crystal structures and notation see any solid state physics text-
book, e.g. Kittel or Ashcroft and Mermin. Shortly, plane 111( )  is the the plane that is perpen-
dicular to the vector 111[ ] i j k+ += . Here the unit vectors are oriented along the edges of 
the cube depicted above.

1. Or whatever visualization program you use.
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Basics of molecular dynamics

• The basic idea of molecular dynamics (MD) simulations is to calculate how a system of particles 
evolves in time.
• The method was first used by Alder and Wainwright in 1957 to calculate properties of many-body sys-
tems. They called the particles molecules.
• There is an interesting parallel to classical mechanics here. The two-body motion problem was solved by Newton way 

back then. The three-body problem was solved by a Finnish guy, Sundman, in the early part of the last century - but 

the solution is utterly impractical (108000000 terms needed in a series expansion). 

• The N -body problem, N 3> , can not be solved analytically. MD can also described to be a 
numerical way of solving the N -body problem. The solution is of course never exact, but if done 
properly it can be done arbitrarily accurately.

• Consider a set of atoms at positions ri  and some interaction model which gives us the potential 

energy of the system V ri{ }( )

• In Newtonian mechanics we then get: 

                  
dri
dt
------- vi=  ,      d

dt
----- mivi( ) Fi Vi∇– V2 ri rj,( ) V3 ri rj rk, ,( ) …+

j k,
+

j
i∇–= = =

• By solving the above set of equations numerically we can derive dr  over some short time inter-
val dt .
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Basic MD algorithm (slightly simplified)

Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish
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Δr vΔt
1
2
---aΔt

2+≈ a F
m
----=,

An alternative view

• MD-simulation of thermal motion over 100 time steps

1

23

45

• Zoom in on 2 time steps (5 
atoms):
• At time   the distances  and 

hence forces  between nearby 

atoms are calculated
• From these forces we can solve 

the equations of motion, and 
hence get new positions and 
velocities.

t rij

Fij

• The displace-
ment over a 
time step  is 
denoted .
•  has to be 

much smaller 
than the dis-
tance between 
nearby atoms.

Δt
Δr

Δr

= position at t ti=
= position at t ti 1+=

r13 F13,
r12 F12,

r14 F14,
r15 F15,
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General considerations

• The above was the simplest possible example, the so called microcanonical or NVE ensemble. 
This means that the approach preserves the number of atoms N , the volume of the cell V  and 
the energy E . Other ensembles will be dealt with later on in the course. But the NVE ensemble 
is the most natural one in that it is the true solution of the N -body problem, and corresponds to 
the real atom motion.

• First MD simulations:
• Hard spheres: B. J. Alder, T. E. Wainwright: Phase transition for a Hard Sphere-System, J. Chem. Phys. 
27 (1957) 1208

• Continuous potentials: J. B. Gibson, A. N. Goland, M. Milgram, G. H. Vineyard: Dynamics of Radiation 
Damage, Phys. Rev. 120 (1960) 1229.

• State-of-the-art (2015):
• Of the order of 10 000 000 000 atoms can be done on many large supercomputers
• In Finland: CSC Cray  (louhi.csc.fi): some 100 000 000 atoms with a realistic potential easily possible for 
thousands of time steps.

• If all N  atoms interact with all atoms, one has to in principle calculate N2  interactions. This is 
prohibitively expensive for millions of atoms.
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General considerations

• Fortunately, in practice most atomic interactions decrease rapidly in strength as r ∞→ . In that 
case it is enough to calculate only interactions to nearby atoms.
• E.g. in diamond-structured semiconductors (Si, Ge, GaAs...) atoms have 4 covalent bonds, so the calcu-
lation can be reduced to 4 neighbours => 4 N  interactions.

• In metals atoms more than ~ 5 Å far can usually be neglected => about 80 N  interactions

• In ionic systems the interaction V 1 r⁄∝ , i.e. decreases very slowly. It can not be cut off, but there are 
smart workarounds.
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Early MD simulations



Purely repulsive poten-
tial was used:

cohesion: inward force 
on border atoms 
• By current standards, 

both features extremely 
questionable...

• But for 1960, very 
impressice feat!

500 atoms on IBM 704:
1 minute/time step

V r( ) V0e
βr–=

Early MD simulations
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Simulation cell

• In practice in most cases the atoms are arranged in a 
orthogonal simulation cell which has a size Sx Sy× Sz× .

• It is also perfectly possible to use a simulation cell with axes 
than are not orthogonal.

• Problem: what should we do with the atoms at the bor-
ders.

1. Nothing: “free” boundaries 

• This works fine if we want to deal with e.g. a molecule, nanocluster or 
nanotube in vacuum.

• If we want to describe a continuous medium, this does not work: the 
atoms are left “hanging” on the surface as if they would be on the sur-
face. 
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Simulation cell

2. Fix the boundary atoms:

• Completely unphysical, this should be avoided if possible. Sometimes it is needed 
and with a fairly large “sacrificial” region next to the fixed ones can be perfectly OK.

3. Periodic boundary conditions

• To implement this very important boundary condition two things have to be done 

1. An atom which passes over the cell boundary comes back on the other side: 

                             

A A’
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Simulation cell

• In practice this can be implemented as follows (Fortran 90) (note that atomic coordinates are between Sx 2⁄–  and 

Sx 2⁄ ) : 

!x           : particle coordinate

i

j’

j

kk’

l

l’

rcutoff

rij

rij’

S

!periodicx   : = true periodic, false free
!xsize       : MD cell size (Sx)

  if (periodicx) then
      if (x <  -xsize/2.0) x = x + xsize
      if (x >=  xsize/2.0) x = x - xsize
  endif

• Similarly for y  and z

2. When distances between atoms are calculated, the periodic boundaries 
have to be taken into account:

• The solid box is the simulation cell, with atoms i , j , k  and l . Because of the 
periodic boundaries, all atoms have image atoms in the repeated cells, for 

instance j' , k' , l' .  

• When we want to get the distance between atom i  and j , which distance should we use?

• Because here rij rij'> , we use for the distance between atoms i  and j  the vector rij' .
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Simulation cell

• As a pseudo-algorithm (Fortran 90) in the x dimension:

if (periodicx) then
    dx = x(j) - x(i)
    if (dx >   xsize/2.0)  dx = dx - xsize
    if (dx <= -xsize/2.0)  dx = dx + xsize
endif

and similarly for y  and z  

• Example in 1D

i jj'

S
2
---– S

2
---0

xj xi– xj' xi–→ S
2
--- xj– 
  S

2
--- xi+ 
 +– xj xi– S–= =

• Note that if the maximum distance by which atoms can interact rcutoff > xsize/2 the atom i should actually interact both 

with atom j and j’ . To prevent unphysical double interactions we need to have xsize > 2 rcutoff 
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Simulation cell

• Thus we get a system where the simulation cell has an infinite number of image cells in all directions, and 
a model of an infinite system.

• However, be careful! 

• Periodicity brings an artificial interaction over the simula-
tion cell borders.

• For instance, a strain field arising from a point source, 
which is infinite, will obviously be distorted at the periodic 
borders. Examples:

• A single vacancy (one missing atom) in Si: in quantum 
mechanical calculations at least some 200 atoms are 
required to get the energy reliably [Puska 1998 Phys. 
Rev. B]

• And for instance a 5 nm Co cluster in Cu: about 106 
atoms needed to get the strain energy reliably.

• Upper limit for the phonon wavelength.

• To test this: simulate with different N  and monitor the con-
vergence.
• In general, this kind of size scaling test is very impor-

tant in any simulations done for a finite-size system 
aiming to mimic any real much larger system
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Simulation cell

• Simulating surfaces: 

• periodic boundaries only in x - and y -directions
• free surface:
• the bottom either: 
a) free: simulation of a free-standing thin foil with two surfaces 
or b) fixed to model a bulk below:
• very bottommost atoms fixed
• a few atom layers above fixed layers damped with e.g. a temperature control algorithm

x

z
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Simulation cell

• Simulation of energetic processes: 

• In a simulation where a lot of energy is brought into 
the MD cell in a local region, the energy has to be 
scaled out from the system to model a much cooler 
‘heat bath’ in a realistic system.

• The energetic processes may also introduce a lot of 
momentum into the cell, which could cause the entire 
cell to move. 

• Solution: fix all boundary atoms except at the surface, 
and do T  scaling in a few atom layers above these, as 
above.

• Here also: watch out the finite-size effects! Do some size-scaling tests! 
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Initial conditions: creating atoms

• For cubic lattices (FCC, BCC, SC, DIA) it is easy to create the lattice. For instance FCC:
basis(1,1)=0.0;    basis(1,2)=0.0;    basis(1,3)=0.0;

To refresh your memory:

FCC : face centered cubic
BCC : body centred cubic
SC: simple cubic
DIA: diamond
HCP: hexagonal close- 

packed

basis(2,1)=0.5;    basis(2,2)=0.5;    basis(2,3)=0.0;
basis(3,1)=0.5;    basis(3,2)=0.0;    basis(3,3)=0.5;
basis(4,1)=0.0;    basis(4,2)=0.5;    basis(4,3)=0.5;
offset(1)=0.25;    offset(2)=0.25;    offset(3)=0.25;
nbasis=4;
n=0;
do i=0,nx-1
   do j=0,ny-1
      do k=0,nz-1
         do m=1,nbasis

Coordinates between

 and  
S
2
---– S

2
---

      n=n+1
            x(n)=-xsize/2+(i+offset(1)+basis(m,1))*a
            y(n)=-ysize/2+(j+offset(2)+basis(m,2))*a
            z(n)=-zsize/2+(k+offset(3)+basis(m,3))*a
         enddo
       enddo
    enddo
enddo

• The HCP lattice is also very common, but 
not orthogonal in the conventional repre-
sentation.

60o

a'a

b'

b

• Because in the HCP structure a b= , and 
because 60°cos 1 2⁄= , the HCP lattice can 
be transformed into an equivalent orthogonal 
representation. Now the new unit cell (shaded 
area) corresponds to two of the conventional 
HCP unit cells.
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Initial atom velocities

• How do we set the cell temperature to a desired value? 

• We have to generate initial atom velocities which correspond to the Maxwell-Boltzmann distribution (which 
is surprisingly well valid even in crystals):

 
 
                  ρ viα( )

mi
2πkBT
-----------------
 
 
  1 2/

1
2
---miviα

2– kBT⁄ 
 exp= ;    α x y z, ,= . 

 

• This is just a Gaussian function with suitable scaling, and exactly correct within an ideal gas model for 
atom velocities

• We usually also want to set the total 
momentum of the cell to zero to pre-
vent the entire cell from starting to 
move: 

 P mivi

i 1=

N

=  

sigma2v=sqrt(kB*2*T/(m*u))/vunit
do i=1,n 

vx(i)=sigma2v*gaussrandom(iseed)     
vy(i)=sigma2v*gaussrandom(iseed)     
vz(i)=sigma2v*gaussrandom(iseed)     
vxtot=vxtot+vx(i)   ! If all atoms have the same mass,
vytot=vytot+vy(i)   ! it is enough to scale the total v
vztot=vztot+vz(i)   ! to zero

enddo
vxtot=vxtot/n  
vytot=vytot/n  
vztot=vztot/n  
do i=1,n 

vx(i)=vx(i)-vxtot
vy(i)=vy(i)-vytot
vz(i)=vz(i)-vztot

enddo

• So in practice all this can be achieved 
with the code fragment on the right:

      Note: 
viα

2

2σ2
---------–

 
 
 

exp , σ2 kBT

mi
----------=
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Initial atom velocities

• Note the factor of 2: if the sim-
ulation is started from per-
fect lattice sites, or bound 
equilibrium positions in a 
molecule, half of the initial 
kinetic energy will be 
changed to potential energy 
after a while.

r

V(r) r0

E

Ekin only

Ekin and Epot
 

• It is also possible to get real-
istic initial random displace-
ments.
• This can be derived from the Debye model: the thermal 
displacement in the direction of the axis i  is a Gaussian distribution of the form

w δi T,( ) 2πσ[ ] 1 2/– e δi
2 2σ2⁄–=  where 

σ 20.89
3ΘD

---------------- T
A
---Å= , where   20.89 9h

2

kBu
---------Å K=

 
ΘD  = Debye temperature of the material,  A  = Atomic mass 

• The initial position can now be obtained with Gaussian-distributed random numbers as above.
• Note, however, that this does not account for quantum mechanical zero-point vibrations which give addi-
tional displacements near 0 K.
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Generating random numbers

(This topic is dealt with in much more detail on the Monte Carlo simulation course)

• Almost all kinds of simuations in physics use random numbers somewhere. As we saw above, 
MD simulations need them at least for initial velocity generation.

• Computer-generated random numbers are of course not truly random, but if they have been 
generated with a good algorithm, they start to repeat each other only after a very large (e.g. 

1020 ) number of iterations. If the number of random numbers used in the entire simulation is 
much less than the repeat number, the algorithm probably is good enough for the application.

• Random numbers can be generated for different distributions. This means that if we generate a 
large number of numbers and make statistics out of them, they will eventually approach some 
distribution. 

• The most common is of course an even distribution in an interval, another very common is 
Gaussian-distributed numbers:

0 1

P
(x

)

P
(x

)

0 
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Generating random numbers

• Evenly distributed random numbers:

• Many programming languages offer their own random number generator (e.g. in ANSI-C rand()). A good 
rule-of-thumb regarding these is: 
 
         Never use them for anything serious !

• The reason is simply that the language standard only specifies that the generator has to be there, not that it works sen-
sibly. Since there are no guarantees it does (there are famous examples of the opposite) it should not be used 

• Most random number generators are based on modulo-arithmetics and iteration. In the simplest possible 
form:

Ij 1+ aIj mod m( )=

• Park and Miller ‘minimal standard’-generator: a 16807= , m 231 1–=

• In the beginning the number I0  i.e. the seed number is chosen randomly.

• This can be done e.g. by using the current system time.
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Generating random numbers

• One practical implementation (Fortran90):
real function uniformrand(seed)

  implicit none
  integer :: seed,IA,IM,IQ,IR,MASK
  real :: ran0,AM
  integer :: k
  
  parameter (IA=16807,IM=2147483647,AM=1.0/IM)

        parameter (IQ=127773,IR=2836,MASK=123459876)

  seed=ieor(seed,MASK)
  k=seed/IQ
  seed=IA*(seed-k*IQ)-IR*k
  if (seed < 0) seed=seed+IM
  uniformrand=AM*seed
  seed=ieor(seed,MASK)

  return

end function uniformrand

• The repeat interval for this routine ~ 

2.1•109

• This routine is easily good enough if for 
instance it is only needed for the choice of 
random numbers in the beginning of an 
MD simulation. 

 

• In a long Monte Carlo integration where 
random numbers are used all the time, 
the repeat interval may be reached, after 
which continued running will not improve 
on the results (and for instance the error 
estimate of the result will be calculated 
outright wrong). 

• More on this topic for instance from the book: Press, Teukolsky, Vetterling, Flannery: Numerical Recipes 
in C/Fortran, 2nd. ed., chapter 7.

• The book is on-line in its entirety (see http://www.nr.com/).
• But see also: “Why not use Numerical Recipes?”, http://math.jpl.nasa.gov/nr/  
and the reply to this: http://www.nr.com/bug-rebutt.html
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Generating random numbers

• To generate Gaussian random velocities we need to be able to generate Gaussian-distributed 
random numbers. 

• How to do this is dealt with in great detail in Numerical Recipes chapter 7.2. Here we only present the 
most efficient accurate algorithm for this: 

1o Obtain two evenly distributed random numbers v1 and v2 between -1 and 1, then calculate w v1
2

v2
2+=

2o If w 1≥  return to step 1o 

3o Calculate r 2 wlog–=

4o Calculate x rv1 w⁄=  and y rv2 w⁄=

5o Return x  and on next step y

Introduction to molecular dynamics 2015              2. Basics of molecular dynamics                                                                                                                                                      22

Choosing the MD time step

• Depends on the integration algorithm used, but not too strongly.

r
V(r)

r0

E• The change in the atom position in the potential used should not 
be too strong.

• A practical, rough rule-of-thumb: the atoms should not move 
more than 1/20 of the nearest-neighbour distance.

• Thermal velocity of atoms (Maxwell-Boltzmann distribution): 

                Erms
3
2
---kBT

1
2
---mv

2  vrms
3kT
m

---------== =

• But the distribution continues much beyond this.

• Rough estimate of the time step needed: 300 K Cu (m 63.55u= ): 

• 5vrms 0.017 Å/fs=

• Nearest-neighbour distance 2.55 Å=> Δt
2.55 20⁄

0.017
-------------------- fs 7.5 fs= =

• In practice for stability Δt 4 fs≤ .
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Choosing the MD time step

• In pure MD there is no way to increase the time step above ~ 10 fs in atom systems at ordinary 
temperatures (77 K and up).

 

• If we would want to simulate a process which, say, takes 1 s, we would need at least 1014 time steps!  

• This gives an easy way to estimate the order-of-magnitude of the upper limit for the time scale 
MD can handle in a given time: 

• Most realistic classical MD interatomic potentials require at least of the order of 100 flops/atom/time step.  

• Say our time step is 1 fs, and we want to simulate a 10000 atom system.

• Hence we need 106 flops/time step. To get to 1 ns = 109 fs we would need 1015 flops. Assuming 1 Gflop/

s processor, the simulation would thus require 1015/109 seconds = 106 s i.e. about 11 days. To get to 1 μs 
would require some 30 years on this processor.

• Hence we see that ordinary MD is restricted to ≤ 100 ns processes in most practical uses.
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Choosing the MD step 

• In ordinary equilibrium MD Δt is usually constant throughout simulation

• But if the maximum velocity of atoms changes a lot during the simulation, it is best to use a variable time 
step, which increases as the maximum velocity decreases.

• Simulations of energetic processes [K. Nordlund, Comput. Mater. Sci. 3, 448 (1995)]: 
 

Δtn 1+ min
kt

vmax
-----------

Et
Fmaxvmax
------------------------- cΔtΔtn tmax,, ,( )=  

 
kt maximum movement distance/time step (e.g. 0.1Å ) 

Et maximum allowed energy change/time step (e.g. 300 eV) 

cΔt prevents too large sudden changes (e.g. cΔt 1.1= ) 

vmax maximum atom speed in system 

Fmax maximum force on any atom in system 

tmax time step once heat bath T  has been reached 

• The example values above have been found to work well for binary collisions up to 1 GeV in 
many materials.
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Choosing the MD step 

• What happens if Δt is too long?
• The energy is not conserved.

Change in total  
energy

Temperature
• For instance solid copper (FCC lat-
tice, a 3.615Å= , EAM potential, 
code parcas) NVE simulation at 300 
K: 

• Hence the real criterion for selecting 
the time step becomes energy con-
servation: for every: 

• new kind of system
• new kind of process simulated
• new material
• new interaction potential 

• For every new system, one needs to 
check that energy is conserved ‘well 
enough’ by some test simulations, 
before starting the real production 
runs.
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Acceleration methods

• Speeding up MD

• This can be achieved at least in some cases where we are 
interested in transitions induced by thermally activated pro-
cesses, i.e. processes which follow a behaviour of the type 
 

                         υ υ0 e
E– A kBT⁄

=  
 
where υ  is the rate of the process occurring. 

• System spends most of its time in local potential energy min-
ima Bi  (basins). 

• Every once in a while it gets enough kinetic energy to go over 
the barrier EA : rare events.

• Acceleration: increase υ  by increasing the probability for barrier crossing.

• Modify EA  or T  (??)
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Acceleration methods

• Art Voter has presented so called Hyperdynamics [A. F. Voter, J. Chem. Phys. 106 (1997) 4665; 
Phys. Rev. Lett. 78 (1997) 3908]. It can in some cases speed up MD by a factor of the order of 
100-1000, in others not at all. 

• In this method, Δt  does not increase, but the potential well is made shallower so that the probability of 
processes with a large activation energy increases. The error which is thus formed is compensated by 
transition state theory (which is beyond the scope of this course).

• The method is well suited for cases where we have to overcome a high potential energy barrier in an 
ordered system, e.g. vacancy and adatom diffusion. But if the energy barrier is low (e.g. interstitial migra-
tion in metals) or if we have numerous local energy minima close to each other, like in most amorphous 
and liquid systems, the method is useless.

Epot

Eboost
Eboost
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Acceleration methods

• Temperature accelerated dynamics (TAD)

• There is of course always is the Arrhenius extrapolation method: if we know that in our system there is 
only one single activated process occurring, and nothing else, we can simulate at higher T  and then 
extrapolate the Arrhenius-like exponential EA– kBT⁄( )exp  to lower T  to know the rate or time scale at 

lower T .

• A smart extension to Arrhenius extrapolation is Art Voter’s TAD method [e.g. Sorensen, Phys. Rev. B 62 
(2000) 3658; a review of Voters methods is given in Ann. Rev. Mater. Res. 32 (2002) 321]

• To understand the idea in this, let us consider a system with exactly 2 activation energies (this is just a 
tutorial example, the method works in principle for any number of activation energies). We want to simu-
late what the system does at 300 K, but the processes are so slow nothing happens there. So we will use 
a higher T , say 800 K. 
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Acceleration methods

• Let us then assume that the Arrhenius plot of the system looks as follows: 
lo

g 
ν,

 ra
te

 o
f e

ve
nt

 o
cc

ur
an

ce

0 1/800 1/300

EA,1

EA,2 EA,1 > EA,2

1 T⁄ 1/K( )

υ υ0 e
E– A kBT⁄

= υlog υ0log
EA
kBT
----------–=

 

• Now when we simulate at 800 K, event type 1 will occur much more frequently than type 2. But we want 
to know the behaviour at 300 K, so this is wrong. The idea in TAD is to recognize every transition that 
occurs, determine its activation energy, and then leave out the events that would not occur at the lower T . 
In our example, this means that (almost) only events of type 2 would be accepted.
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Acceleration methods

• In principle this is an excellent idea, but in practice one needs thousands of force evaluations to recognize 
a transition barrier. Hence the difference between the rates of occurrance needs to be very large for a sig-
nificant gain to be achieved. But the gain can be huge (Example: simulating growth of Cu (001) surface at 

77 K the speedup factor is 107 !)

• Like hyperdynamics, if there are lots of shallow minima TAD tends to get stuck and never really gets any-
where.

• TAD is developing rapidly towards wider applicability, so it will be interesting to follow the progress 

• As of 2015, Hyperdynamics, TAD and other similar-in-spirit acceleration methods have found many appli-
cations in close-to-equilibrium simulations, typically such involving diffusion and an underlying crystal 
structure. In completely disordered, inhomogeneous systems (such as bio-systems) and far-from-equilib-
rium simulations, no atom-based acceleration method has found wide applicability. 

• In biosystems, coarse-graining, i.e. replacing single atoms with larger objects describing e.g. part of a molecule, can 
often give major speedups. These are beyond the scope of this coarse.
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Molecular dynamics 2015
Exercise 2 to chapter 2: Random numbers etc. 

a2 a 2⁄ i 3a 2⁄ j+=
a1 ai=

a3 8 3⁄ ak=

HCP
unit cell (non-orthorhombic)

b1 0=

b2
1
3
---a1

1
3
---a2

1
2
---a3+ +=

basis
(atoms in the unit cell)

1. (6 p) Modify your program of 
exercise 1 to construct a hexagonal 
close-packed (HCP) structure (us-
ing an orthorhombic unit cell; i.e. 
cell that has all three lattice vectors 
orthogonal with each other1). Us-
ing a visualization program dem-
onstrate the (small) difference 
between the face centered cubic 
(FCC) and HCP structures: the dif-
ferent stacking order of 111( )  
crystal planes. Hint: the primitive 
unit cell depicted on the right con-
tains two atoms, while the non-primitive orthorhombic cell contains four atoms.

2. (7 p) Write subroutines which generate random numbers with an even and a Gaussian distri-
bution. Generate 1 million Gaussian-distributed random numbers (with the standard deviation 
σ = 1 and mean μ = 0), make a histogram of their distribution with a bin width of e.g. 0.01 and 
the area normalized to unity and make a plot. Also generate the same Gaussian distribution 
 

f x( ) 2π[ ] 1 2/– e x2 2⁄–=

analytically and plot in the same figure as the random plot. 

Return the code and the figure as pdf, postscript or png, jpeg, or the like.

3. (7 p) Equipartition theorem states that2: Every degree of freedom of a body that contributes 
a square term of a coordinate or momentum to the total energy has a mean energy of kBT 2⁄  
in that degree of freedom. Based on this explain why the temperature drops by a factor 2 in the 
beginning of the simulation3. Would you expect the factor be 2 also at very high temperatures?

1. Lecture notes, chapter 2, page 15.
2. G. W. Wannier: Statistical Physics (Dover, New York, 1966), ch. 4-5.
3. Lecture notes, chapter 2, page 17.
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Constructing a neighbour list

• In MD simulations (and actually many other applications) one of the central operations is the 
calculation of distances between atoms. 
• In MD this is needed in the energy and force calculation.

• Trivial calculation of distances between atoms:

do i=1,N
  do j=1,N

if (i==j) cycle
dx=x(j)-x(i);
dy=y(j)-y(i);
dz=z(j)-z(i);
rsq=dx*dx+dy*dy+dz*dz
r=sqrt(rsq)

  enddo
enddo

• This algorithm is O N
2( ) , i.e. very slow when N ∞→ .

• But in practice we know the atoms move < 0.2 Å/time step. So a large fraction of the neighbours remain 
the same during one time step, and it seems wasteful to recalculate which they are every single time.
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Constructing a neighbour list

• Solution: Verlet1 neighbour list: 

rcut
rm

i

“Skin” region

• Make a list which contains for each atom i the indices 
of all atoms j which are closer to i than a given distance 
rm. rm rcut> , the cutoff distance of the potential 

• The list is updated only every Nm  time steps.

• rm and Nm  are chosen such that 
 
           rm rcut– NmvΔt> , 
 
where v  is a typical atom velocity and Δt  the time step

1. Loup Verlet, Phys. Rev. 159 (1967) 98.
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Constructing a neighbour list
• An even better way to choose when to update the interval: after the neighbour list has been 

updated, keep a list of the maximum displacement of all atoms:

• Make a separate table dxnei(i)
• When you move atoms, also calculate dxnei(i)=dxnei(i)+dx
• Calculate the two maximal displacements of all atoms:

drneimax=0.0; drneimax2=0.0
do i=1,N

drnei=sqrt(dxnei(i)*dxnei(i)+dynei(i)*dynei(i)+dznei(i)*dznei(i))
if (drnei > drneimax) then

drneimax2=drneimax
drneimax=drnei

else 
if (drnei > drneimax2) then

drneimax2=drnei
endif

endif
enddo   

• Now, when drneimax+drneimax2( ) rm rcut–>  the neighbour list has to be updated.

• When the update is done, do dxnei(i)=0.0

• This alternative has two major advantages: the simulation does not screw up if one atom suddenly starts 
to move much faster than the average, and if the system cools down, the neighbour list update interval 
keeps increasing.
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Constructing a neighbour list
• In practice the neighbour list can look e.g. like the following: 

neighbours of atom 1 neighbours of atom 2 neighbours of atom N

NNei1 j1 j2 j3 jNNei1
NNei2 j1 j2 NNeiN j1 j2 j3 jNNeiN

jNNei2

• Here NNeii is the number of neighbours of atom i.
• j1, j2, ... are the indices of neighbouring atoms (different for different atoms).

• So, if we would have a 64 atom system, where every atom has 4 neighbours, the neighbour list could look 
like this:

4 2 3 63 64 4 1 3 4 5

neighbours of atom 1

4 1 61 62 63

neighbours of atom 2 neighbours of atom 64
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Constructing a neighbour list
• A practical implementation of creating the list:

 
nlistbeg=1
do i=1,N

nnei=0
Periodic boundaries omitted for brevity. See 
lecture02 for how to include them in the dx, 
dy, dz calculations.

do j=1,N
if (i==j) cycle
dx=x(j)-x(i)
dy=y(j)-y(i)
dz=z(j)-z(i)
rsq=dx*dx+dy*dy+dz*dz
if (rsq <= rskincutsq) then

nnei=nnei+1
nlist(nlistbeg+nnei)=j

endif
enddo
nlist(nlistbeg)=nnei ! Write in number of i’s neighbours into list
nlistbeg=nlistbeg+nnei+1 ! Set starting position for next atom

enddo

• With the neighbour list, we can achieve a savings of a factor Nm  in calculating the distances to 

neighbours.

• But even using the neighbour list, our algorithm is still O N2( ) .
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Constructing a neighbour list
• Remedy: linked list / cellular method

• Using a linked list and cellular division of the simulation cell, we can make the algorithm truly 
O N( ) :

• Let’s divide the MD cell into smaller subcells: M M× M×  cells 

• The size of one subcell l is chosen so that 

                    l
L
M
----- rm>= ,  

where L  = the size of the MD cell, and rm  is as above. 

• Now when we look for neighbours of atom i  we only have to look through 
the subcell where i  is, and its neighbouring subcells, but not the whole sim-
ulation cell. For instance if atom i  is in cell 13: 
 

1 2 3 4 5

6 10

11 15

16 20

21 22 23 24 25

7 8 9

12 14

17 18 19

13

 
The average number of atoms in a subcell is Nc N M3⁄= . 
 
 We have to go through  27NNc    atom pairs instead of  N N 1–( ) .

• For some interaction potentials (symmetric ij  pairs) it is actually enough to 
calculate every second neighbour pair (e.g. i j> ) whence the number of 
pairs is further reduced by a factor of 2.
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Constructing a neighbour list
• A practical implementation: 

HEAD

0 1 0 3 2 4 5 7 6 9LIST

8 10

1 2 3 4 5 6 7 8 9 10

• array HEAD: 

• size = M3

• contains pointers to the table LIST

• tells where the neighbours in subcell m  
start

• array LIST:

• size = N
• element j  tells where the next atom index of atoms in this cell is

 

• So the example below means that subcell 2 contains atoms 10, 9, 6, 4, and 3

• This representation is indeed enough to give all the atoms in all cells. 

• A two dimensional array would of course also work, but would require much more memory, or dynamic 
allocation, both of which are less efficient. 
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Constructing a neighbour list
• Building the list:

• assume a cubic case:
HEAD

0 1 0 3 2 4 5 7 6 9LIST

8  3

1 2 3 4 5 6 7 8 9 10

• MD cell size = size(3)
• size of subcell =size()/M
• MD cell centered on origin

do i=1,N
head(i) = 0

enddo
do i=1,N

icell = 1 +  int((x(i)+size(1)/2)/size(1)*M) &
 int((y(i)+size(2)/2)/size(2)*M) * M &
 int((z(i)+size(2)/2)/size(3)*M) * M * M

list(i) = head(icell)
head(icell) = i

enddo

• So the list LIST is filled in reverse order to the picture above. 

• The above algorithm requires periodic boundaries. If the boundaries are open, an atom may get outside the cell bor-
ders, and the icell may point to the wrong cell.
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Constructing a neighbour list
• To account for possibly open boundaries properly things get a bit trickier:

• MD Cell size size(3)
• MD cell centered on origin
• Number of cells in different dimensions Mx, My, Mz

• Cell range 0 — Mx-1 and same in y  and z

do i=1,N
dx=x(i)+size(1)/2
! Check that we are really inside boundaries
if (periodic(1) == 1 .and. dx < 0.0) dx=dx+size(1)
if (periodic(1) == 1 .and. dx > size(1)) dx=dx-size(1)
ix=int((dx/size(1))*Mx)
! If not periodic, let border cells continue to infinity

1 2 3 4 5

6 7 8 9 10

11 12 14 15

16 17 18 19 20

21 22 23 24 25

13

if (periodic(1) == 0) then
if (ix < 0) ix=0
if (ix >= Mx) ix=Mx-1

endif
(and same thing for y and z)
icell=(iz*My+iy)*Mx+ix
list(i)=head(icell)
head(icell)=i

enddo

• So the subcells at open boundaries continue out to infinity:
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Constructing a neighbour list
• Usually the linked list (LIST, HEAD) is used to generate a Verlet list

• Decoding a linked list into a Verlet-list, as pseudocode:
• Cell size size(3)
• Number of cells Mx, My, Mz

do i=1,N
do (Loop over 27 neighbouring cells: inx iny inz)

icell=(inz*My+iny)*Mx+inx
! Get first atom in cell
j=head(icell)
do 

if (j==0) exit ! exit from innermost loop
(get distance r between atoms i and j)
if (r <= rneicut) then

(accept neighbour)
endif
j=list(j)

enddo
enddo

enddo
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MD code mdmorse
• A simplified MD code mdmorse has been written for this course:

• mdmorse simulates atom motion in a variety of metals (but only one metal at a time) with a simple Morse 
pair potential model.  
 

                            V r( ) D e
2α r r0–( )–

2e
α r r0–( )–

–[ ]=

• The code has a Verlet neighbour list (but not a linked list) and the equations of motion are solved with the 
velocity Verlet method.

• The code is given in Fortran90 and C.

• The code can be downloaded from the course web page.
• The code has the input parameter and output routines included.
• Physically interesting subroutines have been removed from the code, so it does not work. 

• During the course exercises, you get the task of writing the missing subroutines. 
• Solutions will be provided and explained during the exercise sessions. 
• You may either use your own or the provided solutions afterwards. 
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Structure of the mdmorse code

• Program files:

main.f90 Main program
inout.f90 Miscellaneous input and output stuff
modules.f90 Global variables
physical.f90* Calculating T  and E , and random number generators
neighbourlist.f90* Getting the neighbour list
solve.f90* Solving the equations of motion
forces.f90* Calculating the forces

Makefile Makefile 
(If you have used Unix or Linux systems you should know how to make programs.)

• Files marked with * contain the subroutines which are to be filled up during the exercises

• C version: *.c                    → *.f90  
        modules.f90  → global.h

• Compiling the code:

make

• This has been tested to work at least on Linux systems with a GNU compilers (gfortran and gcc).
• You may have to change the compiler command in Makefile.
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Structure of the mdmorse code
• Input files (file names are hardcoded): 

mdmorse.in Miscellaneous parameters
atoms.in Atom coordinates in XYZ format

• Running the program: 

./mdmorse        (or if you don’t want to disturb other users nice ./mdmorse)

• Should be done in the same directory where the input files are.

• Output files: 

standard output T , E , P  and other interesting output
atoms.out Atom coordinates at regular intervals 

• Note also that during the program running, the code writes out a large number of atom coordinates to a 
file atoms.out, which may grow very large. 
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Structure of the mdmorse code
• Input file mdmorse.in 

 Sample input file for mdmorse md program
 File format: -identifier, then value. Rest is arbitrary comments
 Lines which do not begin with "-" are all ignored

Identifier     | Value

-initialT       600.0     Initial temperature

-desiredT 300.0        Variables for temperature control
-btctau 0.0          If btctau=0 no effect

-bpctau 0.0          Variables for pressure control
-bpcbeta 7.0e-4       If bpctau=0 no effect
-desiredP 0.0

-mass           63.546       For Cu

-xsize          18.126900793    Box size in each dimension
-ysize          18.126900793
-zsize          18.126900793

-periodicx      1               1 = periodic, 0 = non
-periodicy      1
-periodicz      1

-morseDe        0.3429        Morse potential parameters for Cu
-morsealpha     1.3588      
-morseRe        2.866

-rpotcut        5.0           Potential cutoff 
-rskincut       6.0           Neighbour list cutoff, must be > rpotcut

-nupdate        5               Number of steps between neighbour list updates

-nmovieoutput   100             Interval between atom movie output

-deltat         2.0           Time step in simulation in fs
-tmax           10000.0      Total simulation time
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Structure of the mdmorse code
• Input file atoms.in 

• The file is a normal XYZ atom coordinate file:

500
FCC cell made by makeFCC with a= 3.615 n= 5 5 5
Cu     -8.13375     -8.13375     -8.13375 
Cu     -6.32625     -6.32625     -8.13375  

...and so forth the remaining 498 atom coordinates.... 

Cu      6.32625      8.13375      8.13375 
Cu      8.13375      6.32625      8.13375  

• Note that the cell is centered on the origin.
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Structure of the mdmorse code
• Standard output (for the working code; F90 version):

 --------------- mdmorse V1.0 --------------------

Read in parameter -initialT        value  1000.00
Read in parameter -desiredT        value  2500.00
Read in parameter -btctau          value  300.000
Read in parameter -bpctau          value  3000.00
Read in parameter -bpcbeta         value 0.700000E-03
Read in parameter -desiredP        value  0.00000
Read in parameter -mass            value  63.5460
Read in parameter -xsize           value  18.1269
Read in parameter -ysize           value  18.1269
Read in parameter -zsize           value  18.1269
Read in parameter -periodicx       value  1.00000
Read in parameter -periodicy       value  1.00000
Read in parameter -periodicz       value  1.00000
Read in parameter -morseDe         value 0.342900
Read in parameter -morsealpha      value  1.35880
Read in parameter -morseRe         value  2.86600
Read in parameter -rpotcut         value  7.00000
Read in parameter -rskincut        value  8.00000
Read in parameter -nupdate         value  5.00000
Read in parameter -nmovieoutput    value  100.000
Read in parameter -deltat          value  5.00000
Read in parameter -tmax            value  50000.0
Using periodics (1=on, 0=off) 1 1 1
Morse potential parameters: De alpha Re    0.342900    1.358800    2.866000
Movie output selected every     100 steps

Reading in     500 atoms described as FCC cell made by makeFCC with a= 3.62538
 Initial atom temperature is    1970.4541462944828
Neighbour list update found    176.00     neighbours per atom
ec      5.000   1890.175     0.24432    -3.48740    -3.24307
bpc      5.000      26.025014  5956.400065997    18.127    18.127    18.127
Outputting atom movie at t =      5.000
ec     10.000   1652.943     0.21366    -3.45507    -3.24141
bpc     10.000      33.853085  5956.635315608    18.127    18.127    18.127
ec     15.000   1318.804     0.17047    -3.40893    -3.23846
bpc     15.000      43.555081  5956.937997643    18.128    18.128    18.128
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Structure of the mdmorse code
• And so on. Here most things are self-explanatory. 

