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Potentials for ionic compounds

* There is a wide range of materials where ionic interactions are important:

* In hard condensed matter many, if not most, compounds have at least some degree of ionicity.
« Partial ionic charges are also very important for organic materials

* In ionic compounds one can simply describe the long-range interaction with a Coulomb pair
potential. But one should add a short-range interaction v, to describe repulsion at short dis-

tances:

2
Z1Z,€

..) = )+
V(ry) = Ver(ry) .

* The charges z; are often fractional charges, depending on the degree of ionicity of a material (e.g. NaCl:
1, GaN: 0.5, GaAs: 0.2, Si 0.0).

* Vggr contains the repulsion of the electron shells and possibly an attractive van der Waals-interaction.
Common forms:

: _ C
« Buckingham: 14 = Ae 7P X
uckingham sr (") e y;

» Born-Huggins-Mayer: VSR(r) = e B(r—o)_ % —
r

=20(r—ry) 2De—oc(r —7g)

D
8

* Morse: VSR(r) = De
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Potentials for ionic compounds

« The repulsion is usually significant only for nearest neighbours, and the van der Waals interac-
tion for the 2-nd neighbours. In oxides frequently the interaction between cations is assumed to
be only the Coulomb repulsion.

* In many real compounds the interactions are a mixture of covalent, metallic and ionic interac-
tions (e.g. many carbides and nitrodes).
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Potentials for ionic compounds

» Such potentials have been formed for many ionic compounds. We present here briefly the potential by
Vashista et al. for SiO, [Phys. Rev. B 41 (1990) 12197.] which comes up in many different contexts.
» Silicon dioxide also has many different structures, which makes it difficult to model:

TABLE 1. Density, crystal structure, bond lengths, and bond angles for a few crystalline forms of SiO,. Names of the structures
are given in the first column. In the second column, the upper number denotes the mass density in g/ cm?®, whereas the lower number
in parentheses represents the number density in units of 10 cm™3. Group symmetry and number of SiO, molecules per unit cell
(mol/u.c.) are given in the third column. In the fourth column the upper numbers give Si—O bond lengths and the lower numbers,
(Si—O), represent the average bond length. In the last column values of bond angles Si—O—Si, average value {Si—O—Si), bond
angle O—Si—O, and its average value {O—Si—O) are given.

Mass and number

densities Bond Bond
g/cm’ Crystal length angles
Name (102 cm™?) structure (A) (deg)
B-cristobalite® 2.20 cubic ds,_o=1611 LSi—0—Si=146.7
(6.618) (Fd3m) (ds,_o)=1.611 { ASi—0—Si)=146.7
8 mol/u.c. <0—S8i—0=107.8,112.8
a-cristobalite® 2.35 tetragonal dsi_o(1)=1.602 ILSi—0—Si=144.7
(7.088) (P4,2)) ds_o(2)=1.617 ( ASi—0—Si)=144.7
4 mol/u.c. J0—Si—0=108.1-111.3
{(40—Si—0)=109.5
keatite® 2.50 tetragonal ds_o=1.56-1.62 <JSi—O—Si=148.2-159.5
(7.526) (P4,2) (ds,_o)=1.590 (ISi—0—Si)=155.2
12 mol/u.c. <40—Si—0=103.7-113.8
B-quartz* 2.52 hexagonal ds_o(1)=1.591 JISi—0—Si=150.9
(7.57) (P6,2) dg_(2)=1.606 (LS8i—0—Si)=150.9
3 mol/u.c. <4 0—Si—0=108.0-110.5
a-quartz® 2.65 trigonal ds_o(1)=1.605 ALSi—0—S8i=143.7
(7.956) (P3;21) dsi_o(2)=1.614 (4Si—0—Si)=143.7
3 mol/u.c. (dsi_o)=1.609 J0—Si—0=108.7-110.4
coesite’ 2.92 monoclinic dg_o=1.60-1.62 XLSi—O0—Si=137.4-180
(8.784) (P21/a) (dsi_o ) =1.609 (4Si—0—Si)=148.4
16 mol/u.c. YL0—Si—0=107.9-110.5
(J0—Si—0)=109.5
stishovite® 4.29 tetragonal dg_o(1)=1.809 <4 8i—0—Si=81,90,106"
(12.88) (P4,/mnm) ds,_o(2)=1.757 Y 0—Si—0=100,130
2 mol/u.c.
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Potentials for ionic compounds

« But all of these have the common feature that they can be under-
stood as tetrahedra with Si in the centre and O atoms in the joint cor-
ners:

o. cristobalite B cristobalite 3 tridymite keatite

FIG. 9. A schematic view of corner-sharing tetrahedra in a-
Si0,.
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Potentials for ionic compounds

« Simulation of a 40-A diameter SiO, beam in equilibrium (left) and strained.
» Colorcoded is the ratio between the shortest and longest edge of a face of a tetrahedron.
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Potentials for ionic compounds

» The potential is of the familiar form:

V= 2 Vz(?',-j)+ 2 V3(rij’rjk’rik) .

1<i<j<N 1<i<j<k<N

* The two-body part 7,:

1 2 2
. Hy 2z, ;laiZj+eZ )emm“

m; 4
r iy r r

* The three-body term:

Vi=By f(rjry )p(ejik’gjik) )

The first part is the “steric” repulsion due to the ion size, the
second the Coulomb term and the third a charge-dipole
term, which takes into account the large polarizability of O.

where the f-function describes how the bond lengths and the p-term how a change of the bond angle

affects the interaction.
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Potentials for ionic compounds

* These are

+

Fij =Yoo T ™ 7o

exp for r;,ry <rg

Slry,rg)=

0 fOI‘ rij,r,-k>r0 ’

p(ejik ’ gjfk )=(COSBﬁk -*C()Sgﬁk ? ’

» Parameters are shown on the right.

* A corresponds to Si and X to O in the three-body parts.
Note that only the AXA- and XAX-three-body terms are
defined - the potential would not describe sensibly e.g.
pure Si since there is no AAA-term.

