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Repetitia mater studiorum

Atomistic simulation types 

• Molecular dynamics (MD)
 

- Simulates atom motion as a function of real time based on some inter-
action model

• Monte Carlo (MC) 

- Atomistic Monte Carlo: calculate thermodynamic averages by letting 
particles move randomly according to certain rules.

- Metropolis algorithm for NVT ensemble
- Metropolis-based algorithms for NVE, NPT, μVT

- Energy minimization

• Conjugate gradient energy minimization

- Efficient way to find a local minimum

• Genetic algorithms for atoms

- Possibly efficient way to find a global minimum
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The basic MD algorithm

0. Set initial conditions ri (t0) and vi(t0) 

1. If necessary, calculate new neighbour list
 
2. Solve equations of motion over a short time step Δt  
    (predictor phase) 
 

ri (tn) → ri
pred (tn+1)

vi (tn) → vi
pred(tn+1) 

 
3. Calculate new forces Fi (ri

pred) 

4. Solve equations of motion over a short time step Δt  
    (corrector phase) 
 

ri
pred (tn+1) → ri (tn+1)

vi
pred (tn+1) → vi(tn+1) 

5. Do temperature or pressure scaling, if appropriate

 
6. Calculate desired physical quantities 
 
 
7. Set t = t + Δt, n=n+1

 
8. If t < tmax, return to phase 1.

9. Calculate final results and end simulation



Most common boundary conditions in MD 

• Free boundaries: simulate matter in empty space 
 
 
 
 
 
 
 
 
 
 

• Periodic boundaries: describes a continuous medium 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- Because here rij> rij’, the vector rij’ is used for the distance between atoms i 

and j (minimum image convention) 

if (periodic(1)) then
    dx = x(j) - x(i)
    if (dx  >  box(1)/2.0)  dx=dx-box(1)
    if (dx <= -box(1)/2.0)  dx=dx+box(1)
endif
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Choice of time step

• In choosing the time step one could rule of thumb is that an atom should not 
move farther than ~ 1/20 of the nearest-neighbour distance during one time 
step 

• In practice for atoms with Z > 10 or so Δt ~ 0.05 10.18× m u( )  fs  has been 
found to work well for most materials in classical simulations with the Gear V 
- algorithm.

- For very hard materials (Pt, W) slightly smaller time steps may be needed 

• The choice of time step should still be checked by checking the conservation 
of energy (in NVE) for every new type of system or interaction model. 

• If Δt is too large, energy is not conserved:
4
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Construction of a neighbour list 

• To save time in classical MD, and often CG and MC as well, it is worth con-
structing a neighbour list. If there are more than ~ 1000 atoms, it is worth con-
structing it with a linkcell method.  

• Verlet neighbour list
 
- rc is the potential cutoff 

radius 
 
- Construct a list which con-
tains the atom indices for all 
neighbours within rm rc> . 
 
- The list should be updated as 
soon as two atoms may have 
moved further than rm rc–   
 
 

 

• Cellular method

- Divide the MD simulation cell into 
M M× M×  subcells 
 
- Neighbours for an atom in cell 13 is 
looked for only in the darker subcells.  

The size of the subcells l is chosen such that 

l
L
M
----- rm>=  

where L = the size of the whole MD cell.
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Solving the MD equations of motion

• The basic idea of MD is to solve the motion of N atoms by numerical integra-
tion over a short time step Δt 

- The basic idea is:

a t( ) V r t( )( )∇=

r t Δt+( ) r t( ) v t( )Δt
1
2
---a t( )Δt

2
+ +=

v t Δt+( ) a t( )Δt=

 

 
but these equations are very inaccurate. A good general algorithm is veloc-
ity Verlet 

r t δt+( ) r t( ) δtv t( ) 1
2
---Δt

2
a t( )+ +=  

v t δt+( ) v t( ) 1
2
---δt a t( ) a t δt+( )+[ ]+=  

• A highly accurate algorithm for small time steps is 5th order Gear: 

