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Diamond and zincblende structure potentials 

• Only three elements have the diamond (DIA) structure: C, Si, Ge
• However, since almost the whole semiconductor industry and micromechanical engineering 

industry is based on Si technology, the interest in studying diamond-structured semiconductors 
is immense. 

• In addition, the most common compound semiconductors (GaAs, AlAs, InAs, etc.) have the 
zincblende structure, which is essentially the same as diamond except that there are 2 atom 
types. This further increases the interest in describing this crystal structure.

IVIII VGroups:
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Diamond and zincblende structure potentials

• The diamond structure is (2 ways of looking at the same thing) 

110

DIAMOND

DIAMOND, CONVENTIONAL UNIT CELL

110 a

 

• Essentially two FCC structures inside each other which have been displaced by 
a
4
--- a

4
--- a

4
---, , 

  from each other.

• The unit cell has 8 atoms
• In terms of bonding the crucial feature is that every atom has exactly 4 neighbours. The bonds are 
covalent or predominantly covalent, and the nearest neighbours are distributed such that one atom is in 
the middle of a regular tetrahedron

• The angle between any two bonds of the same atom becomes 1 3⁄–( )cos 109.47°= . Chemically this cor-

responds to the sp3 hybridization of electrons.
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Diamond and zincblende structure potentials

• The zincblende structure is the same except that one FCC sublattice has atoms of one type, 
the other of the other type. One unit cell thus has 4 atoms of type A and 4 of type B. 
 

ZINCBLENDE, SUCH AS: 
Ga
As

 

• If the (111) stacking is ...ABAB... instead of ..ABCABC... we have wurtzite 

• Note the analogy:    fcc ↔ hcp 
zincblende↔wurtzite
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Diamond and zincblende structure potentials

• Covalent bonds
• In a covalent bonds atoms share electrons and thus in some 

sense achieve a filled electron shell.
• In solids covalent bonds typically form between elements which 

have a similar outer electron structure.
• Some elements: C, Si, Ge, S, Se, Te
• III-V-componds (GaAs, InP, ...)
• II-VI-compounds (ZnSe, CdTe, ...)
• various compounds such as SiC 
• molecular crystals (e.g. oxygen where the basic element is the O2 
molecule, H2O etc. etc.) 

• The electrons extend to the space between the atoms. 
• The electron structure of the Si2 dimer is compared to the superpo-
sition of the density of two Si atoms:
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Diamond and zincblende structure potentials

• Because of the nature of the hybridization of the electron orbitals, the covalent bonds typically 
have a strong directional dependence, with some preferred angles between the bonds. For 
instance, the energy of three atoms will depend not only on the distances rij , rik  and rjk  but 

also on the angles between them θkij , θijk  andθikj : 

i

j

k

rij
rjk

rik

θijk

θikjθkij

 

• Si has 4 outer electrons, and these can form 4 bonds with sp3 hybridization, i.e. the angle of 

109.47o . 

• From this directional dependence, it also follows that the crystal (or amorphous) structure of 
covalent solids is often fairly open:
• Number of nearest neighbours only 2-4, (12 in close-packed structures!). 
• Packing fraction in diamond is only 0.34, whereas it in FCC is 0.74.
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Diamond and zincblende structure potentials

• Dealing with covalent bonding: explicit angles vs. bond order

• Before we proceed with semiconductors, let us think quite generally about the angular proper-
ties of covalent bonds.

• Since we know for any given covalently bonded material that there is one or a few angles 
between the bonds which give a minimum in the energy, one can immediately see a purely 
geometrically motivated way of constructing a potential: simply put in an explicit angular term 
which gives a minimum at the equilibrium angle θ0 . 

• For instance, consider a single water molecule H2O. We know that the angle between the two O-H bonds 

is about 105o. Thus if one wants to construct an interatomic potential to describe water, one could get the 
structure right simply by including an explicit angular energy term of the form 

Eangular Kθ θ 105°–( )2
=  

into the potential. (Let’s call these potentials “explicit angular”.) 

• There is a problem: The minimum always at only one angle, and nowhere else.  

• However, for instance, consider the carbon allotropes graphite and diamond. In one the angle between 

bonds is 120o, in the other 109.47o. The energy difference between the two phases is vanishingly small. 
An explicit angular potential can not possibly describe carbon in both allotropes correctly. 

• Thus although it is easy to construct explicit angular potentials for a known geometry, they do not have a 
fundamental physical motivation. 
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Diamond and zincblende structure potentials

• The Keating potential 
 

    

• Can be used when near to the equilibrium configuration and no bond breaking occurs. 

• Example of application: build amorphous Si and SiO2 using bond-switching MC
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Diamond and zincblende structure potentials

• An alternative, physically motivated approach to construct potentials for covalent systems is 
through the concept of “bond order”. 