• The “ec” and “bpc” lines contain the physically most interesting stuff in the following format:

time(fs) T  (K) Ekin /at. Epot /at. Etot /at. P (kbar)    (energies in eV)

ec 4.000 594.069 0.07538 -3.03868 -2.96330 163.82195

time(fs) bx (Å) by (Å) bz (Å) V (Å3) P (kbar) μBerendsen

bpc 4.000 18.132452 18.132452 18.132452 5961.69346 163.82195 1.00015 

• Output file atoms.out 
• This file is in the XYZ format, but with the exception that column 5 contains the atom potential energy:

500
mdmorse atom output at time       2.000 fs boxsize      18.1269     18.1269     18.1269
Cu    -9.053407   -9.061041   -9.048299  -3.085270
Cu    -7.236810   -7.239921   -9.048988  -3.033905
Cu    -7.241191   -9.049845   -7.246436  -3.035222
Cu    -9.038484   -7.238137   -7.241429  -3.031141
.
.
.
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Structure of the mdmorse code
• Testing the incomplete code:

• Even though the code is not complete, it should compile and run in the intermediate stages. 
• The output should look something like:

 
Reading in     500 atoms described as FCC Cu; boxsize      18.1000     18.1000
Initial atom temperature is   0.000000000000000
Neighbour list update found   0.26928E+06 neighbours per atom
ec      2.000      0.000     0.00000     0.00000     0.00000     0.00000
Outputting atom movie at t =      2.000
ec      4.000      0.000     0.00000     0.00000     0.00000     0.00000

• I.e. the number of neighbours is nonsense, and the temperature is 0. 

• When you start doing the exercises, this should change and interesting things will start to happen.
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• Structure of the program

Main program

main.f90

ReadParams

inout.f90

ReadAtoms
WriteAtoms

SetTemperature

physical.f90

GetTemperature
GetEnergies

gaussianrand

uniformrand UpdateNeighbourlist

neighbourlist.f90

GetForces

forces.f90

Solve1

solve.f90

Solve2

Routines printed in magenta 
are written in exercises.

Warning: Remember that although routine and 
variable names here have small and capital let-
ters, Fortran is case insensitive. I.e. symbols 
 
         SetTemperature
         settemperature

refer to same routine (or variable).



1

Molecular dynamics 2015

Exercises 3 to chapter 3: mdmorse: Setting initial temperature, building neighbourlist

You can obtain the mdmorse code from the course web page:

http://www.acclab.helsinki.fi/~knordlun/moldyn/mdmorse/

1. (8p) Complete the subroutine SetTemperature() in physical.f90/.c in the code 
mdmorse. This also requires completing the subroutine generating Gaussian random num-
bers. You may use your solutions of the previous excercises as help. 
 
Check your code by compiling and running mdmorse. The routine GetTemperature() 
(which is already provided) should return about twice the input value initialT. 
 

2. (12 p) Complete the subroutine UpdateNeighbourlist() in neighbourl-
ist.f90/.c in mdmorse. The subroutine should generate a Verlet neighbour list tak-
ing account of the periodic boundary conditions. You do not need to use a linked list. 
 
Hint: when the subroutine in the end outputs the number of neighbours, the answer should 
be 176.00 with the input files provided in the program distribution.

When coding keep the subroutine parameters as they are given. This makes it easy (for the lec-
turer) to test them in the original code. 

Return the source files physical.f90/.c and neighbourlist.f90/.c. and the rele-
vant parts of the output (standard output). 

When returning subroutines to the code for the exercises, the minimum requirement is that each 
subroutine returned compiles on a standard Unix/Linux system with  
 

gfortran -c filename.f90,  
 
or in C 
 

cc -c filename.c 
 
Subroutines which do not compile, give 0 p.
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Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Introduction to molecular dynamics 2015             4. Solving the equations of motion                                                                                                                                                     2

Solving the equations of motion
[Main source: Allen-Tildesley]

• In MD, what we really want to do is solve the equations of motion of N  atoms (or particles in 
general) interacting via a potential V   

• Lagrange equations of motion: 

td
d

q· i∂
∂L

 
 
 

qi∂
∂L– 0= ; 

L q q·,( ) K q q·,( ) V q q·,( )–=  
q  = generalized coordinate 

• By using the cartesian coordinates  
qi ri=    

K r·( ) 1
2
---mi

i
 r·i

2= , 

V V r( )= ,  
we get the familiar (Newtonian) form 

miri
·· fi= ,  

where fi ∇ri
L ∇ri

V–= =  is the force acting in atom i   
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Solving the equations of motion

• We can also start by considering the Hamiltonian equations of motion 

q· i pi∂
∂H= , p· i qi∂

∂H–= , 

where pi q· i∂
∂L=  is the generalized momentum 

and H q p,( ) q· ipi
i
 L q q·,( )–=  the Hamiltonian function (we assume that q· i  can be given as a 

function of p )

• If V  does not depend on the velocities, we get quickly back to the familiar form 
H q p,( ) K p( ) V q( )+=  

and if we again use cartesian coordinates the equations of motion will be: 

r· i
pi
mi
------=  

p· i ∇ri
V– fi= =  

• So we have two alternatives:
1. Solve a system of 3N  2nd order ODE’s  (mir

··
i fi= ) derived from the Lagrangian or Newtonian formalism 

2. Solve a system of 6N  1st order ODE’s derived from the Hamiltonian formalism
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Numerical solution of equations of motion

• Finite difference method: from a system configuration (atom positions, velocities etc.) at time t  
we calculate the configuration at time t δt+
• δt  can be constant or variable
• initial conditions r 0( ) , v 0( )  have to be known (initial value problem) 

 

• As an example a predictor-corrector -algorithm:  

• Use a Taylor series to predict the system configuration at time t δt+  using the 
small deviation δt : 
 

rp
t δt+( ) r t( ) δtv t( ) 1

2
---δt

2a t( ) 1
6
---δt

3b t( ) …+ + + +=  

vp
t δt+( ) v t( ) δta t( ) 1

2
---δt

2b t( ) …+ + +=  

ap
t δt+( ) a t( ) δtb t( ) …+ +=

Equations of motion 
not (yet) used.

 

bp
t δt+( ) b t( ) …+=  

• v , a  and b  are higher time derivatives of r : 
v  = velocity, a  = acceleration and b  = the time derivative of acceleration. 
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Numerical solution of equations of motion

• We can instead of b  also use information from previous time steps: 
r t( ) v t( ) v t δt–( ) v t 2δt–( ), , ,{ }  

 or r t( ) v t( ) a t( ) a t δt–( ), , ,{ }

• Correction step: we now have rp
, from which we can get the forces 

Fi r
p

i( )  at t δt+   

 accurate corrected accelerations ac
t δt+( )  

 error in accelerations  Δa t δt+( ) ac
t δt+( ) ap

t δt+( )–=

Equations of motion 
now used.

 

• Using this known error, one can calculate corrected positions, velocities and so on 

rc
t δt+( ) rp

t δt+( ) c0Δa t δt+( )+=  

vc
t δt+( ) vp

t δt+( ) c1Δa t δt+( )+=  

ac
t δt+( ) ap

t δt+( ) c2Δa t δt+( )+=  

bc
t δt+( ) bp

t δt+( ) c3Δa t δt+( )+=  

• The constants ci  depend on how many derivatives of r  we include and the degree of the equation, etc.

• The correction can also be iterated in principle; but not sensuble in MD: calculating the forces expensive 
 use an algorithm requiring only one evaluation of the force per time step (one correction)

• If the correction is not iterated, an obvious choice is c2 1= .
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Numerical solution of equations of motion

• Thus we reach the following approach to solving the MD equations of motion: 
(a) predict r , v  and a  for the time t δt+  using the present values  

of the same variables 
(b) calculate forces and hence a f m⁄=  from the new r  
(c) correct the predicted r , v  and a  etc. using the new a  

• Requirements for a good MD algorithm 
 

(a) fast (not that important) 
(b) takes little memory (important) 
(b) allows a long time step δt  (important) 
(c) reproduces the correct path (see below) 
(d) conserves energy (and is reversible:  

δt δt–→   back to original state) (very important) 
(f) easy to implement (not that important) 
(g) only one force evaluation/time step (important for complex V ) 
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Numerical solution of equations of motion

• Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time. 
Since all computers have limited floating-point precision, a small round-off error will eventually grow to a 
large difference (Lennard-Jones system; in reduced units ρ* 0.6= , T* 1.05= ):

Source: Allen-Tildesley
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• A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccura-
cies. 
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Common algorithms

• In the following we present some of the most common MD algorithms:

• Verlet
• Derived from the following two Taylor series: 

r t δt+( ) r t( ) δtv t( ) 1
2
---δt

2a t( ) …+ + +=  

r t δt–( ) r t( ) δtv t( )– 1
2
---δt

2a t( ) …+ +=

• Sum them up and rearrange:  

r t δt+( ) r t δt–( )+ 2r t( ) δt
2a t( )+=  

r t δt+( ) 2r t( ) r t δt–( )– δt
2a t( )+=  

• So we have an algorithm which essentially does: 
r t( ) a t( ) r t δt–( ), ,{ } r t δt+( ) a t δt+( ),{ }→ . 

• However, the velocities are missing; these can be calculated from 

v t( ) r t δt+( ) r t δt–( )–
2δt

-----------------------------------------------= . 

• The error per iteration O δt
4( ) ; in the velocities O δt

2( ) .

• Memory requirement: 9N .
• Numerical problems, fluctuates heavily
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Common algorithms

• Leap-frog
• Mathematically equivalent with Verlet (not numerically) 

r t( ) a t( ) v t
1
2
---δt– 

 , ,
 
 
 

r t δt+( ) a t δt+( ) v t
1
2
---δt+ 

 , ,
 
 
 

→  

v t
1
2
---δt+ 

  v t
1
2
---δt– 

  δta t( )+=  

r t δt+( ) r t( ) δtv t
1
2
---δt+ 

 +=  

• Velocity  

v t( ) 1
2
--- v t

1
2
---δt– 

  v t
1
2
---δt+ 

 +=   

for energies etc. 

• Advantage: explicit v . 

• Memory requirement 9N . 

• But still velocities at different time than the positions.
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Common algorithms

• Velocity Verlet
• Eliminates the half-step velocity problem 

 
r t( ) v t( ) a t( ), ,{ } r t δt+( ) v t δt+( ) a t δt+( ), ,{ }→  

r t δt+( ) r t( ) δtv t( ) 1
2
---δt

2a t( )+ +=  

v t δt+( ) v t( ) 1
2
---δt a t( ) a t δt+( )+[ ]+=  

• If we would eliminate v  we would get back to normal Verlet
• This can also be considered to be a simple predictor-corrector-algorithm: 
(same as three stage Gear with r  correction 0= ): 
 
1. Predictor stage: 

r t δt+( ) r t( ) δtv t( ) 1
2
---δt

2a t( )+ +=  

vp
t

1
2
---δt+ 

  v t( ) 1
2
---δta t( )+=  

2. Corrector stage: 

vc
t δt+( ) vp

t
1
2
---δt+ 

  1
2
---δta t δt+( )+=  

• Memory requirement 9N .
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Common algorithms

• Schematic illustration of the progress of different Verlet algorithms: 
 

Source: Allen-Tildesley

Verlet

Leap-frog

Velocity-Verlet

 

• Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accu-
rate.
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Common algorithms

• Velocity Verlet as pseudocode:

do i=1,N
x(i)=x(i)+deltat*vx(i)+0.5*deltat**2*ax(i)
vx(i)=vx(i)+0.5*deltat*ax(i)
((and same for y and z))

enddo

((get new forces F and accelerations ax(i)))

do i=1,N
vx(i)=vx(i)+0.5*deltat*ax(i)
((and same for y and z))

enddo
 
 
 

• Comparison of performance 
• 500 Cu atoms at 300 K
• Euler: r t δt+( ) r t( ) δtv t( )+=   
v t δt+( ) v t( ) δta t( )+=
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Common algorithms

• Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.) 

• Equivalent with Verlet if v  eliminated, but velocity more accurate 
 
r t( ) v t( ) a t( ) a t δt–( ), , ,{ } r t δt+( ) v t δt+( ) a t δt+( ), ,{ }→  :  

r t δt+( ) r t( ) δtv t( ) 2
3
---δt

2a t( ) 1
6
---δt

2a t δt–( )–+ +=  

v t δt+( ) v t( ) 1
3
---δta t δt+( ) 5

6
---δta t( ) 1

6
---δta t δt–( )–+ +=  

• Memory requirement 12N  
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Common algorithms

• Ion irradiation physics
• Initially Emax 1 100 keV–∼  ; 

• In the end Emax kBT∼   variable time step 

• Let us mark rn r tn( )= ; rn 1+ r tn δt+( )=  

• Smith & Harrison (Computers in Physics 3 (1989) 68): 
 
rn vn an an 1–, , ,{ } rn 1+ vn 1+ an 1+, ,{ }→  : 

• Taylor : rn 1+ rn vnδtn an

δtn
2

2
---------- a'n

δtn
3

6
---------- O δtn

4( )+ + + +=

Time step ratio

 R
δtn

δtn 1–
---------------=

 

• Estimate a'n
an an 1––

δtn 1–
------------------------- O δtn 1–( )+=  

 
 Predictor for positions: 

rn 1+ rn vnδtn 3 R+( )an Ran 1––[ ]
δtn

2

6
----------+ += (1) 

 
Velocity: 

vn 1+ vn anδtn a'n
δtn

2

2
---------- a''n

δtn
3

6
---------- O δtn

4( )+ + + +=
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Common algorithms

• Force calculation from rn 1+ : 

 a'n
an 1+ R

2an 1– R
2 1–( )an+–

δtn 1 R+( )
-------------------------------------------------------------------------=  

a''n 2R
an 1+ Ran 1– R 1+( )an+–

δtn
2 1 R+( )

--------------------------------------------------------------------=

• Let’s insert these into the Taylor series of vn 1+ : 

 vn 1+ vn

3 2R+( )an 1+
1 R+

----------------------------------- 3 R+( )an

R
2an 1–
1 R+

--------------------–+
δtn
6

-------+=  (2) 

• Algorithm: 
(a) calculate new positions rn 1+  using equation (1) 

(b) calculate new accelerations an 1+

[(d) correct the positions using 

 
      
but this demands two force evaluations per time step]

rn 1+ rn vnδtn
2 R+( )an 1+

1 R+
------------------------------ 4 R+( )an

R
2an 1–
1 R+

------------------–+
δtn

2

12
---------+ +=

 
(c) calculate velocities using equation (2) 

• Memory 12N , error O δtn
4( ) .

• With a constant time step this reduces to the fairly simple form. 

     rn 1+ rn vnδtn 4an an 1––[ ]
δtn

2

6
----------+ += ,        vn 1+ vn 5an 1+ 8an an 1––+[ ]

δtn
12
-------+=
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Common algorithms

• Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD1.

• Using the notation: ri
r i( ) δt( )i

i!
--------------------=  , where r i( )

t
i

i

∂

∂ r=  

 

we get the predictor ri
p

:    

r0
P

t δt+( )

r1
P

t δt+( )

r2
P

t δt+( )

r3
P

t δt+( )

r4
P

t δt+( )

r5
P

t δt+( )

1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

r0 t( )

r1 t( )

r2 t( )

r3 t( )

r4 t( )

r5 t( )

=  

• Note that the triangle is simply a Pascal’s triangle matrix.

• For 2nd order (Newtonian) equations of motion, error term is δr2 r2 r2
p–= . 

 

1. G. W. Gear, Numerical initial value problems in ordinary differential equations, (Prentice-Hall, Englewook Cliffs, NJ, USA) 1971; Allen-Tildesley
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Common algorithms

• Corrector:rn
c rn

P αδr2+= , α

3 16⁄
251 360⁄

1
11 18⁄
1 6⁄
1 60⁄

0.1875
0.6972
1.0000
0.6111
0.1667
0.0167

= =  

• Note that if the forces may depend on the velocities, we should have α0 3 20⁄=  instead.
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Common algorithms

E
to

t
2


1

2⁄

Source: Allen-Tildesley

δt

Velocity Verlet

Gear4

Gear5 Gear6

• The fluctuations in energy of different 
algorithms as a function of the time step 
is illustrated on the right 
(Lennard-Jones system; in reduced units 
ρ* 0.6= , T* 1.05= )

• So the ‘better’ algorithms have much less 
fluctuations for very short timesteps. 
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Common algorithms

• Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K.  
Potential = EAM

Curves are shifted in y direction in order 
to make the figures clearer.
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Newer algorithms

• Tuckerman, Berne and Martyna developed around 1990 new reversible MD-algorithms using a 
Trotter factorisation of Liouville propagators.

• The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms 
[Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]

• It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accu-
racy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

• So, what algorithm should one use? 

• A quick solution which works well with short time steps: velocity Verlet.

• If one wants minimal oscillations in the total energy: Gear5.

• If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.



1

Molecular dynamics 2015

Exercises 4 to chapter 4: mdmorse: solving the equations of motion
r

1. (12 p) Write the subroutine Solve1, which does the predictor part of the solution of the 
equations of motion with the velocity Verlet-algorithm. 
 
Add also periodic boundary condition control in the code. That is, if the variable peri-
odic%x (or periodic.x in the C version) is set to a nonzero value, the atoms which 

move outside the cell in the x  dimension should be correctly returned inside it, and same 

for y  and z .

3. (8 p) Write the subroutine Solve2, which does the corrector part of the velocity Verlet 
solution of the equations of motion.

Return the exercises as the file solve.f90/.c and some output that shows that the code 
works (e.g. screen dump of dpc output).

If you solve this exercise right, and have a working solution to the exercise 3, the atoms will 
start moving when you run mdmorse. But since the force calculation is not yet implemented, 
the atoms will move in straight paths. 
 
You can animate the motion on with dpc:

dpc cube 9.1 xyz erase sort 2 3 4 5 atoms.out

More info on dpc in the first lecture notes or by giving the command dpc without any argu-
ments.
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Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P
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Calculating the forces between atoms

• The forces between atoms can be calculated in many different ways
• This lecture: 

• classical potentials. 
• pair potentials, many-body potentials

• Quantum mechanics

• A classical potential can be written in the form: 

V V1 ri( )
i
 V2 ri rj,( ) V3 ri rj rk, ,( ) …+

i j k, ,
+

i j,
+=

• V  is the total potential energy of an N  atom system. 
• In principle all sums loop from 1  to N  

• V1 : single particle potential: external forces

• V2 : pair potential which only depends on the distance between atoms rij  

• direct dependence on the vectors ri , rj   => dependence on the choice of the origin

• V3 : three-body potential which may have an angular dependence

• depends only on three variables, i.e. V3 V3 rij rik θijk, ,( )=  

• Four-body potentials, even five-body terms: chemical and biological applications
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Calculating the forces between atoms 

• V2  and V3  enough to describe the basic mechanical and structural properties of most elements and sim-

ple compounds

• In order that things would not be too straightforward, in many cases a environment-dependence (i.e. 
implicit three-body term) is embedded into the two-body term V2 . We will give examples on these later. 

• All terms which are not pure single particle or pair potentials are called many-body terms.
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Calculating the forces between atoms

• Classification of empirical interatomic potentials [A. E. Carlsson, Solid State Physics: Advances 
in Research and Applications, 43 (1990) 1]

• Pair Potential V VP rij( )
i j,
=  

• Pair Functional Potential V VPF ρi( )
i
= ,      ρi f rij( )

j i≠
= If  

 back to pair potential
f r( ) ar=

  

• Cluster Potential  V VCP rij rik rjk, ,( )
i j k≠ ≠
= Only clusters of 

three atoms here
    

• Cluster Functional Potential  V VCF ρi( )
i
= ,       ρi g rij rik rjk, ,( )

j k,
i j k≠ ≠

=  

• Real potentials often combinations of these: e.g. EAM for metals V VPF ρi( )
i
 VP rij( )

i j,
+=
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Force calculation for pair potentials

• Pure pair potential V rij( ) . The force acting on atom i  from atom j   

j

i
rij

fij

-fij

 
 

fij ∇– ri
V rij( ) ∇– rij

V rij( )
xij∂

∂V x̂
yij∂

∂V ŷ
zij∂

∂V ẑ+ +–= = =  , 

      (x̂ , ŷ , ẑ  unit vectors) 
 

rij ri rj–= ,  xij xi xj–=  etc., 
xij∂

∂V
rd

dV
xij∂

∂rij= ,  
xij∂

∂rij xij
rij
------=   

 

  fij rd
dV

r rij=

rij
rij
------×–=  

• To be precise ∇  operates on the position ri  of atom i . (Makes a difference for many-body poten-

tials.)

• Cut-off radius rc: atom pairs with rij rc>  do not interact,  rc a few Å≈ .  
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Force calculation for pair potentials

• In case the potential extends to infinity, an analytical correction can be made to the energy, and 
other quantities of interest: 

Vtot V2 Vcorr+ Ec 2πNρ r2V r( ) rd

rc

∞

+= =  

where ρ  is the atom density of the system. 

• This obviously assumes that when r rc>  the atom density is constant everywhere, and thus does not 

work when for example a surface is present.
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Force calculation for pair potentials

• Discontinuity at rc   jumps in energy

• Solution: take the potential to zero in  rc rc, Δr+[ ]  

• potential and the force are continuous (3rd order polynomial) or

• displace the potential, as the zero point of V  is arbitrary but this changes the value of Vtot                                          

• Many modern potentials are in fact defined so that they have a well-defined cutoff rc  where V  and at least 

the first derivative are ≡ 0.

rc

V(r)

r
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Force calculation for pair potentials

• Example: cut-off of Lennard-Jones potential

shift and tilt

polynomial

rc 2.3 Å= Δrc 0.2 Å=

VLJ r( )

P r( )

 
 

VLJ r( ) 4ε σ
r
--- 
  12 σ

r
--- 
  6

–=  

• Shift and tilt the potential: V r( )  and V' r( )  continuous at 

rc : 

 
V r( ) VLJ r( ) r rc–( )V'LJ rc( )– VLJ rc( )–=

• Problem: may change the potential at smaller r  values 

• Fit a polynomial P r( ) ar
3
br

2
cr d+ + +=  from 

rc rc Δrc+,[ ] : 

 
P rc( ) VLJ rc( )=

P' rc( ) V'LJ rc( )=

P rc Δrc+( ) 0=

P' rc Δrc+( ) 0=






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Force calculation for pair potentials

• Problem: high forces may result (see below) 
• Brenner potential for carbon (Well, this is not a pair potential): 

• Potential quickly to zero; doesn’t look too bad 

• However: huge forces; effect seen in fracture simulations  
(see also M. Sammalkorpi et al., Phys. Rev. B 70 (2004) 245416.) 

T. Belytschko et al., Phys. Rev. B 65 (2002) 235430.

potential force
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Force calculation for pair potentials

• Force calculation without periodic boundaries or neighbour list:

do i=1,N 
   do j=1,N

if (i==j) cycle
rijx = rx(j)-rx(i)
rijy = ry(j)-ry(i)
rijz = rz(j)-rz(i) 
rijsq = rijx**2+rijy**2+rijz**2
rij = sqrt(rijsq) 
if (rij < rcut) then 
V = (Potential energy per atom)/2
dVdr = ...derivative of potential energy with respect to its only argument r...
a = -dVdr/m/2.0 ! Unit transformations may be needed. Note the factor 1/2!!
ax(i) = ax(i)-rijx/rij*a ! The application on both
ax(j) = ax(j)+rijx/rij*a ! i and j ensures that
ay(i) = ay(i)-rijy/rij*a ! Newton’s third law is
ay(j) = ay(j)+rijy/rij*a ! fulfilled
az(i) = az(i)-rijz/rij*a
az(j) = az(j)+rijz/rij*a

endif 
enddo 

enddo
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Force calculation for pair potentials

• Use of Verlet neighbour list (cf. lecture 3):

startofineighbourlist=1
do i=1,N
nneighboursi=neighbourlist(startofineighbourlist) 
do jj=1,nneighboursi
j=neighbourlist(startofineighbourlist+jj)
rijx = rx(j)-rx(i)
rijy = ry(j)-ry(i)
rijz = rz(j)-rz(i) 
rijsq = rijx**2+rijy**2+rijz**2
rij = sqrt(rijsq) 
if (rij < rcut) then 
V = (Potential energy per atom)/2
dVdr = ...derivative of potential energy with respect to its only argument r...
a = -dVdr/m/2.0 ! Plus unit transformations ! Note the factor 1/2!!
ax(i) = ax(i)-rijx/rij*a
ax(j) = ax(j)+rijx/rij*a
ay(i) = ay(i)-rijy/rij*a
ay(j) = ay(j)+rijy/rij*a
az(i) = az(i)-rijz/rij*a
az(j) = az(j)+rijz/rij*a

endif 
enddo
startofineighbourlist=startofineighbourlist+nneighboursi+1

enddo 
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Force calculation for pair potentials

• Note that in the sum above every interaction is counted twice:

do i=1,N 
   do j=1,N

if (i==j) cycle
...

• That is, e.g. interaction 1-3 is counted both as 1-3 and 3-1. Hence the factor 1/2 in front of the potential energy summa-
tion and forces (this actually depends on the exact definition of the potentials, some already have a factor of 1/2 in 
front).

• A straightforward solution:

do i=1,N-1 
   do j=i+1,N

...

(either in constructing the neighbour list or forces) reduces the calculation time to one half.  

• For some many-body potentials this does not work.

• V r( )  often is defined to give the total energy for a pair of atoms. When one wants the potential energy per 
atom one thus may have to include one more factor of 1/2. But this additional factor is not needed in the 
force calculation since the force always affects both atoms (Newton’s III law).

• Note that the sign conventions in defining rij  in the literature may vary.
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Force calculation for pair potentials

• One practical way of checking that you have correctly derived the forces from the potential 
energy and that all signs and factors of ½ are OK in you potential implementation:

1. Calculate Epot  at 0 K and compare with an analytical prediction for some simple system, e.g. a dimer or 

perfect lattice.
2. Simulate a two-atom system starting from a very small distance, so that Epot  is very large, much larger 

than the equilibrium energy per atom (say 10000 eV). When you run the simulation with a very small time 
step the atoms should explode outwards from each other so that the final Ekin /atom is the same as the 

original Epot /atom. If you are uncertain what a ‘very small’ time step is, keep decreasing it until the 

answer doesn’t change.

3. Another good test: numerical derivation of potential energy: 
 

Move one atom in direction ŝ  amount Δs .  

Directional derivative of the potential (assume ŝ 1= ): 
 

V r( )∂
ŝ∂

-------------- V r h ŝ+( ) V r( )–
h

-----------------------------------------
h 0→
lim ∇V r( ) ŝ⋅ F r( ) ŝ⋅–= = =

Computed from  
potential energy  
as ΔV Δs⁄

Computed from  
forces as 
 Fxsx Fysy Fzsz+ +

r

s F

F r( ) s⋅
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Force calculation for a three-body potential

• For a pure pair potential for an interaction between atoms i  and j  Vij Vji=  because 

V rij( ) V rji( )=  and hence also ∇iVij ∇iVji=  as described above. This symmetry simplifies the 

force calculation.

• For a three-body potential things get trickier because Vij  may not =  Vji . To get the force Fi  act-

ing on an atom i  one instead has to calculate 
 

Fi Vij Vji+( )
j
 Vjki

k


j
+i∇– Vi∇

ij
Vjii∇+( )

j
 Vi∇

jki
k


j
+–= =  

• Many practical three-body potentials have been written such that 
 

V3 rij rik θijk, ,( ) V3 rij rik θijkcos, ,( )=  
 
i.e. all angular information is in a cosine term. 
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Force calculation for a three-body potential

i

j
rij

krik

θijk

 

θijkcosi∇
rij rik⋅
rijrik

----------------
 
 
 

……
θijkcos

rij
2

------------------ 1
rijrik
------------– rij

θijkcos

rik
2

------------------ 1
rijrik
------------– rik+= =i∇=

• In this case one can utilize the following equalities: 

θijkcos
rij rik⋅
rijrik

----------------=  

    

that is, no need to evaluate cos function.

• In many-body potentials there are often symmetries which can be used to reduce the number of 
operations needed in the force calculation even more.
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The physical/chemical origin of interactions

• Qualitatively a two-atom interaction looks like the following:

r

V(r)

r0

• The minimum, i.e. equilibrium distance, is 
r0 . 

• At small separations there is a strong 
repulsion. Just below r0  this derives pri-

marily from the Pauli rule preventing elec-
trons being in states with the same 
quantum numbers, and from the electron-
electron repulsion, whereas when the 
nuclei are very close to each other, the 
Coulombic repulsion between the nuclei 
dominates completely. 

• At larger distances there may be an attraction, which can have different reasons: van der Waals 
attraction, Coulomb attraction, a covalent bond, (due to pairing of valence electrons) or metallic 
bonding 

• Potential may also be purely repulsive
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• A few examples (1 bohr = 0.53 Å)
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• Overview of bonding expected in different cases, and illustration of electron distributions [Kittel, 
Introduction to Solid State physics]
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• So for the pure elements we get the familiar division:

Introduction to molecular dynamics 2015               5. Calculating the forces                                                                                                                                                     20

Idealized potentials for theoretical and qualitative studies

Source: Allen-Tildesley

• Hard sphere:      V
HS

r( )
∞ r σ<,
0 r σ≥,




=  

• First MD simulations were carried out with 
this potential.

• The equations of motion reduce to calcu-
lating where the next collision occurs: true 
billiard ball physics 

• Applications in packing problems 

• Square well:     

V
SW

r( )

∞ r σ1<,

ε– σ1 r σ2<≤,

0 r σ2≥,





=  

• soft sphere:      V
SS
r( ) ε σ

r
---

ν
=
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“Realistic” pair potentials

• Lennard-Jones (LJ)  

                                V r( ) 4ε σ
r
--- 
  12 σ

r
--- 
  6

–=

• The attractive 1 r
6⁄ - term can be derived from the dipole-dipole interaction, or as the interactions between 

two oscillators (QM)  [Kittel, Introduction to Solid State Physics, 7th edition, p. 62]. It is also known as the 
Van der Waals or London interaction.

• The repulsive term 1 r
12⁄   chosen for convenience.

• Also other exponents used; notation for any two exponents A and B is LJ (A-B) potential.

• ε and σ are usually chosen by fitting into experimental data. σ gives the equilibrium distance ε the cohe-
sive energy.

• A few Lennard-Jones-parameters for gases [Ashcroft-Mermin s. 398]:
                                       Ne           Ar                 Kr          Xe

ε (eV)  0.0031      0.0104          0.0140    0.0200
σ (Å)      2.74         3.40          3.65        3.98

• Very weak interaction: e.g. Vmin 3.1 meV–=  for Ne. 

• LJ (12-6) potentials have proven to be good for noble gases (filled electron shells  almost always neu-
tral) close to equilibrium. But they are obviously terrible for very small r  (r 1 Å≤ ) since the true interaction 

is about  e
r–
r⁄  and not 1 r

12⁄ .
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“Realistic” pair potentials

• LJ potentials have been, and are used a lot, for instance in molecular modelling, in many cases even in 
systems where there is no physical motivation to using the LJ functional form. But if the fit is good for 
some purpose, using it may still be justified as long as the limitations are kept in mind.

• Reduced units 

• If a potential only has a couple of parameters, evaluating it can be really efficient in reduced units 

• Also, in reduced units the results are always the same, so the results can be transferred to different sys-
tems with straightforward scaling. 
 

• For instance for the Lennard-Jones-potential: 
 

V r( ) 4ε σ
r
--- 
  12 σ

r
--- 
  6

–=     [or any V r( ) εf r σ⁄( )= )] 

 
 Natural length unit = σ  

natural energy unit = ε  
 
 V* x( ) 4 x 12– x 6––[ ]=  
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“Realistic” pair potentials

• other units: 

t
*

t mσ2( ) ε⁄[ ]
1 2⁄

⁄=  

ρ* ρσ3=  

T
*

kBT ε⁄=  

P
*

Pσ3 ε⁄=  

f* fσ ε⁄=  

v
*

v ε m⁄[ ]1 2⁄⁄=  

• Reduced units were very popular when one had to save CPU time in every single multiplication, and 
when potentials were still as simple as LJ. 
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“Realistic” pair potentials

• Morse potential

• Simple metals (sp-metals, e.g. Na, Mg, Al; and metals with the 
fcc- or hcp-structure), are at least to some extent describable 
with a pair potential

Girifalco and Weizer, Phys. Rev. 114 (1959) 687.

 

• A popular choice: the Morse potential [P. M. Morse, Phys. Rev. 
34 (1930) 57.]:

 
                  V r( ) De 2α r r0–( )– 2De α r r0–( )––=  

• Designed originally to describe vibrations in molecules. 
• The Schrödinger equation happens to have an analytical solution for 

this functional form.  

• Efficient to evaluate, in the form above only one exponential 
function needs to be evaluated.  

• Decays faster at large r  than Lennard-Jones: less problems 
with cut-off.

• A fit for many metals [Girifalco and Weizer, Phys. Rev. 114 
(1959) 687.]

• Works decently for being a pair potential.
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“Realistic” pair potentials

• An ordinary pair potential has a close-packed structure as the ground state. (usually either 
“face-centered cubic”, FCC or “hexagonal close packed”, HCP).

HCP FCC
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“Realistic” pair potentials

• A pair potential can thus not describe well elements with other structures than FCC or HCP. But 
this doesn’t mean people haven’t tried:

• Diamond lattice: open structure, four nearest neighbours, very far from close packed.
• Still, it is actually possible to make diamond stable locally with a pair potential, but this will become rather 
pathological (Mazzone potential for Si, [Phys. Stat. Sol (b) 165 (1991) 395.]):

r

V(r)

r0

Morse harmonic well

• Does actually work close to perfect lattice.
• But what happens when atoms leave the har-
monic well due to e.g. a high temperature?
• System will collapse to close-packed structure => 

applicability of potential extremely limited 

• Unfortunately this is not uncommon regarding 
interatomic potentials: one has to be very crit-
ical of any new potential! Even well-respected 
physicists have presented potentials which 
have some very pathological features...
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“Realistic” pair potentials

• Ionic compounds

• Different ions, between which the electron density is very 
small. The ions have filled electron shells, and are thus 
unlikely to change their electron configuration 

• An extreme examples: NaCl: 

• A pair potential approximation works quite well, and poten-
tials abound in the literature, as there is much experimental 
data available for the alkali halides which can be used in 
potential fitting. 

• Potentials typically contain a short-range (SR) term and the 
Coulomb interaction: 
 

V rij( ) VSR rij( )
z1z2e

2

4πε0rij
------------------+= ; zi  = ion charges 

• VSR : repulsive force between electrons packed closely together and an attractive van der Waals (vdW) 

interaction 
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“Realistic” pair potentials

• Most common forms for the short range potential: 
 

Buckingham:  VSR r( ) Ae r ρ/– C

r6
-----–=  

 

Born-Huggins-Mayer:  VSR r( ) Ae B r σ–( )– C

r6
----- D

r8
-----––=  

 

Morse: VSR r( ) De 2α r r0–( )– 2De α r r0–( )––=  
 

• 1 r
6⁄ -term comes from the dipole-dipole interaction (again) 

 

• The repulsion is usually significant only for nearest neighbours, and the vdW interaction for next-nearest neighbours. 
Frequently for instance in oxides the only interaction assumed between cations is their Coulombic repulsion. 
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Fitting of potential parameters

• In almost all classical potentials there is a number of free parameters, e.g. in Lennard-Jones 2 
(ε  and σ ), Morse 3 (D , α , r0 ) etc.

• An extreme example: the ReaxFF model for hydrocarbons: 
A.C.T. van Duin et al., J. Chem. Phys. A 105 (2001) 9396.
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Fitting of potential parameters

• Two main approaches to develop a potential exist:

1. Derivation from so called ab initio (quantum mechanical) calculations

2. Fit to empirical and/or ab initio data

• Although the previous approach is better motivated physically, in practice the latter approach, or a combi-
nation of the two, often works better.

• A good classical potential is one which with a small number of free parameters can describe a 
wide range of properties well (usually 5-20 % accuracy in condensed matter physics is consid-
ered to be “well”, since experiments seldom are much more accurate than this).  

• A related concept is that a good potential should be transferable, which means that it should 
be able to describe properties of other states of the material than those it was originally fitted to.
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Fitting of potential parameters

• Regarding fitting the parameters in a potential of type 2, there are two opposite extreme 
approaches:

1. “Blind fitting” : choose a functional form and a set of data to which the parameters are fit. Then use some fitting 
routine to obtain a best fit to all the data. 

2. “Parameter choice by hand”: use reliable experimental or ab initio data of crucial data to set as many potential 
parameters as possible exactly, then fit only the remaining (if any) parameters. For instance, the equilibrium separa-
tion, binding energy and vibration frequency for a dimer can be used to fix all the 3 Morse potential parameters.

• A pure approach 1 is dangerous in that quantities which are outside the original parameter set may obtain 
completely pathological values. 
• Example: some Si bulk potentials predict that the Si dimer is non-bonding. 

• Also, if some potential parameter happens to be insensitive to all quantities in the data set, the fit may 
give ridiculously small or large values for it, which may cause trouble elsewhere.

• To obtain transferable potentials, approach 2 is thus usually to be preferred. On the other hand, if optimal 
precision in a limited set of systems (say, elastic properties of a perfect bulk crystal) is desirable, 
approach 1 may still be the better way to go.

• Most authors use approaches somewhere between 1 and 2.
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Fitting of potential parameters

• A functional form can sometimes be derived from experimental equations of state P V( ) . Exam-
ple: solid Ne and Ar:
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Fitting of potential parameters

• Here is a short list of macroscopic, physical, properties which can and often are used to derive 
or fit interatomic potentials:

Physical property Atom-level property

Crystal structure Balance of atomic forces.

Cohesive energy Potential energy at the equilibrium 
atom positions

Elastic constants Long-wavelength acoustic vibrations 
Elastic distortions of unit cell.

Equation of state Compression or expansion of material

Neutron scattering Phonon  in the Brillouin zone.

Dielectric constant Electronic polarizability

Dielectric constant 
Polarizarization of electrons and lat-
tice; long-wavelength optical vibration 
modes;

Infrared absorption Long-wavelength vibrations with a 
dipole moment.

Raman scattering Long-wavelength vibrations which 
change the polarizability.

cρσ

P V( )

ω k( )

ε∞

ε0

m
ec

h
an

ic
a

l
el

ec
tr

ic

• Out of these, the first five depend purely on the mechanical properties of the material, and are relevant to 
almost all solids. The latter four involve electric properties and may or may not be relevant depending on 
what kind of materials and properties are studied.
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Fitting of potential parameters

• Crystal structure:
• The equilibrium crystal structure should be stable if one wants to describe any process where large atom 
displacements may occur (melting, surfaces, deposition, etc. etc.).

• In equilibrium the force acting on every atom in the unit cell i  should vanish:
 

                            fij
j
 0=  

• Here the potential is only tested at a few rij values. (The smaller the crystal symmetry, the more values.) 

• Any potential has a minimum potential energy con-
figuration, or many configurations with the same 
energy.

• Example: Tersoff potential for Si [J. Tersoff, Phys. 
Rev. B 38 (1988) 9902.]
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Fitting of potential parameters

• Local stability is easy to achieve in a classical potential. But global stability (that is, that the real crystal 
structure is indeed the global minimum of the potential) may be surprisingly difficult.