Denote ri
r

i( ) δt( )i

i!
--------------------=  

 
The the predictor is: 

r0
P

t δt+( )

r1
P

t δt+( )

r2
P

t δt+( )
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P

t δt+( )
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P
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and the corrector:  
 

error term δR2 a a
p

–=  
 

correction: rn rn
P αδR2+=  where  α

3 16⁄
251 360⁄

1

11 18⁄
1 6⁄

1 60⁄

=  
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Force calculations 

• In a classical model the potential between atoms can be written as: 

V V1 ri( )
i
 V2 ri rj,( ) V3 ri rj rk, ,( ) …+

i j k, ,
+

i j,
+=

 

 
where V2 is a pair potential which only depends on the distance between atoms 

rij and V3 is a three-body potential which may have an angular dependence,  
V3 = V3 (rij , rik , θijk) 
 

• Force calculation for a pair potential: 
 
Say we have a pair potentialV rij( ) . The 

force acting from atom i  on atom j  is

j

i
rij

fij

-fij

 

      fij ∇– ri
V rij( ) ∇– rij

V rij( )= =  

                       rij ri rj–=   

fij rd
dV

r rij=

rij

rij
------×–=  

 

• The potentials usually have a cut-
off radius rc . Atoms separated by 

a distance > rc  do not interact. 

Usually rc a few Å≈ . 
rc

V(r)

r

 
 
In a good potential both V and all 
its derivatives go continuously to 
zero when r = rc(dashed lines in 

figure).
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General form of the interaction 

 
 
 
 

 
 
 
 

• At small separations there is a repulsive force due to the overlapping of elec-
tron shells (Pauli rule and electron-electron Coulomb repulsion) and at very 
small distances due to the Coulomb repulsion between the charges of the 
nuclei. 

• At larger distances there may be an attractive interaction, which may have sev-
eral different causes: van der Waals, Coulomb, metallic bonding, covalent 
bonding, hydrogen bonding 

• Potential minimum is at a distance r0 . 

r

V(r)

r0
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Fitting of potential parameters. 
 

• Important parameters to which a potential can be fit:

Physical property Atom-level property

Crystal structure Balance of atomic forces.

Cohesive energy Potential energy at the equilibrium atom 
positions

Elastic constants cρσ
Long-wavelength acoustic vibrations 
Elastic distortions of unit cell.

Equation of state P(V) Compression or expansion of material

Neutron scattering Phonon ω k( )  in the Brillouin zone.

Dielectric constant ε∞
Electronic polarizability

Dielectric constant ε0
Polarization of electrons and lattice; long-
wavelength optical vibration modes;

Infrared absorption Long-wavelength vibrations with a dipole 
moment.

Raman scattering Long-wavelength vibrations which change 
the polarizability.

 

• Out of these, the four first ones are usually the most important in solids. 

• In addition, it is also possible to fit potentials to or even derive potentials from 
data obtained from (hopefully) realistic quantum mechanical calculations. 
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Pair potentials 

• Taylor expansions

V r( ) K2 r r0–( )2
K3 r r0–( )3

K4 r r0–( )4
+ +=

• No physical motivation whatsoever, but can work close to equilibrium separa-
tion r0 since any smooth function can be approximated with a Taylor series. 

• Lennard-Jones (LJ)  
 

V r( ) 4ε σ
r
--- 
  12 σ

r
--- 
  6

–=  

• The attractive 1/r6 - term can be derived by considering the induced dipole-
dipole interaction of two electrically neutral spheres, or for quantum mechani-
cal oscillators. It is also known as a Van der Waals or London interaction. 

• The LJ potential describes well at least interactions between noble gases or 
dipole-dipole interactions between molecules. 
 

• Morse potential 
 
          V r( ) De 2α r r0–( )– 2De α r r0–( )––=  

• Can describe fairly realistically chemical bonds and the breaking of chemical 
bonds.  

• Parameters available e.g. for most metals in the solid state. 
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Potentials for ionic compounds 

• The interactions between ions can of course be described with Coulomb inter-
actions. To get a sensible short-range interaction one has to add a separate 
short-range potential.  

• This gives a potential of the form 
 

V rij( ) VSR rij( )
z1z2e2

4πε0rij
------------------+= ; zi  = ionic charges 

 
The short.-range potential VSR can be e.g.  

