Repetitia mater studiorum

Atomistic simulation types

* Molecular dynamics (MD)

- Simulates atom motion as a function of real time based on some inter-
action model

e Monte Carlo (MC)

- Atomistic Monte Carlo: calculate thermodynamic averages by letting
particles move randomly according to certain rules.

- Metropolis algorithm for NVT ensemble
- Metropolis-based algorithms for NVE, NPT, uVT

- Energy minimization
* Conjugate gradient energy minimization

- Efficient way to find a local minimum
* Genetic algorithms for atoms

- Possibly efficient way to find a global minimum



The basic MD algorithm

— 1.

dft<t

. Set initial conditions r; (¢y) and v;(ty)

If necessary, calculate new neighbour list

. Solve equations of motion over a short time step At

(predictor phase)

d
i (tn) — ripred(tn-f—l)
v; (tn) — lere (tn+])

. Calculate new forces F; (r/" ed)

. Solve equations of motion over a short time step At

(corrector phase)

d
rtpred (tn-i-]) > r; (tn-i-])
,
v (4 1) = vilty )

. Do temperature or pressure scaling, if appropriate

. Calculate desired physical quantities

.Sett=1t+ At, n=n+1

max» return to phase 1.

. Calculate final results and end simulation




Most common boundary conditions in MD

» Free boundaries: simulate matter in empty space

* Periodic boundaries: describes a continuous medium

<— box(1) —»

- Because here Fii> Ty " the vector rij’ 1s used for the distance between atoms i

and j (minimum image convention)

if (periodic(l)) then

dx = x(j) - x(1i)
if (dx > Dbox(1l)/2.0) dx=dx-box(1l)
if (dx <= -box(1l)/2.0) dx=dx+box(1l)



Choice of time step

* In choosing the time step one could rule of thumb is that an atom should not
move farther than ~ 1/20 of the nearest-neighbour distance during one time
step

« In practice for atoms with Z > 10 or so At ~ 0.05 x 10.18./m (u) fs has been
found to work well for most materials in classical simulations with the Gear V
- algorithm.
- For very hard materials (Pt, W) slightly smaller time steps may be needed

» The choice of time step should still be checked by checking the conservation
of energy (in NVE) for every new type of system or interaction model.

» If At is too large, energy is not conserved:
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Construction of a neighbour list

» To save time in classical MD, and often CG and MC as well, it is worth con-

structing a neighbour list. If there are more than ~ 1000 atoms, it is worth con-

structing it with a linkcell method.

* Verlet neighbour list

- 1 1s the potential cutoff
radius

- Construct a list which con-
tains the atom indices for all

neighbours within »_>r .

- The list should be updated as
soon as two atoms may have

moved further than » m e

¢ Cellular method

- Divide the MD simulation cell into
M x M x M subcells

- Neighbours for an atom in cell 13 is
looked for only in the darker subcells.

The size of the subcells / is chosen such that

l= M>7"m

where L = the size of the whole MD cell.
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Solving the MD equations of motion

» The basic idea of MD is to solve the motion of N atoms by numerical integra-
tion over a short time step At

- The basic 1dea 1s:
a(t) = VV(r(t))

F(t+ At) = r(t)+v(t)At+%a(t)At2

v(t+At) = a(f)At

but these equations are very inaccurate. A good general algorithm is veloc-
ity Verlet

r(1+81) = r(1) + 8tv(1) + %Atza(t)

v(t+9t) = v(1) + %St[a(l‘) +a(t+ 0t)]

* A highly accurate algorithm for small time steps is 5th order Gear:

(i), « i
Denote r, = m
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The the predictor is:
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and the corrector:

error term 8R2 = a—a’

) P
correction: r, = r, +0c8R2 where o =

3/16 |

251/360

1
11/18
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1/60 |




Force calculations

* In a classical model the potential between atoms can be written as:

V= ZVl(r)+ZV(r,r)+ ZV(rl, P T

i,j i,j, k

where V, 1s a pair potential which only depends on the distance between atoms
r;jand V3 is a three-body potential which may have an angular dependence,

Vs =Vs3(rij, rig, O35

* Force calculation for a pair potential:

Say we have a pair potential V' (r ij) . The

force acting from atom i on atom j is
fz‘j = _VriV(rij) = —VrU_V(rl.j)

rl.j = l'l.—l'j

f.. = —[ﬂ/} xr—ij
y dr lr=r; rij

* The potentials usually have a cut-
off radius r . Atoms separated by V) A

a distance > r . do not interact.