• Even well-known authors make mistakes. For instance, the first Si potential of Tersoff [Tersoff, Phys. Rev. 
Lett. 56 (1986) 632.] was well motivated, well derived, and published in the best journal in physics. But the 
formation energy of the vacancy turned out to be negative, which means it did not have the right ground 
state structure...

• A good way to test the minimum energy: start from random atom positions, and quench the cell slowly 
enough so that it crystallizes. If the structure is the correct one, it probably is indeed the ground state. 
Unfortunately doing this may take forever.

• Another test: simulate a liquid and solid in equilibrium at the melting point, and check that the solid 
remains stable and the liquid recrystallizes to the same structure on slight cooling below Tmelt .
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Fitting of potential parameters 

• Cohesive energy (Ecoh  = energy difference between free atoms and the solid):

• Directly related to the potential minimum energy level
• Often easy to get right exactly. 

• Elastic constants1 cρσ
• Related to deformation in the material 

R r( ) r' r– u1 r( )x̂ u2 r( )ŷ u3 r( )ẑ+ += =   

 and to the external stress (pressure) σ : 

σρ cρσeσ
σ
=

• Voigt notation for ρ - and σ -indexing: xx 1→ , yy 2→ , zz 3→ , yz 4→ , zx 5→ , xy 6→
• Here the strain (crystal distortion) components eij  are 

eii xi∂
∂ui=   ;  eij

1
2
---

xj∂
∂ui

xi∂
∂uj+

 
 
 

=

1. See e.g. Kittel, Introduction to solid state physics, 7th edition, ch. 3.
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Fitting of potential parameters

• The stress component σij  is the force which acts on the plane with the normal xj  in the direction xi
• In principle there are 36 stress and strain components, but their number reduces to much smaller num-
bers in practice.

• For instance in a cubic crystal there are only three independent  
elastic constants c11 cxxxx= , c12 cxxyy=  and c44 cxyxy= .

• Particularly important if there are deformations (compression, shear, melting) in the simulations. Also 
related to defect properties and the melting point  if we get the elastic constants about right we are 
already on a good way to a good potential.
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• An example of an (unusually) 
good fit: F. Ercolessi,  J. B. 
Adams, Europhys. Lett. 26 
(1994) 583.
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Weaknesses of pair potentials

• A pair potential can never describe well the directional properties of covalent bonds. For 
instance in the diamond/zincblende structure (C, Si, Ge, α-Sn, many compound semiconduc-

tors) the ideal angle between bonds = 109.47o
 . Similarly, in almost all molecules the directional 

properties of covalent bonds is of crucial importance.

• Also longer-range angular dependence is completely neglected. For instance in the structure of 
polymers torsional terms are important. Also, recent calculations of BCC metals have shown 
that 4-particle interactions are about 50 % of the bond.

• Pair potentials also do not account for the environmental dependence. They predict that the 
strength of the two-atom bond is as strong in a dimer as inside a material, which almost never is 
true. 
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Weaknesses of pair potentials

• For instance the Ga-As interaction:
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Weaknesses of pair potentials

• Moreover, a pair potential always predicts 
that the elastic constants c12 c44=  for 

cubic crystals. but in reality:

Source: Ashcroft-Mermin

 

• Also, vacancy formation energies are often 
completely wrong in pair potentials (see 
below).

• Pair potentials also usually give bad sur-
face properties.

• Summa summarum: the pair potential 
approximation:
• may work well close to equilibrium structure in 
many materials

• is good for noble gases
• is rather good for ionic compounds such as 
alkali halides

• is rather bad for FCC and HCP metals
• is terrible for covalently bonded materials

• But for all these groups much better, and only slightly slower, models exist. These will be 
described later on this course.
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Weaknesses of pair potentials

• Simple estimate of vacancy formation energy using pair potentials: 

Evac
f

Etot vacancy N,( ) Etot perfect N,( )–=

• nearest neighbor pair potential, energy/bond=V rnn( ) φ≡
• no relaxation
• fcc structure  12 neighbors 

Etot vacancy N,( ) 1
2
--- N 12–( )12φ 12 12 1–( )φ+[ ] 6 N 1–( )φ= =  

Etot perfect N,( ) 1
2
---N12φ 6Nφ= =  

  Evac
f 6φ– Ecoh–= =  

• However, ab initio calculations1: 

Element  (eV)  (eV)

V 5.31 2.1 ± 0.2

Nb 7.57 2.6 ± 0.3

W 8.90 4.0 ± 0.2

Ecoh Evac
f

 

• Relaxation: only minor effect (far less than 1 eV).

1. A. E. Carlsson, Solid State Physics: Advances in Research and Applications, 43 (1990) 1.
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Exercises 5 to chapter 5: mdmorse: calculating the forces

1. (12 p) Write the subroutine GetForces() in the file forces.f90/.c in mdmorse. It 
should calculate the interaction between atoms with the Morse potential with the input 
parameters morseD, morsealpha, morser0 giving the parameter values. Use the 
neighbour list created previously. The resulting subroutine should output the accelerations 
in the array a(i) and the potential energies in the array Epot(i). The units are as 
described in main.f90/.c. 

2. (8p) Using subroutines written for the previous exercises (your own or the official solutions 
on the web page) , and the GetForces() routine you should now have a working MD 
code. Demonstrate that the code works by 
 
(a) Running it with the test inputs for 10 ps. After the initial 50 fs, the total energy (column 
6 on the “ec” output lines) should fluctuate or drift less than 0.01 eV over 10 ps with a time 
step deltat of 2 fs. The temperature (column 3) should fluctuate less than about 100 K 
from the average around 600 K.

 
(b) Running it as above, but with a free surface in all dimensions. Now the temperature and 
energy will be different, but the total energy should still be conserved within about 0.02 eV 
after the first 1 ps. Describe what happens. 
 
Be careful not to use too small nmovieoutput, so that you don’t fill up the disk! 
 
Return the exercise as the file forces.f90 and a plot of the total energy vs. time and the 
temperature vs. time for cases (a) and (b). 
 
After passing these tests your code is probably correct. (But you can never be absolutely 
sure...) 
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Exercises 6 to chapter 5: mdmorse : effect of cut-off radius and time step

1. (10p) Simulate a Cu fcc system with periodic boundary conditions and at temperature of 300 
K for 10 ps using mdmorse. Do the simulations with the following values for the potential 
cut-off radius (rpotcut in mdmorse): rc 4.0 4.5 5.0 6.0 8.0 Å, , , ,= . Investigate the 
energy conservation by calculating the average fluctuation1 in total energy. Remember to 
skip say 200 timesteps from the beginning of the simulation when calculating the averages. 
Why do the fluctuations behave as they do as a funtion of rc ? Hint: See the figure below, 
where the pair correlation function g r( )  of Cu at 300 K is plotted. Also plotted is the Morse 
potential used in the simulations.  
 
Hints: Check that the temperature really is 300 K from your simulation output; no hassle 
with the infamous factor of two. For all simulations set the neighbourlist cut-off radius 
(rskincut) to 1 Å larger than the potential cut-off. The default value of MAXAT*MAX-
NEIGHBOURS (100000) in modules.f90/global.h should be sufficient.

2. (10p) Check the effect of the time step deltat on energy conservation in the code 
mdmorse. Use time steps of 1, 3, 10, 30 and 100 fs to simulate thermal motion in Cu at 300 
K over 10 ps. Plot the total energy as a function of time for each time step in the range in 
which it still behaves sensibly. What happens with the atoms for the largest time steps?

 
Return the appropriate figures and answers to the questions.

Remember that data visualization is your friend. Never just calculate the final results without 
first checking how the system configuration looks like (dpc and rasmol) and how the temper-
ature and energies behave as a function of time. 

1. Variance or the like.
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Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P
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Theory behind atomistic simulations

[main source: Allen-Tildesley]

• An atomistic simulation (MD or MC) gives atom positions and velocities qi pi,{ }

• qi pi,{ }  (or in cartesian coordinates ri pi,{ } )  macroscopic quantities (This is what statistical 

physics is all about!)

• system Hamiltonian H q p,( )

• equations of motion:q·k pk∂
∂ H q p,( )= p·k qk∂

∂
H–= 

• N  particles  the system state at any given time is a point Γ  in a 6N -dimensional phase space.  

• The evolution of the system from one point Γ  to another is determined by the MD equations of motion or 
a Metropolis Monte Carlo simulation.
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Theory behind atomistic simulations

• One point in phase space qi pi,{ } Γ=  

• Measured (macroscopic) quantity Aobs  corresponding to (microscopic) physical quantity 

A A Γ( )=   from MD simulations as a time average: 
 

Aobs A  t A Γ t( )( )  t
1

tobs
--------- A Γ t( )( ) td

0

tobs

tobs ∞→
lim= = =  

• All practical simulations are of course over discrete steps, so the integral has to be rewritten 
 

Aobs A  t
1

τobs
----------= A Γ τ( )( )

τ 1=

τobs

=  

 
and because an MD simulation often fluctuates strongly in the beginning, we skip the first, say, 100 time 
steps: 
 

Aobs
1

τobs 100–
------------------------- A Γ τ( )( )

τ 101=

τobs

=
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Relation between simulations and statistical physics

• In MD a time average gives the experimental quantity A . 
• However: in statistical physics we use ensembles 

• a set of points Γ  in phase space

• the likelihood of system being in the dΓ  neigborhood of point Γ  is given by the probability distribution ρ Γ( )dΓ
• ρ Γ( )  depends on external conditions: (constant) NVE, NVT, NPT: 
e.g. with ρNVE Γ( )   

or generally, for any ensemble, ρens Γ( ) .

• In statistical physics the time average is replaced by an ensemble average (why?) 
• go through all the points qi pi,{ }  in the ensemble phase space.

• In a Monte Carlo simulations the time average is replaced by going through a large set of 
points in phase space (using a Markov chain):  
 

Aobs A ens A Γi( )ρens Γi( )

i 1=

Nsim

= =

• If ρens Γ( )  is independent of time (thermodynamic equilibrium), and the system is ergodic 
A  t A ens=
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Ergodicity

• In an ergodic system a long enough simulation will go through all points in phase space qi pi,{ } .

• An example of a non-ergodic system (each hexagon represents one point phase space 
qi pi,{ } ): 

• 

A
lle

n-
T

ild
es

le
y

In the darker area, the simulation moves in a close 
path, and can never get out of this area  the simu-
lation does not test all of phase space, i.e. is non-
ergodic.  

• In case there would be a single path which would go 
through the whole system, the system would be 
ergodic.

• Is it possible to prove that some system is 
ergodic? Not in the general case, and even for a 
given system it is usually very difficult in practice.

• In practice the system may not only have regions 
which are impossible to reach, but also regions 
which are surrounded by a high potential energy barrier so that reaching them in a finite simula-
tion may be very unlikely (such a barrier is illustrated by the grey thin regions in the figure). This 
may distort the simulation averages badly.
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Ergodicity

• A practical example: 

• Simulate diffusion in Cu at high temperature, around the melting point. In equilibrium the lattice has, say, 
10 vacancies which cause diffusion at a rate of e.g. 1 atom/1 ps. Hence in a 100 ps simulation one gets 
about 1000 atom jumps, which appears to give a good time average of the diffusion constant. 
 
But: about once in a ns a Frenkel pair, that is a pair of one vacancy and one atom at an interstitial posi-
tion, may be created. Because the interstitial moves very much faster than the vacancy, it can cause thou-
sands of atom jumps before it recombines with some vacancy. Because the interstitial causes a huge lot 
of diffusion, its presence can completely change the diffusion constant which would have been obtained in 
100 ps.  
 
So the system must be simulated for tens of ns’s to get a reliable estimate of the diffusion coefficient - and 
if one does not realize the possibility of Frenkel pair formation, one would probably never notice this in a 
single 100 ps simulation. [Nordlund and Averback, Phys. Rev. Lett. 80 (1998) 4201]

• To get reliable results one not only has to burn away computer time, but also understand the 
physics in the system well!
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Ergodicity

• Sometimes (in MC simulations) it is useful to use a weighting function wens Γ( )  to weight the 

ensemble and speed up getting the desired results: 

ρens Γ( )
wens Γ( )

Qens
--------------------=  

Qens wens Γ( )
Γ
=       (partition function) 

A ens

wens Γ( )A Γ( )
Γ


wens Γ( )
Γ


----------------------------------------=

• MC integration: the flatter the function, the faster it is to obtain a precise average
• Qens  will depend on the macroscopic properties of the system.

• Connection to thermodynamics: Ψens Qensln–=  = thermodynamic potential 

• In practice: set up the MC simulation Markov chain such that it generates points according to 
the desired weighting function. 
• A simple choice: wens Γ( ) ρens Γ( )=

• How this is achieved in practice will be dealt with in the MC course.
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Ergodicity

• So, to summarize the purpose of equilibrium simulations can be stated as:

• go through phase space as efficiently as possible to get averages which correspond to experimentally 
observable quantities Aobs  

• molecular dynamics: A  t

• Monte Carlo: A ens  (importance sampling)

• In MD only the NVE ensemble is obtained by solving the ordinary Newton/Lagrange/Hamilto-
nian equations of motion. For the other ones, one has to generate equations of motion which 
behave according to the desired ensemble ρens Γ( )
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The most important ensembles

[source: L.E. Reichl, A Modern Course in Statistical Physics]

• As in thermodynamics, the ensembles are denoted by letters which indicate which physical 
quantities are conserved. The names are also the same.

1. Microcanonical (NVE) 
2. Canonical (NVT) 
3. Isothermal-isobaric (NPT) 
4. Grand canonical (μVT)

• Here N  is the number of atoms, V  the system volume, T  the temperature, P  the pressure, and μ  
the chemical potential [cf. e.g. Mandl “Statistical physics” chapters 2 and 11].

• Microcanonical: NVE constant (isolated) 
 

ρNVE Γ( ) δ H Γ( ) E–( )=  

QNVE δ H Γ( ) E–( )
Γ


1
N!
------ 1

h
3N

--------- rd pδ H r,p( ) E–( )d= =  

• Thermodynamical potential is the entropy: S
kB
------ QNVEln= .

• The δ  function selects the states Γ  where the total energy = E .
• Natural for MD in the sense that the total energy is conserved.
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The most important ensembles

• Canonical: NVT constant (closed but not heat-isolated)
heat bath

 
ρNVT Γ( ) H Γ( )– kBT⁄( )exp∝  

QNVT H Γ( )– kBT⁄( )exp

Γ


1
N!
------ 1

h
3N

--------- rd p H r,p( )– kBT⁄( )expd= =  

 
- Thermodynamical potential is the Helmholtz free energy: 

A
kBT
---------- QNVTln–= ,    A E ST–=

• Isothermal-isobaric: NPT constant

heat bath

P = P0
 

ρNPT Γ( ) H Γ( )– PV+( ) kBT⁄( )exp∝  

QNPT H Γ( )– PV+( ) kBT⁄( )exp

Γ


1
N!
------ 1

h
3N

--------- 1
V0
------ rd p H r,p( )– PV+( ) kBT⁄( )expd

= =

• Thermodynamical potential the Gibbs free energy:   
G

kBT
---------- QNPTln–= ,   G E TS– PV+=

• In MD the volume has also to be made variable.
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The most important ensembles

• Grand canonical: μVT constant
heat bath

“particle reservoir”

 
 

ρμVT Γ( ) H Γ( )– μN+( ) kBT⁄( )exp∝  

QμVT H Γ( )– μN+( ) kBT⁄( )exp

Γ N,


1
N!
------ 1

h
3N

--------- μ– N kBT⁄( )exp rd p H r,p( )– kBT⁄( )expd
N


= =  

• Thermodynamic potential is the grand potential: 
 

        Ω–
kBT
---------- QμVTln–= ,   Ω E TS– μN– PV–= =

• Now the number of atoms is changing: we have to have an algorithm to add or remove particles [not trivial 
in most practical (condensed matter) systems].

• In the thermodynamic limit (system size N ∞→ ) all the ensembles are 
equivalent (but the fluctuations around the average may not be).
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Calculating thermodynamical quantities

• Internal energy, that is, total energy (in the mdmorse code Etot): 

E H  K  U +
pi

2

2mi
----------

i
  U q( ) += = =  

• U q( )  is obtained directly from the potential energy calculation.

• Temperature 

Ekin K  3
2
---NkBT= =             T 2K

3NkB
--------------

1
3NkB
--------------

pi
2

mi
----------

i 1=

N

= =

• So, on the average there is kBT 2⁄  of energy per degree of freedom, as the classical equipartition theo-

rem predicts.
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Calculating thermodynamical quantities

• Pressure (refer to Hamiltonian equations of motion): 

• Generalized equipartition theorem for atom positions: 

qk qk∂
∂H  kBT=         1

3
---– ri Uri

∇( )⋅

i 1=

N

  1
3
--- ri fi

tot⋅

i 1=

N

  NkBT–= = ; 

• Divide the force into two components: fi
tot fi

ext fi+=  

external pressure: 
1
3
--- ri fi

ext⋅

i 1=

N

  PV–=  

internal virial:        W 1
3
---– ri Uri

∇( )⋅

i 1=

N


1
3
--- ri fi⋅

i 1=

N

= =  

 

    
1
3
--- ri fi⋅

i 1=

N

  1
3
--- ri fi

ext⋅

i 1=

N

 + NkBT–=   which can be rewritten    W  PV– NkBT–=  

 
 desired pressure PV NkBT W +=
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Calculating thermodynamical quantities 

• Pair interaction V r( )  and periodic boundaries: 

W 1
3
---– w rij( )

j i>


i
= ;         w r( ) rij rijd

d V rij( )= ;     

• Calculation in the force routine:

! dVdr is the derivative of V, i.e. the force
virial=virial+dVdr*(dx/r*dx+dy/r*dy+dz/r*dz)
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• Calculating thermodynamical quantities 

• Thermodynamic potentials (free energies)

• Quantities which depend on the entropy 

• Energy/potential differences can be ‘easily’ calculated by integrating over a reversible path: 

A
NkBT
-------------- 
 

2

A
NkBT
-------------- 
 

1
–

E
NkBT
-------------- 
  βd

β
------

β1

β2


E

NkBT
-------------- 
  Td

T
------

T1

T2

–= =  

A
NkBT
-------------- 
 

2

A
NkBT
-------------- 
 

1
–

PV
NkBT
-------------- 
  ρd

ρ
------

ρ1

ρ2


PV

NkBT
-------------- 
  Vd

V
------

V1

V2

–= =  

• So one has to calculate a thermodynamic average for a large number of intermediate steps, then inte-
grate over the path. 

• Calculating absolute values with the Frenkel-Ladd method:
• Construct a potential energy which is dependent on a parameter λ : U U r λ,( )=  
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Calculating thermodynamical quantities 
 

       
λ∂

∂A kBT
λ∂

∂ r U r,λ( )– kBT⁄( )expdln–

r
λ∂

∂V
U– kBT⁄( )expd

r U– kBT⁄( )expd
----------------------------------------------------

λ∂
∂U 

=

=

=

• Construct U  so that for λ λ0=  the absolute value of A  can be calculated analytically or numerically: e.g. an ideal 

gas or a harmonic lattice. 

• Then get the absolute value of A  for any λ  using: 

         A λ( ) A λ0( )–
λ∂

∂U  λd

λ0

λ

=  
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Calculating thermodynamical quantities 

• Real potential function, for which we want A , is U0

• construct U U r λ,( )=  to interpolate between U0  and a harmonic lattice (Einstein’s model) with 

 

         U r λ,( ) U0 r( ) λ ri ri0–( )2

i 1=

N

+=  

      A λ 0=( ) A λ( )
λ∂

∂U  λ'd

0

λ

–=  

 
 
- At large values of λ  we have harmonic lattice: e.g. Helmholtz free energy is: 
 

         A λ( ) 3Nhω
2

--------------- 3NkBT 1 e
hω kBT⁄–

–( )ln O 1 λ⁄( )+–=  

 
and hence the free energy for our ‘real’ system U0  is A λ 0=( )  and can be calculated by integrating over U∂( ) λ∂( )⁄ . 

[Frenkel-Ladd, J. Chem. Phys. 81 (1984) 3188]
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Calculating thermodynamical quantities

• Response functions

• How does the system react to a change in some thermodynamic variable?

• Some of the most important response functions: 
 

constant volume heat capacity CV T∂
∂E
 
 

V
=  

constant pressure heat capacity CP T∂
∂H
 
 

P
=  

thermal expansion coefficient αP V
1–

T∂
∂V
 
 

P
=  

isothermal compressibility βT V–
1–

P∂
∂V
 
 

T
=  

bulk modulus B 1 βT⁄=  

thermal pressure coefficient γV T∂
∂P
 
 

V
=

• Because αP βTγV=  it is enough to get one of these three coefficients
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Calculating thermodynamical quantities

• How can one get these from simulations?  

• Direct simulation 

• E.g. heat capacity CV  can be obtained by doing simulations at different temperatures, thus obtaining E T( )   

CV T( )
T∂

∂E
 
 

V
=  

• From the fluctuations in the system (remember from basic thermodynamics that for a finite-sized system 
of N atoms, there should be fluctuations of the order of N  in thermodynamic quantities such as T and P!)

• E. g.  CV  from a single simulation in the canonical ensemble: 

δH
2 NVT kBT

2
CV=   (H  is the momentaneous enthalpy) 

• Because δKδU NVT 0= , CV  can be separated into a kinetic and potential energy part: 
 

δH
2 NVT δU

2 NVT δK
2 NVT+=  

• Kinetic energy part: δK
2 NVT

3N
2

------- kBT( )2 3N

2β2
---------= =      ideal-gas heat capacity   CV

id 3
2
---NkB= . 
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Calculating thermodynamical quantities

• By combining these we get  
 

δU
2 NVT kBT

2
CV

3
2
---NkB– 

 =

• So we can calculate CV  solely from the fluctuations of the potential energy. 

• Similar fluctuation identities can also be derived for many other response functions  
(see e.g. Allen-Tildesley chapter 2.5.) 

• These identities really depend on the ensemble used.  
E.g. in the microcanonical ensemble: 
 

δK
2 NVE δU

2 = NVE
3
2
---Nk

B

2
T

2
1

3NkB
2CV

--------------–
 
 
 

=
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Calculating thermodynamical quantities

• Structural quantities 

• Pair correlation function 
 
g2 ri rj,( ) g2 rij( ) g r( )= =  
 
which tells at what distances atoms are from each 
other.  

• It can be calculated as 
 

g r( ) ρ 2– δ ri( )δ rj r–( )
j i≠


i
 

N
2

V
2

------ δ r rij–( )
i j≠


i
 

=

=

 

• g r( )  gives information on the structure of the mate-
rial. For instance melting: 
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Calculating thermodynamical quantities

• In practice it is of course not handy to use a delta function on a computer. So what is done instead is to 
collect statistics of what atom distances exist in some finite interval Δr :

integer :: stat(0:10000)

do i=0,10000
    stat(i) = 0
enddo

binwidth=0.01
do i=1,N
   do j=1,N

if (i==j) cycle
dx=x(j)-x(i)
dy=y(j)-y(i)
dz=z(j)-z(i)
rsq=dx*dx+dy*dy+dz*dz
r=sqrt(rsq)
ir = int(r/binwidth+0.5)
if (ir > 10000) ir=10000
stat(ir) = stat(ir) + 1

   enddo
enddo

• Note: no boundary condition checks.

• The normalization factor 4πr
2Δr  can be added afterwards, when printing the statistics.

• In practice if N  is small (say 100 or less) the statistics will be poor  time averaging.
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Calculating thermodynamical quantities 

• g r( )  is also useful because the average of any pair function can be given in the form: 
 

a ri rj,( )  1
V
--- ri rig ri rj,( )a ri rj,( )dd=  or  

A  a rij( )
j i>


i
  1

2
---Nρ a r( )g r( )4πr

2
rd

0

∞

= =

• E.g.  the energy (pair interaction V r( ))E
3
2
---NkBT 2πNρ V r( )g r( )r

2
rd

0

∞

+=   

or the pressure PV NkBT
2
3
---πNρ w r( )g r( )r

2
rd

0

∞

–=  
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Calculating thermodynamical quantities

• Structure factor in reciprocal k -space (Fourier transformation of positions): 
 

ρ k( ) ik r⋅( )exp

i 1=

N

=   

• The square of ρ k( )  gives the structure factor S k( ) : 
 

S k( ) N
1– ρ k( )ρ k–( ) = , 

 
which can be measured with x-ray or neutron scattering

• This quantity can be shown to be related to g r( )  through a 3-dimensional Fourier transform: 
 

S k( ) 1 ρĝ k( )+ 1 4πρ krsin
kr

-------------g r( )r
2

rd

0

∞

+= =  

• Because g r( )  is a measurable quantity, it is often useful in testing how realistic a potential energy function 
is in describing some structure, especially a liquid or amorphous phase. 

• However, this test is actually not all that sensitive to the detailed structure.
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Calculating thermodynamical quantities

• Transport coefficients

• The correlation between any two quantities A  and B  is  
 

cAB
δAδB 

σ A( )σ B( )
-------------------------=  

σ2
A( ) δA

2  A
2  A 2

–= =   ;     
δA A A –=  
0 cAB 1≤ ≤

• The time dependent correlation function cAB t( ) : A  and B  at different times, e.g. A t( )  and B 0( )

• Autocorrelation function cAA t( )

• Correlation time tA cAA t( ) td

0

∞

=

• These give information on  
- the dynamics of the material 
- transport coefficients 
- can be related to experimental spectra by Fourier transformations
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Calculating thermodynamical quantities

• Transport coefficients: system response to an external disturbance ρ t( ) ρens δρ t( )+=  

• For instance diffusion coefficient: particle flux ↔ concentration gradient. 

• ρ t( )  → time dependent averages. 

• Comparison to transport equations → transport coefficients. 

• Coefficients usually of the form γ A· t( ) A· 0( )( )  td

0

∞

=  

• For a large time there also always exists an Einstein relation 
 

2tγ A t( ) A 0( )–( )2 =  
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Calculating thermodynamical quantities

• Some transport coefficients for the NVE-ensemble:

• Diffusion constant D
1
3
--- vi t( ) vi 0( )⋅  td

0

∞

=

• Simple form to evaluate:  2tD
1
3
--- ri t( ) ri 0( )–( )2 =

• Thermal conductivity λT
V

kBT
2

------------ ji
ε

t( )ji
ε

0( )  td

0

∞

= ,  

2tλT
V

kBT
2

------------ δεα t( ) δεα 0( )–( )2 = , where  

δεα
1
V
--- riα εi εi –( )

i
= ;   

ji
ε

t∂
∂δεα= ;   

εi

pi
2

2mi
---------

1
2
--- V rij( )

i j≠
+=  
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Algorithms for simulating ensembles
[most material from Allen-Tildesley ch. 7.4]

• Pure NVE: see lectures 2-5 

• NVE-scaling or constraint methods:

• Often even in an NVE simulation one does some simple tricks to control temperature and/or pressure. 
This gives something of an NVT or NVP and NVE hybrid: T  and P  fluctuate, and the system does not 
behave as a true NVT or NVP ensemble in the thermodynamic sense. But on average T  and P  have the 
desired value. In true NVT or NPT algorithms it is possible to have T  and P  have exactly the desired 
value, and the simulation directly corresponds to the thermodynamic ensembles.

• Temperature scaling 

• Trivial scaling: force during every time step the system temperature to be exactly T . This may be a rather 
severe perturbation of the atom motion especially if there are only a few atoms. It suppresses the normal 
T  fluctuations, and does still not correspond to a true NVT ensemble. But the error in ensemble averages 
usually is O 1 N⁄( )  so with a large number of atoms one may get away with it.
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Algorithms for simulating ensembles

• The Berendsen method: essentially a direct scaling but softened with a time constant. [Berend-
sen et al. J. Chem. Phys. 81 (1984) 3684].  

• Coupling to heat bath, Langevin dynamics: mv· F mγv– R t( )+=
• Global coupling + local noise

• Replace the local noise by its average behvior in 
td

dEk    

               
td

dT
 
 

bath
2γ T0 T–( )=   

               mv· F mγ
T0
T
------ 1– 
  v+=

• Let T0  be the desired temperature, Δt  the time step of the system and τT 1 2γ⁄=  the time constant of the control. 

In the Berendsen method in order to change the temperature in one timestep by 2γΔt T0 T–( ) Δt
τT
----- T0 T–( )=  all 

atom velocities are scaled at every time step with a factor λ , where 
 

       λ 1
Δt
τT
-----

T0
T
------ 1– 
 +=  (*) 

• Note: if τT 100Δt>  then the system has natural thermal fluctuations about the average.
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Algorithms for simulating ensembles

• The derivation above lacks a factor 21. 

• Let’s write the temperature behavior as 
dT
dt
------

1
τT
----- T0 T–( )= . From this we can solve T t( )  as  

              T t( ) T0 Ti T0–( )e t τT⁄–+= , where Ti T 0( )=  is the initial temperature.

• On the other hand when we scale velocity v λv→  the change in the internal energy is δE λ2 1–( )3
2
---NkBT= ,

• Now the heat capacity is CV
δE
δT
------= . From this and from the differential equation of the temperature we get 

δT
δt
------

1
τT
----- T0 T–( )=   δT

δt
τT
----- T0 T–( )= . 

• From the definition of heat capacity we obtain CV
δE
δT
------

λ2 1–( )3
2
---NkBT

δt
τT
----- T0 T–( )

--------------------------------------= = .

• By solving λ  from this we get λ2
2CVδt

3kBNτT
--------------------

T0
T
------ 1– 
  1+= .

• Let’s make the bold assumption that the heat capacity is given by the Dulong-Petit law: CV 3NkB=

1. Ideas for this derivation are from Kalevi Kokko’s lecture notes at http://vanha.physics.utu.fi/opiskelu/kurssit/XFYS4416/
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Algorithms for simulating ensembles

• Finally we obtain the expression for λ : 
 

                       λ2 2δt
τT
--------

T0
T
------ 1– 
  1+= .  (**)

• As we shall see in exercise 7, this is the right expression in the sense that it reproduces the behavior dictated by the 

equation 
dT
dt
------

1
τT
----- T0 T–( )= .

• Effect of parameter τT  on time development of T

FCC copper
Morse potential
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Algorithms for simulating ensembles

• ... and on T  fluctuations

simulation 
time = 50ps 
 
first 10ps 
skipped

:   simulation for , i.e. no temperature controlτT ∞=



Introduction to molecular dynamics 2015               6. Different ensembles                                                                                                                                                     33

Algorithms for simulating ensembles

• Pressure scaling (Berendsen)

• Pressure is put to a desired value by changing the cell size. 
• If the desired pressure is P0  and τP  is the time constant, the scaling factor is  

 

                 μ 1 βΔt
τP

---------– P0 P–( )3=  

 
where β  is the isothermal compressibility of the system = 1/bulk modulus.  

• β  only occurs in the division over the time constant τP  it is just a factor which makes the typical time constant values 

roughly independent of the material.

• Scaling implemented by changing all atom positions x  and the system size S  every time step 
                 x t Δt+( ) μx t( )=  
                 S t Δt+( ) μS t( )=  

• Also the system volume V  changes:

                   V t Δt+( ) μ3
V t( )=

• Pressure scaling done after the solution of the equations of motion 

• τP 100Δt>
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Algorithms for simulating ensembles

• Another (better) way to derive μ : 

• We want 
td

dP 1
τP
------ P0 P t( )–[ ]=    (*)

• Volume scaling V μ3V→ . Definition of compressibility: β 1
V
---

P∂
∂V

–=
V∂

∂P 1
Vβ
-------–= .

• Now 
td

dP
Vd

dP
td

dV 1
Vβ
------- μ3 1–( )V

Δt
------------------------– 1 μ3–

βΔt
---------------= = = . 

• From this and (*) we get  
1 μ3–

βΔt
---------------

1
τP
------ P0 P t( )–[ ]= , from which we solve μ : 

 

           μ3 1
βΔt
τP

--------- P0 P t( )–[ ]–=
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Algorithms for simulating ensembles

• Effect of parameter τP  
 

• The Berendsen scaling can be used to 
control T  and P . If the system is in 
equilibrium the total energy E  should 
still be conserved, but if phase transi-
tions, such as melting occur, E  does 
not necessarily stay conserved until 
equilibrium is reached again.

• In the Berendsen method P , T , V  and 
Epot  all fluctuate, and because the 

time constants τ  have to be fairly large 
it can take quite a while to reach a 
desired pressure or temperature.

• But in equilibrium and with large enough time constants, the method gives quite realistic fluctuations in T  
and P . And it is almost as trivial to implement as direct scaling. Hence it is much to be preferred over 
direct scaling.
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• True NVT algorithms 

• The Andersén method [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)]. 

• Give the atom with some probability a new velocity which corresponds to a desired heat bath temperature 
T0

• Physical interpretation clear: connection to external heat bath

• Suitable for calculating thermodynamic averages, but not for looking at atomic processes in detail, since 
the random velocity is obviously an unphysical perturbation on the motion of a single atom. 

• Nosé-Hoover-method [W. Hoover, Phys. Rev. A 31, 1695-1697 (1985).]

• A fictional degree of freedom s  which has its own kinetic and potential energy is added to the system, and 
this degree of freedom controls the temperature. The system total energy, i.e. Hamiltonian: 
 

H
pi

2mi
---------

i
 V qi( ) Q

2
----ps

2
qkT sln+ + +=  

 
where ps  is the momentum associated with the degree of freedom.  
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Algorithms for simulating ensembles

• Now the Hamiltonian equations of motion become: 
 
dqi
dt

--------
pi
mi
------= ;       

dpi
dt

-------- dV
dqi
--------– pspi–= ,     

dps
dt

--------
pi
mi
------

i
 gkT–
 
 
 

Q⁄=  

• These can be solved with some suitable algorithm.  

• Q  is a fictional mass related to the extra degree of freedom, which describes the rate at which the temper-
ature changed. 

• Nosé suggested Q gkBT∼  where g  is the number of degrees of freedom in the system, typically 6N . For large Q  the 

connection to the heat bath weakens, and for small Q  the energy E  may oscillate too much.
 

• Nosé-Hoover chains [Tobias, Martyna, Klein, J. Phys. Chem. 97 (1993) 12959]

• Also control the new degree s  of freedom with another Nosé-Hoover-algorithm and so forth, i.e. form a 
chain of these.

• At least in simulations of proteins this can give a very good temperature control.

• “Massive” Nosé-Hoover-chain: add a Nosé-Hoover thermostat chain to every degree of freedom (!)
• Advantage: as Nosé-Hoover, but in addition very efficient in equipartitioning the energy and thus getting the system 

into equilibrium. Disadvantage: even more coding
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• True NPT algorithms

• Andersén pressure control [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)]

• The cell size V  a dynamic variable, but the system shape may not change. The size is controlled by a fic-

tional piston which has a mass Q  (in units of m/l4). The kinetic and potential energy of the piston are: 
 

EkinV
1
2
---QV·

2
=   and   EpotV PV=   

 

and if the atom positions r  and velocities v  are written in reduced units s  such that r V
1 3⁄

s=  and 

v V
1 3⁄

s·=  we get the equations of motion 
 

s·· f

mV
1 3⁄

-----------------
2
3
---s·V·

V
---–=  

 
 

V··
Pt P–

Q
---------------=  

 
where f  are the forces acting on atoms, Pt  is the momentaneous pressure and P  the desired pressure.
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• Parrinello-Rahman-pressure control [Parrinello and Rahman, J. Appl. Phys. 52 (1981) 7182]

• This method also allows a variable simulation cell shape, that is, the angles between the axes do not 

have to be 90o. 

• The cell size and shape is given by vectors a , b  and c . If we form a 3 3× -matrix h out of these the atom 
positions r  can be written in the form 
r hs= . 
 
where s  is an ordinary vector. 

• The equations of motion can be derived to be: 
 

si
·· dV

dr
------- 1

mirij
------------ si sj–( ) G·

G
----s·–

j
–=  

Wh·· P pI–( )σ hΣ–=  
 

where G h
T

h= , σ  is a tensor which defines reciprocal space, and P  is the generalized 3 3×  pressure 
tensor: 

P
1
V
--- mivivi

i


1
rij
-----

rijd
du rijrij

j i>


i
–= .
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• The diagonal elements of P  are the pressures in x , yand z , the other elements are shear elements.  

• The hydrostatic “ordinary” pressure P trP( ) 3⁄ P11 P22 P33+ +( ) 3⁄= = .  

• Σ  is a quantity which depends on the external pressure tensor S: 
 

Σ h0
1–

S p–( )h0
T 1– Ω0=  

 
where h0   and Ω0  are the original (reference) shape and volume of the system.  

• W  is a fictional “mass” which is used to control the rate of change of the pressure (compare with Q  in the 
NVT algorithms above). 
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Algorithms for simulating ensembles

• This allows us to simulate a system which changes shape, for instance a cubic to hexagonal phase trans-
formation. 

 

Source: Allen-Tildesley

by
 H

an
nu

 H
äk

ki
ne

n

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• An example of the effects of the mass 
parameter Q :A Lennard-Jones-system 
 (Ne); T=0.1 K; constant pressure-MD: 
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• μVT-methods

• Chemical potential μ  stays constant, number of atoms fluctuates 

• Rarely used in MD, more often in MC simulations where it is more natural to add and remove atoms from 
the system.  

• An alternative to adding or removing atoms is to add or remove “control volume”. 

• In condensed matter simulations the problem is that just adding an atom on a random place can easily 
lead to completely unphysical configurations.  

• Also adding or removing control volume without distrorting the system state too much may be tricky. 

• If you need this, see e.g. [Lynch, Pettitt: J. Chem. Phys. 107 (1997) 8594] or [Heffelfinger, J. Chem. Phys. 
100 (1994) 7548]. 
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• What T  and P  control to use? 

• For T  or P  scaling: Berendsen is fast to implement, and does work well provided the time con-
stants are large enough. 

• If one wants accurate T  control or needs to do NVT thermodynamic averaging, one of the Nosé-
Hoover methods is probably best 

• For orthogonal box NPT simulations: Andersén 

• If one wants needs to deal with shear pressure or changes in crystal structure  Parrinello-
Rahman
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Other types of MD simulations 

• Non-equilibrium MD (NEMD) 

• Any MD simulation of a system which is not in thermodynamic equilibrium. 
• Usually some perturbative term is added to the equations of motion.
• For instance for simulating viscosity, heat conductivity and atomic diffusion there are special NEMD algo-
rithms.

• At its simplest, the perturbation can be an external force acting on some of the atoms.
• The external force heats the system up, which can be compensated by temperature control. 

 

• Brownian dynamics or Langevin dynamics 

• Random forces are let to act on some atoms some of the time. This can be useful e.g. in speeding up 
infrequent events.

• This can also correspond to e.g. a large protein molecule in a liquid solvent. If the protein atoms do not 
react with the solvent atoms, and the solvent atoms are not interesting in themselves, their effect on the 
protein can be thought to reduce to random Langevin forces. 
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Other types of MD simulations

• Multiple time step methods

• In these methods the simulation is sped up by using different time steps for different atoms or parts of the 
system.