 

VSR r( ) Ae r ρ/– C

r6
-----–=  

 

• In modelling ionic compounds, the sum over neighbours does not converge 
automatically. Then it is best to use some special algorithms to form the sum 
efficiently. For small numbers of atoms the Ewald sum or Ewald mesh meth-
ods are probably fastest, for large number of atoms there are the truly O(N) 
scaling fast multipole algorithms (FMA’s). 
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Metal interaction models 

• Metals can be described well by considering the atoms as positively charges 
ions which are embedded into a surrounding free electron gas. The density of 
the electron gas depends on the local environment. 

• These models can be derived from effective medium theory (EMT). 

• Most models used now are given in the Embedded Atom Method (EAM) func-
tional form. 

• In EAM the total energy is given as 
 

Etot Fi ρi( )
i
 1

2
--- Vij rij( )

ij
+=    

where  

ρi ρj
a rij( )

j i≠
=   is the electron density at atom i  , 

ρj
a r( )  is the electron density distribution of atom j ,  

Fi  is the embedding function and 

Vij  is a repulsive potential 

• In Finnis-Sinclair and Rosato models Fi x( ) x=   

• In glue models the functional form is the same as in EAM, but Vij  is not 

purely repulsive. 

• EAM-models can describe quite well the basic mechanical and thermody-
namic properties of most pure FCC metals, fairly well most BCC metals and 
fairly well those HCP metals for which 
 

C13 - C44 > 0 and 1/2 (3 C12 - C11) > C13 - C44  

• Also many metal alloys can be described well with EAM models. 
 
 



Semiconductor and carbon potentials 

• For Si at least three good potentials exist: 

• Stillinger-Weber (SW) 

- The potential has a pair term V2  and a three-body term V3 . The three-

body term has an explicit minimum when the angles between the bonds 

correspond to ideal sp3 bond hydridization, i.e. for the diamond crystal 
structure. 

- Describes well melting and surprisingly many other properties as well.

• EDIP

- An SW-like formulation which is also environment dependent. Probably 
the best potential for bulk Si now.

• Tersoff

- The form of the potential is 
 

Vij fC rij( ) aijfR rij( ) bijfA rij( )+[ ]=  
 
where fR is the repulsive and fA the attractive pair potential part. bij mod-

ifies the strength of the pair interaction depending on the local environ-
ment and angles between bonds. 

- The Tersoff potential can also describe reasonably non-tetrahedral bond-
ing configurations. 

- Two parametrizations, out of which Tersoff C or III best in non-equilib-
rium applications. 

• Ge:

- Two SW parametrizations, but terrible description of melting.

- Also a Tersoff-parametrization, but also with bad description of melting. 
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• For C in the bulk states (graphite and diamond) as well as fullerenes several 
parametrizations exist. 

- Tersoff works fairly well in all of these.

- The Brenner potential (based on the Tersoff formalism) also describes 
conjugated bonds and small hydrocarbon molecules well. But it is clearly 
slower than Tersoff. 
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Molecular interaction models (classical force fields)

• The total energy of a molecule can be written as 
 

E = Ebond + Eangle + Etorsion + Eoop + Ecross + Enonbond

Ebond describes the energy change related to a change of bond length, and 

thus is simply a pair potential V2 
 
Eangle describes the energy change associated with a change in the bond 

angle, i.e. is a three-body potential V3 
 
Etorsion describes the torsion, i.e. energy associated with the rotation 

between two parts of a molecule relative to each other. 
 
Eoop describes “out-of-plane” interactions, i.e. the energy change when 

one part of a molecule is out of the plane with another 
 
Ecross - are cross terms between the other interaction terms. 
 
Enonbond describes interaction energies which are not associated with cov-

alent bonding. Can be ionic, hydrogen bonding or van der Waals terms. 

• An example of a real molecular potential:
16
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Overview of classical interatomic force models 
as a function of the branch of science

Important interaction energy range
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Quantum mechanical models 

• In the Schrödinger equation (7.1) the computationally most complicated part is 
the electron-electron interaction 

Vee
e

2

rij
2

-----------

j


i
=  

 
which is a sum from all electrons to all electrons. This can not be directly eval-
uated except for the very smallest system. 

• The basic solution in both Hartree-Fock (HF) and density functional theory 
(DFT) is to create some sort of an “average” electron density, with which 
every electron interacts separately. 