Introduction to molecular dynamics 2015 11. Potential models for ionic compounds

TABLE II. Constants in the interaction potential for SiO,,
Egs. (1)=(5). Unit of length is A and of energy e2/A =14.39 eV.
Z is the effective charge, a the electronic polarizability (which
has the dimension of volume), 77 the repulsive exponents, and H
the repulsive strength. The constants B, [, 8, and ro pertain to
the three-body part of the interaction potential, where B is the
strength, and /, 0, and r, are constants defined in Eqgs. (4) and
(5). The range of the three-body interactions is =< r,.

Z a
Si 1.60 0.00
O —0.80 2.40
] H
Si-Si 11 0.057
Si-O 9 11.387
0-0 7 51.692
B / 6 ro
A-X-A 1.40 1.0 141.00 2.60
X-4-X 0.35 1.0 109.47 2.60




Potentials for ionic compounds

» The Si-Si and O-O-interaction are just a purely repulsive pair potential:

V, () (e2/A)

FIG. 1. Si-Si, Si-O, and O-O contributions to the two-body
part of the interaction potentials, Eq. (2), for SiO,. Total in-
teraction potential is a sum of two-body, Eq. (2), and three-body

contributions, Eq. (3). Unit of length is A and of energy
e’/A=14.39 eV.
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Potentials for ionic compounds

* The potential describes well the most common forms of SiOs :

-0.60 [—

[ ‘\\ Keatite

Wy g

<

o -0.66

3.

‘*?) -0.72

o

Lt
.c oQ

—0.7 i 1 -a_l_ i L i L e
85 6 7 8 9 10

(10%2cm-3)

FIG. 2. Total potential energy (two plus three body) per par-
ticle, Ey /N in units of e?/A=14.39 eV, for various crystalline
phases of SiO, as a function of density: ideal B-cristobalite (i-8-
C), B-cristobalite (B-C), a-cristobalite (a-C), B-quartz (B-Q), a-
quartz (a-Q), and keatite.
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Potentials for ionic compounds

* A newer potential was developed by Watanabe et al. [Appl. Surf. Sci. 234 (2004) 207.].
* One of its strengths is the ability to describe also the so called sub-oxides of SiO,; e.g. SiO.

» Because of this it is suitable for describing interfaces between Si and SiO, and to be used in defect studies and ion

bombardment simulations.
» The potential is based on the Stillinger-Weber potential and the Si-Si interaction is the original Si-SW.

» Examples of its use in nanocluster bombardment can be found in J. Samela’s PhD thesis .
* However, its elastic properties are not very good, strongly overestimates e.g. bulk modulus

» An SiO2 potential in the Tersoff formalism: [Munetoh et al, Comput. Mater. Sci. 39 (2007) 334]: better than
Watanabe in some elastic and melting properties

1. Electronically available at http://urn.fi/lURN:ISBN:978-952-10-3927-0
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Charge-transfer potential models

* There is a clear fundamental problem with the description of ionic bonding and covalent bond-

ing described above.
« Consider the following (schematic 2D representation) of an Si-SiO, interface system:

» On the Si side of the interface, Zg; = 0 — ordinary Si potentials. : — : :
1 To be more precise, ab initio calculations give

* On the SiO; side zg; =2 — ionic model. for SiO,:

* What happens if we move an Si atom from the SiO, to the Si

side This could easily occur in reality by diffusion
or a radiation process. Which model should be used to describe the interactions of this atom??
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Charge-transfer potential models

« Here we get to the charge transfer model for the atoms, where the environment-dependence of
the ionicity of the atom is built into the model.

» There are extremely few models like this, since charge transfer processes are difficult to deal with and
poorly understood.

» One fairly well motivated approach is that of Alavi et al., Phil. Mag. B 65 (1992) 4809.

» The idea is to formulate an environment-dependent term which gives the charge state of atoms:
% - Z(ZfAiBj(rij)]

J#I

. fAB(rl.j) is some function of the atom distances and types Ai and Bj

« Z(x) is a function which could e.g. limit the charge state to reasonable values (like say between -4 and +4 for Si).

* Some thought reveals that the f, , functions would be likely to have the properties

Tag =0
/g = 0
fap(rip) = Fpa(7)

* The first two criteria ensure charge neutrality in a pure elemental region, the latter one global charge neutrality.

Introduction to molecular dynamics 2015 11. Potential models for ionic compounds 13



Charge-transfer potential models

* Once the z; have been determined, one could use an expression of e.g. the form
247'580 +8(z; )Z manybody

to obtain the total interaction energy of an atom .

’ Vmanybody

* The function g(z;) would be used to switch this potential on and off depending on the ionicity:

= 1 when Zi:0
Z.
8(z)) { — 0 when z;# 0

could be some many-body potential for an uncharged system.

» The big and difficult question is how to choose f(rl.j). It should be constructed to ensure global charge
neutrality, and give correct ionicities in known environments.

Introduction to molecular dynamics 2015 11. Potential models for ionic compounds
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Charge-transfer potential models

* For instance in the SiO, case presented above, it obviously should be constructed such that if an Si atom has four O
atoms at the equilibrium distance, it should give z;= l.4e. Since every Si atom has 4 O neighbours and every O atom
2 Si neighbours this would mean that in case only nearest-neighbour interactions are counted and the equilibrium
atom distance is ¥y one could have

Jsisi =0

Joo =0

<fSi-O = +0.35 (remember: Zg; = l.4e, Ly= —0.7¢)
Jfosi = -0.35

(Z(x) =x, whenx<4

» One way to deduce the functional form could be to use quantum mechanical schemes to deduce ionicity,
such as Mulliken charge analysis.

» Since little work has been done on this topic there is not much more to say, except that this is a wide-open
topic with lots of room for new and interesting research.

» See also F. H. Streitz, J. W. Mintmire, Phys. Rev. B 50 (1994) 11996; X. W. Zhou et al., Phys. Rev. B 69
(2004) 035402.
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Potential models for ionic compounds

« Sometimes rather simple models may be sufficient.
« An example: Si/SiO, interface (again!) [Y. Tu, J. Tersoff, Phys. Rev. Lett. 84 (2000) 4393.]