• A simple example of where this may be useful: a molecule which has light and much heavier particles. 
The light particles move much faster, so their motion can be simulated with a short time step Δt1  and the 

heavy ones with a longer time step Δt2 . 

• Another possibility: count near interactions acting on atom i with a short time step Δt1  and those farther 

away with a longer one Δt2 . In here, we assume the movement of the atoms far away is so small that they 

do not move significantly with respect to atom i  during the shorter time Δt1 .

• MD far from equilibrium 

• Many processes of modern interest involve physical interactions which occur very far from thermody-
namic equilibrium. 

• E.g.  two nanoparticles colliding in vacuum, or an energetic ion from an accelerator hits a material. 
• In both cases very violent interactions occur over ps timescales, and the surrounding medium does not have time to 

equilibrate the system into anything close to thermodynamic equilibrium during the time when the interesting pro-
cesses occur.

• Simulating such a system is simple: simply use ordinary NVE with no T  or P  scaling. 
• But watch out for possible finite size effects! 
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Other types of MD simulations

• An example of NEMD: heat conduction in crystalline and amorphous Si [von Alfthan et al., MRS Sympo-
sium Proceedings, 703 (2002) V6.2.1]

• Straightforward way: impose a T  gradient  heat flux J   k J
xd

dT⁄–= .

• Problems: large fluctuations in J   large dT dx⁄  needed. 
 

hotcold cold
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Other types of MD simulations

• Another way [Müller-Plathe, J. 
Chem. Phys. 106 (1997) 
6082.]: impose heat flux by 
exchanging particle velocities 
between hot and cold parts of 
the system

am
or

ph
ou

s

crystalline

• Results for c-Si size dependent, moreover experimental 
 !

• Phonon mean free path in c-Si ~ 1000 Å

• Results for  reasonable.

• No thermal boundary resistance observed.

kc 160 W/mK=

ka

• Flux ‘exact’, controlled by 
exchange interval

• dT dx⁄ ‘s for different simula-
tion system sizes: (a) 
Lc 296 Å= , La 100 Å= , 

d 32 Å=  
(b) Lc 187 Å= , La 38 Å= , 

d 16 Å=  
(c) Lc 187 Å= , La 38 Å= , 

d 32 Å=

System ka  (W/mk) kc  (W/mk)

(a) 0.93 13

(b) 0.85 9

(c) 0.80 15
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Exercises 7 to chapter 6: mdmorse : T  control
return date Wed 29.10., exercise session Fri 31.10. (Note the exceptional times due to mid-term break.)

1. (10p) Simulate the distribution of the velocity v  of atoms in Cu at 300 K. Make a histogram 
of the velocities obtained, and compare with the analytical Maxwell-Boltzmann distribution 
[see e.g. Mandl, Statistical Physics, 2nd ed., equation 7.59a]. Plot the simulated and analyt-
ical distribution in the same figure, both using a linear and logarithmic scale on the y  axis. 
Comment on the agreement of the two distributions. 
 
Hint: use the actual (rather than desired) average temperature of your simulation run in the 
comparison.  
 
Return the exercises as the plots or data requested (in ps or png format) and an answer to the 
questions asked.

2. (10 p) Implement Berendsen temperature control into mdmorse.  
 
Use the readin parameters btctau and desiredT for this. The first one is the tempera-
ture control time constant, and the second one the desired temperature towards which the 
temperature is taken. Implement the change so that the control is not performed at all if 
btctau=0.  
 
Test the control by simulating morse Cu with the default inputs but using  
 
desiredT=0.0, initialT=300.0 and btctau=1000.0.  
 
How long does it take until the cell temperature has decreased below 10 K? How about 
when running with  btctau=100.0? 
 
Return the exercise as the modified subroutines and answers to the questions. 
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Exercises 8 to chapter 6: mdmorse :  P  control

1. (12 p) Implement Berendsen pressure control into mdmorse.  
 
Use the read-in parameters bpctau, desiredP and bpcbeta into the code. The first 
one is the pressure control time constant τP , the second one the desired pressure P , towards 
which the pressure is controlled, and the third one the compressibility β  (1/bulk modulus) 
of the material. Implement the change so that the control is not used at all if bpctau=0. 
Implement a pressure/virial calculation in the force routines, and then the control in the 
main routine. Use kbar as the external pressure unit.  
 
Return the modified subroutines. Mark the pressure-related modifications in the code with 
comments with the string “bpc”. 
 
Test your code in the following way: Set T 300 K=  and P 0= . Find the equilibrium box 
size for the system by simulating 10 ps and using τT 300 fs=  and τP 300 fs= . Then per-
form two simulations where the box size (in file mdmorse.in) and the coordinates of 
atoms (in file atoms.in) are scaled 2% up and down (i.e. scaled by 1.02 and 0.98) from 
the equilibrium values you obtained from the first simulation. If your code works then all 
the three simulations should yield the same final box size and the instantaneous pressure 
fluctuating around zero. If your system explodes try using a longer time constant τP . 
 
Return figures of the box size and instantaneous pressure as a function of time for all three 
simulations. 
 

2. (8 p) Determine the thermal expansion coefficient of our copper model near NTP by simu-
lating the system in constant pressure P 1 atm 0.001013 kbar= = 1 and at temperature 
range 200-400 K for 10-20 ps. Use the canonical value 5.0 Å for cut-off radius. Remember 
that the thermal expansion coefficient (in constant pressure) is defined by  
 
 
                                 αP

1
V
---

T∂
∂V
 
 

P
= . 

 
 
As always, when calculating averages from simulation data check how many points you 
have to skip from the beginning before starting to collect the average by plotting e.g. the 
system volume as a function of simulation time. 
 
Compare your result to the literature value.  
 
Return the curve a0 T( )  as a figure, explanation how you got αP  and of course its value. 

1. Well, the results for P 0=  and P 1 atm 0.001013 kbar= =  are practically the same. 
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v
Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?>
Calculate results 

and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Quantum
mechanical

models
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Atomistic interaction models

• The true interaction energy between N  nuclei and I  electrons could be obtained by solving the 
Schrödinger equation for the system comprising the N I+  bodies.
• Assumes: interactions between the nucleons 
neglected

Almost always true

Not always true for heavy elements• This is also assuming relativistic effects can be 
ignored

• Time-dependent Schrödinger 
equation: dynamics without MD 
alogrithm 

Model Type Scaling Nmax

Full solution of 
Schrödinger equation

quantum mechanical, 
ab initio

1

HF (Hartee-Fock) quantum mechanical, 
ab initio

50

DFT (density functional 
theory

quantum mechanical, 
not always ab initio

1000

TB (Tight-binding) quantum mechanical 
(often semiempirical)

1000 
10000

MBP (Many-body poten-
tial)

classical, semiempirical 108

PP (Pair potential) classical, semiempirical 109

O e
N( )

O N
4 8–( )

O N( )

O N
3( )

O N( )

O N
3( )

O N( )

O N( )

O N( )

• But solving the full equation is 
extremely expensive computa-
tionally, and hence one always 
has to resort to various levels of 
approximation

• Term “ab initio” or “first princi-
ples” much used in this context 
to mean methods with no empiri-
cal input
• But may have several, even dubi-
ous, approximations!

• semi-empirical= some empirical 
input used in choice of parameters 
or model
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Atomistic interaction models 

• O N( )  variants of all classes of methods
• The quantum mechanical O N( )  methods new   work (so far) well only in a limited set of problems

• Prefactor in the efficiency, i.e. the factor A  in  speed =A N
x×  for an O N

x( )  method. 
• A rule-of-thumb: 

AMBP 3 APP×=  

ATB 100 AMBP×=  

ADF or HF 100 ATB×=  

• Quantum mechanical models (HF and DFT): ~ 100 atoms  e.g. small molecules, bulk proper-
ties of common phases, and point defect properties.  

• TB, a minimal quantum mechanical model works well in a few materials (e.g. C, Si, Ge) but is 
problematic in many others.  

• Classical models:  possible to simulate very large systems, such as large protein molecules, 2- 
and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc.
• No information on the electronic properties of the material. 

Introduction to molecular dynamics 2015              7. Quantum mechanical potential models                                                                                                                                                     4

Atomistic interaction models

• This chapter is a short overview on the methods; more information on other, specialized 
courses on the subject
• A huge topic in itself! Mainly outside the scope of this course 

• Literature: 
• R. Phillips: Crystals, Defects and Microstructures, (Cambridge University Press, 2001), Chapter 4
• A. Sutton: Electronic Structure of Materials, (Oxford Science Publications, 1996)
• M. Finnis: Interatomic Forces in Condensed Matter, (Oxford Series in Materials Modelling, 2003)
• R. M. Martin: Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 
2004) 

• There is a large number of review articles. A good one for those who do DFT calculations but 
are not quite experts in the field is 
 

Designing meaningful density functional theory calculations in materials science—a primer 
Ann E Mattsson et al. Modelling Simul. Mater. Sci. Eng. 13 (2005) R1-R31.
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Overview of quantum mechanical models

• A system of N  nuclei and I  electrons with coordinates rn  (n 1…N= ) and ri  (i 1…I= ):

• Schrödinger equation 
HΨ EΨ=

• Hamiltonian operator H   

H
h

2

2Mn
-----------

rn
2

2

∂

∂

n 1=

N

–
h

2

2m
-------

ri
2

2

∂

∂

i 1=

I


1
2
--- e

2

rij
---------

j 1=

I


i 1=

I



Zne
2

rni
------------

i 1=

I


n 1=

N


1
2
---

ZnZle
2

rnl
-----------------

n 1=

N


l 1=

N



+

+ +

–

Tn Te Vee Vne Vnn+ + + +

=

=

     (7.1)

• Here:
• Tn  and Te  are the kinetic energies of the nuclei and electrons, respectively.

• Vee , Vne  and Vnn  are the electron-electron, electron-nucleus and nucleus-nucleus Coulomb  interactions  

Schrödinger equation. 
Tn Te Vee Vne Vnn+ + + +( )Ψ EΨ=    (7.2)

• Ψ  is the total wavefunction of the full nucleus-electron system.
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Born-Oppenheimer approximation

• For any given configuration of the nuclei one can assume that the electrons find their ground 
state before the atoms move significantly. 
• Classical simulations also based on the Born-Oppenheimer approximation: interatomic potentials do not 
depend on the atom motion. 

• Mathematically:  the wavefunction Ψ  is separated into a product  
 

Ψ ψ n ri,( )η n( )≈ ,  

• ψ n ri,( )  is the electron wave function, which is a function of the positions of the electrons ri  and the posi-

tions of the nuclei n
• η n( )  is the wave function of the nuclei.  

• ψ n ri,( )  fulfills the wave equation 
 

Te Vee+ Vne+{ }ψ n r,( ) Ee n( )ψ n r,( )=       (7.3) 
 
where Vne  is the nucleus-electron potential of the original Hamilton operator.  

• Solution of this gives the electronic total energy of the system as a function of the positions of the nuclei.
• Can also be used to give the forces acting between atoms  atom motion can be simulated using the classical MD 

algorithm (ab initio MD)
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Hartree-Fock methods

• In the Schrödinger equation (7.3) the most difficult part is the electron-electron interaction  

Vee
e

2

rij
---------

j


i
=  

• The basic solution in Hartree-Fock (as well as in DFT) is to create some sort of average elec-
tron density with which every electron interacts independently: 
 

V'ee Vi
av

i
=  

• Pauli exclusion principle: a Slater determinant of one-electron wave functions 

Ψ r1 r2 … rN, , ,( )

φ1 r1( ) φ1 r2( ) … φ1 rN( )

φ2 r1( ) φ2 r2( ) … φ2 rN( )

. . . .

φN r1( ) φN r2( ) … φN rN( )

=
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Hartree-Fock methods

• Hence the Schrödinger eq. for electrons reduces to an equation to get a one-electron wave 
function φi : 

Te i, Vne i, Vi
av

+ +( )Ψ x1 x2 … xn, , ,( )
i
 EΨ x1 x2 … xn, , ,( )=  

Te i, Vne i, Vi
av

+ +( )φi x1( ) F̂φi x1( ) εiφi x1( )= =  

where F̂  is the so called Fock-operator. The equation is the so called Hartree-Fock equation. 

• Thus the new central problem becomes to find a good form for the average potential Vi
av . 

• Iteration: initial guess for the wave functions φi , plugged into the equation, solving to get a new φi  , and 

keeping on iterating until the solution does not change any more, i.e. until a self-consistent field has 
been found  (HF-SCF). 
 

• The eigenvalues of the energy have a clear physical interpretation: ionization energy of the 
electron 

• The SCF method fulfills the variational principle: 

• The eigenvalue of every inaccurate wave function is larger than that of the most accurate one. 
• So the smallest found energy is also the ‘most correct’ one.
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Hartree-Fock methods

• The molecular orbital (MO) of every electron φi  is written as a sum over atomic orbitals (LCAO - 

Linear Combination of Atomic Orbitals): 

φi Ciμχμ
μ
=  

• In the most straightforward approach the basis functions χμ  can be so called Slater type orbitals (STO) 

χ R r( )Ylm θ φ,( )= , 
R1s N1e

ζr–
=

R2s R2p N2re
ζr–

= =





 

which somewhat resemble orbitals of the hydrogen atom:  
ψnlm r θ φ, ,( ) e αr 2⁄– αr( )lLn l– 1–

2l 1+ αr( )Yl
m θ φ,( )∝ ,    α 2Z na0⁄= ,    a0 h2 me2⁄= . 

• Integrating these STO orbitals is numerically difficult, however.  
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Hartree-Fock methods 

• Computationally it is much more favourable to use Gaussian-type orbitals (GTO)  

χGTO
r( ) e

αr
2

–
=   

because a product of two Gaussians is a Gaussian: 

e α r RA–
2

– e β r RB–
2

– KABe γ r RC–
2

–= , 

γ α β+= , 

RC

αRA βRB+

α β+
-----------------------------= , 

KAB
2αβ

π α β+( )
---------------------

3 4/
e

αβ
γ

------- RA RB– 2–
=  

• But real electron wave functions are not Gaussian in shape  use a sum of GTO’s to describe the wave function: 

          χSTO
kvχv

GTO

v
=
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Hartree-Fock methods

• An example of an STO and how it can be approximated with one or more GTO’s. One GTO only 
is not very good, but 4 GTO’s already are quite close.

A
.R

.L
ea

ch
, M

ol
ec

ul
ar

 M
od

el
lin

g

• The most popular basis function sets χ{ }  are the Gaussian functions developed by the group of 
J. A. Pople (Nobel prize in chemistry 1998):
• In the so called minimal basis set there is one orbital for two core electron orbitals, and one orbital for 
each valence electron. Every STO is replaced by a sum of N  GTO-functions (STO-nG). The most com-
mon minimal set is the STO-3G set.

• To improve on the results the basic approach is to increase the size of the basis sets. In the so called 
“Double Zeta” set there are twice as many orbitals as in the minimal set. If the doubling is made only with 
valence electrons (which are usually the most interesting ones) one obtains the “Split Valence” set of 
basis functions.

• In the so called 3-21G set the first row elements have 3 GTO’s for 1s electrons, 2 GTO’s for 2s, 2p and so 
forth electrons, and the extra valence electrons are described by one GTO. This set is quite popular now-
adays.

• Other even larger basis sets: 6-31G, sets which have polarization functions, etc. etc. 
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Hartree-Fock methods

• Limitations of the basic Hartree-Fock method

• The method does not at all account for electron correlation, that is, the correlation between the momenta-
neous motion between electrons. This energy is usually only of the order of 1 % of the total, but can 
sometimes be comparable to the total binding energy of the system and hence quite significant. Several 
methods have been developed to take this into account: 

• In the Configuration Interaction (CI) method a linear combination out of Slater determinants is formed. This is a very 
good approach, but unfortunately also very slow. 

• In Møller-Plesset perturbation theory a perturbation series is made out of the error in the correlation energy. The most 
popular approach is MP2, which takes into account the lowest-order correction. 

• In Multiconfiguration SCF (MCSCF) a small CI term is included in the HF iteration.
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Density functional theory

• Density functional theory (DFT) is one of the most widely spread method to calculate elec-
tronic structure in materials. 

• Because it is computationally more efficient than HF, it has become especially popular among solid state 
physicists who need many atoms to describe a solid. 
 

• Starts with the Schrödinger equation for electrons  
 

h
2

2m
-------

ri
2

2

∂

∂

i 1=

I

– e
2

rij
2

-----------

j 1=

I


i 1=

I

 Vne+ +

 
 
 
 
 

Ψ n r,( ) Ee n( )Ψ n r,( )=      or 

Te Vee Vext+ +( )Ψ
i
 EΨ=  

 
where Vext  is the so called external potential acting on the electrons due to the nuclei. 

• The basic idea of DFT: instead of manybody wavefunction Ψ ri{ }( )  use electron density n r( )   

• Only need to calculate a scalar function of one vector variable not I  vectors
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Density functional theory

• DFT is based on the Hohenberg-Kohn theorems [Hohenberg and Kohn, Phys. Rev. 136 (1964) 
B864]: 
 
Theorem I: For any given set of electrons which are in an external potential Vext  , this potential is 

determined uniquely, except for a trivial additive constant, from the electron density n r( ) .  
 
Corollary I: Because the system Hamiltonian is thus fully determined short of an energy shift, 
the electron density can be used to fully derive the many-particle wave function and thus all 
desired system properties. 
 
Theorem II: It is possible to define a universal functional for the energy E n[ ]  depending on the 
electron density n r( ) . The true ground state energy is the global minimum of the energy func-
tional, and the density n r( )  which minimizes the functional is the exact ground state density. 
 
Corollary II: The functional E n[ ]  is enough to determine the true ground state energy and elec-
tron density. Excited states must be determined by other means. 
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Density functional theory

• Kohn-Sham ansatz [W. Kohn and L. J. Sham, Phys Rev. 140 (1965) A1133] 
[see  http://www.fysik.dtu.dk/~bligaard/wwwdirectory/phdthesis/phdproject.pdf] 
 

• The idea of the ansatz is that the original, complicated Hamiltonian can be replaced by another Hamilto-
nian function which is easier to solve. This effective Hamiltonian describes non-interacting “electrons”   in 
a system which is assumed to have the same density as the true system with interacting electrons. 

• To put it in another way: We assume that there exists a system of non-interacting electrons that produce 
the same electron density n r( ) . 

• The orbitals ψi r( )  of the non-interacting electrons are called Kohn-Sham orbitals. 

• Apply Hohenberg-Kohn variational principle to the Kohn-
Sham orbitals  the Kohn-Sham orbital equations 

E n[ ] T0 n[ ] 1
2
--- n r( )n r'( )

r r'–
-----------------------d

3rd3r' Vext r( )n r( )d
3r Exc n[ ]+ + += , 

where T0 n[ ]  in now the kinetic energy of non-interacting elec-

trons.

Note that the Hartree atomic units are 
used here: e m h 4πε0 1= = = =

• All the problematic terms are collected under Exc n[ ] :  

error in the kinetic energy:  T n[ ] T0 n[ ]–  

error in the Coulomb interaction between electrons: Eee
1
2
--- n r( )n r'( )

r r'–
-----------------------d

3rd3r'–  

correlation and exchange energies (quantum mechanical effects).
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Density functional theory

• What we have gained here is that the above terms in Exc   are (usually) small corrections and can be cal-

culated in an approximative way. 

• The variational principle gives then  
δE n[ ]

δn
--------------- 0=  1

2
---∇2– Veff r( )+ 

 ψi r( ) εiψi r( )=  

 
where i  runs over all electrons, εi  is the Kohn-Sham eigenvalue of electron i , and the effective one-parti-

cle potential is: 

Veff r( ) Vext r( ) φe r( )
δExc n r( )[ ]

δn r( )
----------------------------+ +=

• Here Vext  is the external potential and  

φe r( ) r'd
n r'( )
r r'–
---------------= ,     n r( ) ψi r( ) 2

i 1=

N

=  
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Density functional theory

• Pictorially this can be presented as1 
 
 
 

Vext r( )

Ψi r{ }( ) Ψ0 r{ }( )

n0 r( )
HK

n0 r( )

ψi 1 N,= r( ) ψi r( )

Veff r( )
HK0KS

Real system Independent particle system

1. Adapted from R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 2004), Fig. 7.1
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Density functional theory

• If the exchange-correlation energy is known, these equations can be solved by self-consistent 
iteration 
• Note, however, that the Kohn-Sham orbitals and their eigenvalues εi do not have a clear physical inter-
pretation. There is no guarantee that they have any relation to real electron energies and wave functions, 
but it appears that they are in fact a surprisingly good approximation of the real electron properties. 

• Local density approximation (LDA) 

• So far the DFT approach has not made any approximations. 

• To obtain the exchange-correlation functional Exc n[ ]  the local density approximation, (LDA) is used: 

 

Exc n[ ] rd n r( )εxc n[ ] r,( )=    , 

 
where εxc n r( )( )  is the exchange and correlation energy of a homogeneous electron gas per one electron.  

• The exchange functional can be as simple as (Dirac LDA) 

Ex Dirac,
LDA 3

4
--- 3

π
--- 
  1 3⁄

n r( )4 3⁄
dr–=  
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Density functional theory

• Once an exchange and correlation energy for a homogeneous gas is introduced (several exist), 
the equations can be solved with an iteration process: 
1) Start with some Veff r( ) . 
2) Calculate the one-electron wave functions ψi   new density n r( )  
3) New n r( )   new Veff r( ) . 
4) Repeat steps 2 and 3 until we have obtained a self-consistent solution. 

• Spin in the exchange and correlation term: local spin density approximation, LSDA.
• DFT-LDA results compared with experimental data: 

1) Generally too large cohesive energies for solids 
2) Too large total energies for atoms 
3) Too small energy gaps for many semiconductors (LDA actually predicts zero gap for Ge!). 
4) Unstable for negative ions and gives a too diffuse electron density.

• To improve on the accuracy of DFT people have introduced exchange-and-correlation function-
als which also depend on the variation of the electron density: 

Exc n r( ) dn r( ),[ ] .

• There are numerous of these so called Generalized Gradient Approximations (GGA). 
• In practice there are a large number of GGA’s around, and people choose one which for some reason has been “found 

to work well” in their system. This gives a semi-empirical character to the methods, i.e. they are not pure ab initio 

• The DFT solution method does not restrict the way we express the Kohn-Sham wave functions.
• Below are given two nowadays common ways to build the basis sets used in DFT calculations: 

plane waves and atomic-type orbitals.
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Plane-wave methods

• In plane-wave methods the basic algorithms are as in DFT but: 

• The outer valence electrons are described as a sum 
of plane waves: 

ψ fl
l

Nl

 Kl( )e
iKl r⋅–

=  

Search for wave functions → search for coefficients

where the wave vectors Kl  are chosen to that they have the same periodicity as the simulation cell.   

• Any shape of the electron wave functions can in principle be described with this sum provided the sum 
has enough terms Nl .  

• Names of some common plane wave methods: 
- APW = Augmented Plane Wave 
- LAPW = Linear APW 
- FLAPW = Fully LAPW 
- SAPW = Spline APW 
- OPW = Orthogonal Plane Wave 

• The main measure of the accuracy of plane-wave methods is the number of plane waves used to 
describe the system.  
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Plane-wave methods

• Examples of results of DFT / plane-wave calculation results: 
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LCAO methods 

• In the LCAO (Linear Combination of Atomic Orbitals) method the basis set consists of orbitals 
localized around each atom in the system.   

• Compare with plane waves that are as non-localized as possible.  

• Orbitals can be obtained from quantum mechanical atomic calculations. (Or pseudo-atomic; see below) 

• The accuracy is not so straightforward to adjust as in the plane wave method. 
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Pseudopotentials 

• In most cases the filled inner electron shells of atoms do not 
have any effect on the behavior of the system. 

r

Ze
r

------

Vpseudo

ψAE

ψpseudo

rc

• The idea is to remove the core electrons and the strong 
nuclear potential and replace them with a weaker pseudo-
potential.

• Outside some cut-off radius rc  the pseudo wavefunctions 

and the pseudopotential are indentical to those of the real 
atom.. 

• The counterpart to pseudopotential methods are the all 
electron methods. 

• Pseudopotentials are commonly used with DFT calculations 
both with planewaves and atomic type orbitals. 
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Pseudopotentials

• Results for the lattice constant a and bulk modulus B for C and Si: 

• So it is quite possible to obtain the quantities to an accuracy ~ 1 %. 

• Car-Parrinello MD

• The Car Parrinello method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] is a method where 
the electron and atom motion is updated at the same time. The method has become very popular 
because it is highly efficient and can also be parallelized well. 
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Example of scaling of a DFT calculation

• CPU time usage of a SIESTA1 calculation: 

• Si with simple SZ basis set. 

• CPU time for one energy calculation  
(~ time step). 

• Simulations by E. Holmström. 

1. Spanish Initiative for Electronic Simulations with Thousands of Atoms.
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Commercial HF and DFT programs 

• In practice, a large fraction of modern HF, DFT- and empirical simulations are carried out with 
commercial codes. 

• In commercial codes, the algorithms are typically 5-15 years or old. This is a mixed blessing: the state-of-
the art methods may not be available, but on the other hand the algorithms in there are usually well 
tested. Roughly speaking especially the methods favoured by chemists have moved over to commercial 
codes, whereas physicists tend to stick to their own or non-commercial codes. 

• The commercial codes have flashy and easy-to-use graphical user interfaces. This is good in one sense, 
but also makes the risk to do garbage in–garbage out  kinds of simulations very large. So don’t blindly 
start using a commercial code, you should understand its inner workings and the physics in there first! 
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Commercial HF and DFT programs

• HF-codes:
• GaussianThe code deriving from Poples work. Very popular and versatile code.  

Nowadays also a DFT version is part of the package.
• TurboMole 

• DFT-codes
• CASTEP Plane-wave DFT code, commercial

• DMol3 DFT code based on numerical basis sets, rather than Gaussian Sets
• VASP Semi-commercial plane-wave DFT code developed in Vienna. Very widely used. 

http://cms.mpi.univie.ac.at/vasp/
• Quantum Espressohttp://www.quantum-espresso.org/ 

Open Source, Free
• GPAW Python-based code, under active development. Real-space, scales well. 

https://wiki.fysik.dtu.dk/gpaw/
• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)  

- Home page: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/ 
- A fully self-consistent O N( )  DFT code.  Uses LCAO basis sets. 
- Source code available, can be used as a force routine in your MD code (parcas_siesta!) 
- Free for academic use.

• Other important stuff
• InsightII The graphical user interface of Accelrys Inc., from which most codes of Accelrys  

and some non-commercial codes such as DMol and Gaussian can be run. 
http://www.accelrys.com

• See also http://electronicstructure.org/
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Tight-binding methods
[Main source: Foulkes et al., Phys. Rev. B 39 (1989) 12520.]

• Tight-binding (TB) models can be considered “minimal” quantum mechanical models. They 
are most often semi-empirical, and the quality of the results varies a lot. At best, one can 
achieve results comparable to DFT with a 100 times less computer capacity, at worst they are 
no better or even worse than semi-empirical models but a 100 times slower! 

• In semi-empirical TB one starts with the assumption that total electronic energy E  can be written 
as  

E εi

i 1=

N


1
2
--- U rij( )

j


i
+=  

 
where U  is a repulsive classical pair potential acting between the atoms, and the εi  are eigen-

values of some self-consists Schrödinger-like equation, 

Ĥψi r( ) 1
2
---∇2

– V r( )+ ψi r( ) εi r( )= =  

• This resembles the DFT formalism, and can be derived with various approximations.  

• The eigenvalues εi  are negative, and the repulsive energy positive. U r( )  is either constructed 

by empirical fitting to give the desired total energy, or derived from DFT.
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Tight-binding methods

• Bonding of H2  

• Wave function: ψ|  a1 φ1|  a2 φ2| +=  

• Schrödinger equation 
Ĥ ψ|  E ψ| =  

• Project to states φ1|   and φ2|   

φ1 |Ĥ ψ|  φ1 |E ψ| =

φ2 |Ĥ ψ|  φ2 |E ψ| =






   
E0a1 ha2+ Ea1=

ha1 E0a2+ Ea2=



,  

h φ1 |Ĥ φ2|  φ2 |Ĥ φ1| = =  (We know (?) that h 0< .) 

• Let’s shift energy origin so that E0 0=   we get the equation 

0 h–

h– 0

a1

a2

E
a1

a2

=  

• Solutions E h±= , ψ|  1

2
------- φ1 φ2+−( )=
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Tight-binding methods

• The TB Schrödinger is solved with the variational principle for some set of basis functions φα{ }  

which leads to a secular equation 
H εS– 0=  

where 
Hαβ φα Ĥ φβ | =                                          

and 
Sαβ φα φβ | =

• Often one still assumes that the set of basis functions is orthogonal, in which case S  reduces to the unit 
matrix. 

• Usually the basis set is put to contain only the outermost electrons, with all others treated with 
the repulsive potential U r( ) . The elements in the basis function set are usually also fit to experi-
mental data. 
• For instance, to treat a material where only the outer s and p electrons are important, one can get away 
with using only for basis functions (ssσ, spσ, ppσ and ppπ). If one want to also describe d electrons, one 
needs at least 10 basis functions.

• Roughly speaking it seems that TB methods usually works well in materials with only covalent bonding. 
Systems where much work has been done and which have been found to work well are at least C, Si and 
their hydrogen compounds. 

• See for example Foulkes et al., Phys. Rev. B 39 (1989) 12520, and Sutton et al., J. Phys. C: 
Solid State Phys. 21 (1988) 35. for the DFT foundations of the TB model 
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Tight-binding methods

• An example of a O N( )  TBMD application [G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994) 3471] 

• A fullerene C60 colliding with a diamond surface with different kinetic ener-

gies Ek  (the surface is a reconstructed (111) surface with no dangling 
bonds):

120 eV

150 eV

300 eV

 

• When Ek ≤ 120 eV no bonds are formed between the fullerene and the 
surface, and the fullerene simply bounces off it. 
 
- When 120 eV < Ek < 240 eV a few bonds are formed between the fuller-
ene and the surface, and the fullerene may stick to the surface. The bonds 
may also be quickly broken again and the fullerene can bounce off again. 
 
 
- When Ek ≥ 240 eV several bonds are formed between the fullerene and 
the surface, the fullerene breaks down almost completely, and sticks to the 
surface.
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Very brief mention of a few other methods

• Quantum Monte Carlo (QMC) methods are a set of DFT-related methods where Monte Carlo 
simulation techniques are used to minimize the correlation term of DFT.  

• Computationally very expensive, but they can give very accurate results, especially for the correlation 
term which is difficult to treat otherwise. 

• The most common varieties: Diffusion Monte Carlo (DMC) and Variational Monte Carlo (VMC) 

• Just an example on results [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870]: 
 

• DMC gives all energies correct within the uncertainties, and clearly outshines HF and plain LDA.
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Very brief mention of a few other methods

• What is the minimum-energy configuration of C20 [Grossman et al., Phys. Rev. Lett. 75 (1995) 

3870.]? 

 
• According to QMC:n it is the “bowl” shape
• Note the large differences between the supposedly reliable DFT and HF methods, and that none of the 
agrees with the QMC behaviour. 
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Very brief mention of a few other methods

• Path Integral Molecular Dynamics

• Path Integral MD (PIMD) is a DFT / Car-Parrinello type of method which uses a Feynman path integral 
representation of the density matrix. 

• Also hideously expensive computationally, but claimed to be the only really good method to describe 
water-related reactions. 

• A rough rule of thumb for both QMC and PIMD is that the number of atoms is limited to ~ 20 or so... 

• Time-dependent HF, DFT, TB 

• The methods described until now are all normally used to obtain the ground state. This means one 
assumes that the electron system has time to come to rest before the processes of interest happen. Since 
electronic relaxation times are typically of the order of femtoseconds, this is often a very good approxima-
tion.  

• However, if one is interested in e.g. electronic excitation, this approximation is not valid, and one has to 
actually solve the time-dependent Schrödinger equation. This can be done by iterating over time. 

• Time-dependent (TD)-methods are somewhat of a hot topic in electronic structure calculations now, and 
there are TD variations of all the main methods: HF, DFT and TB. 

• A rough rule of thumb is that a TD-method is at least a factor of 100 slower than the corresponding ordi-
nary method
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Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Potential 
models for

metals
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Classical potentials for metals

• About 80 % of all elements are metals. The crystal structures of all the elements are distributed 
as follows: 

P
ro

gr
am

 g
e
l
e
m
e
n
t
a
l

 

  FCC 19 HCP 26 BCC 15  (quick counting from inside cover of Ashcroft&Mermin) 

• If we can describe the FCC, HCP- and BCC structures with interatomic potentials, already 
some 60 % of all stable elements are described well at least with respect to the structure.
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Classical potentials for metals

• The crystal structures are as follows:

FCC HCP BCC

• FCC Face-Centered Cubic (close packed) 
atoms at the corners of the cube and in the center of each side face 

HCP Hexagonal Close-Packed (close packed)  
Angle between x  and y  unit cell axes is 120o.  
One atom at each corner of the unit cell,  
one (atom E) above the middle of the triangle ABC. 

BCC Body-Centered Cubic (not close packed) 
Cubic unit cell, atoms at the corners of the cube and in the center of the cube 

FCC and HCP are close packed   can be stabilized with pair potentials (although getting the small HCP-
FCC energy difference right is a bit tricky).
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Effective medium theory

• The effective medium theory, EMT, is an approximation in which models based on density-func-
tional theory are used to describe the properties of solids, usually metals.
• Today there exist numerous many-body interatomic potentials which are based on EMT, in which the total 
energy is written in the form 

Etot F ni Ri( )( )
i


1
2
--- Φ Ri Rj–( )

i j,
+=    , 

where F  is a function of the electron density, and Φ  is a (usually purely repulsive) pair potential. 
• Sort of a generalization of DFT: local electron density can be used to deduce the energy.  

• EMT can be used to directly derive a potential but many potentials only obtain the motivation of their func-
tional form from EMT. 

• In EMT the real material is replaced by jellium which consists of  
1) a homogeneous electron gas, formed by the free electrons of the metal 
2) a constant positive background density (metal ions) 

• When an atom is ‘embedded’ into this medium in a position r , the change in energy is as a first approxi-
mation 

ΔE r( ) Eatom+jellium Eatom Ejellium+( )– ΔEhom n0 r( )( )≡=    , 

where ΔEhom n( )  is the embedding energy into a homogeneous electron gas with density n , and n0 r( )  is 

the electron density at r .
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Effective medium theory 

• The embedding energy ΔEhom n( )  is a universal function of the electron density. Below is a list of exam-
ples [Puska, Nieminen, Manninen Phys. Rev. B 24 (1981) 3037]. 
 
 

 

• From the pictures we see that for noble gases ΔEhom n( )  is linear for all values of n , i.e. the closed elec-
tron shell only causes a repulsive interaction. (Some noble gases do have bonds, but this interaction 
derives from van der Waals effects which are not included in DFT/EMT).  

• For other elements there is a minimum in the curves, which describes their propensity to form bonded 
materials.
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Effective medium theory 

• How do we get from this to the total energy of the whole system? [Manninen, Phys. Rev. B 34 
(1986) 8486.] 

• The total energy of this “atoms in jellium” N -atom system is 
Etot

N ER
N n[ ]=   , 

 
where n  is the electron density of the ground state of the system.  

• The energy difference when an atom i  is removed is 
ΔEi Etot

N Etot
N 1– Eatom+( )– ΔEi ni[ ]= =     , 

 
where ni  is the electron density in the system after atom i  has been removed.  

• The idea of EMT (motivated by DFT):  
Both Etot

N  and Etot
N 1–  can be stated as a functional of the same electron density ni . 

• The energy of the whole atom system can be stated as 
 

Etot Etot
N 1– ni[ ] ΔEi ni[ ] Eatom+ +=   
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Effective medium theory 

• By removing more and more atoms, one at a time, we obtain for Etot  

Etot NEatom ΔEi n123…i[ ]

i 1=

N

+=    .

• Here n123…i  is an electron density in the system after atoms 1 2 3 … i, , , ,  all have been removed. 

• By rearranging the terms in the electron density this can be written as 

Etot NEatom

ΔEi ni[ ]
i

1
2
--- ΔEj nij[ ] ΔEj nj[ ]–( )

ij


1
6
--- ΔEk nijk[ ] ΔEk nik[ ]– ΔEk njk[ ]– ΔEk nk[ ]–( )

ijk


…

+

+

+

+

=  

In sums with many indices the 
terms with at least two same indi-
ces are left out.

 

• Terms with distant atom pairs is are small, so the sums converge rapidly.
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Effective medium theory 

• The electron density n123…i  is approximated as a superposition of atom (or pseudo-atom) electron den-

sities na r( )  
 

n123…i r( ) na ri Rj–( )

j i 1+=

N

=   . 

• The atomic densities can be densities for free atoms or for atoms in the solid state where the surrounding compresses 
the electron shells. 

• As mentioned above, in the first approximation 
ΔEi ni[ ] ΔEhom ni Ri( )( )=   , 

i.e. the functional is replaced by a function. 

• By superposition the density nij  is now 

nij Rj( ) nj Rj( ) na Rj Ri–( )–=   . 

• The embedding energy ΔEhom nij( )  can be calculated from ΔEhom nj( )  by developing it as a Taylor series 

ΔEhom nij( ) ΔEhom ni( ) na Ri Rj–( )
∂ΔEhom nj( )

∂nj
------------------------------– …+=    . 
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Effective medium theory 

• If the same is done with the other terms in the expression (*), we find that the total energy: 
 

Etot Fhom ni Ri( )( )

i 1=

N

=    , 

where 

Fhom n( ) Eatom ΔEhom n( ) 1
2
---n

∂ΔEhom n( )
∂n

----------------------------– 1
6
---n2∂2ΔEhom n( )

∂n2
-------------------------------+ +=   . 

 

• Pair potential is completely missing! 

• Can be used to some extent, but it is not completely satisfactory as it e.g. tends to lead to wrong values 
for the elastic constants [Daw, Baskes, Phys. Rev. B 29 (1984) 6443.] 

• A better model is obtained by taking account of the electron density induced by an atom in the material 
 

Δρ r( ) Δn r( ) Zδ r( )–=   
 
and by considering the difference between the real external potential and the jellium external potential 

δvext r( )  .  
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Effective medium theory 

• By using perturbation theory one obtains 

ΔE(1) Ri( ) rΔρ r Ri–( )δvext r( )d=   , 

which can also be written as 

ΔE(1) Ri( ) rΔρ r Ri–( )φ r( )d=   , 

 
where φ r( )  is the electrostatic potential of the system (without the potential of the embedded atom).  