•
• HF- and DFT methods are much better motivated than classical models. 

Unfortunately they are also very much slower. The limit for common HF 
methods is maybe 50 atoms, and for DFT calculations maybe 200 atoms on 
ordinary computers. 
 

• In the DFT method the so called LDA-approximation is often applied. In this 
approximation the electron exchange and correlation energy is calculated for 
small density elements as if the density were constant in this element. 
 
 

• In the so called Plane wave methods the outermost electron wave function are 
written as the sum of periodic plane waves.

ψ fl
l
 K( )e

iK r⋅–
=

 

These methods are well suited for describing periodic systems, i.e. bulk matter. 
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Tight binding-methods 

• Tight-binding (TB) models are so called minimal quantum mechanical mod-
els. They are usually semi-empirical, and the quality of the results varies a lot. 
In the TB method the total electron energy E is 

E εi

i 1=

N

 1
2
--- U rij( )

j


i
+=

 

where U is a repulsive pair potential acting between atoms, and the εi are the 

eigenvalues of some Schrödinger-like equation

Ĥψi r( ) 1
2
---∇2

– V r( )+ ψi r( ) εi r( )= =

 

The TB-Schrödinger is solved in some set of basis functions {φα} which only 

includes the outermost valence electrons. 
 

19
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Efficiency of different force models. 

• Crucial in selecting a model is to find one which is efficient enough to do what 
you want, yet realistic enough to describe the essential physics in your prob-
lem correctly. Below is a summary of the situation today: 

Model Type Scaling Nmax
1

HF (Hartee-Fock) quantum mechanical, 
ab initio

O(N4-8) 50

DFT (density functional 
theory

quantum mechanical O(N3) 200

TB (Tight-binding) quantum mechanical 
(often semiempirical)

O(N3)/
O(N)

1000
10000

Many-body potential classical, semiempirical O(N) 107

Pair potential classical, semiempirical O(N) 107

1This is a rough estimate of how many atoms can be simulated in a reasonable time, i.e. a week or so, on a single-
processor machine.

• Hence, typical application areas:

- The number of atoms of quantum mechanical models (HF and DFT) ~ 
100 is enough to simulate e.g. small molecules, bulk properties of com-
mon phases, and point defect properties. HF and DFT can give informa-
tion on the electronic structure of the material. 

- Tight-binding is a “minimal quantum mechanical” model which works 
well in a few materials (e.g. C, Si, Ge) but is problematic in many others. 
The O(N) tight-bonding works only in a very limited set of applications, 
such as a-Si.

- With classical models it is nowadays possible to simulate even very large 
systems, such as large protein molecules, 2- and 3-dimensional defects, 
whole nanoclusters, surface growth, grain boundaries etc. etc. The main 
limitation is that they do not usually directly give information on the 
electronic properties of the material.
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MD Simulation of different ensembles 

• Ensembles are denoted by the thermodynamical quantities which are con-
served in them. N=number of atoms, V=volume, E=energy, P=pressure, 
T=temperature 

• microcanonical: NVE (isolated) 

- Algorithm: direct solution of equations of motion 

• canonical: NVT (closed)

- Algorithm: Berendsen “quick and dirty”, 
not true NVT ensemble. 
 
True NVT: Nosé-Hoover, or N-H chain or  
massive N-H chain. 
 

• isothermal-isobaric: NPT  

- Heat control as above, pressure control: 

- Berendsen “quick and dirty”, not true NPT 

- Andersén-pressure control if pressure is hydrostatic 
(e.g. in liquid) 

- Parrinello-Rahman-pressure control for non-hydrostatic stress (e.g. in 
crystals) 

• Berendsen temperature scaling: scale velocities every time step with 

λ 1
Δt
τT
-----

T0

T
----- 1– 
 += , where T0 is the desired T. 

• Berendsen pressure scaling: scale atom position and the box size every time 

step with a factor μ 1
βΔt
τP

---------– P0 P–( )3= , where P0 is the desired pressure and β 

= 1/B

heat bath

heat bath

P = P0



Energy minimization techniques.