Usually r =afew A .

In a good potential both ¥ and all
its derivatives go continuously to
zero when r = r.(dashed lines in

figure).



General form of the interaction

Vi)

» At small separations there is a repulsive force due to the overlapping of elec-
tron shells (Pauli rule and electron-electron Coulomb repulsion) and at very
small distances due to the Coulomb repulsion between the charges of the
nuclei.

» At larger distances there may be an attractive interaction, which may have sev-

eral different causes: van der Waals, Coulomb, metallic bonding, covalent
bonding, hydrogen bonding

* Potential minimum is at a distance ro-



Fitting of potential parameters.

* Important parameters to which a potential can be fit:

Physical property

Atom-level property

Crystal structure

Balance of atomic forces.

Cohesive energy

Potential energy at the equilibrium atom
positions

Flastic constants ¢

po

Long-wavelength acoustic vibrations
Elastic distortions of unit cell.

Equation of state P(V)

Compression or expansion of material

Neutron scattering

Phonon ®W(K) in the Brillouin zone.

Dielectric constant €,

Electronic polarizability

Dielectric constant 80

Polarization of electrons and lattice; long-
wavelength optical vibration modes;

Infrared absorption

Long-wavelength vibrations with a dipole
moment.

Raman scattering

Long-wavelength vibrations which change
the polarizability.

* Out of these, the four first ones are usually the most important in solids.

 In addition, it is also possible to fit potentials to or even derive potentials from
data obtained from (hopefully) realistic quantum mechanical calculations.
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Pair potentials

Taylor expansions

Vir) = Ky(r— r0)2 +K5(r— r0)3 + Ky (r— r0)4

No physical motivation whatsoever, but can work close to equilibrium separa-
tion 7 since any smooth function can be approximated with a Taylor series.

Lennard-Jones (LJ)

o= +{(0) ()

The attractive 1/r° - term can be derived by considering the induced dipole-
dipole interaction of two electrically neutral spheres, or for quantum mechani-
cal oscillators. It is also known as a Van der Waals or London interaction.

The LJ potential describes well at least interactions between noble gases or
dipole-dipole interactions between molecules.

Morse potential

V(I") — De—za(r—ro)_zDe—a(V—ro)

Can describe fairly realistically chemical bonds and the breaking of chemical
bonds.

Parameters available e.g. for most metals in the solid state.
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Potentials for ionic compounds

» The interactions between ions can of course be described with Coulomb inter-
actions. To get a sensible short-range interaction one has to add a separate
short-range potential.

 This gives a potential of the form

v v z 122‘32 e ch
L) = L)+ . Z. =10nic cnaregcs
(rlJ) SR(rlJ) 4Tc£0rl.j > i g

The short.-range potential V¢ can be e.g.

_ C
Vep(r) = Ae V/P——6

r

* In modelling ionic compounds, the sum over neighbours does not converge
automatically. Then it is best to use some special algorithms to form the sum
efficiently. For small numbers of atoms the Ewald sum or Ewald mesh meth-
ods are probably fastest, for large number of atoms there are the truly O(N)
scaling fast multipole algorithms (FMA’s).
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Metal interaction models

» Metals can be described well by considering the atoms as positively charges
ions which are embedded into a surrounding free electron gas. The density of
the electron gas depends on the local environment.

» These models can be derived from effective medium theory (EMT).