• By bond order one means is that the strength of a single chemical bond is affected by the chemical neigh-
bourhood: the more neighbours an atom has, the weaker are the bonds which are formed to these atoms. 
This can be described in potentials of the form  

V Vrepulsive rij( ) bijVattractive rij( )+=  

by constructing an environment-dependent term bij  which weakens the pair interaction when the number 

of neighbours (coordination number) Z  of an atom is increased. 
•  

- For simplicity we here deal with cases where only bonds to nearest-neighbour atoms are considered.

• This idea is well motivated qualitatively from basic chemistry: if an atom has N  outer electrons, these can 
form (with other atoms of the same type in a symmetric configuration):
• a single (dimer) bond with N  pairs of electrons

• two bonds with N 2⁄  pairs of electrons

• three bonds with N 3⁄  pairs of electrons 
and so forth

• Since for every larger number of bonds one bond has less pairs of electrons, it is quite natural that the 
strength of a single bond tends to decrease. 

• However, the strength of the bond is not directly proportional to the number of electron pairs in it, and the 
behaviour of the energy/bond may vary quite a lot from one material to another.
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Diamond and zincblende structure potentials

• If the energy/bond decreases very rapidly with the coordination number, the most stable form of 
the atom is a dimer. If, on the other hand, the dependence is weak, the material wants to maxi-
mize its coordination number and will end up in a close-packed configuration. 

• In the limiting case of bij  = constant we get a pure pair potential. 

• We can thus think that the strength of bond is a monotonously decreasing function of the coor-
dination number. The equilibrium structure is determined by the balance between the number of 
bonds and the single bond strength, since the total energy is the product of the two. 

• This formalism allows us to adjust how many numbers of neighbours an atom “wants to have”. This now 
gives a physical motivation to the preferred angles between bonds: if e.g. the ideal coordination is 4, and 
the bonds are arranged symmetrically about an atom, one automatically gets the tetrahedral bonding con-

figuration with an angle of 109.47o between the bonds. 

• The great advantage here is that now the angle needs not be fixed, because it is perfectly pos-
sible to construct potentials which give the same energy for 2 different configurations. Thus one 
can (and as we shall se people have) constructed potentials which e.g. give local energy min-
ima of equal depth for both the graphite and diamond configurations, thus solving the carbon 
problem! 
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Diamond and zincblende structure potentials

• Based on pseudopotential theory Abell [Phys. Rev. B 31 (1985) 6184.] has argued that the term 

bij  should be of the form  bij Z
δ–∝  where Z  is the coordination number and δ  some number. 

More specifically, in the so called second-moment approximation of tight binding one obtains  

bij Z
1 2⁄–∝ .

• Let us make all this concrete with an example:

For comparison: en-
ergy/atom for alu-
minium [Phillips, 
Fig. 4.5]. Curve is a 
fit of the form 

.

Note the different 
sign convention!

E E0 αZ1 2⁄ βZ+ +=

 carbon. 
The table below shows the energy/bond and energy/
atom for a number of different coordinations of carbon. 
The values for Z 2 3 4, ,=  are from experiment and the 
values for the hypothetical phases Z 4>  from a DFT cal-
culation which also reproduces the experimental values 
well [Furthmüller et al, Phys. Rev. B 50 (1994) 15606; 
data compiled in Albe et al, Phys. Rev. B 65, 195124].

Z Phase
Energy/atom

(eV)
Energy/bond

(eV)
Energy/bond 

bond order model

2 dimer 5.10 6.20 6.32

3 graphite 7.36 4.91 4.91

4 diamond 7.30 3.65 3.67

6 simple cubic 4.74 1.58 1.75

8 BCC 3.00 0.75 1.01

12 FCC 3.00 0.50 0.43
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Diamond and zincblende structure potentials 

• The last column shows a fit to the data obtained with a bond order model of the 1 Z⁄  form. As 
you can see, a quite good fit is obtained for all phases, and especially the most important ones 
are described very well.  