- Simple VFF potential (sum over bonds; only Si-O and Si-Si bonds; no defects: continuous network of bonds):
_ 1 21 2
E{r} = §Zkb(bi_ bO) + EZke(cosﬁij— cos8,)” +U
I i, j

» Suboxide penalty U allows to study other environments of Si atoms than the perfect SiO,. It gives the energy cost of
having less than 4 O neighbors:

Number of O
neighbors Ulev
0 0.00
1 0.47
2 0.51
3 0.24
FIG. 1: The bond-switch move in a 2D example. On the left:
4 0.00 The situation before the switch. Center: The bonds have

been switched. On the right: The atoms have been moved to
their minimum energy position.

* Interface structure was optimized using bond-switching Monte Carlo.

* For every bond topology the atom positions {r} were obtained by minimizing the potential Phase space =
energy ensemble of bond
E = mm{r}(E{r}) topologies
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Potential models for ionic compounds

Results: interfaces Si—amorphous SiO2
and Si—tridymite

FIG. 1 (color). Plan view illustrating two Si-SiO, interface
structures. The last three layers of Si are shown in gold, with
atoms farther from the interface shown smaller. The first layer
of O is shown in red. (a) Stripe phase, having (2 X 1) symme-
try. (b) Check phase, having ¢(2 X 2) symmetry.

02 r
. (b)
g P *
-
L
L“- >_.01 E
5 %
= @
. 0.0 L
5 0 5 10 15 20
il z(A
= (A)
! FIG. 3 (color). (a) Side view of canonical interface, for 4 X 4
B3 cell of stripe phase, in [110] projection. The Si and O atoms are
) represented by gold and red spheres, respectively. Each arrow
[ﬁ 0.0 = points to a row of oxygen atoms that form the bridges at the
0

interface. Notice the substantial voids above each bridge bond.
(b) Energy of each atom versus its z coordinate. Red circles
represent oxygen atoms and gold circles represent silicon atoms.
The green line is the local energy per atom, averaged over 20
configurations (and over a z range of ~1 A for smoothness).

FIG. 4 (color). Interface between Si and tridymite, as in Fig. 3,
to illustrate similarity of interface regions.
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Repulsive potentials for high energies

« When talking about repulsive potentials there is first reason to clarify the concepts:

* Repulsive part of equilibrium potentials: Constructed to obtain a minimum in the potential, and to
describe states close to equilibrium, at energies ~ 0.1 - 100 eV above the minimum.

* E.g. the short-range potentials VSR mentioned above belong to this category.

* lon ion irradiation and nuclear physics one frequently is interested in very high-energy collisions.
 An ion with a kinetic energy of 100 keV makes a head-on collision with a target atom — the C.M. energy is 50 keV

* In this regime the equilibrium potentials are not valid, and there is a reason to fit a high-energy repulsive potential to

them.

» Repulsive potentials are usually written in the form

Vo) - lezeZq)@ |

4n80r

where @(x) is a screening function and « = a(Z,Z,) a

screening length.

» ® js formed such that ® — 1 when x — 0, so the potential
reduces to the Coulomb potential between the nuclei at high
energies.

» At normal interatomic distances the electron shells screen the
nuclei so that the nucleus don’t “see” each other almost at all

(D=0).
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Repulsive potentials for high energies

At very small distances the nuclei are so close that the electron clouds do not screen them. The interac-
tion is then purely Coulombicand ® = 1.

« The most used repulsive potential is that formulated by
Ziegler, Biersack and Littmark (ZBL).

Completed Interatomic Potentials

80
-4

» They used free-electron gas (FEG)-calculations to obtain the BRI et a
repulsive interatomic potential for 522 randomly chosen atom SR i RS S N S A
pairs, and sought a shape for the screening length which makes : i :

80
I

NUMBER

40
)

. . . . . . B 8 . 8
the screening function be as similar as possible for the different & :
. O gl :
atoms: > R S P O :
cgéovccwo : 020 B % 10 °° . : 06(; P S a;o
0.8856 X a, _ ATOMIC  NUMBER
a = , where a, = 0.529A is the Bohr length.

5023 . 4023
7923+ 79
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Repulsive potentials for high energies

Interatomic Screening UNIVERSAL Screening

1

o - .
Q o =o. -3.2x 40, -0.9423% 40, ~0.4028% 40, ~0.2016x
-5 ay = B854 x 520 / ( 2,02 + 7,023 ) - 3, = 0.18180732% +0.50996 +0.28026 +0.02817¢ ]
g < ) ;: . ay = .8854 x .520 / ( Z,% + Z, )
= = [y -5
= 2F E o 3 E
= e
Tho, g
Mas_p.
b Yo, Srmi =1
Q0 gk E E oo =
=h ;
. p a0
=i el =]
o, ./,%» =
5 3 i E g S E
Sy = 3, g SE
o =
n 3]
[« ut 2 n |
o L 2
o 10 20 30 0 30
Reduced Radius (r / ay ) Reduced Radial Separation ( x=r/ay )

* Onto these curves they fit a universal function (right figure above) of the form

4
d(x) = Z al.e_b"x . 1|4 b;
i=1 1 0.1818 32
and obtained the parameter values shown on the right. 2| 0509 | 09423
3 0.2802 0.4029
 This potential is generally called the ZBL universal potential. The advantage of 4| 002817 | 02016

using it is that it is extremely easy: the only information needed of it are the atom
numbers Z, and Z, . The disadvantage is that this is an average potential, from which each specific case

can vary easily 5-10 %.

* It is also possible to reproduce the FEG calculations for any atom pair based on information in the ZBL
book The Stopping and Range of lons in Matter (Pergamon, New York, 1985). This gives so called ZBL
pair-specific potentials. These seem to be accurate to a few % or so.
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Repulsive potentials for high energies

* In case the best possible accuracy is desired, one can use Hartree-Fock- or DFT-calculations of
the energy of a dimer, or even better an atom inside a solid.

 With dimer calculations by using certain HF- , HFS- and DFT methods it is possible to obtain the high-
energy repulsive potential to ~ 1 % accuracy [Nordlund, Runeberg and Sundholm, Nucl. Instr. Meth.
Phys. Res. B 132 (1997) 45].
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Efficient ways to calculate ionic interactions

« So far we have assumed that the sum giving the energy of each atom always converges easily.
This is not true always, however.