* Most models used now are given in the Embedded Atom Method (EAM) func-
tional form.

* In EAM the total energy is given as

|
Egi = Y Filp)+5> Vii(ryp)

where

p; = Z p j?‘(r ij) is the electron density at atom 7 ,
i%i
) ]?‘(r) is the electron density distribution of atom j,

F; is the embedding function and

Vl.j is a repulsive potential

* In Finnis-Sinclair and Rosato models F,(x) = Jx

* In glue models the functional form is the same as in EAM, but Vij is not
purely repulsive.

* EAM-models can describe quite well the basic mechanical and thermody-
namic properties of most pure FCC metals, fairly well most BCC metals and

fairly well those HCP metals for which

Ci13-C44>0and 1723 Cpp - Cyp) > Cy3- Cyy

* Also many metal alloys can be described well with EAM models.
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Semiconductor and carbon potentials

» For Si at least three good potentials exist:
» Stillinger-Weber (SW)

- The potential has a pair term ¥, and a three-body term V5 . The three-

body term has an explicit minimum when the angles between the bonds

correspond to ideal sp3 bond hydridization, i.e. for the diamond crystal
structure.

- Describes well melting and surprisingly many other properties as well.

 EDIP

- An SW-like formulation which is also environment dependent. Probably
the best potential for bulk Si now.

e Tersoff

- The form of the potential is

Vij N fc(rij)[alij(rij) + biij(rlj)]

where f is the repulsive and f the attractive pair potential part. b; mod-

ifies the strength of the pair interaction depending on the local environ-
ment and angles between bonds.

- The Tersoff potential can also describe reasonably non-tetrahedral bond-
ing configurations.

- Two parametrizations, out of which Tersoff C or III best in non-equilib-
rium applications.

- Two SW parametrizations, but terrible description of melting.

- Also a Tersoff-parametrization, but also with bad description of melting.
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* For C in the bulk states (graphite and diamond) as well as fullerenes several
parametrizations exist.

- Tersoff works fairly well in all of these.
- The Brenner potential (based on the Tersoff formalism) also describes

conjugated bonds and small hydrocarbon molecules well. But it is clearly
slower than Tersoff.
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Molecular interaction models (classical force fields)

* The total energy of a molecule can be written as

E= Ebond + Eangle + Etorsion + Eoop + Ecross + Enonbond

E},na describes the energy change related to a change of bond length, and
thus 1s simply a pair potential V,

E

angle
angle, i.e. is a three-body potential V;

describes the energy change associated with a change in the bond

E,,,sion describes the torsion, 1.e. energy associated with the rotation
between two parts of a molecule relative to each other.

E,,p describes “out-of-plane” interactions, i.e. the energy change when
one part of a molecule is out of the plane with another

E. o5 - are cross terms between the other interaction terms.

E

Lonbond de€scribes interaction energies which are not associated with cov-

alent bonding. Can be ionic, hydrogen bonding or van der Waals terms.

* An example of a real molecular potential:

E bond E

angle

| | | |
V(R) = Y D, [L-exp(-a(b-b )12+ Y Hy(6-6)2+ Y H,[1+scos (nd)]
) IR

ZH w2 Xb“;ﬁbb,(b—ba) (B - b7g) + XB“;FBB,(B— 8,) (8" 6,)

ZZ‘FM(b by) (8- BD)+Z‘Z‘ 007 (8- 80) (8" 67)) cosd
q
F ooy B B § B P
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Overview of classical interatomic force models
as a function of the branch of science

van der Waals :
Classical force
fields
Second gen.
_ force fields
Torsion

(Hyd rocarbon pot)

Lowest-energy terms in potential model

Angular (Semiconductor poD
Environment ( Metal pot. >
(Ionic and noble gas pot.>
Pair ( Repulsive pot. >
nteraction | )

GeV MeV keV eV meV

Important interaction energy range

Nuclear physics Physics Chemistry Biochemistry

Branch of science
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Quantum mechanical models

* Inthe Schrodinger equation (7.1) the computationally most complicated part is
the electron-electron interaction

lJ

which is a sum from all electrons to all electrons. This can not be directly eval-
uated except for the very smallest system.