• There are at least 4 ways to approach minimizing the energy of an atom sys-
tem: 
 
1. Monte Carlo-simulation: 

- May be good in looking for a global minimum, if only one very strong 
minimum exists

- Not very efficient in looking for a local minimum 
 
2. MD-simulation: Do an MD simulation letting T -> 0 K. 

- Sometimes quite efficient in finding a local minimum, especially by us-
ing the trick of setting vi = 0 if vi • Fi = 0.

- May sometimes be good for looking for a global minimum, but tends to 
get stuck if a high barrier exists. 

3. Conjugate gradients (CG) 

- Very efficient way to reach the closest local minimum

• - Works by movement down a potential well, but so that the 
new direction is conjugated with respect to the previous to prevent zig-zag 
motion. 
 

- The new direction xi+1 into which one moves is evaluated as 
   xi = ∇ V(ri+1) ; 
   gi+1 = - xi ;  hi+1 = gi+1 + γhi  and xi+1 = hi+1  
   where  γ xi gi+( ) xi⋅( ) gi gi⋅( )⁄=  

 
- In the CG method for atoms it is often even more efficient to use an 

adaptive step length instead of line minimization. 
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4. Genetic algorithms 
 

- An efficient way to look for a global minimum in dilute systems 
- Not much tested in atom systems yet. 

• The basic idea comes from evolution theory; a population is formed, this is 
allowed to breed, and the best-adjusted species are allowed to stay alive. 
 
Deaven and Ho genetic algorithm for atoms, slightly simplified.

0. Start. Create random initial positions for p struc-
tures, each with exactly N atoms.

1. Mating and breeding. Select two well-adjusted 
parents for breeding. This is done by selecting a 
given parent i with state 

P G( ) e
E G( ) Tm⁄–

∝

Gi with the probability 

where the mating ‘temperature’ Tm is selected as the 

range of energies among the whole population {Gi }. Split 

the two parent structures along the same line. Take one half 
of one parent, and another half of another parent, and join 
them together. Make sure the child has as many atoms as the 
parents. 
 
2. Mutation. With a probability μ ≥ 0 perform a mutation on the child. 

3. Minimize the energy of the child to the closest local minimum. This is 
done by CG or MD. 
 
4. Natural selection. If the child has lower energy than any of the parents, 
allow it to stay alive. Then check that its energy does not match the energy of 
any parent within an energy range δE. If this is true, include it in the popula-
tion, and kill the least-well adapted parent. 

5. If convergence has not been reached, return to stage 1.
23
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Comparison to experiments

• Atomistic data can be seldom compared directly to experiments. Most often 
some intermediate analysis code is needed to enable a sensible comparison.  

• A special caveat should be taken with STM and TEM: in both methods, what 
may look like an atom may in fact be something entirely different. 
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Final comment of the course

 

Hope you have enjoyed the materials 
and have happy simulation-times !
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	• Verlet neighbour list
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	MD Simulation of different ensembles
	• Ensembles are denoted by the thermodynamical quantities which are conserved in them. N=number of atoms, V=volume, E=energy, P=pressure, T=temperature
	• microcanonical: NVE (isolated)
	- Algorithm: direct solution of equations of motion
	• canonical: NVT (closed)
	- Algorithm: Berendsen “quick and dirty”, not true NVT ensemble. True NVT: Nosé-Hoover, or N-H chain or massive N-H chain.

	• isothermal-isobaric: NPT
	- Heat control as above, pressure control:
	- Berendsen “quick and dirty”, not true NPT
	- Andersén-pressure control if pressure is hydrostatic (e.g. in liquid)
	- Parrinello-Rahman-pressure control for non-hydrostatic stress (e.g. in crystals)

	• Berendsen temperature scaling: scale velocities every time step with , where T0 is the desired T.
	• Berendsen pressure scaling: scale atom position and the box size every time step with a factor , where P0 is the desired pressure and b = 1/B


	Energy minimization techniques.
	• There are at least 4 ways to approach minimizing the energy of an atom system: 1. Monte Carlo-simulation:
	- May be good in looking for a global minimum, if only one very strong minimum exists

	- Not very efficient in looking for a local minimum 2. MD-simulation: Do an MD simulation letting T -> 0 K.
	- Sometimes quite efficient in finding a local minimum, especially by using the trick of setting vi = 0 if vi • Fi = 0.
	- May sometimes be good for looking for a global minimum, but tends to get stuck if a high barrier exists.