• Note also that the bond order model correctly predicts that graphite and diamond are almost 
equal in energy. 
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Diamond and zincblende structure potentials 

• The generality of this approach was shown by Brenner [Phys. Rev. Lett. 63 (1989) 1022.], who 
proved that this form is mathematically equivalent with the EAM formalism (after suitable trans-
formations), and specifically that if δ 1 2⁄–=  one can obtain exactly the Finnis-Sinclair / Cleri-
Rosato-like metal potentials: 
 

E Ei
i
=  , Ei

1
2
--- Vi

pair
rij( ) Vi

mb
+[ ]

j i≠
=  

• Tersoff: Vi
mb 1

2
---– Bbije

λ2rij–

j i≠
=  ,   bij 1 G θijk( )e

λ3 rij rik–( )–

k j, i≠
+

η–
=   

(or bij 1 G θijk( )e
λ3

3
rij rik–( )3

–

k j, i≠
 

 
  n

+
1 2n( )⁄–

= )

• EAM:  Vi
mb

F ρ rij( )
j i≠
 

 
 

–= .  
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Diamond and zincblende structure potentials 

• Assuming Finnis-Sinclair form F ρ( ) Aρ1 2⁄
–= , ρ r( ) e

ar–
=  we get  

 

Vi
mb

A e
arij–

j i≠


1 2⁄
– A e

arij–

j i≠
 e

arik–

k i≠


1 2⁄–
–

A e
arij–

e
arik–

k i≠


1 2⁄–

j i≠
 

 
 

–

A e
arij–

e
arij–

e
arik–

k i j,≠
+

1 2⁄–

j i≠
 

 
 

–

Ae
arij 2⁄–

1 e
a rij rik–( )

k i j,≠
+

1 2⁄–

j i≠
–

= =

=

=

=

              

 
Thus if B 2A= , λ3 a 2λ2= = , η 1 2⁄= , G θ( ) 1=  we get the Tersoff potential!
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Classical Si potentials

[One important source: Balamane, Phys. Rev. B 46 (1992) 2250]

• Because of the directional dependence of the bonds, all decent Si potentials have some sort of 
an angular dependence, and hence they are at least 3-body potentials.

• Some potentials have an explicit 3-body form, i.e. the potential has the shape: 

V V2 ri rj,( ) V3 ri rj rk, ,( )
i j k, ,
+

i j,
=

• These potentials are called by Balamane cluster-potentials. They typically also are explicit angular poten-
tials.

• In other potentials the angular dependence is hidden in the 2-body part so that there is no explicit V3  part. 

These are called by Balamane cluster functionals.
• The philosophy of the cluster functionals is similar to the EMT/EAM potentials: calculate a pair 

potential, but let its strength be affected by the environment. A common formulation is  
V Vrepulsive rij( ) bijVattractive rij( )+=  

which is the same as for bond-order potentials.  

• Here the attractive and repulsive parts themselves are pure pair potentials, but there is a coefficient bij  
which has an environment-dependence. The main difference to EAM is that although they can be cast in 
the form above, in them bij  has no angular dependence, whereas in the Si potential there must be one. 

• Hence in the Si potentials there also has to be a three-body loop  rij rik,( )
i j k, ,
  which gives the angles.
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Efficiency of semiconductor vs. metal potentials 

• Assume the number of atoms is N  and the average number of neighbours per atom is M
• A pair potential and an EAM potential is then O NM( )

• A three-body potential is O NM
2( )

• So it would appear like the Si potentials are a factor of M  slower than EAM potentials. 

• But this is most of the time not true in reality. This is because for covalent bonding, long-range 
interactions are weak compared to the nearest neighbour-ones, so it is often enough to only 
include nearest-neighbour interactions. So for Si M 4= . But in metals long-range interactions 
are important (e.g. for surface properties and to get the difference between the FCC and HCP 
phases right), so often M 50∼  in metals. 

• Because 42 < 50 the Si potentials with three-body terms may in fact be faster than EAM poten-
tials without one! 

• But there are additional funny effects. For some Si potentials the cutoff is set so that in the crys-
talline phase M 4= , but it increases strongly in a disordered (amorphous or liquid) phase. So 
the speed of the potential may be strongly affected by what phase of a material is simulated! 
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The Stillinger-Weber-potential

• Stillinger and Weber [Phys. Rev. B, 31 (1985) 5262] (SW) developed a potential, which 
describes fairly well both crystalline and liquid silicon - they in fact constructed it to give the 
melting temperature right. The potential has become quite popular over the years because it 
turned out to describe well several properties which it was not really designed to describe origi-
nally (such as point defect energies and surface properties).

• The potential is an explicit angular potential, and has the form 

V V2 ri rj,( ) V3 ri rj rk, ,( )
i j k, ,
+

i j,
=  

V2 rij( ) εf2 rij σ⁄( )=  
V3 ri rj rk, ,( ) εf3 ri σ⁄ rj σ⁄ rk σ⁄, ,( )=   . 

where V2 is the pair potential and V3  the three-body part. The fi  are 

f2 r( ) A Br p– 1–( )exp r a–( ) 1–[ ] r a<,
0 r a≥,




=  

f3 ri rj rk, ,( ) h rij rik θjik, ,( ) h rji rjk θijk, ,( ) h rki rkj θikj, ,( )+ +=    , 
where θjik  is the angle, which the vectors rij  and rik  make at the atom i  and the function h  is 

h rij rik θjik, ,( )
λexp γ rij a–( ) 1– γ rik a–( ) 1–+[ ] θjik

1
3
---+cos 

  2
      rij a  and rik a<<,

0                                                                                    rij a  or  rik a≥≥,





=   .
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The Stillinger-Weber-potential

• So, in practical calculation all atom triplets being within the cut-off radius from each other must 
be handled. 