* Let us consider potentials of the form V' ~ r_d. Far from the central atom in a homogeneous material the
number of atoms in a thin shell dr is 4nr2pdr, where p is the atom density, so the total potential in this

layer is proportional to 47tr2pdrr_d. If we now integrate the total potential for all », we obtain

V= j 4npr2r_ddr = 47np 3-d

3_d

min
7 min

* This vanishes in infinity only if 4> 3. So in three dimensions we obtain convergence trivially only if the

potential decays faster than r_3 :
» Exponentially decaying potentials (Morse, Tersoff etc.), as well as LJ potentials are OK in this resprect,

but not the Coulomb potential which is r_l
— When one simulates a periodic system with an ionic potential one can not use a simple cutoff
distance < cell size/2.

« To circumvent this many methods have been developed: 1) Ewald summation [Ann. Phys. 64 (1921)

253]. It is much more efficient than direct summation, but is still an O(Nz) method. 2) A newer method is
the so called Fast Multipole Method, which can be parallelized and is O(N).
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Ewald-summation

« Take into account all interactions to an atom both from the MD cell itself as well as all the periodic image
cells.

» The potential energy due to the Coulomb interaction is

N N
VZZ:l “1%2
22 Z Z‘r..—n‘
nlj=1;=1""

Note: cgs units

* z; and z, are the atom charges, and cgs units are

used for brevity. The vector n is now in principle a sum
over all image cells (nxL, nyL, nZL), where

n,=—oo,..,—1,0,1, ..., 00 and the indices i and ;

loop over atom pairs inside the cell (except of course
noti = j whenn = 0).

* This sum does not necessarily converge!

» Change the summation order: A natural way to
achieve this is to add image cells radially outwards
from the origin.

* Physically the reason this leads to convergence is
easy to understand: since each cell has to be charge
neutral the charges in it give at a long distance a
dipole, quadrupole etc. interaction, which vanishes during symmetric summation.

o| o| o| of of o] o| of ©O
O |0 [0 |]O |[o [0 |Oo [0 (o
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Ewald-summation

« The surrounding medium also affects the energy of this ball. In a perfect conductor (metal)
(e = «)and in vacuum (e = 1) the results are different; in vacuum a dipole layer will form at the
surface. The correspondence between the two quantities is:

VP2(e = =) = VPE(e = 1) - 2%
3L°

Zziri 2

1

» Ewald summation enables calculation of 1'7%(e = ).

« If we want our system to be surrounded by vacuum, we can add the dipole term.
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Ewald-summation

pil(r

* In the Ewald method the charges z; are given in the form A
of a charge density p7 . This p7 is given us the sum of a A

Gaussian and delta function electron density: ‘ v v A >
plg(r) - pfl (r)+ plgz(r)

—x2(r - p. (rA
pfl(r) = Zi[S(r—ri)—K3n_3/2e K2(r ri)z] i2

s
_ —K2(r—r,)?
plZ2(r) = Zl'K3TC 3/28 ( Z) \/ \/

* p7; is now a sum of delta functions located at the atom positions, and Gaussian-shaped densities of cen-

tered on the same position but of opposite signs, formed so that the integral is 0. Because p7, now has a
finite range, we can calculate the energy and force due to is using a cutoff radius.

* On the other hand, we also use the function p#, to correct for the error made in introducing the Gaussian

functions. But this function is now smooth, and can be calculated in reciprocal space: the Fourier-transfor-

mation of p are summed, and then an inverse Fourier transformation is used to obtain back the real-
space answer.
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Ewald-summation

» The result (“after a few steps of algebra”) is an equation
which has a real-space term r, a k-space term and the
inverse value of the self-energy and the surface energy:

« Term 1 is the short-range part. erfc(x) = (2/n1/2)j;° e dtis

the complementary error function and L the side length of the MD-
cell. We assume here that the cell is cubic. Again in the n sum the

termi = j whenn = 0.

« Term 2 is the sum over reciprocal space vectors kK = (2n/L)n.

* Term 3 VSelf is the self-energy of pfz which has to be removed

L : _—
because it is included in the recipr. part.

» Term 4 is the surface term of the sphere.

* By setting x (the width of the Gaussians) large enough we

can restrict ourselves to the term n = 0, which corresponds

to the normal ‘minimum image’ convention.
* The real-space term can be calculated in the some loop as

the short-range forces. Then 1%z . is of the form

real
ZZ — —_—
real :E: {Zi%j r
i<j
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z — — zZ zZ zZ
V(e = 1) = + 22+

real

i=1j=1Ln|=
1 41
+ — Z —
TCL3 Z ZlZ] k2 ¢
k#0
N
K 2
e — Z_
527
i=1
N 2
27
+ = r.

recipr.

erfc(K‘rij + n‘)
ST e

zZ
surf

—_—
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Ewald-summation

» Using complex numbers the reciprocal-space term can be written in the simpler form

Zzieik r,|2

l

Viezcip - ZA (k)
k

2mexp(—k%/4x?)
L3 k2

A(k) =

» The force acting on atom i is

. k-1 K-r.
f1lrecip = =2z Z kA(k)Im{e l rlszel r]}

k#0 Jj

- Note that the force calculation takes time as O(N?).

* Does this sound highly complicated? Fortunately there are several implementations of Ewald summation
easily available, see e.g. Allen-Tildesley program F.22 or N. Anastasiou and D. Fincham, Comput. Phys.
Commun. 25 (1981)159.

* It is easy to generalize the equations to non-cubic cells.
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Ewald-summation

* In applying the method one has to choose three parameters:
cutoff radius r,

width of Gaussian charge densities k

upper limit for k summation |k|12nax.