	3. Conjugate gradients (CG)
	- Very efficient way to reach the closest local minimum

	• - Works by movement down a potential well, but so that the new direction is conjugated with respect to the previous to prevent zig-zag motion. - The new direction xi+1 into which one moves is evaluated as xi = Ñ V(ri+1) ;     gi+1 = - xi ;  hi+1...
	• The basic idea comes from evolution theory; a population is formed, this is allowed to breed, and the best-adjusted species are allowed to stay alive. Deaven and Ho genetic algorithm for atoms, slightly simplified.
	0. Start. Create random initial positions for p structures, each with exactly N atoms.
	1. Mating and breeding. Select two well-adjusted parents for breeding. This is done by selecting a given parent i with state Gi with the probability where the mating ‘temperature’ Tm is selected as the range of energies among the whole population...
	3. Minimize the energy of the child to the closest local minimum. This is done by CG or MD. 4. Natural selection. If the child has lower energy than any of the parents, allow it to stay alive. Then check that its energy does not match the energy of a...
	5. If convergence has not been reached, return to stage 1.

	Comparison to experiments
	• Atomistic data can be seldom compared directly to experiments. Most often some intermediate analysis code is needed to enable a sensible comparison.
	• A special caveat should be taken with STM and TEM: in both methods, what may look like an atom may in fact be something entirely different.


	Final comment of the course
	Hope you have enjoyed the materials
	and have happy simulation-times !
	0. Set initial conditions ri (t0) and vi(t0)
	1. If necessary, calculate new neighbour list
	2. Solve equations of motion over a short time step Dt (predictor phase) ri (tn) ® ripred (tn+1)
	vi (tn) ® vipred(tn+1) 3. Calculate new forces Fi (ripred)
	4. Solve equations of motion over a short time step Dt (corrector phase) ripred (tn+1) ® ri (tn+1)
	vipred (tn+1) ® vi(tn+1)
	5. Do temperature or pressure scaling, if appropriate
	6. Calculate desired physical quantities 7. Set t = t + Dt, n=n+1
	8. If t < tmax, return to phase 1.
	9. Calculate final results and end simulation
	Most common boundary conditions in MD
	• Free boundaries: simulate matter in empty space
	• Periodic boundaries: describes a continuous medium
	- Because here rij> rij’, the vector rij’ is used for the distance between atoms i and j (minimum image convention)

	Choice of time step
	• In choosing the time step one could rule of thumb is that an atom should not move farther than ~ 1/20 of the nearest-neighbour distance during one time step
	• In practice for atoms with Z > 10 or so Dt ~ has been found to work well for most materials in classical simulations with the Gear V - algorithm.
	- For very hard materials (Pt, W) slightly smaller time steps may be needed

	• The choice of time step should still be checked by checking the conservation of energy (in NVE) for every new type of system or interaction model.
	• If Dt is too large, energy is not conserved:

	Overview of classical interatomic force models as a function of the branch of science
	Quantum mechanical models
	• In the Schrödinger equation (7.1) the computationally most complicated part is the electron-electron interaction which is a sum from all electrons to all electrons. This can not be directly evaluated except for the very smallest system.
	• The basic solution in both Hartree-Fock (HF) and density functional theory (DFT) is to create some sort of an “average” electron density, with which every electron interacts separately.
	•
	• HF- and DFT methods are much better motivated than classical models. Unfortunately they are also very much slower. The limit for common HF methods is maybe 50 atoms, and for DFT calculations maybe 200 atoms on ordinary computers.
	• In the DFT method the so called LDA-approximation is often applied. In this approximation the electron exchange and correlation energy is calculated for small density elements as if the density were constant in this element.
	• In the so called Plane wave methods the outermost electron wave function are written as the sum of periodic plane waves. These methods are well suited for describing periodic systems, i.e. bulk matter.

	Tight binding-methods
	• Tight-binding (TB) models are so called minimal quantum mechanical models. They are usually semi-empirical, and the quality of the results varies a lot. In the TB method the total electron energy E is where U is a repulsive pair potential acting ...