• As a hypothetical example take the triangular lattice:

• Here the potential energy for one atom term takes the form: 

V 3V2 rnn( ) 6h rnn rnn 60
o, ,( ) 6h rnn rnn 120

o, ,( ) 3h rnn rnn 180
o, ,( )+ + += .

• Note that in this case the Stillinger-Weber would not work! 
• However, in the diamond lattice all the bond pairs of a single atom have the same angle.
Introduction to molecular dynamics 2015           9. Potential models  for diamond and zincblende structures                                                                                                                                              18



The Stillinger-Weber-potential

• The constants A , B , p , a , λ  and γ  are all positive and were determined by demanding that the 
diamond structure is the most stable one and that the melting point, cohesive energy and lattice 
parameter are about right. 

• According to rumours the potential was also fit to the elastic constants (which are reproduced 
fairly well), although the authors never stated this in the paper! 

• The actual parameter values are 
 

σ 2.0951Å= ,ε 2.1672eV= , 
A 7.0496= ,B 0.60222= , 
p 4= , a 1.80= , 
λ 21.0=  and  γ 1.20=   . 

• The melting point was fit to be almost exactly right with a rather dirty trick: the authors modified 
the cohesive energy to get the melting point close to the right value of 1685 K. The cohesive 
energy of the potential is 4.334 eV, when the right value is 4.63 eV. So this is a 7% mismatch. If 
this is corrected by direct scaling, the melting point will go wrong. 
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The Stillinger-Weber-potential

• The authors examined the structure of molten Si by comparing the maxima and minima of the 
structure factor S k( )  to measured values:

MD measured

1. maximum 2.53 2.80

1. minimum 3.25 3.25

2. maximum 5.35 5.75

3. maximum 8.16 8.50

4. maximum 10.60 11.20

 

• The potential describes fairly well melting and liquid Si. However, it is important to realize that 
the angle between bonds is ‘forced’ to the ideal tetrahedral angle with the cosine term 

θjikcos 1 3⁄( )+( )2 . This is not a good feature, because of the reasons given above for “explicit 

angular” potentials. 
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The Stillinger-Weber-potential

• However, SW describes the Si (001) surface better than the Tersoff potentials [Nurminen et al., 
Phys. Rev. B 67 (2003) 035405.] 
 

Introduction to molecular dynamics 2015           9. Potential models  for diamond and zincblende structures                                                                                                                                              21



The EDIP potential

• The EDIP-potential is fairly similar to the SW one, but it has been derived from an ab initio-cal-
culated database of the cohesive properties of Si both in the diamond and graphite phases. 

• The potential is: 

 

with the choice
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The EDIP potential

• So the main difference to SW is the environment-dependence in the form of the effective coordi-
nation number Z , which modifies the terms. 

• The potential is available in the web 
http://www-math.mit.edu/~bazant/EDIP/ 

including Fortran and C codes by which it can be evaluated efficiently.

• The parameter-values are: 
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The EDIP potential

• As required in a good fit, a large number of other 
properties have also been tested in the potential, 
the most important of which is that the diamond 
structure is the minimum of several common crys-
tal structures: 

• But note that EDIP does overestimate the energy 
of many other phases fairly much compared to 
DFT. 

• Among the best properties of the EDIP potential is 
that it reproduces the elastic constants very well, 
gives both good point defect, stacking fault and 
dislocation properties, and describes amorphous 
Si well. Also the melting point is described well, 
the potential predicts 1550 50±  K [Nord et al, PRB 
65 (2002) 165329], quite close to the experimental 
value of 1685 K. 

• The thermodynamical properties of EDIP-Si have 
been studied by P. Keblinski et al.,[Phys. Rev. B 
66 (2002) 064104.]
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The EDIP potential

• For example the radial distribution function 
of amorphous Si compared to experiments 
is reproduced fairly well: 

 

• The EDIP potential clearly is one of the best 
Si potentials available now, most tests of its 
properties have been quite favourable to it.  
 