* It is best to start by setting v fairly large, e.g. L/2 . From this a suitable value of Kk can be obtained, on the basis of

which a suitable limit for the k-summation can be obtained. Typicallyx ~ 5/L, in which case the calculation is con-
centrated in k-space. The k-summation would then involve 100-200 vectors.
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Ewald-summation
« Example: EuF, :

N = 324
L = 174A
KL = 5.2
r, = L/2

k|2 = 5A2

max
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Ewald-summation

* Application of MD in neutrino-induced Doppler broadening (NID) [A. Kuronen, et al. Phys. Rev. B 52, (1995) 12640.]: K
electron capture of ™®?Eu — v emission — 3.0-eV recoil energy to 1°2Sm — 7y rays Doppler broadened

250

200

150

100

50

COUNTS

AE (eV)

FIG. 1. Experimental (filled circles) and simulated (solid line)
y-ray line shapes for the 842-keV transition in '*?Sm measured in
different target materials. The instrumental response function is also
shown (dashed line). The simulations were performed with the re-
coil charge equal to the charge of the Eu atom in each lattice.

TABLE I. Parameters for the short-range potential (1) used in the
simulations. For Sm, same values as for Eu were used.

Interaction A (eV) p (A) € (eVA% 2000 2000 ]
—_— EUF2 .
Eu-Eu 1715.0 0.317 U EuF; 1500 | ]
Eu-F 3429.1 0.280 14.0 1500 - 2\ 7 - EuCl, ] .
oo I ---- Euy05 1000 |
F-F 369.1 0.280 125 € [ : ]
Eu-Cl 3886.0 0.349 169.6 3 [
CI-Cl 79115 0.383 2026.8 1000 |-
Eu-0 5045.4 0.290 34.0
0-0 227643 0.149 27.9 L WX S N M N
500 |-
[ L L 1 L 1 i
0 100 200 300

t (fs)

FIG. 2. Average magnitude of the velocity vector of the recoil-
ing Sm ion as a function of time after the nuclear decay of '3?En as
obtained from the MD simulations for different target materials.

TABLE II. Lifetime of the 963-keV state in '>Sm obtained
from NID measurements in different target materials using the equi-
librium charges of Eu (2+ for EuF, and 3+ for the others) for the
Sm ion in simulations. Lifetimes are weighted averages of the val-
ues for the 842- and 963-keV transitions. In addition to the statisti-
cal uncertainty, the quoted errors include uncertainties of the target
temperature (0.9 fs), simulation statistics (2.0 fs), and instrumental

response function (1.2 fs for EuF; and Eu,05).

Target material

Lifetime (fs)

EuF,
EuF;
EuCl,
Eu,0,

24.2+2.7
22.4+29
36.8£2.8
27.8+2.8
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FIG. 3. Dependence of the fitted lifetime of the 963-keV level in
1523m on the charge state of recoiling ion in different target mate-
rials.

30



Ewald-summation

« If the periodicity of the Ewald summation causes trouble, one can use the particle-lattice (or par-
ticle-mesh) method:

» The reciprocal space part is calculated by smoothing the ion charges in a regular lattice and solving the potential from

the Poisson equation V2¢ = —p/g with Fourier methods.

* The advantage is that this scales as O(N).

* The disadvantage is that the program gets more complicated
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Reaction field method

* In this method neighbours farther than r . are approximated as continuous medium with some €.

» The forces and energies inside the cavity are calculated normally.

» The continuous medium polarizes, which leads to a force on molecule i in the cavity R

E _2(85_1)1 includes i
i P Z W, (sum includes i)
> CjieR

* The problem here is €, which has to be known in advance.

Introduction to molecular dynamics 2015 11. Potential models for ionic compounds
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Field Multipole Method (FMM)

* The FMM method [Greengard and Rokhlin, J. Comput. Physics 73 (1987) 325.] is based on looking at dif-
ferent regions of space with different resolutions.

» The advantage of the method is that it is O(N) and also can be parallelized [Nakano et al. Comput. Phys-
ics Commun. 83 (1994) 197 ]

» The method uses an electrical multipole method to describe the influence of a region far away on an

atom.
« Potential outside a localized charge distribution p(r) can be written as a multipole expansion:
oo [
Y;,,(6,0)
B 47 Im\™>
®r) = > 2 e idmT

[=0m=-I
where the multipole moments are defined as

Qi = [V (8 0P p(r)dr.

* In practice, the sum over / can be truncated to some finite value:

p /
Y, (9,0)
_ 4T Im
= D> 2 i ilmT oo
[=0m=-1
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Field Multipole Method (FMM)

* Why is this useful, then ? Let us consider as a simple example two sets of points x; and Yj which are
inside two circles of radius R:

m points

n points

* Let the points x; have charges ¢, . If we now want to calculate the forces from points x; on the points Yj

we could of course calculate the Coulomb interaction from all the m y-points to all the » x-points. This
would require nm interaction calculations, i.e. the algorithm is O(nm).

- But if we, instead of this, first calculate the p? factors q;,,» requiring mp? operations. After this we could

calculate the sum for all points y, which requires np? operations. Hence this method is O(mp? + np?). If
the two circles are far away, p can be relatively small. If the number of points is large then clearly

mp? + np? « nm, so we can gain lots of simulation time.

Introduction to molecular dynamics 2015 11. Potential models for ionic compounds 34



Field Multipole Method (FMM)

In the actual FMM-method space is divided into different levels of cell sizes.

. cell b

. b's near neighbors: cell at the same level as b that have a common point with b

b‘s far neighbors: cells at the same level as b that are children of b‘s parent’s
near neighbors but are not 5 ‘s near neighbors

Cells that are not each others near neighbors are well separated.

Level O

Level 1 Level 2 Level 3 Level 4

* Level O is the normal, ordinary simulation cell, and the higher index levels finer divisions of it.

* Multipole expansion is used to calculate interactions between cells that are well separated.

* At level 1 (see above) there are no well separated cell pairs, so that we have to go to level 2 to be able to use the
expansion.

* At level 2, in order to calculate interactions between a cell and its near neighbors, we divide the box further to smaller
cells. Now each new cell has far neighbors for which the multipole expansion is applied. (Note that interaction between
a cell and those cells that are not its near or far neighbors has been taken care of in previous levels.)

» At some stage division is so fine that interaction between near neighbors can be calculated by normal sum over atom
pairs.
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Field Multipole Method (FMM)

* This calculation scales as O(NlogN) (where N is the number of atoms):

1) at every level the calculation of multipole expansions scales as O(p2N)
2) number of levels is O(logN)

 To obtain the O(N) behavior multipole expansion is calculated from atom positions only at the smallest

scale divisions.
» These results can be compined to calculate the expansions in coarser levels by so called translation of a multipole
expansion.