• By the superposition principle this can be stated as a sum over single-atom potentials: 

ΔE(1) Ri( ) r r'd
Δρ r Ri–( )Δρ r' Rj–( )

r r'–
-------------------------------------------------------d

i j≠
=  

• By using instead of the electron density at a point some average over the electron density in a region the 
model can also be improved. One suitable average is 

ni Ri( ) 1
α
--- rd r'd ni r( )

Δρi r' Ri–( )
r r'–

------------------------------–=    , 

 
where 

α rd r'
Δρi r' Ri–( )
r r'–

------------------------------d–=   . 
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Effective medium theory 

• Now the total energy of the system is of the form 

Etot Fhom n Ri( )( )
i


1
2
--- r r'd

Δρ r Ri–( )Δρ r' Rj–( )
r r'–

-------------------------------------------------------d
i j≠
+=   . 

• A density-dependent term and a pair potential term!
• Changes in the single-electron states in the system  correction term ΔE1el . 

• Affects things mostly in the case of transition metals (unfilled d shell) 

• As an example measured and simulated potentials for a few metals: 
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Effective medium theory 

• As an example of an application to metals the properties of Al and Cu studied by constant pres-
sure MD: 
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Embedded-Atom Method (EAM)

• The EAM method [Daw, Foiles and Baskes, Mat. Sci. Rep. 9 (1993) 251] is based on the same 
ideas as EMT.  

• The functional form has been deduced primarily semi-empirically and in part by fitting.  

• Despite its poorer physical motivation EAM usually works as well or better than EMT. 

• The EAM total energy is written in the form 
 

Etot Fi ρi( )
i


1
2
--- Vij rij( )

ij
+=   (EAM 1) 

where 

ρi ρj
a rij( )

j i≠
=   is the electron density at atom i , 

ρj
a r( )  is the electron density of atom j  and 

Fi  is the embedding function. 
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Embedded-Atom Method (EAM)

• This resembles a lot the EMT total energy, the main difference being that the argument of Fi  is the elec-

tron density in a given point. 

• Note that the embedding function Fi  is universal in the sense that a same function can be used to embed the atom to 

different materials; material dependence only comes through the argument ρ .  

• Daw, Baskes and Foiles obtained the functions Fi  and Vij  by fitting experimental results (lattice parameter, elastic 

constants, cohesive energy, vacancy formation energy and difference between fcc- and bcc- structures).
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Embedded-Atom Method (EAM)

• Here is an example of all the terms in the original Foiles Cu EAM potential: 

Electron density                   Embedding energy              Pair potential

 

• Let’s compare the expression above with the general expression for a many-body potential 
given earlier: 
 

V V1 ri( )
i
 V2 ri rj,( ) V3 ri rj rk, ,( ) …+

i j k, ,
+

i j,
+=  

• Vij is clearly a pair potential V2 . But what is the embedding term?
• The embedding term is easiest to understand as a pair potential whose strength is affected by the local 
environment: an environment-dependent pair potential.

• It can not be directly written in the form shown above. 
• Maybe, by Taylor expansion, it could be done. (Haven’t tried it.) In that case the series in the above-men-
tioned would be infinite.
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Embedded-Atom Method (EAM)

• The pair potential is further interpreted as  

Vij r( ) 1
4πε0
------------

Zi
a

r( )Zj
a

r( )
r

---------------------------=  

where the Zi
a

r( )  are effective screened charges of the nuclei of atom type α . 

• This has the advantage that if instead of Vij  the Zi
a

r( )  are used as the starting point in evaluating the potential, form-

ing the EAM potential for an alloy is straightforward: 

• The mixed Vij  is given by the equation above, and since ρj
a r( )  only depends on the type of atom j  and Fi  on the 

type of atom i , the embedding term can also be evaluated directly for the mixture. 

• The electron densities ρj
a r( )  are obtained from modified HF electron 

densities for the outermost electrons of the material. 

• In many cases the embedding function F ρ( )  is obtained by fitting to 
universal binding energy relation [Rose et al., Phys. Rev. B 29 (1984) 
2963.]: 

E a*( ) Ecohf a*( )–=  

f a*( ) 1 a*+( )e
a*–=  

a* a
a0
----- 1– 
  Ecoh

9BΩ
----------- 
 

1 2⁄–
= , B  = bulk modulus, Ω  = atomic volume
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Embedded-Atom Method (EAM)

• So in practice the EAM potential has three 1-dimensional functions.  

•  In analytical form or a set of points to be used with spline interpolation 

• The standard “Universal 3” format for elemental EAM potentials of Daw, Baskes and Foiles looks like:
 

Arbitrary comment line
Z1 m a latticename 
nrho drho nr dr rcut
((nr points of F(rho) data))
((nr points of Z(r) data, V(r)=1/(4 pi epsilon_0) Z(r)2/r))
((nrho points of rho data))

where Z1 is the atomic number, m the mass and a the lattice constant.

• A real example (Foiles Cu potential):

Cu functions (universal 3)
29     63.550         3.6150    FCC
500 5.0100200400801306e-04 500 1.000000000000009e-02  4.9499999999999886e+00
0.                     
-3.1561636903424350e-01 
-5.2324876182494506e-01

and so on, with 1497 more data points. 

• The advantage of using a code which reads this format is that any potential which can be given in the 
functional form (EAM 1) can then be made into a set of spline points and read into the code without any 
modifications necessary in the code itself. 
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Embedded-Atom Method (EAM)

• Non-uniqueness of EAM-like potentials: Note that in EAM-like potentials the division of the 
energy into the pair potential and embedding term is not unique. 
• In the formalism (EAM 1) one obtains the same 
total potential energy for any configuration with the 
transformation  

Vij r( ) Vij r( ) 2λρj rij( )+=

F ρi( ) F ρi( ) λρi–=



 , where λ  is an arbi-

trary real number. 

Fk ∇k– F ρi( )
i
 ∇k– F ρ rij( )

j i≠
 

 
 

i


∇k– F ρ rkj( )
j k≠
 

 
 

∇k F ρ rij( )
j i≠
 

 
 

i k≠
–

F ' ρk( ) ρ' rkj( )r̂kj

j k≠
– F ' ρi( )ρ' rik( )r̂ki

i k≠
–

F ' ρk( ) F ' ρi( )+[ ]ρ' rik( )r̂ki

i k≠
–

= =

=

=

=

• Forces in EAM (embedding part; force on atom 
k ):
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Glue models

• Like EAM but physical interpretation of the functions more or less thrown away 

• For instance Ercolessi et al. gold potential: [Phys. Rev. Lett. 57 (1986) 719 , Phil.Mag. A 58 (1988) 213.]
• Nearest neighbors only
• Functions are usually polynomials 

• In here instead of an embedding function a ‘glue function’ U  is used, which depends on the atomic coor-
dination 

Etot
1
2
--- φ rij( )

i j≠
 U ni( )

i
+=   , 

where 

ni ρ rij( )
i j≠
=   . 
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Glue models

• Example: glue model for Au 
 

 

• Note that here the pair potential is no longer purely repulsive (Non-uniqueness of EAM-like potentials!) 
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Glue models

• A few properties of the potential:                    
 

 

• Thermal expansion 
from MD simulations
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Glue models

• Phonon dispersion relation: 

            

points:          experiment 
solid line:     with glue function 
dashed line: without glue function

• Gold (100) surface reconstruction 
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Rosato group potentials

• The group of Rosato et al. (first ones by Cleri and Rosato) has formulated a large group of 
potentials based on the second-moment approximation of the tight-binding Hamiltonian (TB-
SMA). [Cleri and Rosato, Phys. Rev. B 48 (1993) 22]:  

• The method starts from the knowledge that a large set of properties of transition metals can be derived 
purely from the density of states of the outermost d electrons: 

• The second moment of the density of states is μ2  , and experimentally it has been found that the cohe-

sive energy of metals is roughly proportional to the width of the density of states, which in the second-

moment approximation is simply μ2 .  

• When only the ddσ, ddπ and ddδ orbitals are taken into account, the band-energy of atom i can according 
to the model be written as: 

EB
i ξ2 2q

rij
r0
----- 1–
 
 
 

–exp
j
–=  

 
which only depends on the distance and which formally is exactly the same as the F ρ( )  part of the EAM 
potentials (with the square root operation being the embedding function F ). 
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Rosato group potentials

• In addition the model has a repulsive Born-Mayer-term: 

ER
i

A p
rij
r0
----- 1–
 
 
 

–exp
j
=  

 
so the total energy of the system becomes  
 

Ec ER
i

EB
i+( )

i
=  

• Here r0 is the equilibrium distance between atoms, and A, ξ, p and q are fitted parameters. Despite its sim-
ple functional form, the model can be used to describe quite well elastic, defect and melting properties of 
a wide range of FCC- and HCP-metals. 

• Later work in the Rosato group has given also extensions to alloys, e.g. [Mazzone et al., Phys. 
Rev. B 55 (1997) 837].  

• One practical caveat about the Cleri-Rosato potentials: at least in some of their papers they 
have been sloppy with factors of 1/2 and minus signs, you may have to correct these yourself. 
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Finnis-Sinclair potentials 

• One more important group of EAM-like potentials are the so called Finnis-Sinclair potentials 
[Phil.Mag. A 50 (1984) 45; for an improvement see Phil. Mag. A 56 (1987) 15]. They model tran-
sition metals based on ideas derived from the tight binding method. 

• The form of a Finnis-Sinclair-potential is 
 

Etot
1
2
--- φ rij( )

i j≠
 A ni

i
–=   , 

where 

ni ρ rij( )
i j≠
=   . 

 
i.e. this is the same functional form as in EAM where the embedding function is simply F ni( ) A ni–= . 

The square root function can be motivated by the tight-binding model, as in the Rosato potentials. 

• The potential parameters are obtained purely by fitting to experimental data. 
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Vacancy formation energy revisited                  See e.g. Rob Phillips, Crystals, De-
fects and Microstructures. 

• Definition of the formation energy: 
Remember pair potentials: 
 

 
 

 
 
 

Etot vacancy N,( ) 1
2
--- N 12–( )12φ 12 12 1–( )φ+[ ] 6 N 1–( )φ= =

Etot perfect N,( ) 1
2
---N12φ 6Nφ= =

Evac
f 6φ– Ecoh atom⁄–= =

 

Evac
f

Etot vacancy N,( ) Etot perfect N,( )–=  

• EAM-type potential  

Etot F ρi( )
i


1
2
--- V rij( )

ij
+= , 

ρi ρa
rij( )

j i≠
=  

• Perfect fcc lattice atoms, only NN interaction, equilibrium bond length r0 : 

Etot perfect N,( ) NF 12ρ0( ) 1
2
---12Nφ+ NF 12ρ0( ) 6Nφ+= =  

Etot vacancy N,( ) N 12–( )F 12ρ0( ) 12F 11ρ0( ) 1
2
--- N 12–( )12φ 12 11φ×+[ ]+ += ,  

 

where ρ0 ρa
r0( )= , φ V r0( )=  

 

  Evac
f 12 F 11ρ0( ) F 12ρ0( )–[ ] 6φ–=  
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Vacancy formation energy revisited 

• Note that now cohesion energy per atom is  

Ecoh
Etot perfect N,( )

N
------------------------------------- F 12ρ0( ) 6φ+= = 6φ Ecoh F 12ρ0( )–=  

• Substitute 6φ  in expression for  Evac
f

  

    Evac
f 12F 11ρ0( ) 11F 12ρ0( )– Ecoh–=

 
 
 
 
 
 

Typically for metals 
 

Element  
(eV)

 (eV)

V 5.31 2.1 ± 0.2

Nb 7.57 2.6 ± 0.3

W 8.90 4.0 ± 0.2

Ecoh Evac
f

Evac Ecoh⁄ 0.2…0.4=

 
 

NOTE: Pure pair potential means that , i.e. 
linearity   

F ρ( ) αρ=

Evac
f 12 11αρ0( ) 11 12αρ0( )– Ecoh– Ecoh–= =
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Vacancy formation energy revisited

• So now we at least have Evac
f

E– coh≠

• To have Evac
f

E– coh<  requires  

12F 11ρ0( ) 11F 12ρ0( )– 0<
F 11ρ0( )

11
---------------------

F 12ρ0( )
12

---------------------< ,  

i.e. positive curvature 
d

2
F

dρ2
--------- 0> : 

 

ρ ρ0⁄
F 11 12
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Vacancy formation energy revisited 
 

•   Glue model for Au                            Daw & Baskes for Ni, Pd                         Foiles et al. 
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Some EAM-like potentials

• Below are listed some EAM potentials. It is impossible to list all of them, so this is just a list of 
some common ones.  

• FCC metals

Foiles et al., Phys. Rev. B 33 (1986) 7983. 

• “Original” EAM-potentials [S. M. Foiles, 
Phys. Rev. B 32 (1985) 3409; ibid. 33 
(1986) 7983]:
• Good potentials for Ni, Cu, Pd, Ag, Pt, Au 
and all dilute alloys of these. Good in many 
ways, surfaces the most commonly men-
tioned shortcoming. But surfaces tend to be a 
problem for most EAM potentials

• Decent potential for Al.
• Very widely used and tested, and almost no 
fatal shortcomings have been reported, so 
these can be used with good confidence. 
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Some EAM-like potentials 

• Glue potentials: [Ercolessi, Adams: Europhys. Lett. 26 (1994) 583]: good potentials at least for 
Au and Al. 

• [Cai and Ye, Phys. Rev. B 54 (1996) 8398]: Alternative EAM potentials for Al, Ag, Au, Cu, Ni, Pd 
and Pt. May be better than original EAM in particular for alloys and surfaces. 

• [Johnson, Phys. Rev. B 37 (1988) 3924]: Analytical EAM model for most FCC metals  

• [Sabochick, Lam, Phys. Rev. B 43 (1991) 5243]: Potential for Cu, Ti and their compounds 

• [Zhou, Johnson, Wadley, Phys. Rev. B 69 (2004) 144113]: EAM potentials for numerous metals 
that can be mixed for a huge number of alloys using a special mixing rule.
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Some EAM-like potentials

• The Cu part of this potential seems to be very good for 
point defects 
[Nordlund and Averback, Phys. Rev. Lett. 80 (1998) 
4201] (see on the right). 

• [Voter and Chen, Mat. Res. Soc. Symp. Proc. 82 (1989) 
175]: NiAl system potentials 

• Cleri-Rosato parameters (see above) for FCC metals 
exist at least for Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al and Pb. 

• [Ackland and Vitek, Phys. Rev. B 41 (1990) 10324]: EAM 
potentials for Cu, Ag, Au and alloys. Improvements in 
[Deng and Bacon, Phys. Rev. B 48 (1993) 10022]. 
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Some EAM-like potentials

• HCP-metals 

• Compared to both FCC and BCC metals, the HCP metals have been studied relatively little, 
both experimentally and with simulations.

• In fitting potentials for an HCP one should take care to ensure that the HCP phase is lower in 
energy than the FCC phase, and that one can obtain the required c a⁄  ratio (which experimen-
tally seldom equals exactly 8 3⁄ , which is the “ideal” value calculated for close packing of hard 
spheres)

• In addition there are 5 elastic constants, rather than 3 as in cubic metals. 

• Pasianot and Savino [Phys. Rev. B 45 (1992) 12704] have made EAM-like potentials for HCP-
metals Hf, Ti, Mg and Co. But they also showed that an EAM-like model can not reproduce all 
elastic constants correctly for those HCP metals which have  

c13 c44– 0<    or   1
2
--- 3c12 c11–( ) c13 c44–<  

• Such metals are e.g. Be, Y, Zr, Cd and Zn.  

• Cleri and Rosato (see above) derive parameters for the HCP metals Ti, Zr, Co, Cd, Zn and Mg.  

• Oh and Johnson [J. Mater. Res. 3 (1988) 471] have also put their fingers here, for the HCP met-
als Mg, Ti and Zr.
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Some EAM-like potentials

• BCC-metals 

• When one constructs potentials for BCC metals, one has to take into account that the BCC 
structure is not closed packed. A pair potential would most likely make the BCC phase unstable 
compared to FCC and HCP, unless carefully constructed. Or one can attain unwanted effects 
such as a negative thermal expansion. 

• In BCC metals the Finnis-Sinclair potentials (see above) have been much used. Originally they 
were formulated at least for Fe, V, Nb, Ta, Mo and W. In the five latter ones serious problems 
were later found, which were corrected in [Ackland and Thetford, Phil. Mag. A 56 (1987) 15]. 

• Johnson and Oh [J. Mater. Res. 4 (1989) 1195] have been active in BCC as well. They derived 
potentials at least for Li, Na, K, V, Nb, Ta, Cr, Mo, W and Fe.  

• But in BCC metals one should take into account the recent theoretical work which showes that 
in them 4-body interactions can have an important role, and these can of course not be 
described well by EAM-like potentials [J. A. Moriarty, Phys. Rev. B 42 (1990) 1609].  

• Moriarty has developed 4-body potentials at least for a few metals [e.g. Phys. Rev. B 49 (1994) 12431]. 
These have shown for instance that the migration energies of the Finnis-Sinclair model are probably 3-15 
times too large [Phys. Rev. B 54 (1996) 6941]. 
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Some EAM-like potentials

• Metal-hydrogen potentials 

• Finally, we mention that it is possible to construct a somewhat sensible EAM-like potential for 
metal-hydrogen interactions. Of course these can not describe delocalized hydrogen in metals, 
but they can still reproduce well e.g. the cohesive and migration energy of hydrogen in solid 
metals and hydrogen on solid surfaces. 

• Just one example: [Rice et al., J. Chem. Phys. 92 (1990) 775]; EAM potential for Ni-H.
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Fitting a repulsive potential to EAM models. 

• When one wants to describe high-energy processes (Ekin > 10 

eV) one almost always has to modify the repulsive part of the 
potential. One can for instance use the so called ZBL universal 
potential for this, which describes the repulsive part with ~ 10 
% accuracy for all material combinations, or even better an 
accurate potential derived from ab initio - calculations. 

• A special feature for EAM-like potentials is that one still has to 
remember that the electron density has to be set to a constant 
value in the same r range where the high-energy repulsive 
potential is fit to the pair potential part. 

• Example: fitting the Foiles Pd-potential to the ZBL repulsive 
potential. With the same fit also the high-pressure properties 
and melting point of the potential was obtained almost exactly 
right, whereas the properties of the interstitial atom became 
worse. [Nordlund et al., Phys. Rev. B 57 (1998) 13965].
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Two-band EAM model

• EAM is often used to model 
transition metals:
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• Their bonding is characterized 
by the free-electron-like s  
orbital and the narrow d  
orbital. 

• In the original EAM potential 
the effect of these two orbitals 
was taken into account by 
assuming the electron density 
be a sum of contributions from 
s and d shells: 
 
ρa r( ) nsρs r( ) ndρd r( )+= . 

• The ‘occupations’ ns  and nd  

were obtained by e.g. fitting to 
H heat of solution or such. 
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Two-band EAM model

• In the two-band EAM model the s  and d  orbitals (or bands) are explicitely taken into account. 

• Energy of atom i  is written as  
 

Ei Fd ρi d,( ) Fs ρi s,( ) 1
2
--- V rij( )

j
+ += , 

 

where ρi b, φb rij( )
j
=  is the electron density contribution from band b . 

• The original formulation of the EAM model in the form of fitting the s  band density  

• A two-band EAM potential has been developed for elemental caesium [G.J.Ackland et al., Phys. Rev. B 
67 (2003) 174108.] and for the binary alloy FeCr [P.Olsson et al., Phys. Rev. B 72 (2005) 214119.] 

• For many transition metals the cohesion is determined mainly by the d  band but the s  band affects the 
elastic properties by providing repulsion. 

• On the other hand for alkali and alkaline-earth metals are normally close-packed metals with bonding 
determined by the s  electrons. 
• However, at large pressures electrons are transferred to d  band which is — although higher in energy — more com-

pact, allowing lower atomic volumes.
• With these models the isostructural transition of Cs and the thermodynamical properties of Fe-Cr alloy 
were reasonably described.
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Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Potential 
models for

diamond and 
zincblende 
structures
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Diamond and zincblende structure potentials 

• Only three elements have the diamond (DIA) structure: C, Si, Ge
• However, since almost the whole semiconductor industry and micromechanical engineering 

industry is based on Si technology, the interest in studying diamond-structured semiconductors 
is immense. 

• In addition, the most common compound semiconductors (GaAs, AlAs, InAs, etc.) have the 
zincblende structure, which is essentially the same as diamond except that there are 2 atom 
types. This further increases the interest in describing this crystal structure.

IVIII VGroups:
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Diamond and zincblende structure potentials

• The diamond structure is (2 ways of looking at the same thing) 

110

DIAMOND

DIAMOND, CONVENTIONAL UNIT CELL

110 a

 

• Essentially two FCC structures inside each other which have been displaced by 
a
4
--- a

4
--- a

4
---, , 

  from each other.

• The unit cell has 8 atoms
• In terms of bonding the crucial feature is that every atom has exactly 4 neighbours. The bonds are 
covalent or predominantly covalent, and the nearest neighbours are distributed such that one atom is in 
the middle of a regular tetrahedron

• The angle between any two bonds of the same atom becomes 1 3⁄–( )cos 109.47°= . Chemically this cor-

responds to the sp3 hybridization of electrons.
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Diamond and zincblende structure potentials

• The zincblende structure is the same except that one FCC sublattice has atoms of one type, 
the other of the other type. One unit cell thus has 4 atoms of type A and 4 of type B. 
 

ZINCBLENDE, SUCH AS: 
Ga
As

 

• If the (111) stacking is ...ABAB... instead of ..ABCABC... we have wurtzite 

• Note the analogy:    fcc ↔ hcp 
zincblende↔wurtzite
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Diamond and zincblende structure potentials

• Covalent bonds
• In a covalent bonds atoms share electrons and thus in some 

sense achieve a filled electron shell.
• In solids covalent bonds typically form between elements which 

have a similar outer electron structure.
• Some elements: C, Si, Ge, S, Se, Te
• III-V-componds (GaAs, InP, ...)
• II-VI-compounds (ZnSe, CdTe, ...)
• various compounds such as SiC 
• molecular crystals (e.g. oxygen where the basic element is the O2 
molecule, H2O etc. etc.) 

• The electrons extend to the space between the atoms. 
• The electron structure of the Si2 dimer is compared to the superpo-
sition of the density of two Si atoms:
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Diamond and zincblende structure potentials

• Because of the nature of the hybridization of the electron orbitals, the covalent bonds typically 
have a strong directional dependence, with some preferred angles between the bonds. For 
instance, the energy of three atoms will depend not only on the distances rij , rik  and rjk  but 

also on the angles between them θkij , θijk  andθikj : 

i

j

k

rij
rjk

rik

θijk

θikjθkij

 

• Si has 4 outer electrons, and these can form 4 bonds with sp3 hybridization, i.e. the angle of 

109.47o . 

• From this directional dependence, it also follows that the crystal (or amorphous) structure of 
covalent solids is often fairly open:
• Number of nearest neighbours only 2-4, (12 in close-packed structures!). 
• Packing fraction in diamond is only 0.34, whereas it in FCC is 0.74.
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Diamond and zincblende structure potentials

• Dealing with covalent bonding: explicit angles vs. bond order

• Before we proceed with semiconductors, let us think quite generally about the angular proper-
ties of covalent bonds.

• Since we know for any given covalently bonded material that there is one or a few angles 
between the bonds which give a minimum in the energy, one can immediately see a purely 
geometrically motivated way of constructing a potential: simply put in an explicit angular term 
which gives a minimum at the equilibrium angle θ0 . 

• For instance, consider a single water molecule H2O. We know that the angle between the two O-H bonds 

is about 105o. Thus if one wants to construct an interatomic potential to describe water, one could get the 
structure right simply by including an explicit angular energy term of the form 

Eangular Kθ θ 105°–( )2
=  

into the potential. (Let’s call these potentials “explicit angular”.) 

• There is a problem: The minimum always at only one angle, and nowhere else.  

• However, for instance, consider the carbon allotropes graphite and diamond. In one the angle between 

bonds is 120o, in the other 109.47o. The energy difference between the two phases is vanishingly small. 
An explicit angular potential can not possibly describe carbon in both allotropes correctly. 

• Thus although it is easy to construct explicit angular potentials for a known geometry, they do not have a 
fundamental physical motivation. 
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Diamond and zincblende structure potentials

• The Keating potential 
 

    

• Can be used when near to the equilibrium configuration and no bond breaking occurs. 

• Example of application: build amorphous Si and SiO2 using bond-switching MC



Introduction to molecular dynamics 2015           9. Potential models  for diamond and zincblende structures                                                                                                                                              9

Diamond and zincblende structure potentials

• An alternative, physically motivated approach to construct potentials for covalent systems is 
through the concept of “bond order”. 

• By bond order one means is that the strength of a single chemical bond is affected by the chemical neigh-
bourhood: the more neighbours an atom has, the weaker are the bonds which are formed to these atoms. 
This can be described in potentials of the form  

V Vrepulsive rij( ) bijVattractive rij( )+=  

by constructing an environment-dependent term bij  which weakens the pair interaction when the number 

of neighbours (coordination number) Z  of an atom is increased. 
•  

- For simplicity we here deal with cases where only bonds to nearest-neighbour atoms are considered.

• This idea is well motivated qualitatively from basic chemistry: if an atom has N  outer electrons, these can 
form (with other atoms of the same type in a symmetric configuration):
• a single (dimer) bond with N  pairs of electrons

• two bonds with N 2⁄  pairs of electrons

• three bonds with N 3⁄  pairs of electrons 
and so forth

• Since for every larger number of bonds one bond has less pairs of electrons, it is quite natural that the 
strength of a single bond tends to decrease. 

• However, the strength of the bond is not directly proportional to the number of electron pairs in it, and the 
behaviour of the energy/bond may vary quite a lot from one material to another.
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Diamond and zincblende structure potentials

• If the energy/bond decreases very rapidly with the coordination number, the most stable form of 
the atom is a dimer. If, on the other hand, the dependence is weak, the material wants to maxi-
mize its coordination number and will end up in a close-packed configuration. 

• In the limiting case of bij  = constant we get a pure pair potential. 

• We can thus think that the strength of bond is a monotonously decreasing function of the coor-
dination number. The equilibrium structure is determined by the balance between the number of 
bonds and the single bond strength, since the total energy is the product of the two. 

• This formalism allows us to adjust how many numbers of neighbours an atom “wants to have”. This now 
gives a physical motivation to the preferred angles between bonds: if e.g. the ideal coordination is 4, and 
the bonds are arranged symmetrically about an atom, one automatically gets the tetrahedral bonding con-

figuration with an angle of 109.47o between the bonds. 

• The great advantage here is that now the angle needs not be fixed, because it is perfectly pos-
sible to construct potentials which give the same energy for 2 different configurations. Thus one 
can (and as we shall se people have) constructed potentials which e.g. give local energy min-
ima of equal depth for both the graphite and diamond configurations, thus solving the carbon 
problem! 
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Diamond and zincblende structure potentials

• Based on pseudopotential theory Abell [Phys. Rev. B 31 (1985) 6184.] has argued that the term 

bij  should be of the form  bij Z
δ–∝  where Z  is the coordination number and δ  some number. 

More specifically, in the so called second-moment approximation of tight binding one obtains  

bij Z
1 2⁄–∝ .

• Let us make all this concrete with an example:

For comparison: en-
ergy/atom for alu-
minium [Phillips, 
Fig. 4.5]. Curve is a 
fit of the form 

.

Note the different 
sign convention!

E E0 αZ1 2⁄ βZ+ +=

 carbon. 
The table below shows the energy/bond and energy/
atom for a number of different coordinations of carbon. 
The values for Z 2 3 4, ,=  are from experiment and the 
values for the hypothetical phases Z 4>  from a DFT cal-
culation which also reproduces the experimental values 
well [Furthmüller et al, Phys. Rev. B 50 (1994) 15606; 
data compiled in Albe et al, Phys. Rev. B 65, 195124].

Z Phase
Energy/atom

(eV)
Energy/bond

(eV)
Energy/bond 

bond order model

2 dimer 5.10 6.20 6.32

3 graphite 7.36 4.91 4.91

4 diamond 7.30 3.65 3.67

6 simple cubic 4.74 1.58 1.75

8 BCC 3.00 0.75 1.01

12 FCC 3.00 0.50 0.43
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Diamond and zincblende structure potentials 

• The last column shows a fit to the data obtained with a bond order model of the 1 Z⁄  form. As 
you can see, a quite good fit is obtained for all phases, and especially the most important ones 
are described very well.  

• Note also that the bond order model correctly predicts that graphite and diamond are almost 
equal in energy. 
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Diamond and zincblende structure potentials 

• The generality of this approach was shown by Brenner [Phys. Rev. Lett. 63 (1989) 1022.], who 
proved that this form is mathematically equivalent with the EAM formalism (after suitable trans-
formations), and specifically that if δ 1 2⁄–=  one can obtain exactly the Finnis-Sinclair / Cleri-
Rosato-like metal potentials: 
 

E Ei
i
=  , Ei

1
2
--- Vi

pair
rij( ) Vi

mb
+[ ]

j i≠
=  

• Tersoff: Vi
mb 1

2
---– Bbije

λ2rij–

j i≠
=  ,   bij 1 G θijk( )e

λ3 rij rik–( )–

k j, i≠
+

η–
=   

(or bij 1 G θijk( )e
λ3

3
rij rik–( )3

–

k j, i≠
 

 
  n

+
1 2n( )⁄–

= )

• EAM:  Vi
mb

F ρ rij( )
j i≠
 

 
 

–= .  
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Diamond and zincblende structure potentials 

• Assuming Finnis-Sinclair form F ρ( ) Aρ1 2⁄
–= , ρ r( ) e

ar–
=  we get  

 

Vi
mb

A e
arij–

j i≠


1 2⁄
– A e

arij–

j i≠
 e

arik–

k i≠


1 2⁄–
–

A e
arij–

e
arik–

k i≠


1 2⁄–

j i≠
 

 
 

–

A e
arij–

e
arij–

e
arik–

k i j,≠
+

1 2⁄–

j i≠
 

 
 

–

Ae
arij 2⁄–

1 e
a rij rik–( )

k i j,≠
+

1 2⁄–

j i≠
–

= =

=

=

=

              

 
Thus if B 2A= , λ3 a 2λ2= = , η 1 2⁄= , G θ( ) 1=  we get the Tersoff potential!
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Classical Si potentials

[One important source: Balamane, Phys. Rev. B 46 (1992) 2250]

• Because of the directional dependence of the bonds, all decent Si potentials have some sort of 
an angular dependence, and hence they are at least 3-body potentials.

• Some potentials have an explicit 3-body form, i.e. the potential has the shape: 

V V2 ri rj,( ) V3 ri rj rk, ,( )
i j k, ,
+

i j,
=

• These potentials are called by Balamane cluster-potentials. They typically also are explicit angular poten-
tials.

• In other potentials the angular dependence is hidden in the 2-body part so that there is no explicit V3  part. 

These are called by Balamane cluster functionals.
• The philosophy of the cluster functionals is similar to the EMT/EAM potentials: calculate a pair 

potential, but let its strength be affected by the environment. A common formulation is  
V Vrepulsive rij( ) bijVattractive rij( )+=  

which is the same as for bond-order potentials.  

• Here the attractive and repulsive parts themselves are pure pair potentials, but there is a coefficient bij  
which has an environment-dependence. The main difference to EAM is that although they can be cast in 
the form above, in them bij  has no angular dependence, whereas in the Si potential there must be one. 

• Hence in the Si potentials there also has to be a three-body loop  rij rik,( )
i j k, ,
  which gives the angles.
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Efficiency of semiconductor vs. metal potentials 

• Assume the number of atoms is N  and the average number of neighbours per atom is M
• A pair potential and an EAM potential is then O NM( )

• A three-body potential is O NM
2( )

• So it would appear like the Si potentials are a factor of M  slower than EAM potentials. 

• But this is most of the time not true in reality. This is because for covalent bonding, long-range 
interactions are weak compared to the nearest neighbour-ones, so it is often enough to only 
include nearest-neighbour interactions. So for Si M 4= . But in metals long-range interactions 
are important (e.g. for surface properties and to get the difference between the FCC and HCP 
phases right), so often M 50∼  in metals. 

• Because 42 < 50 the Si potentials with three-body terms may in fact be faster than EAM poten-
tials without one! 

• But there are additional funny effects. For some Si potentials the cutoff is set so that in the crys-
talline phase M 4= , but it increases strongly in a disordered (amorphous or liquid) phase. So 
the speed of the potential may be strongly affected by what phase of a material is simulated! 
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The Stillinger-Weber-potential

• Stillinger and Weber [Phys. Rev. B, 31 (1985) 5262] (SW) developed a potential, which 
describes fairly well both crystalline and liquid silicon - they in fact constructed it to give the 
melting temperature right. The potential has become quite popular over the years because it 
turned out to describe well several properties which it was not really designed to describe origi-
nally (such as point defect energies and surface properties).

• The potential is an explicit angular potential, and has the form 

V V2 ri rj,( ) V3 ri rj rk, ,( )
i j k, ,
+

i j,
=  

V2 rij( ) εf2 rij σ⁄( )=  
V3 ri rj rk, ,( ) εf3 ri σ⁄ rj σ⁄ rk σ⁄, ,( )=   . 

where V2 is the pair potential and V3  the three-body part. The fi  are 

f2 r( ) A Br p– 1–( )exp r a–( ) 1–[ ] r a<,
0 r a≥,




=  

f3 ri rj rk, ,( ) h rij rik θjik, ,( ) h rji rjk θijk, ,( ) h rki rkj θikj, ,( )+ +=    , 
where θjik  is the angle, which the vectors rij  and rik  make at the atom i  and the function h  is 

h rij rik θjik, ,( )
λexp γ rij a–( ) 1– γ rik a–( ) 1–+[ ] θjik

1
3
---+cos 

  2
      rij a  and rik a<<,

0                                                                                    rij a  or  rik a≥≥,





=   .

Introduction to molecular dynamics 2015           9. Potential models  for diamond and zincblende structures                                                                                                                                              18

The Stillinger-Weber-potential

• So, in practical calculation all atom triplets being within the cut-off radius from each other must 
be handled. 

• As a hypothetical example take the triangular lattice:

• Here the potential energy for one atom term takes the form: 

V 3V2 rnn( ) 6h rnn rnn 60
o, ,( ) 6h rnn rnn 120

o, ,( ) 3h rnn rnn 180
o, ,( )+ + += .

• Note that in this case the Stillinger-Weber would not work! 
• However, in the diamond lattice all the bond pairs of a single atom have the same angle.
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The Stillinger-Weber-potential

• The constants A , B , p , a , λ  and γ  are all positive and were determined by demanding that the 
diamond structure is the most stable one and that the melting point, cohesive energy and lattice 
parameter are about right. 

• According to rumours the potential was also fit to the elastic constants (which are reproduced 
fairly well), although the authors never stated this in the paper! 

• The actual parameter values are 
 

σ 2.0951Å= ,ε 2.1672eV= , 
A 7.0496= ,B 0.60222= , 
p 4= , a 1.80= , 
λ 21.0=  and  γ 1.20=   . 

• The melting point was fit to be almost exactly right with a rather dirty trick: the authors modified 
the cohesive energy to get the melting point close to the right value of 1685 K. The cohesive 
energy of the potential is 4.334 eV, when the right value is 4.63 eV. So this is a 7% mismatch. If 
this is corrected by direct scaling, the melting point will go wrong. 
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The Stillinger-Weber-potential

• The authors examined the structure of molten Si by comparing the maxima and minima of the 
structure factor S k( )  to measured values:

MD measured

1. maximum 2.53 2.80

1. minimum 3.25 3.25

2. maximum 5.35 5.75

3. maximum 8.16 8.50

4. maximum 10.60 11.20

 

• The potential describes fairly well melting and liquid Si. However, it is important to realize that 
the angle between bonds is ‘forced’ to the ideal tetrahedral angle with the cosine term 

θjikcos 1 3⁄( )+( )2 . This is not a good feature, because of the reasons given above for “explicit 

angular” potentials. 
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The Stillinger-Weber-potential

• However, SW describes the Si (001) surface better than the Tersoff potentials [Nurminen et al., 
Phys. Rev. B 67 (2003) 035405.] 
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The EDIP potential

• The EDIP-potential is fairly similar to the SW one, but it has been derived from an ab initio-cal-
culated database of the cohesive properties of Si both in the diamond and graphite phases. 

• The potential is: 

 

with the choice
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The EDIP potential

• So the main difference to SW is the environment-dependence in the form of the effective coordi-
nation number Z , which modifies the terms. 

• The potential is available in the web 
http://www-math.mit.edu/~bazant/EDIP/ 

including Fortran and C codes by which it can be evaluated efficiently.

• The parameter-values are: 

 

Introduction to molecular dynamics 2015           9. Potential models  for diamond and zincblende structures                                                                                                                                              24

The EDIP potential

• As required in a good fit, a large number of other 
properties have also been tested in the potential, 
the most important of which is that the diamond 
structure is the minimum of several common crys-
tal structures: 

• But note that EDIP does overestimate the energy 
of many other phases fairly much compared to 
DFT. 

• Among the best properties of the EDIP potential is 
that it reproduces the elastic constants very well, 
gives both good point defect, stacking fault and 
dislocation properties, and describes amorphous 
Si well. Also the melting point is described well, 
the potential predicts 1550 50±  K [Nord et al, PRB 
65 (2002) 165329], quite close to the experimental 
value of 1685 K. 

• The thermodynamical properties of EDIP-Si have 
been studied by P. Keblinski et al.,[Phys. Rev. B 
66 (2002) 064104.]
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The EDIP potential

• For example the radial distribution function 
of amorphous Si compared to experiments 
is reproduced fairly well: 

 

• The EDIP potential clearly is one of the best 
Si potentials available now, most tests of its 
properties have been quite favourable to it.  
 
 
 
 
 
 

• Another  Si potential is [Lenosky et al., 
Modelling and Simulation in Materials Sci-
ence and Engineering 8 (2000) 825]. This is a combination of EAM and SW models, which 
gives truly excellent fits to a large number of elastic constants, different structures and defect 
properties. However, it contains some questionable features (such as a negative electron den-
sity for some distances r ) so its transferability outside the parameter database to which it has 
been originally fit is questionable.
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Tersoff potential 

• The Tersoff potential [first good Si fit in Phys. Rev. B 38 (1988) 9902] is a cluster-functional and 
bond order potential which has an environment dependence and no absolute minimum at the 
tetrahedral angle. Tersoff based his potential on the ideas presented by Abell a few years ear-
lier. The Tersoff or more appropriately Tersoff-Abell formalism is probably the most widely 
used bond order potential formalism and has become the basis or inspiration for a huge number 
of potentials developed since then.  
 