 
 
 
 
 

• Another  Si potential is [Lenosky et al., 
Modelling and Simulation in Materials Sci-
ence and Engineering 8 (2000) 825]. This is a combination of EAM and SW models, which 
gives truly excellent fits to a large number of elastic constants, different structures and defect 
properties. However, it contains some questionable features (such as a negative electron den-
sity for some distances r ) so its transferability outside the parameter database to which it has 
been originally fit is questionable.
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Tersoff potential 

• The Tersoff potential [first good Si fit in Phys. Rev. B 38 (1988) 9902] is a cluster-functional and 
bond order potential which has an environment dependence and no absolute minimum at the 
tetrahedral angle. Tersoff based his potential on the ideas presented by Abell a few years ear-
lier. The Tersoff or more appropriately Tersoff-Abell formalism is probably the most widely 
used bond order potential formalism and has become the basis or inspiration for a huge number 
of potentials developed since then.  
 
Tersoff-like potentials are pure bond order potential motivated by the approach presented a few 
pages back in these notes, i.e. of the form: 
 

V Vrepulsive rij( ) bijkVattractive rij( )+=  

• The original Tersoff potential has the following form. The total energy is 
 

E
1
2
--- Vij
i j≠
=    , 

 
where  
 
Vij fC rij( ) aijfR rij( ) bijfA rij( )+[ ]=  .
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Tersoff potential

• The various terms have the following forms: 

repulsive part       fR r( ) Ae λ1r–=    , 

attractive part       fA r( ) Be λ2r––=   , 
 

potential cutoff function 

fC r( )

1 r R D–≤,

1
2
---

1
2
--- π

2
--- r R–( )

D
---------------- 

 sin– R D– r R D+< <,

0 r R D+≥,







=    , 

and 
bij 1 βnζij

n+( ) 1 2n⁄–=   , 

ζij fC rik( )g θjik( ) λ3
3 rij rik–( )3[ ]exp

k i j,≠
=   , 

g θ( ) 1 c2

d2
----- c2

d2 h θcos–( )2+
-----------------------------------------–+=    , 

aij 1 αnηij
n+( ) 1 2n⁄–=   and ηij fC rik( ) λ3

3 rij rik–( )3[ ]exp

k i j,≠
=   . 
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Tersoff potential 

• Here, as above, the distance between atoms i  and j  is rij  and the angle between bonds ij  and 

ik  is θjik .

• Inspection of the terms shows that there is an angular dependence, but because is embedded 
inside the bij  term, it does not give a fixed minimum angle between bonds. 

• The relation to the bond order potential basic formalism is as follows: if  n 1= , c 0= , β 1= , and 
λ3 0=  we get the “pure” bond order potential with  
 

bij 1 fC rik( )
k i j,≠
+

1 2/– 1

Zi
---------∝= .     

 
Note that the sum excludes atom j  that is taken into account by adding one. 
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• Tersoff could not find a parameter set A B λ1 λ2 α β n c d h λ3 R D, , , , , , , , , , , ,{ }  which would describe 

well both the reconstructed Si surfaces and its elastic properties. Because of this he gave two 
parametrizations: Si C, which describes well elastic properties, and Si B, which gives good sur-
face properties. Tersoff’s Si A is the original potential which proved to be unstable. Si(B) is also 
known as Tersoff 2 and Si(C) as Tersoff 3.

Si(B)/T2 Si(C)/T3

A  (eV) 3264.7 1830.8

B  (eV) 95.373 471.18

λ1  (Å-1) 3.2394 2.4799

λ2  (Å-1) 1.3258 1.3722

α 0.0 0.0

β 0.33675 1.0999×10-6

n 22.956 0.78734

c 4.8381 1.0039×105

d 2.0417 16.218

h 0.0 -0.59826

λ3  (Å-1) 1.3258 1.7322

R  (Å) 3.0 2.85
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D  (Å) 0.2 0.15

Si(B)/T2 Si(C)/T3
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Tersoff potential

• The parameter λ3  is an interesting case: it does not affect the equilibrium properties at all, only 

properties far from equilibrium. Tersoff himself said it can be set to 0, and this is often done. 
However, in far-from-equilibrium studies it has proven to be best to include λ3 .  

• Note also that since α 0= , the two last equations in the potential form are meaningless (give 
exactly 1). Although Tersoff have these two equations, I am not aware of any case where they 
would actually have been used. 
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Tersoff potential

• Below is a comparison of the energies and bond lengths obtained 
with Tersoff for different coordination numbers compared to exper-
imental and ab initio-calculations. 

Why should anyone care about e.g. 
12-fold coordinated Si?  
Although some coordination numbers 
may not exist in the ground state, they 
may still be present e.g. in defects, 
surfaces and metastable molecules.
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Comparison of Si potentials

• Balamane & co have done an extensive comparison of Si potentials, looking e.g. at bulk, sur-
face, defect and small molecule properties. [H. Balamane, T. Halicioglu, W. A. Tiller, Phys. Rev. 
B 46 (1992) 2250.]. Unfortunately EDIP was not part of this comparison. 