» An accurate algorithm, the equations and boundary condition solutions can be found from the paper of
Greengard and Rokhlin.

* In practical calculations numerical noise may become a problem.

* In addition, as in Ewald summation it is also possible to take into account the effect of periodic image cells
with the same principle.

* It is also evident that this algorithm can be parallelized well, since for the far cells it is enough to know
only the multipole expansion, which is relatively easy to pass around.

« The FMM-model is also very general: in addition to the calculation of atomic interactions it can also be
used in plasma dynamics, fluid mechanics and in astronomy!
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Field Multipole Method (FMM)

« Sample application: R. Kalia et. al. simulated the fracture of about a million atom SizN,4 crystal [R. Kalia,
TMS conference proceedings 1997].

Note that in the picture above the atoms are so small they can not be distinguished from each other!!
« After the original FMM formulation, variations often called Fast Multipole Algorithms (FMA) have been

developed.

 Basic idea same as in FMM, but tree-like data structures and FFT’s are used to optimize the interactions even further.
* E.g.: dpmta method, W. T. Rankin, PhD Thesis, Duke University, 1995
* In principle better, but very complex leading to numerical accuracy problems (“numerical noise”

» A comparison: [J. A Board, C. W. Humphres, C. G. Lambert, W. T. Rankin and A. Y. Toukmaji, "Ewald and
multipole methods for periodic N-body problems", "Proceedings of the Eighth SIAM Conference on Paral-
lel Processing for Scientific Computing 1997]; says that for small numbers of particles and processors,
PArticle-Mesh Ewald (PME) faster than dpmta
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	Potentials for ionic compounds
	• There is a wide range of materials where ionic interactions are important:
	• In hard condensed matter many, if not most, compounds have at least some degree of ionicity.
	• Partial ionic charges are also very important for organic materials

	• In ionic compounds one can simply describe the long-range interaction with a Coulomb pair potential. But one should add a short-range interaction to describe repulsion at short distances: ;
	• The charges are often fractional charges, depending on the degree of ionicity of a material (e.g. NaCl: 1, GaN: 0.5, GaAs: 0.2, Si 0.0).
	• contains the repulsion of the electron shells and possibly an attractive van der Waals-interaction. Common forms:
	• Buckingham:
	• Born-Huggins-Mayer:
	• Morse:



	Potentials for ionic compounds
	• The repulsion is usually significant only for nearest neighbours, and the van der Waals interaction for the 2-nd neighbours. In oxides frequently the interaction between cations is assumed to be only the Coulomb repulsion.
	• In many real compounds the interactions are a mixture of covalent, metallic and ionic interactions (e.g. many carbides and nitrodes).

	Potentials for ionic compounds
	• Such potentials have been formed for many ionic compounds. We present here briefly the potential by Vashista et al. for SiO2, [Phys. Rev. B 41 (1990) 12197.] which comes up in many different contexts.
	• Silicon dioxide also has many different structures, which makes it difficult to model:


	Potentials for ionic compounds
	• But all of these have the common feature that they can be understood as tetrahedra with Si in the centre and O atoms in the joint corners: a cristobalite b cristobalite b tridymite keatite a quartz b quartz

	Potentials for ionic compounds
	• Simulation of a 40-Å diameter SiO2 beam in equilibrium (left) and strained.
	• Colorcoded is the ratio between the shortest and longest edge of a face of a tetrahedron.


	Potentials for ionic compounds
	• The potential is of the familiar form:
	• The two-body part :
	• The three-body term: where the -function describes how the bond lengths and the -term how a change of the bond angle affects the interaction.

	Potentials for ionic compounds
	• These are
	• Parameters are shown on the right.
	• A corresponds to Si and X to O in the three-body parts. Note that only the AXA- and XAX-three-body terms are defined - the potential would not describe sensibly e.g. pure Si since there is no AAA-term.


	Potentials for ionic compounds
	• The Si-Si and O-O-interaction are just a purely repulsive pair potential:

	Potentials for ionic compounds
	• The potential describes well the most common forms of SiO2 :

	Potentials for ionic compounds
	• A newer potential was developed by Watanabe et al. [Appl. Surf. Sci. 234 (2004) 207.].
	• One of its strengths is the ability to describe also the so called sub-oxides of SiO2; e.g. SiO.
	• Because of this it is suitable for describing interfaces between Si and SiO2 and to be used in defect studies and ion bombardment simulations.
	• The potential is based on the Stillinger-Weber potential and the Si-Si interaction is the original Si-SW.
	• Examples of its use in nanocluster bombardment can be found in J. Samela’s PhD thesis.
	• However, its elastic properties are not very good, strongly overestimates e.g. bulk modulus

	• An SiO2 potential in the Tersoff formalism: [Munetoh et al, Comput. Mater. Sci. 39 (2007) 334]: better than Watanabe in some elastic and melting properties

	Charge-transfer potential models
	• There is a clear fundamental problem with the description of ionic bonding and covalent bonding described above.
	• Consider the following (schematic 2D representation) of an Si-SiO2 interface system:
	• On the Si side of the interface, ® ordinary Si potentials.
	• On the SiO2 side ® ionic model.

	• What happens if we move an Si atom from the SiO2 to the Si side (green line). This could easily occur in reality by diffusion or a radiation process. Which model should be used to describe the interactions of this atom??


	Charge-transfer potential models
	• Here we get to the charge transfer model for the atoms, where the environment-dependence of the ionicity of the atom is built into the model.
	• There are extremely few models like this, since charge transfer processes are difficult to deal with and poorly understood.
	• One fairly well motivated approach is that of Alavi et al., Phil. Mag. B 65 (1992) 489.
	• The idea is to formulate an environment-dependent term which gives the charge state of atoms:
	• is some function of the atom distances and types and
	• is a function which could e.g. limit the charge state to reasonable values (like say between -4 and +4 for Si).

	• Some thought reveals that the functions would be likely to have the properties
	• The first two criteria ensure charge neutrality in a pure elemental region, the latter one global charge neutrality.