* The basic solution in both Hartree-Fock (HF) and density functional theory
(DFT) is to create some sort of an “average” electron density, with which
every electron interacts separately.

e HF- and DFT methods are much better motivated than classical models.
Unfortunately they are also very much slower. The limit for common HF

methods is maybe 50 atoms, and for DFT calculations maybe 200 atoms on
ordinary computers.

* In the DFT method the so called LDA-approximation is often applied. In this
approximation the electron exchange and correlation energy is calculated for
small density elements as if the density were constant in this element.

* In the so called Plane wave methods the outermost electron wave function are
written as the sum of periodic plane waves.

v = Zfl(K)e—lK r
/

These methods are well suited for describing periodic systems, i.e. bulk matter.

18



Tight binding-methods

 Tight-binding (TB) models are so called minimal quantum mechanical mod-
els. They are usually semi-empirical, and the quality of the results varies a lot.
In the TB method the total electron energy E is

N
DA )AL
J

i=1 i
where U is a repulsive pair potential acting between atoms, and the €; are the
eigenvalues of some Schrédinger-like equation

iy, ) = [ 392 1) i) = &)

The TB-Schrddinger is solved in some set of basis functions {¢,} which only
includes the outermost valence electrons.
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Efficiency of different force models.

* Crucial in selecting a model is to find one which is efficient enough to do what
you want, yet realistic enough to describe the essential physics in your prob-
lem correctly. Below is a summary of the situation today:

Model Type Scaling Npax.

HF (Hartee-Fock) quantum mechanical, O(N4'8) 50
ab initio

DFT (density functional quantum mechanical ON?) 200

theory

TB (Tight-binding) quantum mechanical O(N3)/ 1000
(often semiempirical) O(N) 10000

Many-body potential classical, semiempirical O(N) 107

Pair potential classical, semiempirical O(N) 107

IThis is a rough estimate of how many atoms can be simulated in a reasonable time, i.e. a week or so, on a single-
processor machine.

» Hence, typical application areas:

- The number of atoms of quantum mechanical models (HF and DFT) ~
100 1s enough to simulate e.g. small molecules, bulk properties of com-
mon phases, and point defect properties. HF and DFT can give informa-
tion on the electronic structure of the material.

- Tight-binding is a “minimal quantum mechanical” model which works
well in a few materials (e.g. C, Si, Ge) but is problematic in many others.
The O(N) tight-bonding works only in a very limited set of applications,
such as a-Si.

- With classical models it is nowadays possible to simulate even very large
systems, such as large protein molecules, 2- and 3-dimensional defects,
whole nanoclusters, surface growth, grain boundaries etc. etc. The main
limitation is that they do not usually directly give information on the
electronic properties of the material.
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MD Simulation of different ensembles

* Ensembles are denoted by the thermodynamical quantities which are con-
served in them. N=number of atoms, V=volume, E=energy, P=pressure,
T=temperature

* microcanonical: NVE (isolated)

- Algorithm: direct solution of equations of motion

. ical: NVT (closed
canonica (closed) heat bath
- Algorithm: Berendsen “quick and dirty”,
not true NVT ensemble.
True NVT: Nosé-Hoover, or N-H chain or
massive N-H chain.
P= PO

* jisothermal-isobaric: NPT

- Heat control as above, pressure control:

- Berendsen “quick and dirty”, not true NPT

- Andersén-pressure control if pressure is hydrostatic
(e.g. in liquid) heat bath

- Parrinello-Rahman-pressure control for non-hydrostatic stress (e.g. in
crystals)

» Berendsen temperature scaling: scale velocities every time step with

T,
L= 1+ A—t(TO —~ l) , where 7)) is the desired T.