Tersoff-like potentials are pure bond order potential motivated by the approach presented a few 
pages back in these notes, i.e. of the form: 
 

V Vrepulsive rij( ) bijkVattractive rij( )+=  

• The original Tersoff potential has the following form. The total energy is 
 

E
1
2
--- Vij
i j≠
=    , 

 
where  
 
Vij fC rij( ) aijfR rij( ) bijfA rij( )+[ ]=  .
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Tersoff potential

• The various terms have the following forms: 

repulsive part       fR r( ) Ae λ1r–=    , 

attractive part       fA r( ) Be λ2r––=   , 
 

potential cutoff function 

fC r( )

1 r R D–≤,

1
2
---

1
2
--- π

2
--- r R–( )

D
---------------- 

 sin– R D– r R D+< <,

0 r R D+≥,







=    , 

and 
bij 1 βnζij

n+( ) 1 2n⁄–=   , 

ζij fC rik( )g θjik( ) λ3
3 rij rik–( )3[ ]exp

k i j,≠
=   , 

g θ( ) 1 c2

d2
----- c2

d2 h θcos–( )2+
-----------------------------------------–+=    , 

aij 1 αnηij
n+( ) 1 2n⁄–=   and ηij fC rik( ) λ3

3 rij rik–( )3[ ]exp

k i j,≠
=   . 
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Tersoff potential 

• Here, as above, the distance between atoms i  and j  is rij  and the angle between bonds ij  and 

ik  is θjik .

• Inspection of the terms shows that there is an angular dependence, but because is embedded 
inside the bij  term, it does not give a fixed minimum angle between bonds. 

• The relation to the bond order potential basic formalism is as follows: if  n 1= , c 0= , β 1= , and 
λ3 0=  we get the “pure” bond order potential with  
 

bij 1 fC rik( )
k i j,≠
+

1 2/– 1

Zi
---------∝= .     

 
Note that the sum excludes atom j  that is taken into account by adding one. 
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• Tersoff could not find a parameter set A B λ1 λ2 α β n c d h λ3 R D, , , , , , , , , , , ,{ }  which would describe 

well both the reconstructed Si surfaces and its elastic properties. Because of this he gave two 
parametrizations: Si C, which describes well elastic properties, and Si B, which gives good sur-
face properties. Tersoff’s Si A is the original potential which proved to be unstable. Si(B) is also 
known as Tersoff 2 and Si(C) as Tersoff 3.

Si(B)/T2 Si(C)/T3

A  (eV) 3264.7 1830.8

B  (eV) 95.373 471.18

λ1  (Å-1) 3.2394 2.4799

λ2  (Å-1) 1.3258 1.3722

α 0.0 0.0

β 0.33675 1.0999×10-6

n 22.956 0.78734

c 4.8381 1.0039×105

d 2.0417 16.218

h 0.0 -0.59826

λ3  (Å-1) 1.3258 1.7322

R  (Å) 3.0 2.85

D
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 (Å) 0.2 0.15

Si(B)/T2 Si(C)/T3
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Tersoff potential

• The parameter λ3  is an interesting case: it does not affect the equilibrium properties at all, only 

properties far from equilibrium. Tersoff himself said it can be set to 0, and this is often done. 
However, in far-from-equilibrium studies it has proven to be best to include λ3 .  

• Note also that since α 0= , the two last equations in the potential form are meaningless (give 
exactly 1). Although Tersoff have these two equations, I am not aware of any case where they 
would actually have been used. 
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Tersoff potential

• Below is a comparison of the energies and bond lengths obtained 
with Tersoff for different coordination numbers compared to exper-
imental and ab initio-calculations. 

Why should anyone care about e.g. 
12-fold coordinated Si?  
Although some coordination numbers 
may not exist in the ground state, they 
may still be present e.g. in defects, 
surfaces and metastable molecules.
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Comparison of Si potentials

• Balamane & co have done an extensive comparison of Si potentials, looking e.g. at bulk, sur-
face, defect and small molecule properties. [H. Balamane, T. Halicioglu, W. A. Tiller, Phys. Rev. 
B 46 (1992) 2250.]. Unfortunately EDIP was not part of this comparison. 

• Included were the SW, and Tersoff potentials Si(B) [T2] and Si(C) [T3]. Also included were the 
Biswas-Hamann potential (BH) [PRL 55 (1985) 2001, PRB 34 (1986) 895.], the Tersoff-like 
Dodson potential [DOD; Phys. Rev. B 35 (1987) 2795.] and the potential by Pearson et al. 
(PTHT; Cryst. Growth. 70 (1984) 33.]. 
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Comparison of Si potentials

• Below is the pair term of the potentials V2 r( ) . The spheres are ab initio results. 

 

• We see that except for DOD the potentials are fairly similar. BH and PTPH have a long range 
compared to the others. 
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Comparison of Si potentials

• Here is the energy of three Si atoms/atom: 

    

θ

rNN

 

• Note that the energy becomes fairly large for small angles for all the potentials.  
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Comparison of Si potentials

• In the adjacent picture the cohesive energies of different structures are shown, compared to 
DFT calculations. 
• Note that PTHT predicts that the simple hexagonal struc-
ture is the most stable one. 

DIA = diamond 
HD = hexagonal diamond 
BC8 = bc-8 
BTIN = β−tin 
SH = hexagonal 
SC = cubic 
BCC = body-centered cubic 
HCP = hexagonal close-packed 
FCC = face-centered cubic 
GS = graphite

β-tin

HD (wurtzite) BC8

Good source of crystal structures:  
http://cst-www.nrl.navy.mil/lattice/index.html
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Comparison of Si potentials

• And below are the elastic properties of the potentials

experiment PTHT BH SW DOD T2 T3

 B 0.99 2.788 1.692 1.083 0.884 0.98 0.98

 B' 4.2 7.82 5.66 2.93 4.27 4.58 4.30

 c11
1.67 2.969 2.042 1.616 1.206 1.217 1.425

 c12
0.65 2.697 1.517 0.816 0.722 0.858 0.754

 c44
0.81 0.446 0.451 0.603 0.659 0.103 0.690

 c44
0 1.11 2.190 1.049 1.172 3.475 0.923 1.188

ζ 0.74 1.03 0.74 0.63 1.06 0.83 0.67

νTA X( ) 4.4 4.5 5.6 6.7 2.7 9

νTO X( ) 13.9 19.3 14.5 15.9 15.3 16

νLOA X( ) 12.3 13.8 12.2 13.1 11.7 12

νLTO Γ( ) 15.3 18.3 16 18.1 16.5 16

 
 
 

, ,   
 
 
 
 
 
 
 
 
 
 
 

• We see that T3 and SW give good 
elastic properties. Lattice vibra-
tions are described well by the BH 
potential.

B[ ] cij[ ], Mbar= ν[ ] THz= B'
Pd

dB=
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Comparison of Si potentials

• And here are a bunch of energies for 
lattice defects.

 
= vacancy 

=split vacancy 
 

=tetrahedral interstitial 
 

=hexagonal interstitial 
 

=bond-centered interstitial 
 

=split interstitial.  

The first number is the energy of the ground state, the second the energy of the ideal 

(non-relaxed) structure, and the third gives the radial relaxation of the nearest neigh-

bours in percent (negative value inwards, positive outwards). 

* Note that Balamane had an error here, this is determined by K. Nordlund. 
 
 
 

• The table tells predominantly that the short-range 
potentials (SW, DOD, T2, T3) describe defects best. 
SW is good in that it predicts that the simple vacancy 
and split interstitial are the ground state defects, which 
agrees with ab initio results for uncharged defects.

V

VS

IT

IH

IB

IS

DFT PTHT BH SW DOD T2 T3

 V 3-4 0.77 2.12 2.82 2.57 2.81 3.70

 4.5 2.50 3.83 4.63 3.23 2.83 4.10

 38.5 -25.7 -24 14.7 1 10.5

 VS
4.19 2.83 2.30 3.36 4.17 1.40 3.50

 5.01 4.53 4.72 6.00 8.12 4.15 10.5

 -9.5 -15.9 -12.5 -11.8 -14.5 -14.9 -8.8

 IT
5-6 0.63 1.56 5.25 3.03 5.03 3.45

 1.91 4.57 12.21 5.00 5.85 6.92

 3.8 8 9 9.1 7.3 10.5

 IH
4-5 0.84 2.89 6.95 2.61 3.67 4.61

 5.32 9.31 17.10 5.1 1 5.39 8.22

 7.4 11.5 14.7 7.3 7.6 10.2

 IB
4-5 1.92 2.54 5.99 4.39 2.84 5.86

 IS
1.47 3.30 3.66* 3.49 2.32 4.70



Introduction to molecular dynamics 2015           9. Potential models  for diamond and zincblende structures                                                                                                                                              39

Comparison of Si potentials

• Finally a table of the properties of the Si (100) 
surface:

DFT PTHT BH SW DOD T2 T3

1×1

γ 2.5 1.805 2.080 2.315 1.779 2.015 2.126

σxx
2.535 1.176 1.421 0 0 0 0

σyy
0.855 2.363 1.683 0 0.145 0.625 -0.236

1×1 relaxed

Δγ -0.03 -0.077 -0.027 0 -0.085 -0.004 -0.037

 σxx
-0.427 0.848 0 0.515 0.023 0.076

 σyy
-2.176 0.273 0 -2.775 0.080 -1.693

Δ -5.1 -7.0 -5.5 0 -10.2 -2.3 -7.2

2×1

Δγ -0.93 -0.690 -0.709 -0.899 -0.714 -1.258 -0.759

σxx
0.693 -0.808 0.669 1.167 -0.094 0.703 0.367

σyy
-1.945 -1.731 0.008 -0.051 -1.709 0.190 -1.236

Δ -24.4 -23.3 -13.3 -8.3 -22.9 -14.6 -15.6

DFT PTHT BH DOD T2 T3

c2×2

-0.839 -0.703 -0.824 -0.720 -1.143 -0.753

-1.356 0.898 1.691 0.274 1.517 0.865

-1.419 0.851 0.574 -0.866 0.567 -0.344

Δγ

σxx

σyy

Si 1×1 Si 2×1

Si c(2×2): buckling of dimers

 
=surface energy (eV) 

=change in surface energy from 1x1 
=surface tension tensor (  in the direction of the dimer 

        bond and  in the direction of the dimer row) 
= distance change between 1. and 2. layer (%).

γ
Δγ
σii x

y
Δ
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Comparison of Si potentials

• The conclusions of the authors are that no potential is clearly superior. Different potentials 
describe different properties well. 
 
SW, T3 and to some extent DOD are good for elastic properties 
 
T3, SW, DOD, T2 and BH give fairly good values for the point defects, to the extent this is pos-
sible to judge considering that the experimental values are not known very well either! 
 
The (100) surface is described best by BH, SW and T3. No potential describes the complicated 
reconstructions of the (111) surface. 

• EDIP was not part of this comparison, but it is clear it would be among the best at least for the 
elastic and defect properties. 
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MEAM models 

• There also exist so called MEAM (modified EAM) models for Si. This is basically EAM to which an angular 
term has been added:  

Etot Fi ρi( )
i


1
2
--- Vij rij( )
ij
+=  

ρi ρa rij( )
j i≠
 ρa rij( )ρa rik( )g θijkcos( )

k j, i≠
+=  

• Baskes has developed some models, but is apparently not quite satisfied with them. 

• Applied (in addition to metals) to e.g. silicides (TaSi, MoSi; electronic components!)
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Potentials for semiconductor alloys

• The alloys of Si are something of a hot topic.  

• Silicon carbide is interesting both for its mechanical hardness as well as its possibilities in high-
voltage or high-current electronics.  

• Silicon-germanium compounds (Si1-xGex) again are very interesting 

because by adding some 20 % Ge to Si one can get the electron mobil-
ity (and hence integrated circuit speed) about as high as in GaAs, about 
twice the value in Si. But because the device is still based on Si, one 
does not have to change to the more complicated GaAs manufacturing 
technology. 

Si0.8Ge0.2

Si

Si

Si0.8Ge0.2C0.02• In Si1-xGex-compounds there is, however, the problem that their lattice 

constant does not match that of Si (on top of which the SiGe is grown). 
The latest promising word is then Si1-x-yGexCy where x ~ 0.2 and y ~ x/

10. That is, only a few years ago someone realized that by adding a lit-
tle bit of carbon one can get a perfect lattice match to Si. 

• For instance because of this it is interesting to have models for SiGe-, SiGeC and SiC-com-
pounds. 
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Potentials for semiconductor alloys

• The Stillinger-Weber potential has two Ge-parametrizations [Ding and Andersen, Phys. Rev. B 
34 (1986) 6987 and Wang and Stroud, Phys. Rev. B 38 (1988) 1384]. Out of these, the Ding 
and Andersen potential has: σ 2.181 Å=  and ε 1.93 eV= ; the other parameters are identical to 
Si. Wang-Stroud is like Ding-Andersen except that λ 31= . 

• One can construct a SiGe compound potential simply by taking the geometric average of the Si and Ge 
parameters: 
 

σSiGe σSiσGe=

εSiGe εSiεGe=

λSiGe λSiλGe=

 

• There is also actually a SW-parametrization for C [Pailthorpe and Mahon, Thin Solid Films 192/

193 (1990) 34], but this should normally not be used - since SW has a minimum for sp3 bond-

ing, but carbon also can be favourably in the triply bonded graphite sp2 configuration, with bond 

angles of 120o°, the SW parametrization is of very limited usability. 

• But in describing the lattice compensation of Si1-x-yGexCy for y ~ 0.01 the combination of the 

three SW potentials actually does correctly reproduce the good lattice match to Si.
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Potentials for semiconductor alloys

• Tersoff has also developed potentials for SiC and SiGe [PRB 39 (1989) 5566.]. The formalism is 
almost the same as for his Si potential: 

E
1
2
--- Vij
i j≠
=   ,  Vij fC rij( ) fR rij( ) bijfA rij( )+[ ]=   , 

fR rij( ) Aije
λijrij–=   ,  fA rij( ) Bije

μijrij––=   , 

fC rij( )

1 rij Rij≤,

1
2
---

1
2
--- π

rij Rij–

Sij Rij–
-------------------
 
 
 

cos+ Rij rij Sij< <,

0 r Sij≥,










=   , 

bij χij 1 βi
niζij
ni+( ) 1 2ni⁄–

=   ,  ζij fC rik( )ωikg θijk( )
k i j,≠
=   , 

g θijk( ) 1
ci
di
----
 
 
  2 ci

di
2 hi θijkcos–( )+

----------------------------------------------
 
 
  2

–+=   
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Potentials for semiconductor alloys

• Here the indices i  and j  on the parameters denote the atom types. The mixed parameters 
λij μij Aij Bij Rij Sij, , , , ,  are obtained by interpolation from the elemental parameters: 

λij
λi λj+

2
----------------=   ,  μij

μi μj+

2
----------------=   ,  Aij AiAj=   ,  Bij BiBj=   , Rij RiRj=   ,  Sij SiSj=   . 

• A new parameter is χ  by which the mixed potential can be finetuned. Tersoff set χii 1=  and 

χij χji=  , so there is only one free parameter for the mixed interactions, all the others are deter-

mined from the elemental parameters. Moreover, ωik could be used to finetune the mixed inter-

actions but Tersoff set ωik 1=  
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Potentials for semiconductor alloys

• The parameter values for C, Si and Ge were obtained from a fit to the properties of different 
structures, and the finetuning parameters χ  were obtained from the cohesive energies of SiC 
and (hypothetical) zinc-blende SiGe. 

C Si Ge

A  (eV) 1393.6 1830.8 1769

B  (eV) 346.7 471.18 419.23

λ  (Å) 3.4879 2.4799 2.4451

μ  (Å) 2.2119 1.7322 1.7047

β 1.5724×10-7 1.1000×10-6 9.0166×10-7

n 0.72751 0.7873 0.75627

c 3.8049×104 1.0039×105 1.0643×105

d 4.384 16.217 15.652

h -0.57058 -0.59825 -0.43884

R  (Å) 1.8 2.7 2.8

S  (Å) 2.1 3.0 3.1

            χC-Si 0.9776=     χSi-Ge 1.00061=

The Si parameters are just Si(C) without λ3 .
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Potentials for semiconductor alloys

• The potential gives the following properties for SiC:

Tersoff Expt.

a  (Å) 4.32 4.36

B  (Mbar) 2.2 2.2

c11  (Mbar) 4.2 3.6

c12  (Mbar) 1.2 1.5

c44  (Mbar) 2.6 1.5

• Tersoff also calculated the energies for a few stoichiometric defects 
(eV):

Tersoff DFT

VSi VC+ 7.4 12.7

CSi SiC+ 7.2 8.4

SiTC CTSi+ 22.6 23.3

SiTSi CTC+ 23.2 26.0

CTC CTSi– 3.0 2.4

Here  
 

 is the Si vacancy, 
 

 is a carbon atom 
on an Si site, and  
 

 a C atom on a 
tetrahedral site, sur-
rounded by C atoms. 

VSi

CSi

CTSi
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Potentials for semiconductor alloys

• The potential predicts the properties of SiC fairly well, especially considering that the potentials 
has only one parameter which is really fit to the properties of the compound (χ ). And even this 
parameter is fairly close to 1. Only the shear modulus c44  and the formation energies of vacan-

cies are pretty bad. 

• One problem here is that in reality SiC is partly ionic in its bonding, which is not accounted for at 
all in the Tersoff potentials. One potential where this is taken into account is [Shimojo, Phys. 
Rev. Lett. 84 (2000) 3338] but this potential uses explicit angles so it is also problematic 

• Nowadays also a wealth of reparametrizations exist for the Tersoff formalism SiC potential - it 
seems almost every group working on SiC has made their own parametrization...
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C potentials

• Constructing a potential for elemental C is complicated (as noted above) because it has two 
structures which are practically identical in energy: diamond and graphite. Both have a cohesive 
energy of about 7.4 eV. The structure of graphite is: 
  

• As noted above, this situation clearly can not be described with an explicit angle potential, but a 
bond order potential like Tersoff can handle this. 
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C potentials

• The Tersoff parametrization for C does, however, describe both bonding types well [Tersoff, 
Phys. Rev. Lett. 61 (1988) 2879], and is clearly the most used C potential in the materials phys-
ics community.

• But it describes the graphite-to-diamond potential poorly. But simply by increasing the parame-
ter S  in the potential to 2.46 Å [Nordlund et al., Phys. Rev. Lett. 77 (1996) 699] one can make 
this transition much better described: 
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C potentials 
 
 
 
 
 

 
                   

Fahy et al. Phys. Rev. B 34 (1986) 1191.
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C potentials

• But there is a significant problem with the Tersoff C potential: because of its short cutoff, it does 
not describe the interaction between graphite layers at all. 

• There are two good solutions to this. 

• Nordlund et al. have made an extension to the Tersoff potential which does describe the interaction 
between graphite layers well [Phys. Rev. Lett. 77 (1996) 699]. However, the additional terms are very 
weak except precisely for configurations very close to the flat graphite layers, and do not have a deep 
physical motivation 

• A more general formulation which includes Lennard-Jones-like long-range potentials for many carbon 
bonding types (including polymers) by Stuart et al. [J. Chem. Phys. 112 (2000) 6472].



Introduction to molecular dynamics 2015           9. Potential models  for diamond and zincblende structures                                                                                                                                              53

Ge-potentials

• As we saw above, pure Ge has two almost identical SW-parametrizations, and the Tersoff 
parametrization, which are all fairly good in the crystalline phase. 

• But they all severely overestimate the melting point of Ge, giving about 2500 - 3000 K when the 
experimental value is 1210 K. 

• Nordlund et al. tried to solve this in the same way as Stillinger and Weber obtained the right 
melting point for Si, i.e. decreasing the cohesive energy [Phys. Rev. B 57 (1998) 7556]. By 
decreasing the cohesive energy in the SW potential by 18 % (i.e. setting ε = 1.56 eV) they 
obtained a melting point 1230 ± 50 K, and at the same time the threshold displacement energy 
and mixing coefficient (important in ion irradiation physics) obtained reasonable values. 

• But it is clear that this kind of solution is problematic. 
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Potentials for compound semiconductors

• Compound semiconductors are an interesting alternative to Si in some applications, especially 
opto-electronics. 

• A Keating-type potential [Schabel and Martins, Phys. Rev. B 43 (1991) 11873] has been 
designed which can describe a large variety of semiconductors when the atoms are close to the 
ideal sites, but the model is absolutely terrible when the atoms are farther because it has a a 

harmonic (“r2 ”)-potential well. 

• For GaAs there is the Smith potential, based on the Tersoff formalism [Nucl. Instr. Meth. Phys. 
Res. B 67 (1992) 335], which uses all the normal Tersoff parameters for Ga-Ga, Ga-As and As-
As separately, except that λ3 0= . But this potential has a vanishingly small angular term, and 

hence all shear moduli are almost exactly 0. 

• Sayed started from the Smith parametrizations, but fitted anew the Ga-As-interactions, and con-
structed an AlAs-potential. The GaAs potential is terrible because the zincblende-structure is 
not its ground state! However, by setting λ3 = 0 it becomes fairly decent. 

• Ashu made a potential for InAs following Sayed’s approach, but this potential even has the 
wrong lattice spacing! However, Janne Nord has later made a reparametrization which 
describes InAs stably [Nordlund et al., Comput. Mater. Sci. 18 (2000) 283]. 
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Potentials for compound semiconductors

• There also exist a tight-binding-based Tersoff-like parametrization by Conrad et al, [Phys. Rev. 
B 58 (1998) 4538] but this potential is terrible far from the ground state, it collapses into a state 
with at least a factor of 2 lower energy than the correct zincblende structure. 

• The most recent approach is a modified Tersoff-like parametrization which gives the correct 
ground states for Ga, As and GaAs, as well as good melting properties for all three [Albe et al., 
Phys. Rev. B 66, 035205 (2002)]. The only major problem is As-rich surfaces and defects. 

• There is also a potential for GaN in this formalism.
• Modeling also like-ion interactions: e.g. Ga and As has many complex structures  
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Potentials for compound semiconductors

• Ground state of the Sayed potential for GaAs: 
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Bond order potentials for metals and compounds

• As noted in the description of bond-order potentials above, they are actually equivalent to the 
basic EAM form. Hence nothing actually prevents from constructing metals potentials from a 
bond order, e.g. Tersoff-like form. 

• People in the Nordlund and Karsten Albe groups have done this, so far for Be, Fe, Cr, Au, Pt 
and W, obtaining potentials which are at least as good as the common EAM-like potentials for 
the same metals and a nunmber of their carbide and oxide compounds, showing that the bond 
order concept carries further even to complex compounds. The basic methodology and PtC part 
is published in [Albe et al., Phys. Rev. B 65, 195124 (2002)].
• Other references to these mixed potentials: 

• Au: M. Backman, N. Juslin, and K. Nordlund. Eur. Phys. J. B, 85:317, 2012.
• GaN: J. Nord, K. Albe, P. Erhart, and K. Nordlund, Journal of Physics: Condensed Matter 15, 5649 (2003).
• WCH:  N. Juslin et al, J. Appl. Phys. 98, 123520 (2005).
• ZnO: P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Muller, and K. Albe, J. Phys.: Condens. Matter 18, 6585 (2006).
• BeCWH: C. Björkas et al: : Condens. Matter 21, 445002 (2009); J. Phys.: Condens. Matter  22, 352206 (2010).
• FeCrC: K. O. E. Henriksson, C. Björkas, and K. Nordlund, Enabling atomistic simulations of stainless steels: A bond-

order potential for Fe-Cr-C system, J. Phys. Condens. Matt. 25, 445401 (2013).
• FeH: Kuopanportti et al, Interatomic Fe–H potential for irradiation and embrittlement simulations, Comput. Mater. Sci. 

111, 525 (2015).
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Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Potential 
models for

molecules (and 
hydrocarbons)
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Molecular interaction models

• Since molecules are bonded by covalent bonds, at least angular terms are needed, 
• In many cases many more complicated terms as well: e.g. carbon chains the difference between “single” 
and “double” bonds often is important  at least a four-body term is needed.  

• To describe complex molecules a large set of force fields have been developed.
• Molecular mechanics: use of force fields, no reactions (i.e. bond breaking or creation)
• Fixed neighbor topology (except for so called non-bonded interactions). 

• The total energy of a molecule can be given as
Ebond

Eangle

Etorsion

Eoop

 
E Ebond Eangle Etorsion Eoop Ecross Enonbond+ + + + +=  

Ebond : energy change related to a change of bond length (V2 ) 

Eangle : energy change associated with a change in the bond angle,(V3 ) 

Etorsion : torsion, i.e. energy associated with the rotation between two parts  
of a molecule relative to each other (also termed dihedral) 

Eoop :    “out-of-plane” interactions, i.e. the energy change when one part  
of a molecule is out of the plane with another (keeps the molecule planar) 

Ecross : cross terms between the other interaction terms 

Enonbond : interaction energies which are not associated with covalent bonding  (e.g. 

ionic or van der Waals terms) 

• In the following we describe the terms, using notation more common in chemistry rather than the 
physics notation used earlier on the course.
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Molecular interaction models

• The term Ebond

• This term describes the energy change associated with the bond length. It is a simple pair potential, and 
could be e.g. a Morse or LJ potential.
• At its simplest, it is purely harmonic, i.e. 

                      Ebond
1
2
---kb b b0–( )2

bonds
=  

where b  is the bond length. 
• If we write this term instead as  

                     Ei
1
2
---k rij r0–( )2

j
=  

we see that it is the same thing as the pair potentials dealt with earlier.
•  

Can be good enough in problems where we are always close to equilibrium, since any 
smooth potential well can always be to the first order approximated by a harmonic 
well. 

• But harmonic potentials obviously can not describe large displacements of atoms or 
bond breaking reasonably. 

• In solids, the harmonic approximation corresponds to the elastic regime, i.e. the one 
where stress is directly proportional to the strain (Hooke’s law). 

• A historical footnote is that Hooke presented the law already in the 1678 as “Ut ten-
sio, sic vis.”1 so it did not originally have to do much with interatomic potentials... 
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Molecular interaction models

• To improve on the bond model beyond the elastic regime, one can add higher-order terms to it, e.g. 
 

Ebond K2 b b0–( )2
K3 b b0–( )3

K4 b b0–( )4
+ +

bonds
=  

• Larger strain can be described, but not bond breaking: if here  b ∞→  thenalso E ∞→  => bonds cannot 
break 

• The familiar Morse potential 

Ebond Db 1 e
a b b0–( )–

–
 
 
 

2

bonds
 Db e

2a b b0–( )–
2e

a b b0–( )–
– 1+

 
 
 

bonds
= =          

This is shifted in  axis 
so that 

.

E

Ebond b0( ) 0= 

is much used to describe bond energies.  

1. The Power of any spring is in the same proportion with the Tension thereof.
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• It is good in that E constant→  when b ∞→  so it can describe bond breaking.  

• But on the other hand it never goes fully to 0, which is not quite realistic either as in 
reality a covalent bond does break essentially completely at some interatomic distance.  
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Molecular interaction models

• Angular terms Eangle

• The angular terms describe the energy change associated with two bonds forming an angle with each 

other. Most kinds of covalent bonds have some angle which is most favoured by them - for sp3 hybridized 

bonds it is ~ 109o, for sp2 120o and so on. 

• Like for bond lengths, the easiest way to describe bond angles is to use a harmonic term like  

Eangle
1
2
---Hθ θ θ0–( )2

angles
= , 

where θ0  is the equilibrium angle and Hθ  a constant which describes the angular dependence well. This 

may work well up to 10o or so, but for larger angles additional terms are needed.  

• A typical means for improvement is, surprise surprise, third-order terms and so forth, for instance 

Eangle H2 θ θ0–( )2
H3 θ θ0–( )3

+

angles
=  

• An example: by taking the simplest possible bond length and angular terms, it is 
already possible to describe one water molecule to some extent:

H H

O

b b'

θ 

EH2O KOH b bOH
0

–( )
2

KOH b' bOH
0

–( )
2

KHOH θ θHOH
0

–( )
2

+ +=  

where b  and b'  are the lengths of the two bonds and θ  the angle between them. 



Introduction to atomistic simulations 2015         10. Potential models  for molecules and hydrocarbons                                                                                                                                              7

Molecular interaction models

• Torsional terms Etorsion  

• The bond and angular terms were already familiar from the potentials for solids. In the physics and chem-
istry of molecules there are many important effects which can not be described solely with these terms. 

• The most fundamental of these is probably torsion. By this, the rotations of one 
part of a molecule with respect to another is meant. A simple example is the rota-
tion of two parts of the ethane molecule C2H6 around the central C-C carbon 
bond. 

• Torsional forces can be caused by e.g. dipole-dipole-interactions and bond conju-
gation. 

• If the angle between two parts is described by an angle φ, it is clear that the function f which describes the 
rotation should have the property f φ( ) f φ 2π+( )= , because it is possible to do a full rotation around the 
central bond and return to the initial state. The trigonometric functions sin  and cos  of course fulfil this 
requirement, so it is natural to describe the torsional energy with a a few terms in a Fourier series 
 

Etorsion V1 1 φ( )cos+( ) V2 1 2φ( )cos+( ) V3 1 3φ( )cos+( )+ +=  
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Molecular interaction models

• Out-of-plane terms Eoop

• With the out-of-plane-terms one describes the energy which in (some cases) is associated with the dis-
placement of atoms out of the plane in which they should be. This is relevant in some (parts of) molecules 
where atoms are known to lie all in the same plane. The functional form can be rather simple,  

Eoop Hχχ2

χ
=  

where χ  is the displacement out of the plane.

• Cross terms Ecross

• The cross-terms are functions which contain several of the above-mentioned quantities. They could e.g. 
describe how a stretched bond has a weaker angular dependence than a normal one. Or they can 
describe the relations between two displacements, an angle and a torsion and so one.  

• Non-bonding terms Enonbond

• With the non-bonding terms all effects which affect the energy of a molecule but are not covalent bonds 
are meant. These are e.g. van der Waals-terms, electrostatic Coulomb interactions and hydrogen bonds. 
For this terms one could thus further divide 

Enonbond EvdW ECoulomb Ehbond+ +=  

• The van der Waals term is often a simple Lennard-Jones-potential, and ECoulomb  a Coulomb potential for 

some, usually fractional, charges qi . 
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Molecular interaction models

• If all of the above are included except for hydrogen bonds, the total energy expression can for 
instance look like

Ebond Eangle Etorsion

Eoop

Ecross

EvdW ECoulomb

 

• There are many popular force fields in the literature: 
AMBER, CHARMM, MM2, MM3, MM4, ... 

• GROMACS is a GPL’ed MD code able to use various force fields.
• Home page: http://www.gromacs.org/ 
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Brenner potential

• The Brenner potential [D. W. Brenner, Phys. Rev. B 42 (1990) 9458] is a ‘simple’ potential for 
hydrocarbons, which is based on the Tersoff potential but developed further from this.  

•  The ideas behind the potential show how information on chemical bonding can be added in a well-moti-
vated way to a classical potential.  

• The Brenner potential is also attractive in that it can describe chemical reactions, which the potentials with 
harmonic terms can not. 

• The basic Tersoff potential contains a bonding term Ebond  and an angular term Eangle . But these can not 

describe alone e.g. conjugated bonds.  

• The issue here can be understood as follows. Consider first graphite:

C

CC

C

C

C

C

CC

C

C

C

CC

CC

 

• Here all the carbons have an identical local neighbourhood. Because carbon has 4 outer electrons, but 
only three bonds, every bond has 1 1/3 electrons.
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Brenner potential

• Then consider the following molecule: 

C

H3C

H3C

CH3

C

CH3

 

• Here there is a double bond between the two C atoms marked in blue. But the local neighbourhood of 
these two atoms is identical to the two C atoms in blue in graphite. Because the Tersoff potential only 
accounts for the nearest neighbours, it describes the middle bond here in the same way as the bonds in 
graphite, although in reality there is a clear difference in bond character, strength and length. 

• To improve on problems like this, Brenner added terms which depend on the chemical environment into 
the Tersoff potential. 

• Brenner starts with the Tersoff potential 
 

 
 
and defines the repulsive and attractive parts VR  and VA  just like Tersoff. But the environment-depen-

dence obtains additional parts.  
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Brenner potential

• Bij  is now: 
 

/2
 

 
where  

 

• The first part is almost as Tersoff’s formulation (except no power of three in the exponential), but the Hij  

and Fij  are new. Here Ni
H( )

 are the number of H neighbours of one atom, Ni
C( )

 the number of C neigh-

bours of one atom, and Ni
t( )

 the total number of neighbours. The number of neighbours is calculated by 

utilizing the normal Tersoff cutoff-function 
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Brenner potential

• The sums over fij  thus gives an effective number of neighbours (coordination!): 

• The values of Ni
t( )  can be used to deduce whether some C atom is part of a conjugated system. If any C 

atom has even one neighbour which does not have 4 neighbours, it is interpreted as conjugated. 

(because all quantities are continuous, the precise requirement is in fact Ni
t( )

4< )
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Brenner potential

• The continuous quantity Nij
conj

 which describes whether a bond ij  is conjugated is calculated as

                            
• So if one carbon atom has exactly 4 bonds we get  

xik 3= F xik( ) 0 Nij
conj 1= = .

• If the bond on the other hand is conjugated, Nij
conj

2≥ . 

• The remaining question is how to form the functions Fij Ni
t( )

Nj
t( )

Ni
conj, ,( )  and Hij Ni

H( )
Ni

C( ),( )  ?
• Brenner does this simply by fitting into a large set of experimental data. As many as possible of the values 
for integer indices are set to some values directly derived from experiments, and thereafter spline interpo-
lation is used to interpolate values smoothly for non-integer arguments.
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Brenner potential

• For instance, the values for integer arguments determined in version 1 of the potential for the function H  are:
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Brenner potential

• And for function F :

• In addition, Brenner also presented another parametrization of his potential.
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Brenner potential

• Crucial here are not the exact values, but the principle used: that as many parameters as possible are set 
to well-defined experimental quantities. Also the H values are largely derived from experimental data: 
 

• Also the parameters for pure carbon were refitted by Brenner. 

• Brenner tested his potential by calculating atomization energies for a large group of simple hydrocarbons. 
The results are listed on the next page. 

• The potential was also shown to describe well the reconstructed and H-terminated diamond (111) surface 
and molecules chemisorbed on the surface.
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Brenner potential 
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Brenner potential
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Brenner potential

• Later Murty and Atwater [Phys. Rev. B 51 (1991) 4889] have made a Si-H version of the Brenner poten-
tial, and Beardmore and Smith [Phil. Mag. A 74 (1996) 1439] a combined C-Si-H-version. 

• Brenner himself has later added a torsional term to the potential, and at least two groups have added 
long-range interactions (intermolecular interactions) into it: [Stuart et al., J. Chem. Phys. 112 (2000) 6472] 
and [Che et al., Theor. Chem. Acc. 102 (1999) 346]. 
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Brenner potential

• Example application: Beardmore and Smith examined in their paper how a fullerene C60 hits an Si sur-
face.
• Case I: 250 eV C60 → virgin Si, incoming angle 80o i.e. the fullerene forms bonds with the surface and rotates along it 

for a while (note the periodic boundary conditions).
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Brenner potential

• But if the Si-surface is H-terminated (all dangling bonds are filled with a H) the behaviour changes: 
Case II: 250 eV C60 → H-terminated Si, 80o. 

So the H protects the surface such that only a couple of bonds are formed with the surface, and the fuller-
ene bounces back almost impact, having only taken up one Si atom.
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Brenner potential

• Case III: 250 eV C60 → doubly H-terminated Si, 80o

• So now the protective H layer is so thick that there are no C-Si bonds formed at all, and the fullerene bounces back 
intact.
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Stuart potential

• Long range interactions are important also in graphite and in multiwalled carbon nanotubes (MWCNTs) 

• Stuart et al. [J. Chem. Phys. 112 (2000) 6472] used the Lennard-Jones potential to 
model the dispersion and intermolecular interaction: 
 

              Vij
LJ

r( ) 4εij

σij
r

------- 
 

12 σij
r

------- 
 

6
–=  

• However, LJ should be switched off when molecules approach

• Switching depends on interatomic distance [S tr rij( )( ) ], bond order 

[S tb bij( )( ) ], and connectivity [Cij ]: 

1

2

3

4

5

Connectivity: no LJ interaction 
among 1,2,3,4, LJ possible be-
tween 1 and 5 

 

              Eb VR rij( ) BijVA rij( ) Eij
LJ

+ +[ ]
j i>


i
=  

 
             

Eij
LJ

S tr rij( )( )S tb bij( )( )CijVij
LJ

rij( ) 1 S tr rij( )( )–[ ]CijVij
LJ

rij( )+=  

• For C-C interaction σij 3.40 Å=  (graphite interlayer distance)  large neighbor lists (rcutoff 11 Å≈ )! 
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Stuart potential

• Example: Load transfer between shells in MWCNTs [M. Huhtala et al., Phys. Rev. B 70 (2004) 045404] 

    

F

Intershell bond         

No intershell bonds

Defect type Force (nN)

Single vacancy 0.08—0.4

Two vacancies 6.4—7.8

Intershell interstitial 4.9—6.3

Intershell dimer 3.8—7.3



Introduction to molecular dynamics 2015          11. Potential models for ionic compounds                                                                                                                                             1

Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Potential 
models ionic 
compounds
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Potentials for ionic compounds
• There is a wide range of materials where ionic interactions are important:

• In hard condensed matter many, if not most, compounds have at least some degree of ionicity.
• Partial ionic charges are also very important for organic materials 

• In ionic compounds one can simply describe the long-range interaction with a Coulomb pair 
potential. But one should add a short-range interaction VSR  to describe repulsion at short dis-

tances: 
 

V rij( ) VSR rij( )
z1z2e2

4πε0rij
------------------+= ;  

• The charges zi  are often fractional charges, depending on the degree of ionicity of a material (e.g. NaCl: 

1, GaN: 0.5, GaAs: 0.2, Si 0.0).  

• VSR  contains the repulsion of the electron shells and possibly an attractive van der Waals-interaction. 

Common forms:

• Buckingham:                VSR r( ) Ae r ρ/– C

r6
-----–=

• Born-Huggins-Mayer: VSR r( ) Ae B r σ–( )– C

r6
----- D

r8
-----––=   

• Morse:                          VSR r( ) De 2α r r0–( )– 2De α r r0–( )––=
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Potentials for ionic compounds
• The repulsion is usually significant only for nearest neighbours, and the van der Waals interac-

tion for the 2-nd neighbours. In oxides frequently the interaction between cations is assumed to 
be only the Coulomb repulsion. 