	Charge-transfer potential models
	• Once the have been determined, one could use an expression of e.g. the form to obtain the total interaction energy of an atom .
	• could be some many-body potential for an uncharged system.
	• The function would be used to switch this potential on and off depending on the ionicity:
	• The big and difficult question is how to choose . It should be constructed to ensure global charge neutrality, and give correct ionicities in known environments.

	Charge-transfer potential models
	• For instance in the SiO2 case presented above, it obviously should be constructed such that if an Si atom has four O atoms at the equilibrium distance, it should give . Since every Si atom has 4 O neighbours and every O atom 2 Si neighbours this ...
	• One way to deduce the functional form could be to use quantum mechanical schemes to deduce ionicity, such as Mulliken charge analysis.
	• Since little work has been done on this topic there is not much more to say, except that this is a wide-open topic with lots of room for new and interesting research.
	• See also F. H. Streitz, J. W. Mintmire, Phys. Rev. B 50 (1994) 11996; X. W. Zhou et al., Phys. Rev. B 69 (2004) 035402.

	Potential models for ionic compounds
	• Sometimes rather simple models may be sufficient.
	• An example: Si/SiO2 interface (again!) [Y. Tu, J. Tersoff, Phys. Rev. Lett. 84 (2000) 4393.]
	• Simple VFF potential (sum over bonds; only Si-O and Si-Si bonds; no defects: continuous network of bonds):
	• Suboxide penalty allows to study other environments of Si atoms than the perfect SiO2. It gives the energy cost of having less than 4 O neighbors:
	• Interface structure was optimized using bond-switching Monte Carlo.
	• For every bond topology the atom positions were obtained by minimizing the potential energy



	Potential models for ionic compounds
	Repulsive potentials for high energies
	• When talking about repulsive potentials there is first reason to clarify the concepts:
	• Repulsive part of equilibrium potentials: Constructed to obtain a minimum in the potential, and to describe states close to equilibrium, at energies ~ 0.1 - 100 eV above the minimum.
	• E.g. the short-range potentials mentioned above belong to this category.

	• Ion ion irradiation and nuclear physics one frequently is interested in very high-energy collisions.
	• An ion with a kinetic energy of 100 keV makes a head-on collision with a target atom ® the C.M. energy is 50 keV
	• In this regime the equilibrium potentials are not valid, and there is a reason to fit a high-energy repulsive potential to them.


	• Repulsive potentials are usually written in the form , where is a screening function and a screening length.
	• is formed such that when , so the potential reduces to the Coulomb potential between the nuclei at high energies.
	• At normal interatomic distances the electron shells screen the nuclei so that the nucleus don’t “see” each other almost at all ().


	Repulsive potentials for high energies
	• At very small distances the nuclei are so close that the electron clouds do not screen them. The interaction is then purely Coulombic and .
	• The most used repulsive potential is that formulated by Ziegler, Biersack and Littmark (ZBL).
	• They used free-electron gas (FEG)-calculations to obtain the repulsive interatomic potential for 522 randomly chosen atom pairs, and sought a shape for the screening length which makes the screening function be as similar as possible for the diff...


	Repulsive potentials for high energies
	• Onto these curves they fit a universal function (right figure above) of the form . and obtained the parameter values shown on the right.
	• This potential is generally called the ZBL universal potential. The advantage of using it is that it is extremely easy: the only information needed of it are the atom numbers  and  . The disadvantage is that this is an average potential, from whi...
	• It is also possible to reproduce the FEG calculations for any atom pair based on information in the ZBL book The Stopping and Range of Ions in Matter (Pergamon, New York, 1985). This gives so called ZBL pair-specific potentials. These seem to be ...

	Repulsive potentials for high energies
	• In case the best possible accuracy is desired, one can use Hartree-Fock- or DFT-calculations of the energy of a dimer, or even better an atom inside a solid.
	• With dimer calculations by using certain HF- , HFS- and DFT methods it is possible to obtain the high- energy repulsive potential to ~ 1 % accuracy [Nordlund, Runeberg and Sundholm, Nucl. Instr. Meth. Phys. Res. B 132 (1997) 45].


	Efficient ways to calculate ionic interactions
	• So far we have assumed that the sum giving the energy of each atom always converges easily. This is not true always, however.
	• Let us consider potentials of the form . Far from the central atom in a homogeneous material the number of atoms in a thin shell is , where is the atom density, so the total potential in this layer is proportional to . If we now integrate the tot...
	• This vanishes in infinity only if . So in three dimensions we obtain convergence trivially only if the potential decays faster than .
	• Exponentially decaying potentials (Morse, Tersoff etc.), as well as LJ potentials are OK in this resprect, but not the Coulomb potential which is ® When one simulates a periodic system with an ionic potential one can not use a simple cutoff dist...
	• To circumvent this many methods have been developed: 1) Ewald summation [Ann. Phys. 64 (1921) 253]. It is much more efficient than direct summation, but is still an method. 2) A newer method is the so called Fast Multipole Method, which can be pa...


	Ewald-summation
	• Take into account all interactions to an atom both from the MD cell itself as well as all the periodic image cells.
	• The potential energy due to the Coulomb interaction is
	• and are the atom charges, and cgs units are used for brevity. The vector is now in principle a sum over all image cells , where and the indices and loop over atom pairs inside the cell (except of course not when ).
	• This sum does not necessarily converge!
	• Change the summation order: A natural way to achieve this is to add image cells radially outwards from the origin.
	• Physically the reason this leads to convergence is easy to understand: since each cell has to be charge neutral the charges in it give at a long distance a dipole, quadrupole etc. interaction, which vanishes during symmetric summation.

	Ewald-summation
	• The surrounding medium also affects the energy of this ball. In a perfect conductor (metal) () and in vacuum () the results are different; in vacuum a dipole layer will form at the surface. The correspondence between the two quantities is:
	• Ewald summation enables calculation of .
	• If we want our system to be surrounded by vacuum, we can add the dipole term.