Tr

* Berendsen pressure scaling: scale atom position and the box size every time

step with a factor p = 3«/ I—Bt—it (P, - P), where P is the desired pressure and 3

=1/B
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Energy minimization techniques.

» There are at least 4 ways to approach minimizing the energy of an atom sys-
tem:

1. Monte Carlo-simulation:

- May be good in looking for a global minimum, if only one very strong
minimum exists
- Not very efficient in looking for a local minimum

2. MD-simulation: Do an MD simulation letting 7 -> 0 K.

- Sometimes quite efficient in finding a local minimum, especially by us-
ing the trick of setting v;=01ifv; « F; = 0.

- May sometimes be good for looking for a global minimum, but tends to
get stuck if a high barrier exists.

3. Conjugate gradients (CG)
- Very efficient way to reach the closest local minimum
. - Works by movement down a potential well, but so that the
new direction is conjugated with respect to the previous to prevent zig-zag

motion.

- The new direction x;; ; into which one moves is evaluated as
x;i =V V(riy .
8it1=-%;; vy =gy T Yh; and x; ;= hiyg
where v = ((x;+g,)-x)/(g;-8)

- In the CG method for atoms it is often even more efficient to use an
adaptive step length instead of line minimization.
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4. Genetic algorithms

- An efficient way to look for a global minimum in dilute systems
- Not much tested in atom systems yet.

The basic idea comes from evolution theory; a population is formed, this is
allowed to breed, and the best-adjusted species are allowed to stay alive.

Deaven and Ho genetic algorithm for atoms, slightly simplified.

0. Start. Create random initial positions for p struc-

. o %o °
tures, each with exactly NV atoms. ° e
° ° o o
°® ° o

1. Mating and breeding. Select two well-adjusted

parents for breeding. This is done by selecting a

given parent i with state G; with the probability

~E(G)/T,,
P(G)o<ce

where the mating ‘temperature’ 7, is selected as the

range of energies among the whole population {G; }. Split ‘\& NV
the two parent structures along the same line. Take one half *n N :
of one parent, and another half of another parent, and join | ® °

. LN
them together. Make sure the child has as many atoms as the <
parents. »

2. Mutation. With a probability L = 0 perform a mutation on the child.

3. Minimize the energy of the child to the closest local minimum. This is
done by CG or MD.

4. Natural selection. If the child has lower energy than any of the parents,
allow it to stay alive. Then check that its energy does not match the energy of
any parent within an energy range OF. If this is true, include it in the popula-
tion, and kill the least-well adapted parent.

5. If convergence has not been reached, return to stage 1.
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Comparison to experiments

» Atomistic data can be seldom compared directly to experiments. Most often
some intermediate analysis code is needed to enable a sensible comparison.

* A special caveat should be taken with STM and TEM: in both methods, what
may look like an atom may in fact be something entirely different.
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Final comment of the course

You can't do (] You can't do Not us
physics without

anything without anyway |
a computerl J  a computer!

Hope you have enjoyed the materials
and have happy simulation-times !
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	The basic MD algorithm
	Construction of a neighbour list
	• To save time in classical MD, and often CG and MC as well, it is worth constructing a neighbour list. If there are more than ~ 1000 atoms, it is worth constructing it with a linkcell method.
	• Verlet neighbour list
	- rc is the potential cutoff radius - Construct a list which contains the atom indices for all neighbours within . - The list should be updated as soon as two atoms may have moved further than
	• Cellular method
	- Divide the MD simulation cell into subcells - Neighbours for an atom in cell 13 is looked for only in the darker subcells.
	The size of the subcells l is chosen such that where L = the size of the whole MD cell.