• In many real compounds the interactions are a mixture of covalent, metallic and ionic interac-
tions (e.g. many carbides and nitrodes).
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Potentials for ionic compounds
• Such potentials have been formed for many ionic compounds. We present here briefly the potential by 
Vashista et al. for SiO2, [Phys. Rev. B 41 (1990) 12197.] which comes up in many different contexts.
• Silicon dioxide also has many different structures, which makes it difficult to model:
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Potentials for ionic compounds
• But all of these have the common feature that they can be under-
stood as tetrahedra with Si in the centre and O atoms in the joint cor-
ners: 
   α cristobalite          β cristobalite      β tridymite           keatite   

     
    α quartz                 β quartz 
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Potentials for ionic compounds
• Simulation of a 40-Å diameter SiO2 beam in equilibrium (left) and strained.

• Colorcoded is the ratio between the shortest and longest edge of a face of a tetrahedron.
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Potentials for ionic compounds
• The potential is of the familiar form: 

 

• The two-body part V2 : 

    

The first part is the “steric” repulsion due to the ion size, the 
second the Coulomb term and the third a charge-dipole 
term, which takes into account the large polarizability of O.  

• The three-body term: 

 
 
where the f -function describes how the bond lengths and the p -term how a change of the bond angle 
affects the interaction.  
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Potentials for ionic compounds
• These are 

 
 

• Parameters are shown on the right. 

• A corresponds to Si and X to O in the three-body parts. 
Note that only the AXA- and XAX-three-body terms are 
defined - the potential would not describe sensibly e.g. 
pure Si since there is no AAA-term.  
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Potentials for ionic compounds
• The Si-Si and O-O-interaction are just a purely repulsive pair potential: 
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Potentials for ionic compounds
• The potential describes well the most common forms of SiO2 :  
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Potentials for ionic compounds
• A newer potential was developed by Watanabe et al. [Appl. Surf. Sci. 234 (2004) 207.].

• One of its strengths is the ability to describe also the so called sub-oxides of SiO2; e.g. SiO. 

• Because of this it is suitable for describing interfaces between Si and SiO2 and to be used in defect studies and ion 

bombardment simulations.
• The potential is based on the Stillinger-Weber potential and the Si-Si interaction is the original Si-SW.

• Examples of its use in nanocluster bombardment can be found in J. Samela’s PhD thesis1.
• However, its elastic properties are not very good, strongly overestimates e.g. bulk modulus 

• An SiO2 potential in the Tersoff formalism: [Munetoh et al, Comput. Mater. Sci. 39 (2007) 334]: better than 
Watanabe in some elastic and melting properties

1. Electronically available at http://urn.fi/URN:ISBN:978-952-10-3927-0
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Charge-transfer potential models
• There is a clear fundamental problem with the description of ionic bonding and covalent bond-

ing described above.  
• Consider the following (schematic 2D representation) of an Si-SiO2 interface system:

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si

Si
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Si

Si
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Si

O

O
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O
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O
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O
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O

O
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O
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Si

O

O

Si

O
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Si

O

O

Si

O
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Si

O
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Si

O

O

Si

O
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Si

O

O

Si

O

O

Si

O

O

Si

O

O

Si

O

O

Si

O

O

Si

SiO2

 

• On the Si side of the interface, zSi 0=  → ordinary Si potentials. 
To be more precise, ab initio calculations give 
for SiO2: 

,  ZSi 1.4e≈ ZO 0.7e–≈
• On the SiO2 side zSi 2≈  → ionic model.  

• What happens if we move an Si atom from the SiO2 to the Si 
side (green line). This could easily occur in reality by diffusion 
or a radiation process. Which model should be used to describe the interactions of this atom??
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Charge-transfer potential models
• Here we get to the charge transfer model for the atoms, where the environment-dependence of 

the ionicity of the atom is built into the model. 

• There are extremely few models like this, since charge transfer processes are difficult to deal with and 
poorly understood. 

• One fairly well motivated approach is that of Alavi et al., Phil. Mag. B 65 (1992) 489. 

• The idea is to formulate an environment-dependent term which gives the charge state of atoms: 

zi Z fAiBj
rij( )

j i≠
 

 
 

=  

• fAB rij( )  is some function of the atom distances and types Ai  and Bj

• Z x( )  is a function which could e.g. limit the charge state to reasonable values (like say between -4 and +4 for Si). 

• Some thought reveals that the fAB  functions would be likely to have the properties 

            fAA 0
fBB 0
fAB rij( ) f– BA rij( )

=
=

=

 

• The first two criteria ensure charge neutrality in a pure elemental region, the latter one global charge neutrality.
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Charge-transfer potential models
• Once the zi  have been determined, one could use an expression of e.g. the form 

Vi

zizje
2

4πε0rij
------------------

j
 g zi( ) Vmanybody

jk
+=  

 
to obtain the total interaction energy of an atom i .  

• Vmanybody  could be some many-body potential for an uncharged system.

• The function g zi( )  would be used to switch this potential on and off depending on the ionicity: 

g zi( )    
   1=  when  zi 0=

 0→   when zi 0≠



 

• The big and difficult question is how to choose f rij( ) . It should be constructed to ensure global charge 

neutrality, and give correct ionicities in known environments. 
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Charge-transfer potential models 

• For instance in the SiO2 case presented above, it obviously should be constructed such that if an Si atom has four O 

atoms at the equilibrium distance, it should give zi 1.4e≈ . Since every Si atom has 4 O neighbours and every O atom 

2 Si neighbours this would mean that in case only nearest-neighbour interactions are counted and the equilibrium 

atom distance is r0 , one could have 

           

fSi-Si 0=

fO-O 0=

fSi-O +0.35=

fO-Si -0.35=

Z x( ) x=     when x 4≤,









   (remember: ZSi 1.4e≈ , ZO 0.7e–≈ ) 

• One way to deduce the functional form could be to use quantum mechanical schemes to deduce ionicity, 
such as Mulliken charge analysis. 

• Since little work has been done on this topic there is not much more to say, except that this is a wide-open 
topic with lots of room for new and interesting research.  

• See also F. H. Streitz, J. W. Mintmire, Phys. Rev. B 50 (1994) 11996; X. W. Zhou et al., Phys. Rev. B 69 
(2004) 035402.
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Potential models for ionic compounds
• Sometimes rather simple models may be sufficient.

• An example: Si/SiO2 interface (again!) [Y. Tu, J. Tersoff, Phys. Rev. Lett. 84 (2000) 4393.]
• Simple VFF potential (sum over bonds; only Si-O and Si-Si bonds; no defects: continuous network of bonds): 

         E r{ }
1
2
--- kb bi b0–( )2

i


1
2
--- kθ θijcos θ0cos–( )2

i j,
 U+ +=  

• Suboxide penalty U  allows to study other environments of Si atoms than the perfect SiO2. It gives the energy cost of 

having less than 4 O neighbors: 

                          

Number of O 
neighbors /eV

0 0.00

1 0.47

2 0.51

3 0.24

4 0.00

U

                                 
• Interface structure was optimized using bond-switching Monte Carlo. 

• For every bond topology the atom positions r{ }  were obtained by minimizing the potential 
energy

Phase space = 
ensemble of bond 

topologies

 
                         E min r{ } E r{ }( )=
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Potential models for ionic compounds 

                    

Results: interfaces Si—amorphous SiO2 
and Si—tridymite
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Repulsive potentials for high energies
• When talking about repulsive potentials there is first reason to clarify the concepts: 

• Repulsive part of equilibrium potentials: Constructed to obtain a minimum in the potential, and to 
describe states close to equilibrium, at energies ~ 0.1 - 100 eV above the minimum. 
• E.g. the short-range potentials VSR  mentioned above belong to this category. 

• Ion ion irradiation and nuclear physics one frequently is interested in very high-energy collisions. 
• An ion with a kinetic energy of 100 keV makes a head-on collision with a target atom → the C.M. energy is 50 keV 
• In this regime the equilibrium potentials are not valid, and there is a reason to fit a high-energy repulsive potential to 

them. 

• Repulsive potentials are usually written in the form 

V r( )
Z1Z2e2

4πε0r
------------------Φ r

a
--- 
 =   , Z1 Z2

Z1 Z2

 

where Φ x( )  is a screening function and a a Z1 Z2,( )=  a 

screening length. 
• Φ  is formed such that Φ 1→  when x 0→ , so the potential 
reduces to the Coulomb potential between the nuclei at high 
energies.

• At normal interatomic distances the electron shells screen the 
nuclei so that the nucleus don’t “see” each other almost at all 
(Φ 0≈ ).
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Repulsive potentials for high energies
• At very small distances the nuclei are so close that the electron clouds do not screen them. The interac-
tion is then purely Coulombic and Φ 1≈ . 
 

• The most used repulsive potential is that formulated by 
Ziegler, Biersack and Littmark (ZBL).  

• They used free-electron gas (FEG)-calculations to obtain the 
repulsive interatomic potential for 522 randomly chosen atom 
pairs, and sought a shape for the screening length which makes 
the screening function be as similar as possible for the different 
atoms: 
 

a
0.8856 a0×

Z1
0.23 Z2

0.23+
--------------------------------=   , where a0 0.529Å=  is the Bohr length. 
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Repulsive potentials for high energies 

• Onto these curves they fit a universal function (right figure above) of the form 

Φ x( ) aie
bix–

i 1=

4

=   .

1 0.1818 3.2

2 0.5099 0.9423

3 0.2802 0.4029

4 0.02817 0.2016

i ai bi 

and obtained the parameter values shown on the right. 

• This potential is generally called the ZBL universal potential. The advantage of 
using it is that it is extremely easy: the only information needed of it are the atom 
numbers Z1  and Z2  . The disadvantage is that this is an average potential, from which each specific case 

can vary easily 5-10 %. 

• It is also possible to reproduce the FEG calculations for any atom pair based on information in the ZBL 
book The Stopping and Range of Ions in Matter (Pergamon, New York, 1985). This gives so called ZBL 
pair-specific potentials. These seem to be accurate to a few % or so.
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Repulsive potentials for high energies 

• In case the best possible accuracy is desired, one can use Hartree-Fock- or DFT-calculations of 
the energy of a dimer, or even better an atom inside a solid.  

• With dimer calculations by using certain HF- , HFS- and DFT methods it is possible to obtain the high-
energy repulsive potential to ~ 1 % accuracy [Nordlund, Runeberg and Sundholm, Nucl. Instr. Meth. 
Phys. Res. B 132 (1997) 45]. 
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Efficient ways to calculate ionic interactions
• So far we have assumed that the sum giving the energy of each atom always converges easily. 

This is not true always, however. 

• Let us consider potentials of the form V r
d–∼ . Far from the central atom in a homogeneous material the 

number of atoms in a thin shell dr  is 4πr
2ρdr , where ρ  is the atom density, so the total potential in this 

layer is proportional to 4πr
2ρdrr

d–
. If we now integrate the total potential for all r , we obtain 

 

V 4πρr
2
r

d–
rd

rmin

∞

 4πρ 1
3 d–
------------ r

3 d–

rmin

∞
= =  

• This vanishes in infinity only if d 3> . So in three dimensions we obtain convergence trivially only if the 

potential decays faster than r
3–

. 
• Exponentially decaying potentials (Morse, Tersoff etc.), as well as LJ potentials are OK in this resprect, 

but not the Coulomb potential which is r
1–  

→ When one simulates a periodic system with an ionic potential one can not use a simple cutoff 
distance < cell size/2.

• To circumvent this many methods have been developed:  1) Ewald summation [Ann. Phys. 64 (1921) 

253]. It is much more efficient than direct summation, but is still an O N
2( )  method. 2) A newer method is 

the so called Fast Multipole Method, which can be parallelized and is O N( ) .
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Ewald-summation
• Take into account all interactions to an atom both from the MD cell itself as well as all the periodic image 
cells.

• The potential energy due to the Coulomb interaction is 

Vzz 1
2
---

z1z2
rij n–
------------------

j 1=

N


i 1=

N


n
=  

Note: cgs units
 

• z1  and z2  are the atom charges, and cgs units are 

used for brevity. The vector n  is now in principle a sum 
over all image cells nxL nyL nzL, ,( ) , where 

nx ∞– … 1– 0 1 … ∞, , , , , ,=  and the indices i  and j  

loop over atom pairs inside the cell (except of course 
not i j=  when n 0= ). 

• This sum does not necessarily converge! 
• Change the summation order: A natural way to 
achieve this is to add image cells radially outwards 
from the origin.

• Physically the reason this leads to convergence is 
easy to understand: since each cell has to be charge 
neutral  the charges in it give at a long distance a 
dipole, quadrupole etc. interaction, which vanishes during symmetric summation.
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Ewald-summation
• The surrounding medium also affects the energy of this ball. In a perfect conductor (metal) 

(ε ∞= ) and in vacuum (ε 1= ) the results are different; in vacuum a dipole layer will form at the 
surface. The correspondence between the two quantities is: 
 

Vzz ε ∞=( ) Vzz ε 1=( ) 2π
3L3
--------- ziri

i


2
–=  

• Ewald summation enables calculation of Vzz ε ∞=( ) . 

• If we want our system to be surrounded by vacuum, we can add the dipole term.  
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Ewald-summation
• In the Ewald method the charges zi  are given in the form 

of a charge density ρi
z  . This ρi

z  is given us the sum of a 

Gaussian and delta function electron density: 
 

r

r

ρi2 r( )

ρi1 r( )

ρi
z r( ) ρi1

z r( ) ρi2
z r( )+=  

 

ρi1
z r( ) zi δ r ri–( ) κ3π 3 2/– e κ2 r ri–( )2––[ ]=  

 

ρi2
z r( ) ziκ

3π 3 2/– e κ2 r ri–( )2–=  
 

• ρi1
z  is now a sum of delta functions located at the atom positions, and Gaussian-shaped densities of cen-

tered on the same position but of opposite signs, formed so that the integral is 0. Because ρi1
z now has a 

finite range, we can calculate the energy and force due to is using a cutoff radius. 

• On the other hand, we also use the function ρi2
z  to correct for the error made in introducing the Gaussian 

functions. But this function is now smooth, and can be calculated in reciprocal space: the Fourier-transfor-
mation of ρ  are summed, and then an inverse Fourier transformation is used to obtain back the real-
space answer. 
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Ewald-summation
• The result (“after a few steps of algebra”) is an equation 
which has a real-space term r , a k -space term and the 
inverse value of the self-energy and the surface energy: 

Vzz ε 1=( ) Vreal
zz Vrecipr.

zz Vself
zz Vsurf

zz+–+

1
2
--- zizj

erfc κ rij n+( )
rij n+

-----------------------------------

1
πL3
--------- zizj

4π2

k2
---------e k2 4κ2⁄– k rij⋅( )cos

k 0≠
+

n 0=

∞


j 1=

N


i 1=

N



κ
π1 2/
----------- zi

2

i 1=

N



2π
3L3
--------- ziri

i 1=

N


2

+

–

=

= 1

2

3

4

• Term 1 is the short-range part. erfc x( ) 2 π1 2/⁄( ) e t2– td
x
∞=  is 

the complementary error function and L  the side length of the MD-

cell. We assume here that the cell is cubic. Again in the n  sum the 

term i j=  when n 0= . 

• Term 2 is the sum over reciprocal space vectors k 2π L⁄( )n= .

• Term 3 Vself  is the self-energy of ρi2
z  which has to be removed 

because it is included in the Vrecipr.
zz  part.

• Term 4 is the surface term of the sphere. 

• By setting κ  (the width of the Gaussians) large enough we 
can restrict ourselves to the term n 0= , which corresponds 
to the normal ‘minimum image’ convention.

• The real-space term can be calculated in the some loop as 

the short-range forces. Then Vreal
zz  is of the form 

Vreal
zz zizj

erfc κrij( )
rij

----------------------
i j<
= .
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Ewald-summation
• Using complex numbers the reciprocal-space term can be written in the simpler form 

 

Vrecip
zz A k( ) zie

ik ri⋅

i


2

k
=  

 

A k( ) 2π
L3
------exp k2 4κ2⁄–( )

k2
------------------------------------=  

 

• The force acting on atom i  is  
 

frecip
i 2zi kA k( )Im e ik ri⋅– zje

ik rj⋅

j
 

 
 

k 0≠
–=  

 

• Note that the force calculation takes time as O N2( ) . 

• Does this sound highly complicated? Fortunately there are several implementations of Ewald summation 
easily available, see e.g. Allen-Tildesley program F.22 or N. Anastasiou and D. Fincham, Comput. Phys. 
Commun. 25 (1981)159.  

• It is easy to generalize the equations to non-cubic cells.
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Ewald-summation
• In applying the method one has to choose three parameters: 

cutoff radius rc  

width of Gaussian charge densities κ  
upper limit for k  summation k max

2 . 

• It is best to start by setting rc  fairly large, e.g. L 2⁄ . From this a suitable value of κ  can be obtained, on the basis of 

which a suitable limit for the k -summation can be obtained. Typicallyκ 5 L⁄∼ , in which case the calculation is con-

centrated in k -space. The k -summation would then involve 100-200 vectors. 
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Ewald-summation
• Example: EuF2 :  

 
 

N 324=  
L 17.4Å=  
κL 5.2=  
rc L 2⁄=  

k max
2 5Å 2–=  
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Ewald-summation
• Application of MD in neutrino-induced Doppler broadening (NID) [A. Kuronen, et al. Phys. Rev. B 52, (1995) 12640.]: K 

electron capture of 152Eu → ν  emission → 3.0-eV recoil energy to 152Sm → γ  rays  Doppler broadened  
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Ewald-summation
• If the periodicity of the Ewald summation causes trouble, one can use the particle-lattice (or par-

ticle-mesh) method: 

• The reciprocal space part is calculated by smoothing the ion charges in a regular lattice and solving the potential from 

the Poisson equation ∇2φ ρ ε0⁄–=  with Fourier methods. 

• The advantage is that this scales as O N( ) .  

• The disadvantage is that the program gets more complicated 

•  
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Reaction field method
• In this method neighbours farther than rc  are approximated as continuous medium with some εs .  

• The forces and energies inside the cavity are calculated normally. 
 

A

B

C

D

rc

 

• The continuous medium polarizes, which leads to a force on molecule i  in the cavity R  
 

Ei

2 εs 1–( )
2εs 1+

---------------------- 1
rc

3
----- μj

j R∈
=  (sum includes i ) 

• The problem here is εs , which has to be known in advance.



Introduction to molecular dynamics 2015          11. Potential models for ionic compounds                                                                                                                                             33

Field Multipole Method (FMM)
• The FMM method [Greengard and Rokhlin, J. Comput. Physics 73 (1987) 325.] is based on looking at dif-
ferent regions of space with different resolutions.  

• The advantage of the method is that it is O N( )  and also can be parallelized [Nakano et al. Comput. Phys-
ics Commun. 83 (1994) 197.] 

• The method uses an electrical multipole method to describe the influence of a region far away on an 
atom. 
• Potential outside a localized charge distribution ρ r( )  can be written as a multipole expansion: 

      Φ r( ) 4π
2l 1+
--------------qlm

Ylm θ φ,( )

rl 1+
-----------------------

m l–=

l


l 0=

∞

= , 

    where the multipole moments are defined as  

      qlm Ylm
* θ' φ',( )r'lρ r'( ) r'd= . 

• In practice, the sum over l  can be truncated to some finite value: 

      Φ r( ) 4π
2l 1+
--------------qlm

Ylm θ φ,( )

rl 1+
-----------------------

m l–=

l


l 0=

p

=
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Field Multipole Method (FMM)
• Why is this useful, then ? Let us consider as a simple example two sets of points xi  and yj  which are 

inside two circles of radius R :

R R
> R

x0 y0

y1

y2

y3

y4

yn

x1

xm

x4

x3

x2

m points n points

 

• Let the points xi  have charges qi  . If we now want to calculate the forces from points xi  on the points yj  

we could of course calculate the Coulomb interaction from all the m y -points to all the n  x -points. This 
would require nm  interaction calculations, i.e. the algorithm is O nm( ) . 

• But if we, instead of this, first calculate the p2  factors qlm , requiring mp2  operations. After this we could 

calculate the sum for all points y , which requires np2  operations. Hence this method is O mp2 np2+( ) . If 
the two circles are far away, p  can be relatively small. If the number of points is large then clearly 

mp2 np2+ nm« , so we can gain lots of simulation time. 
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Field Multipole Method (FMM)

Level 0

Level 1 Level 2 Level 3 Level 4

cell b

‘s near neighbors: cell at the same level as  that have a common point with b b b

‘s far neighbors: cells at the same level as  that are children of ‘s parent’s 
near neighbors but are not ‘s near neighbors
b b b

b

Cells that are not each others near neighbors are well separated.

In the actual FMM-method space is divided into different levels of cell sizes.

• Level 0 is the normal, ordinary simulation cell, and the higher index levels finer divisions of it.
• Multipole expansion is used to calculate interactions between cells that are well separated.
• At level 1 (see above) there are no well separated cell pairs, so that we have to go to level 2 to be able to use the 

expansion. 
• At level 2, in order to calculate interactions between a cell and its near neighbors, we divide the box further to smaller 

cells. Now each new cell has far neighbors for which the multipole expansion is applied. (Note that interaction between 
a cell and those cells that are not its near or far neighbors has been taken care of in previous levels.)

• At some stage division is so fine that interaction between near neighbors can be calculated by normal sum over atom 
pairs.
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Field Multipole Method (FMM)
• This calculation scales as O N Nlog( )  (where N  is the number of atoms): 

1) at every level the calculation of multipole expansions scales as O p2N( )  
2) number of levels is O Nlog( )  

• To obtain the O N( )  behavior multipole expansion is calculated from atom positions only at the smallest 
scale divisions.
• These results can be compined to calculate the expansions in coarser levels by so called translation of a multipole 

expansion. 

• An accurate algorithm, the equations and boundary condition solutions can be found from the paper of 
Greengard and Rokhlin.  

• In practical calculations numerical noise may become a problem. 

• In addition, as in Ewald summation it is also possible to take into account the effect of periodic image cells 
with the same principle. 

• It is also evident that this algorithm can be parallelized well, since for the far cells it is enough to know 
only the multipole expansion, which is relatively easy to pass around. 

• The FMM-model is also very general: in addition to the calculation of atomic interactions it can also be 
used in plasma dynamics, fluid mechanics and in astronomy! 
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Field Multipole Method (FMM)
• Sample application: R. Kalia et. al. simulated the fracture of about a million atom Si3N4 crystal [R. Kalia, 
TMS conference proceedings 1997]. 
 

 
Note that in the picture above the atoms are so small they can not be distinguished from each other!!

• After the original FMM formulation, variations often called Fast Multipole Algorithms (FMA) have been 
developed. 
• Basic idea same as in FMM, but tree-like data structures and FFT’s are used to optimize the interactions even further.
• E.g.: dpmta method,  W. T. Rankin, PhD Thesis, Duke University, 1995
• In principle better, but very complex leading to numerical accuracy problems (“numerical noise” 

• A comparison: [J. A Board,  C. W. Humphres, C. G. Lambert, W. T. Rankin and A. Y. Toukmaji, "Ewald and 
multipole methods for periodic N-body problems", "Proceedings of the Eighth SIAM Conference on Paral-
lel Processing for Scientific Computing 1997]; says that for small numbers of particles and processors, 
PArticle-Mesh Ewald (PME) faster than dpmta
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Energy minimization techniques
• The task of minimizing the energy of a set of atoms is a very common, yet surprisingly complex 

problem to solve efficiently. 

•  atoms, set of atomic coordinates , system potential energy 

• Find  that minimizes   

• Examples: the equilibrium shape of a protein, the ground state configuration of an atom cluster, a mini-
mum-energy configuration of a defect, ... 

•  A large variety of energy minimization techniques in numerical mathematics.  

• For large sets of atoms, one has to require that the memory requirement of the method scales as , 

which rules out many efficient techniques which require  memory.  

• In these  methods the Hessian matrix ,  is usually needed.  

N x r1x r1y r1z r2x …, , , ,( )= V x( )

x V x( )

O N( )

O N
2( )

O N
2( ) A Aij xi xj∂

2

∂
∂ V=
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Energy minimization techniques
• At least the following approaches can be used to atomistic 

energy minimization: 
1. Monte Carlo simulation: Do an MC-simulation letting . 

- Can be good e.g. in finding the equilibrium coordination in a 
liquid. 

- Not very efficient in finding the closest local minimum. 
- Good when non-physical moves needed to reach the equi-

librium. 
2. MD simulation: Do an MD-simulation letting . 

- Can be made more efficient by setting all  if the energy 
grows, or by setting  if the force  is in the opposite direc-

tion to  
- Sometimes quite efficient in finding a local minimum 
- Sometimes also good tool to find a global minimum: simulate at high  
   first, cooling down in cycles. 

3. Conjugate gradient 
- Very efficient method to find a local minimum. 

4. Genetic algorithm 
- Probably best method to find a global minimum from a random initial 
   configuration.

• In this lecture package conjugate gradient and genetic algorithms are presented.

Simulated 
annealing

T 0→

T 0→
v 0=

vi 0= fi

vi

T
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Energy minimization techniques
• A sidenote: optimization at ‘constant pressure’ : Usually the potential energy  is written as a function of the coordi-

nates  ( ) of the atoms in the system. When the cell edges are taken as variables it is 

easier to write the energy as a function of reduced coordinates  and sizes of the simulation box in , 

,  directions: :    where , , 

• Now the gradient of the potential energy is 

V
xi{ } yi{ } zi{ }, , i 1 … N, ,=

si{ } ti{ } ui{ }, , x

y z α β γ, , V V si{ } ti{ } ui{ } α β γ, , , , ,( )= si xi α⁄= ti yi β⁄= ui zi γ⁄=

∇U
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V∂ s2∂⁄

…
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Conjugate gradient
• The conjugate gradient (CG) method is a general method to minimize function , where  can 

be any function of points  in -dimensional space [Numerical Recipes, 2nd ed. ch. 10] 

• For  atoms we can write their coordinates  as a -dimensional vector  of the form  
 

 

• The function  corresponds now to the potential energy function .  

• In the CG method the gradient (force) of the function is used as a help in finding the minimum.  

• The gradient tells in which direction the function changes the most rapidly.  
 

f x( ) f

x N

N r 3N x

x r1x r1y r1z r2x …, , , ,( )=

f x( ) V r( )
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Conjugate gradient
• An obvious, but not very efficient way to minimize the energy is to always move in the direction 

of the negative gradient. 

• This is the so called steepest descent method, which for atoms can be described as follows: 
 
0. Start from point , set . 

1. Calculate , . 

2. If  end. 

3. Minimize  with respect to the scalar quantity . 

4. Set  and . 
5. Return to stage 1.  

• The algorithm resembles MD, but: no time, velocity or acceleration. 

• The line minimization in stage 3 a 1-dimensional operation in which the minimum of a function is sought 
by moving in a predetermined direction . 

• The line minimization is a relatively straightforward operation which is carried out in two steps. 
 
1. Make sure that there is a minimum and bracket it. 
2. Search it with a given accuracy. 

r0 i 0=

Vi ri( ) Fi ∇Vi ri( )–=

Vi 1– Vi– ε<

V ri αFi+( ) α

ri 1+ ri αFi+= i i 1+=

αFi
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Conjugate gradient
• Stage 1 is in principle easy to carry out. Starting from a point  and known direction , move forward 
some direction . If  and in addition  and  
the minimum is bracketed with the three points (1)  (3)  and (2) . If these crite-
ria are not fulfilled, increase  and try again.

• After the minimum has been bracketed, one could of course use ordinary binary search to find it. A 
slightly better method turns out to be to use a golden section, i.e. let the new minimum be 0.38197 from 
either end.

• Often much better is to use so called inverse parabolic interpolation. In this method, a parabola is fit to the 
points ,  and  (corresponding to (1), (2) and (3) above), and the estimate of the minimum is the mini-
mum of the parabola :

         

r F
βF V r βF+( ) V r( )> V r βF 2⁄+( ) V r( )< V r βF 2⁄+( ) V r βF+( )<

V r( ) V r βF 2⁄+( ) V r βF+( )
β

V r( )

V r βF 2⁄+( )

V r βF+( )

a b c
x

x b
1
2
--- b a–( )2

V b( ) V c( )–[ ] b c–( )2
V b( ) V a( )–[ ]–

b a–( ) V b( ) V c( )–[ ] b c–( ) V b( ) V a( )–[ ]–
------------------------------------------------------------------------------------------------------------------–=
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Conjugate gradient
• When the minimization is done once, either point  or  is replaced by point  (depending on which side 
of   is), and the minimization step is repeated.

• The iteration is continued until the minimum has been found with the desired accuracy. 

• A combined method: try the inverse parabolic search, but switch to the golden section if this fails.
• One such method is the so called Brents method, which is presented in Numerical Recipes1 (program brent()). 

1. http://www.nr.com/

a c x
b x

Introduction to molecular dynamics 2015         12. Energy minimization techniques                                                                                                                                             8

Conjugate gradient
• By combining the Steepest descent (SD)-algorithm and the Brent line minimization the energy of an atom 
system can be minimized. But this is still not very efficient in many dimensions. The reason is that the SD 
method easily winds up in a zig-zag pattern which does not move towards the minimum efficiently as in 
the figure below: 
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Conjugate gradient
• In the Conjugate gradient (CG) method the problem is solved by choosing a new “conjugate” 

direction of movement so that it depends on the previous direction, and does not lead to the zig-
zag-pattern above.
• What is really meant by two directions being conjugate to each other? Consider an arbitrary function  
of  dimensional argument, and construct its Taylor-series around a point : 
 

 

• The matrix  is the so called Hessian matrix. In this approximation the gradient of  is , and 
a change in the gradient  over some distance  is again  

 

• The previous direction in which we have moved is , gradient is . How to construct the next direction ?
• In the current point: 
• After the next step we still want   → the change in the gradient  should be perpendicular to : 

 

• If this is valid, the directions  and  are considered to be conjugated.

f x( )
N P

f x( ) f P( ) f∂
xi∂

-------xi
i


1
2
--- ∂2

f
∂xi∂xj
---------------xixj

i j,
 …+ + + c b x 1

2
---x A x⋅ ⋅+⋅–≈=

where   c f P( )     b≡ ∇f P      A– ∂2
f

∂xi∂xj
---------------

P

= =

A f ∇f A x⋅ b–=
∇f δx

δ ∇f( ) A δx( )⋅=

u g v
g u⊥

g' u⊥ δ ∇f( ) u
u δ ∇f( )⋅ 0= u A v⋅ ⋅ 0=

u v
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Conjugate gradient
• In the conjugate gradient method two vectors  and  are used to calculate the new direction 

into which to move.  is the actual direction into which the line minimization is carried out. 

• In solving linear equations, these are iterated as follows: 
 

 
where 

       

• The vectors  and  fulfil the orthogonality and conjugation requirements: 
 
      

• Not suitable for atomistic systems: the  matrix !   

• The crucial, saving statement is the following: if we have just minimized  in the direction  to some point 
, the new  can be obtained simply with 

      
 
and the end result corresponds to the above equations! 

g h
h

gi 1+ gi λi A hi⋅( ) and hi 1+– gi 1+ γihi+= =

λi

gi gi⋅
hi A hi⋅ ⋅
-----------------------

gi hi⋅
hi A hi⋅ ⋅
-----------------------     ja    γi

gi 1+ gi 1+⋅
gi gi⋅

------------------------------= = =

g h

gi gj⋅ 0       hi A hj⋅ ⋅ 0     gi hj⋅ 0= = =

N N× A

f h
xi 1+ g

gi 1+ f xi 1+( )∇–=
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Conjugate gradient
• In principle this iteration algorithm gets one to an energy minimum in a system of  atoms with a memory 
requirement  and a number of iteration steps .  

• This sounds like a problem for large numbers of atoms: if say  we definitely do not want to 
iterate 100000 times.  

• In practice the atom motion in large systems is almost always strongly correlated, and much fewer itera-
tion steps are enough to get to a minimum.  

• Typically ~ 200 steps in periodic systems and ~ 1000 steps in systems with a surface is enough to find an 
energy minimum with 15 digits of accuracy regardless of system size.

N
O N( ) O N( )

N 100000=
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Conjugate gradient
• Using these equations we obtain the following algorithm for conjugate gradient energy minimization: 

 
0. Start at point , set , , , , . 
 
1. Minimize  with respect to the scalar , then set  and evaluate 

. 
 
2. If , quit. 
 
3. Calculate  and . 
 
4. Calculate   
 
5. Set . 
 
6. Set   and .  
 
7. Set  and return to phase 1.  
 

r0 i 0= V0 V r0( )= x0 ∇V r0( )–= g0 x0= h0 x0=

V ri αxi+( ) α ri 1+ ri αxi+=

Vi 1+ V ri 1+( )=

Vi 1+ Vi– ε<

xi ∇V ri 1+( )–= Vi V ri 1+( )=

γ xi xi⋅( ) gi gi⋅( )⁄=

gi 1+ xi=

hi 1+ gi 1+ γhi+= xi 1+ hi 1+=

i i 1+=
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Conjugate gradient
• The above is the original, so called Fletcher-Reeves - algorithm. In some cases it is more efficient to use 
the so called Polak-Ribiere- version, which is identical to the above except that step 4 is: 
 

4. Calculate    γ
xi gi+( ) xi⋅

gi gi⋅
-----------------------------=
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Conjugate gradient
• The above algorithm is already a very efficient way to look for a local minimum. 

It also does not have anything specific to atomistic simulations; the function  
can be any -dimensional function  which has a well-defined gradient. 

• In typical atomistic simulations there are special features (especially the knowl-
edge that the atoms do have a smooth minimum) which can be utilized to optimize the algo-
rithm, at the possible expense of generality. 

• In atomistic simulations the calculation of the potential energy  is very slow, and the calcula-
tion of forces even slower.
• In the above algorithm the line minimization-step 1 is the only step where forces are actually calculated. 
This step had two parts (see above): 
1. Make sure there is a minimum, and bracket it. 
2. Search it with the desired accuracy.  

• The bracketing requires at least 3 evaluations of the potential, and the Brent method line minimization 
typically 5-10 evaluations.  

• In atomistic systems we know, however, that the length scale is rather limited. 
• Unless the initial atom positions are really unphysical, the atoms are almost certain to be ~ 0.2 Å from the ground state 

position, or even closer. If we simply assume that the minimum is never farther than say 0.5 Å, we can simply get rid of 
step 1. But this is clearly a bit dangerous, and still does not gain us more than 20 % or so of the efficiency.  

• It would be even better if we could get rid of the 5-10 potential evaluations needed in the Brent method. 
This can be achieved rather simply.  

Material on the ACG 
variant of CG is from 
Kai Nordlund.

V r( )
N f x( )

V r( )
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Conjugate gradient
• In this speed-up method (called ACG for reasons apparent below) we start by assuming that the ‘mini-
mum is out there’.  

• The main point in the ACG method is the observation that when the original CG method line minimization 
of  with respect to the scalar , for most steps the optimal value of the scalar  is about the 

same, ~ 0.05.  

• This is of course no natural constant, but seems to be valid for common Si and metal potentials. If the scalar  is 
almost the same in any case, it does not seem sensible to optimize it separately every time. 

• So the method is as follows: 

• Set initially . 

• For every step move forwards by  . 

• If the potential energy goes down, increase optimistically  a bit. 

• If the potential energy goes up, disregard the previous step, decrease  and repeat the same iteration.  

V ri αFi+( ) α α

α

α 0.05=
αFi

α
α
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Conjugate gradient
• Because of the optimization of α the method might be called adaptive conjugate gradient, ACG: 

 
0. Start from , set , , , ,  

1. Store old  

2. Set   

3. Calculate , . 

4. If  return  , set , return to step 2. 

5. If , quit. 

6. Calculate   (Polak-Ribierre) 

7. Set    

8. Set   and .  

9. Increase , set  and return to step 1. 

• Here the constants 0.5 and 1.05 were optimized for Stillinger-Weber Si.

r0 i 0= F0 ∇V r0( )–= g0 F0= h0 F0= α 0.05=

ri ri
prev→

ri 1+ ri αFi+=

Vi 1+ V ri 1+( )= Fi ∇V ri( )–=

Vi 1+ Vi> ri
prev ri→ α α 2⁄=

Vi 1+ Vi– ε<

γ
xi gi+( ) xi⋅

gi gi⋅
-----------------------------=

gi 1+ Fi–=

hi 1+ gi 1+ γhi+= Fi 1+ hi 1+=

α 1.05α= i i 1+=
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Conjugate gradient
• Written in this way the method usually needs only one potential evaluation per iteration step, except when 
the energy increases. In practice the energy decreases almost always, so on average the number of 
potential evaluations still is only about 1.1 / iteration. In the ordinary CG method this value is about 10, so 
in the ACG each iteration step is about 10 times faster than in CG! 

• On the other hand, the ACG loses the perfect match of conjugate directions, so it needs more iterations. 
Still, the overall speedup of ACG vs. CG is almost always a factor of ~ 3-5.
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Conjugate gradient
• As an example a 40 Å diameter Co-nanocluster in a 16×16×16 unit cell periodic Cu cell was created, and 
relaxed this system with EAM potentials with different methods. These calculations (in larger cells) are 
useful in understanding the energetics of Co nanoclusters.

• The figure above shows the atom displacements due to the minimization, but so that the displacements 
have been exaggerated by a factor of 3. The open circles are the original atom positions, the closed cir-
cles the final positions after minimization. 

• The blue atoms are Co, red Cu. Because Co has a smaller equilibrium nearest-neighbour distance than 
Cu, the atoms move inwards.
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Conjugate gradient
• The simulation results were as follows (computer ~ 400 Mhz Pentium1 Linux):

 
Method                  Et (eV) Niter   Final E (eV)    Simulation time (s)
------                  ------- ------  -------------   -------------------
SD Plain                0.001   227      -59927.160     2684.20
SD Adaptive             0.001   172      -59927.052      323.56

CG Plain                0.001    27      -59927.193      363.03
CG No bracketing        0.001    27      -59927.193      251.98
ACG             0.001    70      -59927.194     128.34

MD btctau=70 fs         -       250      -59927.169      390.25

 

• We see that all methods give essentially the same result, as they should. The 0.1 eV differences may be shifts in the 
position of a single atoms, and hence not likely to be a significant problem. 

• The SD method with line minimization is very slow, as expected. The number of iterations is clearly the smallest in the 
CG methods, but they are still ~ 3 times slower than ACG.  

• A bit surprising is that the adaptive SD method is in fact faster than straight CG, and that ordinary MD is almost as fast 
as straight CG or adaptive SD.  

• But the ACG method clearly beats all the others by a factor of 3 or more. 

• However, in a new minimization problem it is best to first implement the full CG method. After that, one 
can check whether it can be optimized for the particular range of problems, e.g. by a scheme similar to the 
one above.  

1. I know, this should be updated :-) 

SD= Steepest Descent 
CG= Conjugate gradient 
MD= Molecular dynamics.  
 