	Ewald-summation
	• In the Ewald method the charges are given in the form of a charge density . This is given us the sum of a Gaussian and delta function electron density:
	• is now a sum of delta functions located at the atom positions, and Gaussian-shaped densities of centered on the same position but of opposite signs, formed so that the integral is 0. Because now has a finite range, we can calculate the energy and...
	• On the other hand, we also use the function to correct for the error made in introducing the Gaussian functions. But this function is now smooth, and can be calculated in reciprocal space: the Fourier-transformation of  are summed, and then an in...

	Ewald-summation
	• The result (“after a few steps of algebra”) is an equation which has a real-space term , a -space term and the inverse value of the self-energy and the surface energy:
	• Term 1 is the short-range part. is the complementary error function and the side length of the MD- cell. We assume here that the cell is cubic. Again in the sum the term when .
	• Term 2 is the sum over reciprocal space vectors .
	• Term 3 is the self-energy of which has to be removed because it is included in the part.
	• Term 4 is the surface term of the sphere.

	• By setting (the width of the Gaussians) large enough we can restrict ourselves to the term , which corresponds to the normal ‘minimum image’ convention.
	• The real-space term can be calculated in the some loop as the short-range forces. Then is of the form .

	Ewald-summation
	• Using complex numbers the reciprocal-space term can be written in the simpler form
	• The force acting on atom is
	• Note that the force calculation takes time as .
	• Does this sound highly complicated? Fortunately there are several implementations of Ewald summation easily available, see e.g. Allen-Tildesley program F.22 or N. Anastasiou and D. Fincham, Comput. Phys. Commun. 25 (1981)159.
	• It is easy to generalize the equations to non-cubic cells.

	Ewald-summation
	• In applying the method one has to choose three parameters: cutoff radius width of Gaussian charge densities upper limit for summation .
	• It is best to start by setting fairly large, e.g. . From this a suitable value of can be obtained, on the basis of which a suitable limit for the -summation can be obtained. Typically, in which case the calculation is concentrated in -space. The ...


	Ewald-summation
	• Example: EuF2 :

	Ewald-summation
	• Application of MD in neutrino-induced Doppler broadening (NID) [A. Kuronen, et al. Phys. Rev. B 52, (1995) 12640.]: K electron capture of 152Eu ® emission ® 3.0-eV recoil energy to 152Sm ® rays Doppler broadened

	Ewald-summation
	• If the periodicity of the Ewald summation causes trouble, one can use the particle-lattice (or particle-mesh) method:
	• The reciprocal space part is calculated by smoothing the ion charges in a regular lattice and solving the potential from the Poisson equation with Fourier methods.
	• The advantage is that this scales as .
	• The disadvantage is that the program gets more complicated
	•



	Reaction field method
	• In this method neighbours farther than are approximated as continuous medium with some .
	• The forces and energies inside the cavity are calculated normally.
	• The continuous medium polarizes, which leads to a force on molecule in the cavity (sum includes )
	• The problem here is , which has to be known in advance.

	Field Multipole Method (FMM)
	• The FMM method [Greengard and Rokhlin, J. Comput. Physics 73 (1987) 325.] is based on looking at different regions of space with different resolutions.
	• The advantage of the method is that it is and also can be parallelized [Nakano et al. Comput. Physics Commun. 83 (1994) 197.]
	• The method uses an electrical multipole method to describe the influence of a region far away on an atom.
	• Potential outside a localized charge distribution can be written as a multipole expansion: , where the multipole moments are defined as .
	• In practice, the sum over can be truncated to some finite value:


	Field Multipole Method (FMM)
	• Why is this useful, then ? Let us consider as a simple example two sets of points and which are inside two circles of radius :
	• Let the points have charges . If we now want to calculate the forces from points on the points we could of course calculate the Coulomb interaction from all the -points to all the -points. This would require  interaction calculations, i.e. the al...
	• But if we, instead of this, first calculate the factors , requiring operations. After this we could calculate the sum for all points , which requires operations. Hence this method is . If the two circles are far away,  can be relatively small. If...

	Field Multipole Method (FMM)
	• Level 0 is the normal, ordinary simulation cell, and the higher index levels finer divisions of it.
	• Multipole expansion is used to calculate interactions between cells that are well separated.
	• At level 1 (see above) there are no well separated cell pairs, so that we have to go to level 2 to be able to use the expansion.
	• At level 2, in order to calculate interactions between a cell and its near neighbors, we divide the box further to smaller cells. Now each new cell has far neighbors for which the multipole expansion is applied. (Note that interaction between a c...
	• At some stage division is so fine that interaction between near neighbors can be calculated by normal sum over atom pairs.

	Field Multipole Method (FMM)
	• This calculation scales as (where is the number of atoms): 1) at every level the calculation of multipole expansions scales as 2) number of levels is
	• To obtain the behavior multipole expansion is calculated from atom positions only at the smallest scale divisions.
	• These results can be compined to calculate the expansions in coarser levels by so called translation of a multipole expansion.

	• An accurate algorithm, the equations and boundary condition solutions can be found from the paper of Greengard and Rokhlin.
	• In practical calculations numerical noise may become a problem.
	• In addition, as in Ewald summation it is also possible to take into account the effect of periodic image cells with the same principle.
	• It is also evident that this algorithm can be parallelized well, since for the far cells it is enough to know only the multipole expansion, which is relatively easy to pass around.
	• The FMM-model is also very general: in addition to the calculation of atomic interactions it can also be used in plasma dynamics, fluid mechanics and in astronomy!

	Field Multipole Method (FMM)
	• Sample application: R. Kalia et. al. simulated the fracture of about a million atom Si3N4 crystal [R. Kalia, TMS conference proceedings 1997]. Note that in the picture above the atoms are so small they can not be distinguished from each other!!
	• After the original FMM formulation, variations often called Fast Multipole Algorithms (FMA) have been developed.
	• Basic idea same as in FMM, but tree-like data structures and FFT’s are used to optimize the interactions even further.
	• E.g.: dpmta method, W. T. Rankin, PhD Thesis, Duke University, 1995
	• In principle better, but very complex leading to numerical accuracy problems (“numerical noise”

	• A comparison: [J. A Board, C. W. Humphres, C. G. Lambert, W. T. Rankin and A. Y. Toukmaji, "Ewald and multipole methods for periodic N-body problems", "Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing 1997...