	Solving the MD equations of motion
	• The basic idea of MD is to solve the motion of N atoms by numerical integration over a short time step Dt
	• A highly accurate algorithm for small time steps is 5th order Gear: Denote The the predictor is: and the corrector: error term correction: where

	Force calculations
	• In a classical model the potential between atoms can be written as: where V2 is a pair potential which only depends on the distance between atoms rij and V3 is a three-body potential which may have an angular dependence, V3 = V3 (rij , rik , qijk)
	• Force calculation for a pair potential: Say we have a pair potential. The force acting from atom on atom is
	• The potentials usually have a cutoff radius . Atoms separated by a distance > do not interact. Usually . In a good potential both V and all its derivatives go continuously to zero when r = rc(dashed lines in figure).

	General form of the interaction
	• At small separations there is a repulsive force due to the overlapping of electron shells (Pauli rule and electron-electron Coulomb repulsion) and at very small distances due to the Coulomb repulsion between the charges of the nuclei.
	• At larger distances there may be an attractive interaction, which may have several different causes: van der Waals, Coulomb, metallic bonding, covalent bonding, hydrogen bonding
	• Potential minimum is at a distance .

	Fitting of potential parameters.
	• Important parameters to which a potential can be fit:
	• Out of these, the four first ones are usually the most important in solids.
	• In addition, it is also possible to fit potentials to or even derive potentials from data obtained from (hopefully) realistic quantum mechanical calculations.

	Repetitia mater studiorum
	Atomistic simulation types
	• Molecular dynamics (MD)
	- Simulates atom motion as a function of real time based on some interaction model

	• Monte Carlo (MC)
	- Atomistic Monte Carlo: calculate thermodynamic averages by letting particles move randomly according to certain rules.
	- Metropolis algorithm for NVT ensemble
	- Metropolis-based algorithms for NVE, NPT, mVT
	- Energy minimization

	• Conjugate gradient energy minimization
	- Efficient way to find a local minimum

	• Genetic algorithms for atoms
	- Possibly efficient way to find a global minimum


	Pair potentials
	• Taylor expansions
	• No physical motivation whatsoever, but can work close to equilibrium separation r0 since any smooth function can be approximated with a Taylor series.
	• Lennard-Jones (LJ)
	• The attractive 1/r6 - term can be derived by considering the induced dipole- dipole interaction of two electrically neutral spheres, or for quantum mechanical oscillators. It is also known as a Van der Waals or London interaction.
	• The LJ potential describes well at least interactions between noble gases or dipole-dipole interactions between molecules.
	• Morse potential
	• Can describe fairly realistically chemical bonds and the breaking of chemical bonds.
	• Parameters available e.g. for most metals in the solid state.

	Potentials for ionic compounds
	• The interactions between ions can of course be described with Coulomb interactions. To get a sensible short-range interaction one has to add a separate short-range potential.
	• This gives a potential of the form ; = ionic charges The short.-range potential VSR can be e.g.
	• In modelling ionic compounds, the sum over neighbours does not converge automatically. Then it is best to use some special algorithms to form the sum efficiently. For small numbers of atoms the Ewald sum or Ewald mesh methods are probably fastest...

	Metal interaction models
	• Metals can be described well by considering the atoms as positively charges ions which are embedded into a surrounding free electron gas. The density of the electron gas depends on the local environment.
	• These models can be derived from effective medium theory (EMT).
	• Most models used now are given in the Embedded Atom Method (EAM) functional form.
	• In EAM the total energy is given as where is the electron density at atom , is the electron density distribution of atom , is the embedding function and is a repulsive potential
	• In Finnis-Sinclair and Rosato models
	• In glue models the functional form is the same as in EAM, but is not purely repulsive.
	• EAM-models can describe quite well the basic mechanical and thermodynamic properties of most pure FCC metals, fairly well most BCC metals and fairly well those HCP metals for which C13 - C44 > 0 and 1/2 (3 C12 - C11) > C13 - C44
	• Also many metal alloys can be described well with EAM models.

	Semiconductor and carbon potentials
	• For Si at least three good potentials exist:
	• Stillinger-Weber (SW)
	- The potential has a pair term and a three-body term . The three- body term has an explicit minimum when the angles between the bonds correspond to ideal sp3 bond hydridization, i.e. for the diamond crystal structure.
	- Describes well melting and surprisingly many other properties as well.