• Included were the SW, and Tersoff potentials Si(B) [T2] and Si(C) [T3]. Also included were the 
Biswas-Hamann potential (BH) [PRL 55 (1985) 2001, PRB 34 (1986) 895.], the Tersoff-like 
Dodson potential [DOD; Phys. Rev. B 35 (1987) 2795.] and the potential by Pearson et al. 
(PTHT; Cryst. Growth. 70 (1984) 33.]. 
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Comparison of Si potentials

• Below is the pair term of the potentials V2 r( ) . The spheres are ab initio results. 

 

• We see that except for DOD the potentials are fairly similar. BH and PTPH have a long range 
compared to the others. 
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Comparison of Si potentials

• Here is the energy of three Si atoms/atom: 

    

θ

rNN

 

• Note that the energy becomes fairly large for small angles for all the potentials.  
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Comparison of Si potentials

• In the adjacent picture the cohesive energies of different structures are shown, compared to 
DFT calculations. 
• Note that PTHT predicts that the simple hexagonal struc-
ture is the most stable one. 

DIA = diamond 
HD = hexagonal diamond 
BC8 = bc-8 
BTIN = β−tin 
SH = hexagonal 
SC = cubic 
BCC = body-centered cubic 
HCP = hexagonal close-packed 
FCC = face-centered cubic 
GS = graphite

β-tin

HD (wurtzite) BC8

Good source of crystal structures:  
http://cst-www.nrl.navy.mil/lattice/index.html
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Comparison of Si potentials

• And below are the elastic properties of the potentials

experiment PTHT BH SW DOD T2 T3

 B 0.99 2.788 1.692 1.083 0.884 0.98 0.98

 B' 4.2 7.82 5.66 2.93 4.27 4.58 4.30

 c11
1.67 2.969 2.042 1.616 1.206 1.217 1.425

 c12
0.65 2.697 1.517 0.816 0.722 0.858 0.754

 c44
0.81 0.446 0.451 0.603 0.659 0.103 0.690

 c44
0 1.11 2.190 1.049 1.172 3.475 0.923 1.188

ζ 0.74 1.03 0.74 0.63 1.06 0.83 0.67

νTA X( ) 4.4 4.5 5.6 6.7 2.7 9

νTO X( ) 13.9 19.3 14.5 15.9 15.3 16

νLOA X( ) 12.3 13.8 12.2 13.1 11.7 12

νLTO Γ( ) 15.3 18.3 16 18.1 16.5 16

 
 
 

, ,   
 
 
 
 
 
 
 
 
 
 
 

• We see that T3 and SW give good 
elastic properties. Lattice vibra-
tions are described well by the BH 
potential.

B[ ] cij[ ], Mbar= ν[ ] THz= B'
Pd

dB=
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Comparison of Si potentials

• And here are a bunch of energies for 
lattice defects.

 
= vacancy 

=split vacancy 
 

=tetrahedral interstitial 
 

=hexagonal interstitial 
 

=bond-centered interstitial 
 

=split interstitial.  

The first number is the energy of the ground state, the second the energy of the ideal 

(non-relaxed) structure, and the third gives the radial relaxation of the nearest neigh-

bours in percent (negative value inwards, positive outwards). 

* Note that Balamane had an error here, this is determined by K. Nordlund. 
 
 
 

• The table tells predominantly that the short-range 
potentials (SW, DOD, T2, T3) describe defects best. 
SW is good in that it predicts that the simple vacancy 
and split interstitial are the ground state defects, which 
agrees with ab initio results for uncharged defects.

V

VS

IT

IH

IB

IS

DFT PTHT BH SW DOD T2 T3

 V 3-4 0.77 2.12 2.82 2.57 2.81 3.70

 4.5 2.50 3.83 4.63 3.23 2.83 4.10

 38.5 -25.7 -24 14.7 1 10.5

 VS
4.19 2.83 2.30 3.36 4.17 1.40 3.50

 5.01 4.53 4.72 6.00 8.12 4.15 10.5

 -9.5 -15.9 -12.5 -11.8 -14.5 -14.9 -8.8

 IT
5-6 0.63 1.56 5.25 3.03 5.03 3.45

 1.91 4.57 12.21 5.00 5.85 6.92

 3.8 8 9 9.1 7.3 10.5

 IH
4-5 0.84 2.89 6.95 2.61 3.67 4.61

 5.32 9.31 17.10 5.1 1 5.39 8.22

 7.4 11.5 14.7 7.3 7.6 10.2

 IB
4-5 1.92 2.54 5.99 4.39 2.84 5.86

 IS
1.47 3.30 3.66* 3.49 2.32 4.70
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Comparison of Si potentials

• Finally a table of the properties of the Si (100) 
surface:

DFT PTHT BH SW DOD T2 T3

1×1

γ 2.5 1.805 2.080 2.315 1.779 2.015 2.126

σxx
2.535 1.176 1.421 0 0 0 0

σyy
0.855 2.363 1.683 0 0.145 0.625 -0.236

1×1 relaxed

Δγ -0.03 -0.077 -0.027 0 -0.085 -0.004 -0.037

 σxx
-0.427 0.848 0 0.515 0.023 0.076

 σyy
-2.176 0.273 0 -2.775 0.080 -1.693

Δ -5.1 -7.0 -5.5 0 -10.2 -2.3 -7.2

2×1

Δγ -0.93 -0.690 -0.709 -0.899 -0.714 -1.258 -0.759

σxx
0.693 -0.808 0.669 1.167 -0.094 0.703 0.367

σyy
-1.945 -1.731 0.008 -0.051 -1.709 0.190 -1.236

Δ -24.4 -23.3 -13.3 -8.3 -22.9 -14.6 -15.6

DFT PTHT BH DOD T2 T3

c2×2

-0.839 -0.703 -0.824 -0.720 -1.143 -0.753

-1.356 0.898 1.691 0.274 1.517 0.865

-1.419 0.851 0.574 -0.866 0.567 -0.344

Δγ

σxx

σyy

Si 1×1 Si 2×1

Si c(2×2): buckling of dimers

 
=surface energy (eV) 

=change in surface energy from 1x1 
=surface tension tensor (  in the direction of the dimer 

        bond and  in the direction of the dimer row) 
= distance change between 1. and 2. layer (%).

γ
Δγ
σii x

y
Δ
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Comparison of Si potentials

• The conclusions of the authors are that no potential is clearly superior. Different potentials 
describe different properties well. 
 
SW, T3 and to some extent DOD are good for elastic properties 
 
T3, SW, DOD, T2 and BH give fairly good values for the point defects, to the extent this is pos-
sible to judge considering that the experimental values are not known very well either! 
 
The (100) surface is described best by BH, SW and T3. No potential describes the complicated 
reconstructions of the (111) surface. 

• EDIP was not part of this comparison, but it is clear it would be among the best at least for the 
elastic and defect properties. 
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MEAM models 

• There also exist so called MEAM (modified EAM) models for Si. This is basically EAM to which an angular 
term has been added:  

Etot Fi ρi( )
i


1
2
--- Vij rij( )
ij
+=  

ρi ρa rij( )
j i≠
 ρa rij( )ρa rik( )g θijkcos( )

k j, i≠
+=  

• Baskes has developed some models, but is apparently not quite satisfied with them. 

• Applied (in addition to metals) to e.g. silicides (TaSi, MoSi; electronic components!)
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Potentials for semiconductor alloys

• The alloys of Si are something of a hot topic.  

• Silicon carbide is interesting both for its mechanical hardness as well as its possibilities in high-
voltage or high-current electronics.  

• Silicon-germanium compounds (Si1-xGex) again are very interesting 

because by adding some 20 % Ge to Si one can get the electron mobil-
ity (and hence integrated circuit speed) about as high as in GaAs, about 
twice the value in Si. But because the device is still based on Si, one 
does not have to change to the more complicated GaAs manufacturing 
technology. 

Si0.8Ge0.2

Si

Si

Si0.8Ge0.2C0.02• In Si1-xGex-compounds there is, however, the problem that their lattice 

constant does not match that of Si (on top of which the SiGe is grown). 
The latest promising word is then Si1-x-yGexCy where x ~ 0.2 and y ~ x/

10. That is, only a few years ago someone realized that by adding a lit-
tle bit of carbon one can get a perfect lattice match to Si. 

• For instance because of this it is interesting to have models for SiGe-, SiGeC and SiC-com-
pounds. 
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Potentials for semiconductor alloys

• The Stillinger-Weber potential has two Ge-parametrizations [Ding and Andersen, Phys. Rev. B 
34 (1986) 6987 and Wang and Stroud, Phys. Rev. B 38 (1988) 1384]. Out of these, the Ding 
and Andersen potential has: σ 2.181 Å=  and ε 1.93 eV= ; the other parameters are identical to 
Si. Wang-Stroud is like Ding-Andersen except that λ 31= . 

• One can construct a SiGe compound potential simply by taking the geometric average of the Si and Ge 
parameters: 
 

σSiGe σSiσGe=

εSiGe εSiεGe=

λSiGe λSiλGe=

 

• There is also actually a SW-parametrization for C [Pailthorpe and Mahon, Thin Solid Films 192/

193 (1990) 34], but this should normally not be used - since SW has a minimum for sp3 bond-

ing, but carbon also can be favourably in the triply bonded graphite sp2 configuration, with bond 

angles of 120o°, the SW parametrization is of very limited usability. 