Et is the energy tolerance 
Niter the number of iterations
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Genetic algorithms

• Genetic algorithms (GA) are a popular method for looking for a global minimum, which have not 
been used too much in the physical sciences. They are, however, well suited at least for looking 
for the minimum of a fairly large set of atoms.

• Groups of atoms typically have a fairly large set of energy minima, so the ordinary methods are 
not well applicable for looking for a global minimum: CG only looks for the closest local mini-
mum, and MD and Monte Carlo (simulated annealing) are fairly easily stuck to one minimum or 
a local region.
• But the GA method is well suited for looking for global minima, at least for dilute atom systems. 

• Genetic algorithms have obtained their inspiration from Darwin’s theory of evolution. 
• The idea is to perform natural selection for some group of parameters  which describes well the real 
system. 

• The group is allowed to breed by mating, after which natural selection is carried out (i.e. the poorest 
adapted species are killed).

• The parameters  can be considered to correspond to a gene sequence, DNA. 

• Here we present the Deaven and Ho approach to genetic algorithms for atoms [Deaven and Ho, 
Phys. Rev. Lett. 75 (1995) 288]. 
• Let us state the problem as follows. We have  atoms in free space, and want to find their minimum-
energy configuration. The parameter set is now simply the set of atom coordinates . 

• We illustrate there the algorithm with 2D figures; in reality it of course usually is in 3D. The difference 
between 2D and 3D is trivial.

G

G

N
G x1 x2 … xN, , ,{ }=
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Genetic algorithms
• Deaven and Ho genetic algorithm: 

 
0. Start. Create random initial positions for  structures, each with exactly  atoms. 
1. Mating and breeding. Select two well-adjusted parents for breeding. This is 
done by selecting a given parent  with state  with the probability 

             

where the mating ‘temperature’  is selected as the range of energies among the 

whole population . Split the two parent structures along the same line. Take 

one half of one parent, and another half of another parent, and join them together. 
Here the added complication that a child may have a different number of atoms than the parents comes in. In 
this case, the lines creating the two parents are moved in opposite directions until a state where the child has 
equal numbers of parents is found. 

2. Mutation. With a probability  perform a mutation on the child. There are two 
possible kinds of mutations: 

a) Move atoms in a random direction by a random distance a random number of times.  
    The distance is of the order of the bond length, and the number of times ~ 5 - 50. 

b) Move an atom up along the potential energy function. (Try to move over potential barriers.) 
3. Minimize the energy of the child to the closest local minimum. This is done by CG or MD. 
4. Natural selection. If the child has lower energy than any of the parents, allow it to stay alive. Then 
check that its energy does not match the energy of any parent within an energy range . If this is true, 
include it in the population, and kill the least-well adapted parent (the one with the highest ). 
5. Convergence test. If convergence has not been reached, return to stage 1. 

N

i Gi

P Gi( ) e
E Gi( ) Tm⁄–

∝

Tm
Gi{ }

μ

δE
E
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Genetic algorithms
• The energy range  is included to prevent the population from having several identical or very similar 
structures.

• The mutation operation can sometimes be completely left out.
• The mating temperature reduces the probability that poorly adjusted parents get to breed. Hence they are 
more likely to die without giving rise to any offspring.
• If  all parents get to breed by about the same probability. If on the other hand  only the best 

adjusted parents get to breed. (Even this can be seen to have a biological interpretation, although not a very good one: 
in warm climates it is easier to survive, whereas in harsher, colder climates only the best adjusted individuals can sur-
vive and breed...) 

• The size of the population does not have to be very large. With Deaven and Ho, who used TB, had it usu-
ally at 4. Jura Tarus found that somewhat larger numbers work better for the Tersoff C potential. 

• Deaven and Ho used their code to find the equilibrium structure for a fullerene C60 and other small carbon 
clusters, starting from random atom coordinates. 
• No other simulation method had at that time been able to produce a fullerene ‘from scratch’ . 
• Chelikowsky got close with MD [Phys. Rev. Lett. 67 (1991) 2970.], but using a to-say-the least suspicious bond-bend-

ing part in his potential. 
• Simulated annealing (a Monte Carlo method) can find the structure of molecules of the order of C20 , but not larger 

than that. 

• Deaven and Ho used a Tight Binding force model, which was known to describe fullerenes well. 

• Parameters: mating temperature , energy resolution , population .

δE

Tm Emax» Tm Emax«

Tm 0.2 eV/atom= δE 0.01 eV= p 4=
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Genetic algorithms
• Fullerene C60 . The algorithm finds a per-
fect fullerene after about 6000 mating 
operations starting from random coordi-
nates, without mutations ( ) : 

• The upper curve is the maximum energy 
of the population, the lower the minimun.  

• We see that fairly fast (1000 mating opera-
tions) a fairly well-adjusted state (a) which 
still has defects (a 12-membered atom 
ring and two 7-membered atom rings).  

• A large fraction of the time, about 5000 
mating operations, goes to removing the 
last defects.  

• In stage (b) there is still left a 7-atom ring, 
and in state (c) there already is the correct 
amount of pentagons and hexagons, but 
two pentagons adjacent to each other.

μ 0=
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Genetic algorithms
• Carbon cluster C20. When the genetic algorithm 

is run for 20 carbon atoms, the effect of mutations 
becomes apparent: 

• States 1 a-c and the solid line describe the results 
when the code is ran without mutations.  

• The structure is stuck in a round carbon circle.  

• But some  -states do find the correct structure.  
 

• In states 2 a -c and 3 a-b .  

• Now the structures find fairly fast the lowest-energy bowl 
form.  

• State 2 c is already close to the ground state, but the rings 
on the side have 5 or 7 atoms.  

• State 3 b is the correct ground state, with only 6-membered 
atom rings. 
 

μ 0=

μ 0.05=
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Genetic algorithms
• Carbon cluster C30 

• Most runs end up in the correct state, but some of the 
 states do not in 4000 mating operations found 

the ground state, but get stuck in state (1c).  

• With  almost all states end up in the correct 
cage structure (2b) and (3b).  

• The intermediate configurations (2a) and (3a) show 
that the correct final state can be reached in several 
different ways. 

• Only mutation, with no mating, does not lead to the 
correct state. 

μ 0=

μ 0.05=
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Genetic algorithms
• Here it is important to realize that the development of the GA minimization process does not 

necessarily contain any physically meaningful information. 

• The real path to the ground state probably has no relation to the GA path.  

• So only the ground state found by GA may correspond to real life (in case the experimental situation has 
had time to reach the ground state). 

• You probably remember: This same note applies to equilibrium MC simulations.  
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Genetic algorithms
• In the original way of realizing GA the information on the state is coded in a binary “gene 

sequence” which corresponds to DNA.  

• Let us consider the interaction between two molecules A and B [Xiao and Williams, Chem. Phys. Lett. 
215 (1993) 17]. Both molecules can be described with a position and rotation angle, so the information 
needed  .  

• If we now discretize the possible positions and angles, using e.g. 16 possibilities for each dimension, the 
state of the molecule can be described with 24 bits of information, for instance 
 
(4.5 Å,5.0 Å,9.0 Å,120o, 100o,60o)=(1001:1010:1110:0110:0101:0011).

• The breeding operation is defined such that the binary string is exchanged from some point forward 
(“crossover”). So if we have two parents 
 

 
 
and the exchange position is chosen to be 17, we get the children 
 

 

x y z α θ φ, , , , ,( )

P1 = (1001:1010:1110:0110:0101:0011) 
P2 = (1001:1010:1110:0100:1011:1110)

C1 = (1001:1010:1110:0110:0101: 1110) 
C2 = (1001:1010:1110:0100:1011: 0011)
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Genetic algorithms
• In this case stage 1. in the above algorithm simply becomes. 

 
1. Mating and breeding. Exchange the gene sequence of a parents with another starting from a random 
position.  

• The mutation operation now becomes simply 
 
2. Mutation. With a given probability  exchange the state of a bit (0→1 or 1→0) for all bits in all individu-
als. 

• Because a bit corresponds to a position or rotation angle, this directly changes the state of the individual.

• Otherwise the algorithm is essentially as that of Deaven and Ho.

• Xiao used the algorithm to search for the ground state configurations for simple hydrocarbon molecules 
such as the benzene dimer. He used a population of 100 and 8 bits to code each position or angle.

• But this approach has the problem that during the mating and mutation the state of the molecule can 
change quite radically, and the properties of the parents are not transferred to the children. Hence Deaven 
and Ho say that their method is better for optimizing atomic structure. 

• GA has been applied in physics particularly in studying equilibrium structure of small clusters. 
[See e.g. K. M. Ho et al., Nature 392 (1998) 582; D. M. Deaven et al., Chem. Phys. Lett. 256 
(1996); J. Zhuang, et al., Phys. Rev. B 69 (2004).] 

μ
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Reaction (or minimum energy) path determination
• Thermally activated atomistic processes

• Need to know the transition rate (events/unit time) for  .

• If the probability for the event is not too low direct MD simulation is pos-
sible.

• For really rare events transition state theory (TST) can be used.

• Rate can be written in form  → need to know the activation 

energy , where  is so called saddle point energy. 

• From TST one can also get an estimate for the prefactor  based on vibra-

tional properties: ,  where , and  are the vibration 

frequencies at  and the saddle point, respectively. Note that at the saddle 

point there is one less frequency compared to the local minimum . 

• Quite often the prefactor is simply set to a typical vibration frequency in the 

system: . 

• Exactly  is defined as the maximum energy along the path with low-

est energy  
(minimum energy path; MEP)  going from  to  (local minima; blue dots).

• Path here means a line in the  dimensional configuration space. 

ES

E1

E2

reaction

B1 B2

e
ne

rg
y

path

ES

E1

E2

EA ES E1–=

B1 B2→

ν ν0e
EA kBT⁄–

=

EA ES E1–= ES
ν0

ν0 νi

i 1=

N

∏ ν'i
i 1=

N 1–

∏⁄= νi ν'i

B1
B1

ν0 1012s 1–≈

EA

B1 B2
3N
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Reaction (or minimum energy) path determination
• There are many methods to do this; one of the most often used in atomistic systems is the Nudged Elastic 
Band method or NEB. [G. Henkelman, H. Jónsson, J. Chem. Phys. 113 (2000) 9901.; G. Henkelman, H. 
Jónsson, J. Chem. Phys. 113 (2000) 9978.] 

• In NEB images of the system are created by interpolating the atomic coordinates between the initial and 
final configurations (that are usually local minima).  

• Every image is connected by a spring force to its neighboring images. (End points are fixed.) 

• The spring force prevents all images to fall to the nearest local potential energy minimum. 
 
 

EA
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Reaction (or minimum energy) path determination
• The total force on the atoms in image  is calculated as  

 ,    

 is the  dimensional vector of atom coordinates in image . 

• The first term is the spring force which acts only in the tangential direction 
of the image chain: 

 ,  

where  is the spring constant and  is the tangent vector of the image 

chain: 

 ,     ,    

• When the middle image is the minimum or maximum of the three the tan-
gent is calculated as  

,  

  

M

Every image has  atoms. 
Number of images  (in-
cluding the end points). 

N
M

i

Fi Fi  ,
s ∇V Ri( )⊥–=

||

Ri 3N i

Fi  ,
s

k Ri 1+ Ri– Ri Ri 1–––[ ]τ̂i=||
k τi

τi

τi
+     if  Vi 1+ Vi Vi 1–> >

τi
-     if  Vi 1+ Vi Vi 1–< <






= τi
+ Ri 1+ Ri–= τi

- Ri Ri 1––=

τi

τi
+ΔVi

max τi
-ΔVi

min+    if  Vi 1+ Vi 1–>,

τi
+ΔVi

min τi
-ΔVi

max+     if  Vi 1+ Vi 1–<,





=

ΔVi
max max Vi 1+ Vi– Vi 1– Vi–,( )=

Vi
min min Vi 1+ Vi– Vi 1– Vi–,(=
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Reaction (or minimum energy) path determination
• The second term is calculated from the potential energy model of the system: 

 
 

• When calculating the tangent on has to take into account all the six energy config-
urations of the three neighbor images shown on the right. 

• The spring force tries to keep the images in the chain evenly spaced.
• The potential force is there to find the minimum energy of all images in the direc-
tion perpendicular to the image chain (=reaction path).

Vi 1– Vi Vi 1+

1

2

3

4

5

6

∇V Ri( )⊥ ∇V Ri( ) ∇V Ri( )τ̂i τ̂i⋅–=
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Reaction (or minimum energy) path determination 
 

 

i

∇V Ri( )⊥

Fi  ,
s

||

1

M

Let’s illustrate NEB by a simple 2D po-
tential energy surface shown on the 
left [G. Henkelman, H. Jónsson, J. 
Chem. Phys. 113 (2000) 9978.] 

• Solid line: the real MEP 

• Dashed line (magenta): initial 
configuration for NEB (inter-
polated) 

• Dotted line with circles: the 
path obtained by NEB 
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Reaction (or minimum energy) path determination
• Running a NEB simulation: 

• Create the end points by optimizing the two configurations by e.g. CG of cooling-MD.  

• Interpolate the images and remove atom overlaps. 

• Find the minimum energy path by optimizing the image system by applying the forces described above. 

• Modifying an existing MD code for NEB is not difficult:  

• Input the coordinates of the image chain.
• When calculating neighbor list skip atom pairs that belong to different images.

• Add the calculation of tangent ,

• The inter-image distance is calculated simply as        

    ,  

where  is the position of the th atom in the th image.  

• Add the calculation of the spring force.
• Modify the force routine to calculate only the perpendicular component of the force.

• The only parameter is the spring force constant . Fortunately, calculation is rather insensitive to its value.

τi

Ri Ri 1–– 2
xi j, xi j 1–,–( )2

yi j, yi j 1–,–( )2
zi j, zi j 1–,–( )2+ +[ ]

j 1=

N

=

ri j, j i

k
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Reaction (or minimum energy) path determination
• A simple example: surface diffusion in a 2D Lennard-

Jones system 

  
                   (a)                                        (b) 

 

  
                   (c)                                        (d) 

 

 
                    (e)

Difficult to  jump down from the 
step: Erlich-Schwoebel barrier 
→ surface growth instabilities.
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Molecular dynamics 2015

Exercises 9 (not to any specific chapter): mdmorse : applications

1. (10p) Determine the bulk modulus  
 

                       B V dPdV
-------–=  

 
B  of your Cu model. Is the excellent agreement you obtain with the experimental value of 
1420 kbar surprising?  

2. (10p) Test the melting of bulk Cu using the temperature and pressure controls. Simulate a 
block of Cu at different temperatures, using pressure control to keep the pressure at 0 kbar, 
and find the temperature at which the cell melts. Try to determine the melting temperature 
with an uncertainty less than 100 K. It is enough to estimate when the cell melts by visual 
inspection of the atom positions. How does the value compare with the experimental melt-
ing temperature? 
 
Note that since the initial kinetic energy of atoms is set to twice the temperature, the cell 
may melt instantaneously (within 1 ps or so) before it has time to equilibrate to a given tem-
perature. You can circumvent this by using initialT < desiredT and let the temper-
ature control set the cell to the correct temperature. Report the obtained melting 
temperature, compare the result to experiment and comment on the difference.
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Molecular dynamics 2015

Exercises 10 (not to any specific chapter): mdmorse : surface and defect energies

1. (10 p) Surface energies of Cu.  
 
Determine the surface energies γ  of 
our Morse copper at 0 K for the (001) 

and (111) surfaces

Periodic in all directions: no surfaces Periodic in x and y: surface=2A

E1

E2

γ
E2 E1–

2A
------------------=

z

x y,

A

A

A

A

1. Surface energy 
can easily be calculated by compar-
ing a simulation with periodic bound-
ary conditions in all directions with 
one having e.g. z  direction open.  
 
Use system sizes of 5 5× 5×  unit cells for the (001) surface and 7 4× 4×  for the (111) 

surface. Give the result in units of J/m2.  
 
Compare the energies you obtained to experimental and ab initio results found in article2:  
Q Jiang, H M Lu and M Zhao, J. Phys.: Condens. Matter 16 (2004) 521-530. 
 
What happens to the outermost atomic layers? What would happen if atoms only interacted 
with their nearest neighbors? 
 
Plot the potential energy of atomic layers as a function of z  (or distance from the surface). 
Do the systems seem to be large enough to be used in this kind of calculations? Check your 

result for (001) surface by doubling the system size3 and calculating the surface energy for 
it.  
 
Can you explain the possible difference or equality of the energies of the two surfaces? 

2. (5 p) Vacancy formation energy of Cu. 
 
Determine the vacancy formation energy of copper. How does it compare with the cohesion 
energy? Calculate how large is the effect of relaxation of atoms around the vacancy.

3. (5 p) FCC vs. HCP 
a) How large must the pair potential cut-off radius be (in units of nearest-neighbor distance) 
in order to get differences in potential energy between the FCC and HCP lattices?  
b) When only the nearest neighbors are included in energy calculation do the energies of the 
two lattices differ when the potential energy model is (i) EAM or (ii) a model with explicit 
angular dependence (i.e. has bond-angle dependence)?

 
 

1. To build the (111) system use the program of exercise 1.
2. The journal is available on-line from University computers at http://www.iop.org/EJ/abstract/0953-

8984/16/4/001 .
3. In which direction(s)? Decide yourself.
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Exercise 11 (not to any specific chapter): mdmorse : melting temperature by the interface 
method

1. (14 p) Determine the melting point of Morse Cu by constructing a cell which has both liquid 
and solid parts, and finding the temperature at which these are more or less in equilibrium. 
The most accurate way to determine the melting point is to estimate the speed of the move-
ment of the liquid-solid interface as a function of temperature and determine the tempera-
ture where it crosses zero. In this case, however, visual inspection is enough. 
 
Use temperature and pressure control the way you think is physically best motivated. When 
done properly, this is the best possible way to determine the melting point by direct simula-
tion. 
 
Hint: create the liquid and solid part in separate simulations which end at the same temper-

ature close to the expected melting point1, then merge these into a joint simulation cell 
which you first equilibrate a little while before starting longer simulations. 
 
Comment on the difference to the result you obtained in exercise 9.2. Why is the answer 
you obtain here more reliable than the one you obtained previously?

 

2. (6 p) Assume a Finnis-Sinclair type EAM model of a metal with only nearest neighbor inter-
action. The energy of atom i  is expressed as 

                        Ei
1
2
--- φ rij( )

j i≠
 A ni–= ,    ni ρ rij( )

j i≠
= . 

 
Show that it is possible to parameterize the model such that it gives BCC lattice as the equi-
librium structure instead of FCC. Hint: When only nearest neighbor interaction is included 
the nearest neighbor distance is the same for all structures, only the coordination varies. 

1. Note that this method should give a better value for Tm  than the simple heating simulation of exercise 

9.
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Exercise 12 (not to any specific chapter): mdmorse : application to nanoclusters

Note: This is the last exercise.

1. (15 p) Spontaneous sintering of nanoclusters.  
Simulate the spontaneous sintering of nanoclusters by creating two Cu spheres which are 20 

Å in diameter. Rotate them by a random angle1, and place them after that next to each other 

so that the minimum distance between atoms in the two is 4 Å2. After this simulate them for 
100 ps at 600 K and cool after that slowly to 0 K. Repeat the whole process starting from 
picking a new random angle a few times to get a representative idea of what is going on. 
 
Describe the behaviour of the system, and return a series of images which illustrates your 
description. 
 
(The observed behaviour actually underlies the manufacturing of materials using powder 
sintering. See e.g H. Zhu, R. Averback, Phil. Mag. Lett. 73 (1996) 27). 

2. (5 p) Stillinger-Weber potential for Si. 
Express the energy of one silicon atom in a diamond lattice in the form given in the lecture 
notes (chapter 9, page 18). 

1. Euler angles; see e.g. http://mathworld.wolfram.com/EulerAngles.html
2. I.e. less than the potential cut-off.
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Repetitia mater studiorum

Atomistic simulation types 

• Molecular dynamics (MD)
 

- Simulates atom motion as a function of real time based on some inter-
action model

• Monte Carlo (MC) 

- Atomistic Monte Carlo: calculate thermodynamic averages by letting 
particles move randomly according to certain rules.

- Metropolis algorithm for NVT ensemble
- Metropolis-based algorithms for NVE, NPT, μVT

- Energy minimization

• Conjugate gradient energy minimization

- Efficient way to find a local minimum

• Genetic algorithms for atoms

- Possibly efficient way to find a global minimum
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The basic MD algorithm

0. Set initial conditions ri (t0) and vi(t0) 

1. If necessary, calculate new neighbour list
 
2. Solve equations of motion over a short time step Δt  
    (predictor phase) 
 

ri (tn) → ri
pred (tn+1)

vi (tn) → vi
pred(tn+1) 

 
3. Calculate new forces Fi (ri

pred) 

4. Solve equations of motion over a short time step Δt  
    (corrector phase) 
 

ri
pred (tn+1) → ri (tn+1)

vi
pred (tn+1) → vi(tn+1) 

5. Do temperature or pressure scaling, if appropriate

 
6. Calculate desired physical quantities 
 
 
7. Set t = t + Δt, n=n+1

 
8. If t < tmax, return to phase 1.

9. Calculate final results and end simulation



Most common boundary conditions in MD 

• Free boundaries: simulate matter in empty space 
 
 
 
 
 
 
 
 
 
 

• Periodic boundaries: describes a continuous medium 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Because here rij> rij’, the vector rij’ is used for the distance between atoms i 

and j (minimum image convention) 

if (periodic(1)) then
    dx = x(j) - x(i)
    if (dx  >  box(1)/2.0)  dx=dx-box(1)
    if (dx <= -box(1)/2.0)  dx=dx+box(1)
endif

i

j’

j

kk’

l

l’

rcutoff

rij

rij’

box(1)
3



Choice of time step

• In choosing the time step one could rule of thumb is that an atom should not 
move farther than ~ 1/20 of the nearest-neighbour distance during one time 
step 

• In practice for atoms with Z > 10 or so Δt ~ 0.05 10.18× m u( )  fs  has been 
found to work well for most materials in classical simulations with the Gear V 
- algorithm.

- For very hard materials (Pt, W) slightly smaller time steps may be needed 

• The choice of time step should still be checked by checking the conservation 
of energy (in NVE) for every new type of system or interaction model. 

• If Δt is too large, energy is not conserved:
4
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Construction of a neighbour list 

• To save time in classical MD, and often CG and MC as well, it is worth con-
structing a neighbour list. If there are more than ~ 1000 atoms, it is worth con-
structing it with a linkcell method.  

• Verlet neighbour list
 
- rc is the potential cutoff 

radius 
 
- Construct a list which con-
tains the atom indices for all 
neighbours within rm rc> . 
 
- The list should be updated as 
soon as two atoms may have 
moved further than rm rc–   
 
 

 

• Cellular method

- Divide the MD simulation cell into 
M M× M×  subcells 
 
- Neighbours for an atom in cell 13 is 
looked for only in the darker subcells.  

The size of the subcells l is chosen such that 

l
L
M
----- rm>=  

where L = the size of the whole MD cell.

rc
rm

1 2 3 4 5

6 7 8 9 10

11 12 14 15

16 17 18 19 20

21 22 23 24 25

13



Solving the MD equations of motion

• The basic idea of MD is to solve the motion of N atoms by numerical integra-
tion over a short time step Δt 

- The basic idea is:

a t( ) V r t( )( )∇=

r t Δt+( ) r t( ) v t( )Δt
1
2
---a t( )Δt

2
+ +=

v t Δt+( ) a t( )Δt=

 

 
but these equations are very inaccurate. A good general algorithm is veloc-
ity Verlet 

r t δt+( ) r t( ) δtv t( ) 1
2
---Δt

2
a t( )+ +=  

v t δt+( ) v t( ) 1
2
---δt a t( ) a t δt+( )+[ ]+=  

• A highly accurate algorithm for small time steps is 5th order Gear: 

Denote ri
r

i( ) δt( )i

i!
--------------------=  

 
The the predictor is: 

r0
P

t δt+( )

r1
P

t δt+( )

r2
P

t δt+( )

r3
P

t δt+( )

r4
P

t δt+( )

r5
P

t δt+( )

1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1

r0 t( )

r1 t( )

r2 t( )

r3 t( )

r4 t( )

r5 t( )

=  
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and the corrector:  
 

error term δR2 a a
p

–=  
 

correction: rn rn
P αδR2+=  where  α

3 16⁄
251 360⁄

1

11 18⁄
1 6⁄

1 60⁄

=  
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Force calculations 

• In a classical model the potential between atoms can be written as: 

V V1 ri( )
i
 V2 ri rj,( ) V3 ri rj rk, ,( ) …+

i j k, ,
+

i j,
+=

 

 
where V2 is a pair potential which only depends on the distance between atoms 

rij and V3 is a three-body potential which may have an angular dependence,  
V3 = V3 (rij , rik , θijk) 
 

• Force calculation for a pair potential: 
 
Say we have a pair potentialV rij( ) . The 

force acting from atom i  on atom j  is

j

i
rij

fij

-fij

 

      fij ∇– ri
V rij( ) ∇– rij

V rij( )= =  

                       rij ri rj–=   

fij rd
dV

r rij=

rij

rij
------×–=  

 

• The potentials usually have a cut-
off radius rc . Atoms separated by 

a distance > rc  do not interact. 

Usually rc a few Å≈ . 
rc

V(r)

r

 
 
In a good potential both V and all 
its derivatives go continuously to 
zero when r = rc(dashed lines in 

figure).



9

General form of the interaction 

 
 
 
 

 
 
 
 

• At small separations there is a repulsive force due to the overlapping of elec-
tron shells (Pauli rule and electron-electron Coulomb repulsion) and at very 
small distances due to the Coulomb repulsion between the charges of the 
nuclei. 

• At larger distances there may be an attractive interaction, which may have sev-
eral different causes: van der Waals, Coulomb, metallic bonding, covalent 
bonding, hydrogen bonding 

• Potential minimum is at a distance r0 . 

r

V(r)

r0
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Fitting of potential parameters. 
 

• Important parameters to which a potential can be fit:

Physical property Atom-level property

Crystal structure Balance of atomic forces.

Cohesive energy Potential energy at the equilibrium atom 
positions

Elastic constants cρσ
Long-wavelength acoustic vibrations 
Elastic distortions of unit cell.

Equation of state P(V) Compression or expansion of material

Neutron scattering Phonon ω k( )  in the Brillouin zone.

Dielectric constant ε∞
Electronic polarizability

Dielectric constant ε0
Polarization of electrons and lattice; long-
wavelength optical vibration modes;

Infrared absorption Long-wavelength vibrations with a dipole 
moment.

Raman scattering Long-wavelength vibrations which change 
the polarizability.

 

• Out of these, the four first ones are usually the most important in solids. 

• In addition, it is also possible to fit potentials to or even derive potentials from 
data obtained from (hopefully) realistic quantum mechanical calculations. 
 
 
 



11

Pair potentials 

• Taylor expansions

V r( ) K2 r r0–( )2
K3 r r0–( )3

K4 r r0–( )4
+ +=

• No physical motivation whatsoever, but can work close to equilibrium separa-
tion r0 since any smooth function can be approximated with a Taylor series. 

• Lennard-Jones (LJ)  
 

V r( ) 4ε σ
r
--- 
  12 σ

r
--- 
  6

–=  

• The attractive 1/r6 - term can be derived by considering the induced dipole-
dipole interaction of two electrically neutral spheres, or for quantum mechani-
cal oscillators. It is also known as a Van der Waals or London interaction. 

• The LJ potential describes well at least interactions between noble gases or 
dipole-dipole interactions between molecules. 
 

• Morse potential 
 
          V r( ) De 2α r r0–( )– 2De α r r0–( )––=  

• Can describe fairly realistically chemical bonds and the breaking of chemical 
bonds.  

• Parameters available e.g. for most metals in the solid state. 
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Potentials for ionic compounds 

• The interactions between ions can of course be described with Coulomb inter-
actions. To get a sensible short-range interaction one has to add a separate 
short-range potential.  

• This gives a potential of the form 
 

V rij( ) VSR rij( )
z1z2e2

4πε0rij
------------------+= ; zi  = ionic charges 

 
The short.-range potential VSR can be e.g.  

 

VSR r( ) Ae r ρ/– C

r6
-----–=  

 

• In modelling ionic compounds, the sum over neighbours does not converge 
automatically. Then it is best to use some special algorithms to form the sum 
efficiently. For small numbers of atoms the Ewald sum or Ewald mesh meth-
ods are probably fastest, for large number of atoms there are the truly O(N) 
scaling fast multipole algorithms (FMA’s). 
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Metal interaction models 

• Metals can be described well by considering the atoms as positively charges 
ions which are embedded into a surrounding free electron gas. The density of 
the electron gas depends on the local environment. 

• These models can be derived from effective medium theory (EMT). 

• Most models used now are given in the Embedded Atom Method (EAM) func-
tional form. 

• In EAM the total energy is given as 
 

Etot Fi ρi( )
i
 1

2
--- Vij rij( )

ij
+=    

where  

ρi ρj
a rij( )

j i≠
=   is the electron density at atom i  , 

ρj
a r( )  is the electron density distribution of atom j ,  

Fi  is the embedding function and 

Vij  is a repulsive potential 

• In Finnis-Sinclair and Rosato models Fi x( ) x=   

• In glue models the functional form is the same as in EAM, but Vij  is not 

purely repulsive. 

• EAM-models can describe quite well the basic mechanical and thermody-
namic properties of most pure FCC metals, fairly well most BCC metals and 
fairly well those HCP metals for which 
 

C13 - C44 > 0 and 1/2 (3 C12 - C11) > C13 - C44  

• Also many metal alloys can be described well with EAM models. 
 
 



Semiconductor and carbon potentials 

• For Si at least three good potentials exist: 

• Stillinger-Weber (SW) 

- The potential has a pair term V2  and a three-body term V3 . The three-

body term has an explicit minimum when the angles between the bonds 

correspond to ideal sp3 bond hydridization, i.e. for the diamond crystal 
structure. 

- Describes well melting and surprisingly many other properties as well.

• EDIP

- An SW-like formulation which is also environment dependent. Probably 
the best potential for bulk Si now.

• Tersoff

- The form of the potential is 
 

Vij fC rij( ) aijfR rij( ) bijfA rij( )+[ ]=  
 
where fR is the repulsive and fA the attractive pair potential part. bij mod-

ifies the strength of the pair interaction depending on the local environ-
ment and angles between bonds. 

- The Tersoff potential can also describe reasonably non-tetrahedral bond-
ing configurations. 

- Two parametrizations, out of which Tersoff C or III best in non-equilib-
rium applications. 

• Ge:

- Two SW parametrizations, but terrible description of melting.

- Also a Tersoff-parametrization, but also with bad description of melting. 
14



• For C in the bulk states (graphite and diamond) as well as fullerenes several 
parametrizations exist. 

- Tersoff works fairly well in all of these.

- The Brenner potential (based on the Tersoff formalism) also describes 
conjugated bonds and small hydrocarbon molecules well. But it is clearly 
slower than Tersoff. 
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Molecular interaction models (classical force fields)

• The total energy of a molecule can be written as 
 

E = Ebond + Eangle + Etorsion + Eoop + Ecross + Enonbond

Ebond describes the energy change related to a change of bond length, and 

thus is simply a pair potential V2 
 
Eangle describes the energy change associated with a change in the bond 

angle, i.e. is a three-body potential V3 
 
Etorsion describes the torsion, i.e. energy associated with the rotation 

between two parts of a molecule relative to each other. 
 
Eoop describes “out-of-plane” interactions, i.e. the energy change when 

one part of a molecule is out of the plane with another 
 
Ecross - are cross terms between the other interaction terms. 
 
Enonbond describes interaction energies which are not associated with cov-

alent bonding. Can be ionic, hydrogen bonding or van der Waals terms. 

• An example of a real molecular potential:
16
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Overview of classical interatomic force models 
as a function of the branch of science
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Quantum mechanical models 

• In the Schrödinger equation (7.1) the computationally most complicated part is 
the electron-electron interaction 

Vee
e

2

rij
2

-----------

j


i
=  

 
which is a sum from all electrons to all electrons. This can not be directly eval-
uated except for the very smallest system. 

• The basic solution in both Hartree-Fock (HF) and density functional theory 
(DFT) is to create some sort of an “average” electron density, with which 
every electron interacts separately. 

•
• HF- and DFT methods are much better motivated than classical models. 

Unfortunately they are also very much slower. The limit for common HF 
methods is maybe 50 atoms, and for DFT calculations maybe 200 atoms on 
ordinary computers. 
 

• In the DFT method the so called LDA-approximation is often applied. In this 
approximation the electron exchange and correlation energy is calculated for 
small density elements as if the density were constant in this element. 
 
 

• In the so called Plane wave methods the outermost electron wave function are 
written as the sum of periodic plane waves.

ψ fl
l
 K( )e

iK r⋅–
=

 

These methods are well suited for describing periodic systems, i.e. bulk matter. 
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Tight binding-methods 

• Tight-binding (TB) models are so called minimal quantum mechanical mod-
els. They are usually semi-empirical, and the quality of the results varies a lot. 
In the TB method the total electron energy E is 

E εi

i 1=

N

 1
2
--- U rij( )

j


i
+=

 

where U is a repulsive pair potential acting between atoms, and the εi are the 

eigenvalues of some Schrödinger-like equation

Ĥψi r( ) 1
2
---∇2

– V r( )+ ψi r( ) εi r( )= =

 

The TB-Schrödinger is solved in some set of basis functions {φα} which only 

includes the outermost valence electrons. 
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Efficiency of different force models. 

• Crucial in selecting a model is to find one which is efficient enough to do what 
you want, yet realistic enough to describe the essential physics in your prob-
lem correctly. Below is a summary of the situation today: 

Model Type Scaling Nmax
1

HF (Hartee-Fock) quantum mechanical, 
ab initio

O(N4-8) 50

DFT (density functional 
theory

quantum mechanical O(N3) 200

TB (Tight-binding) quantum mechanical 
(often semiempirical)

O(N3)/
O(N)

1000
10000

Many-body potential classical, semiempirical O(N) 107

Pair potential classical, semiempirical O(N) 107

1This is a rough estimate of how many atoms can be simulated in a reasonable time, i.e. a week or so, on a single-
processor machine.

• Hence, typical application areas:

- The number of atoms of quantum mechanical models (HF and DFT) ~ 
100 is enough to simulate e.g. small molecules, bulk properties of com-
mon phases, and point defect properties. HF and DFT can give informa-
tion on the electronic structure of the material. 

- Tight-binding is a “minimal quantum mechanical” model which works 
well in a few materials (e.g. C, Si, Ge) but is problematic in many others. 
The O(N) tight-bonding works only in a very limited set of applications, 
such as a-Si.

- With classical models it is nowadays possible to simulate even very large 
systems, such as large protein molecules, 2- and 3-dimensional defects, 
whole nanoclusters, surface growth, grain boundaries etc. etc. The main 
limitation is that they do not usually directly give information on the 
electronic properties of the material.
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MD Simulation of different ensembles 

• Ensembles are denoted by the thermodynamical quantities which are con-
served in them. N=number of atoms, V=volume, E=energy, P=pressure, 
T=temperature 

• microcanonical: NVE (isolated) 

- Algorithm: direct solution of equations of motion 

• canonical: NVT (closed)

- Algorithm: Berendsen “quick and dirty”, 
not true NVT ensemble. 
 
True NVT: Nosé-Hoover, or N-H chain or  
massive N-H chain. 
 

• isothermal-isobaric: NPT  

- Heat control as above, pressure control: 

- Berendsen “quick and dirty”, not true NPT 

- Andersén-pressure control if pressure is hydrostatic 
(e.g. in liquid) 

- Parrinello-Rahman-pressure control for non-hydrostatic stress (e.g. in 
crystals) 

• Berendsen temperature scaling: scale velocities every time step with 

λ 1
Δt
τT
-----

T0

T
----- 1– 
 += , where T0 is the desired T. 

• Berendsen pressure scaling: scale atom position and the box size every time 

step with a factor μ 1
βΔt
τP

---------– P0 P–( )3= , where P0 is the desired pressure and β 

= 1/B

heat bath

heat bath

P = P0



Energy minimization techniques.

• There are at least 4 ways to approach minimizing the energy of an atom sys-
tem: 
 
1. Monte Carlo-simulation: 

- May be good in looking for a global minimum, if only one very strong 
minimum exists

- Not very efficient in looking for a local minimum 
 
2. MD-simulation: Do an MD simulation letting T -> 0 K. 

- Sometimes quite efficient in finding a local minimum, especially by us-
ing the trick of setting vi = 0 if vi • Fi = 0.

- May sometimes be good for looking for a global minimum, but tends to 
get stuck if a high barrier exists. 

3. Conjugate gradients (CG) 

- Very efficient way to reach the closest local minimum

• - Works by movement down a potential well, but so that the 
new direction is conjugated with respect to the previous to prevent zig-zag 
motion. 
 

- The new direction xi+1 into which one moves is evaluated as 
   xi = ∇ V(ri+1) ; 
   gi+1 = - xi ;  hi+1 = gi+1 + γhi  and xi+1 = hi+1  
   where  γ xi gi+( ) xi⋅( ) gi gi⋅( )⁄=  

 
- In the CG method for atoms it is often even more efficient to use an 

adaptive step length instead of line minimization. 
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4. Genetic algorithms 
 

- An efficient way to look for a global minimum in dilute systems 
- Not much tested in atom systems yet. 

• The basic idea comes from evolution theory; a population is formed, this is 
allowed to breed, and the best-adjusted species are allowed to stay alive. 
 
Deaven and Ho genetic algorithm for atoms, slightly simplified.

0. Start. Create random initial positions for p struc-
tures, each with exactly N atoms.

1. Mating and breeding. Select two well-adjusted 
parents for breeding. This is done by selecting a 
given parent i with state 

P G( ) e
E G( ) Tm⁄–

∝

Gi with the probability 

where the mating ‘temperature’ Tm is selected as the 

range of energies among the whole population {Gi }. Split 

the two parent structures along the same line. Take one half 
of one parent, and another half of another parent, and join 
them together. Make sure the child has as many atoms as the 
parents. 
 
2. Mutation. With a probability μ ≥ 0 perform a mutation on the child. 

3. Minimize the energy of the child to the closest local minimum. This is 
done by CG or MD. 
 
4. Natural selection. If the child has lower energy than any of the parents, 
allow it to stay alive. Then check that its energy does not match the energy of 
any parent within an energy range δE. If this is true, include it in the popula-
tion, and kill the least-well adapted parent. 

5. If convergence has not been reached, return to stage 1.
23
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Comparison to experiments

• Atomistic data can be seldom compared directly to experiments. Most often 
some intermediate analysis code is needed to enable a sensible comparison.  

• A special caveat should be taken with STM and TEM: in both methods, what 
may look like an atom may in fact be something entirely different. 
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Final comment of the course

 

Hope you have enjoyed the materials 
and have happy simulation-times !