	• EDIP
	- An SW-like formulation which is also environment dependent. Probably the best potential for bulk Si now.

	• Tersoff
	- The form of the potential is where fR is the repulsive and fA the attractive pair potential part. bij modifies the strength of the pair interaction depending on the local environment and angles between bonds.
	- The Tersoff potential can also describe reasonably non-tetrahedral bonding configurations.
	- Two parametrizations, out of which Tersoff C or III best in non-equilibrium applications.

	• Ge:
	- Two SW parametrizations, but terrible description of melting.
	- Also a Tersoff-parametrization, but also with bad description of melting.

	• For C in the bulk states (graphite and diamond) as well as fullerenes several parametrizations exist.
	- Tersoff works fairly well in all of these.
	- The Brenner potential (based on the Tersoff formalism) also describes conjugated bonds and small hydrocarbon molecules well. But it is clearly slower than Tersoff.


	Molecular interaction models (classical force fields)
	• The total energy of a molecule can be written as E = Ebond + Eangle + Etorsion + Eoop + Ecross + Enonbond
	Ebond describes the energy change related to a change of bond length, and thus is simply a pair potential V2 Eangle describes the energy change associated with a change in the bond angle, i.e. is a three-body potential V3 Etorsion describes the torsi...
	• An example of a real molecular potential:

	Efficiency of different force models.
	• Crucial in selecting a model is to find one which is efficient enough to do what you want, yet realistic enough to describe the essential physics in your problem correctly. Below is a summary of the situation today:
	1This is a rough estimate of how many atoms can be simulated in a reasonable time, i.e. a week or so, on a single- processor machine.
	• Hence, typical application areas:
	- The number of atoms of quantum mechanical models (HF and DFT) ~ 100 is enough to simulate e.g. small molecules, bulk properties of common phases, and point defect properties. HF and DFT can give information on the electronic structure of the material.
	- Tight-binding is a “minimal quantum mechanical” model which works well in a few materials (e.g. C, Si, Ge) but is problematic in many others. The O(N) tight-bonding works only in a very limited set of applications, such as a-Si.
	- With classical models it is nowadays possible to simulate even very large systems, such as large protein molecules, 2- and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc. etc. The main limitation is that they do not...



	MD Simulation of different ensembles
	• Ensembles are denoted by the thermodynamical quantities which are conserved in them. N=number of atoms, V=volume, E=energy, P=pressure, T=temperature
	• microcanonical: NVE (isolated)
	- Algorithm: direct solution of equations of motion
	• canonical: NVT (closed)
	- Algorithm: Berendsen “quick and dirty”, not true NVT ensemble. True NVT: Nosé-Hoover, or N-H chain or massive N-H chain.

	• isothermal-isobaric: NPT
	- Heat control as above, pressure control:
	- Berendsen “quick and dirty”, not true NPT
	- Andersén-pressure control if pressure is hydrostatic (e.g. in liquid)
	- Parrinello-Rahman-pressure control for non-hydrostatic stress (e.g. in crystals)

	• Berendsen temperature scaling: scale velocities every time step with , where T0 is the desired T.
	• Berendsen pressure scaling: scale atom position and the box size every time step with a factor , where P0 is the desired pressure and b = 1/B


	Energy minimization techniques.
	• There are at least 4 ways to approach minimizing the energy of an atom system: 1. Monte Carlo-simulation:
	- May be good in looking for a global minimum, if only one very strong minimum exists

	- Not very efficient in looking for a local minimum 2. MD-simulation: Do an MD simulation letting T -> 0 K.
	- Sometimes quite efficient in finding a local minimum, especially by using the trick of setting vi = 0 if vi • Fi = 0.
	- May sometimes be good for looking for a global minimum, but tends to get stuck if a high barrier exists.

	3. Conjugate gradients (CG)
	- Very efficient way to reach the closest local minimum

	• - Works by movement down a potential well, but so that the new direction is conjugated with respect to the previous to prevent zig-zag motion. - The new direction xi+1 into which one moves is evaluated as xi = Ñ V(ri+1) ;     gi+1 = - xi ;  hi+1...
	• The basic idea comes from evolution theory; a population is formed, this is allowed to breed, and the best-adjusted species are allowed to stay alive. Deaven and Ho genetic algorithm for atoms, slightly simplified.
	0. Start. Create random initial positions for p structures, each with exactly N atoms.
	1. Mating and breeding. Select two well-adjusted parents for breeding. This is done by selecting a given parent i with state Gi with the probability where the mating ‘temperature’ Tm is selected as the range of energies among the whole population...
	3. Minimize the energy of the child to the closest local minimum. This is done by CG or MD. 4. Natural selection. If the child has lower energy than any of the parents, allow it to stay alive. Then check that its energy does not match the energy of a...
	5. If convergence has not been reached, return to stage 1.

	Comparison to experiments
	• Atomistic data can be seldom compared directly to experiments. Most often some intermediate analysis code is needed to enable a sensible comparison.
	• A special caveat should be taken with STM and TEM: in both methods, what may look like an atom may in fact be something entirely different.


	Final comment of the course
	Hope you have enjoyed the materials
	and have happy simulation-times !
	0. Set initial conditions ri (t0) and vi(t0)
	1. If necessary, calculate new neighbour list
	2. Solve equations of motion over a short time step Dt (predictor phase) ri (tn) ® ripred (tn+1)
	vi (tn) ® vipred(tn+1) 3. Calculate new forces Fi (ripred)
	4. Solve equations of motion over a short time step Dt (corrector phase) ripred (tn+1) ® ri (tn+1)
	vipred (tn+1) ® vi(tn+1)
	5. Do temperature or pressure scaling, if appropriate
	6. Calculate desired physical quantities 7. Set t = t + Dt, n=n+1
	8. If t < tmax, return to phase 1.
	9. Calculate final results and end simulation
	Most common boundary conditions in MD
	• Free boundaries: simulate matter in empty space
	• Periodic boundaries: describes a continuous medium
	- Because here rij> rij’, the vector rij’ is used for the distance between atoms i and j (minimum image convention)

	Choice of time step
	• In choosing the time step one could rule of thumb is that an atom should not move farther than ~ 1/20 of the nearest-neighbour distance during one time step
	• In practice for atoms with Z > 10 or so Dt ~ has been found to work well for most materials in classical simulations with the Gear V - algorithm.
	- For very hard materials (Pt, W) slightly smaller time steps may be needed

	• The choice of time step should still be checked by checking the conservation of energy (in NVE) for every new type of system or interaction model.
	• If Dt is too large, energy is not conserved:

	Overview of classical interatomic force models as a function of the branch of science
	Quantum mechanical models
	• In the Schrödinger equation (7.1) the computationally most complicated part is the electron-electron interaction which is a sum from all electrons to all electrons. This can not be directly evaluated except for the very smallest system.
	• The basic solution in both Hartree-Fock (HF) and density functional theory (DFT) is to create some sort of an “average” electron density, with which every electron interacts separately.
	•
	• HF- and DFT methods are much better motivated than classical models. Unfortunately they are also very much slower. The limit for common HF methods is maybe 50 atoms, and for DFT calculations maybe 200 atoms on ordinary computers.
	• In the DFT method the so called LDA-approximation is often applied. In this approximation the electron exchange and correlation energy is calculated for small density elements as if the density were constant in this element.
	• In the so called Plane wave methods the outermost electron wave function are written as the sum of periodic plane waves. These methods are well suited for describing periodic systems, i.e. bulk matter.

	Tight binding-methods
	• Tight-binding (TB) models are so called minimal quantum mechanical models. They are usually semi-empirical, and the quality of the results varies a lot. In the TB method the total electron energy E is where U is a repulsive pair potential acting ...