• But in describing the lattice compensation of Si1-x-yGexCy for y ~ 0.01 the combination of the 

three SW potentials actually does correctly reproduce the good lattice match to Si.
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Potentials for semiconductor alloys

• Tersoff has also developed potentials for SiC and SiGe [PRB 39 (1989) 5566.]. The formalism is 
almost the same as for his Si potential: 

E
1
2
--- Vij
i j≠
=   ,  Vij fC rij( ) fR rij( ) bijfA rij( )+[ ]=   , 

fR rij( ) Aije
λijrij–=   ,  fA rij( ) Bije

μijrij––=   , 

fC rij( )

1 rij Rij≤,

1
2
---

1
2
--- π

rij Rij–

Sij Rij–
-------------------
 
 
 

cos+ Rij rij Sij< <,

0 r Sij≥,










=   , 

bij χij 1 βi
niζij
ni+( ) 1 2ni⁄–

=   ,  ζij fC rik( )ωikg θijk( )
k i j,≠
=   , 

g θijk( ) 1
ci
di
----
 
 
  2 ci

di
2 hi θijkcos–( )+

----------------------------------------------
 
 
  2

–+=   
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Potentials for semiconductor alloys

• Here the indices i  and j  on the parameters denote the atom types. The mixed parameters 
λij μij Aij Bij Rij Sij, , , , ,  are obtained by interpolation from the elemental parameters: 

λij
λi λj+

2
----------------=   ,  μij

μi μj+

2
----------------=   ,  Aij AiAj=   ,  Bij BiBj=   , Rij RiRj=   ,  Sij SiSj=   . 

• A new parameter is χ  by which the mixed potential can be finetuned. Tersoff set χii 1=  and 

χij χji=  , so there is only one free parameter for the mixed interactions, all the others are deter-

mined from the elemental parameters. Moreover, ωik could be used to finetune the mixed inter-

actions but Tersoff set ωik 1=  
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Potentials for semiconductor alloys

• The parameter values for C, Si and Ge were obtained from a fit to the properties of different 
structures, and the finetuning parameters χ  were obtained from the cohesive energies of SiC 
and (hypothetical) zinc-blende SiGe. 

C Si Ge

A  (eV) 1393.6 1830.8 1769

B  (eV) 346.7 471.18 419.23

λ  (Å) 3.4879 2.4799 2.4451

μ  (Å) 2.2119 1.7322 1.7047

β 1.5724×10-7 1.1000×10-6 9.0166×10-7

n 0.72751 0.7873 0.75627

c 3.8049×104 1.0039×105 1.0643×105

d 4.384 16.217 15.652

h -0.57058 -0.59825 -0.43884

R  (Å) 1.8 2.7 2.8

S  (Å) 2.1 3.0 3.1

            χC-Si 0.9776=     χSi-Ge 1.00061=

The Si parameters are just Si(C) without λ3 .
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Potentials for semiconductor alloys

• The potential gives the following properties for SiC:

Tersoff Expt.

a  (Å) 4.32 4.36

B  (Mbar) 2.2 2.2

c11  (Mbar) 4.2 3.6

c12  (Mbar) 1.2 1.5

c44  (Mbar) 2.6 1.5

• Tersoff also calculated the energies for a few stoichiometric defects 
(eV):

Tersoff DFT

VSi VC+ 7.4 12.7

CSi SiC+ 7.2 8.4

SiTC CTSi+ 22.6 23.3

SiTSi CTC+ 23.2 26.0

CTC CTSi– 3.0 2.4

Here  
 

 is the Si vacancy, 
 

 is a carbon atom 
on an Si site, and  
 

 a C atom on a 
tetrahedral site, sur-
rounded by C atoms. 

VSi

CSi

CTSi
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Potentials for semiconductor alloys

• The potential predicts the properties of SiC fairly well, especially considering that the potentials 
has only one parameter which is really fit to the properties of the compound (χ ). And even this 
parameter is fairly close to 1. Only the shear modulus c44  and the formation energies of vacan-

cies are pretty bad. 

• One problem here is that in reality SiC is partly ionic in its bonding, which is not accounted for at 
all in the Tersoff potentials. One potential where this is taken into account is [Shimojo, Phys. 
Rev. Lett. 84 (2000) 3338] but this potential uses explicit angles so it is also problematic 

• Nowadays also a wealth of reparametrizations exist for the Tersoff formalism SiC potential - it 
seems almost every group working on SiC has made their own parametrization...
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C potentials

• Constructing a potential for elemental C is complicated (as noted above) because it has two 
structures which are practically identical in energy: diamond and graphite. Both have a cohesive 
energy of about 7.4 eV. The structure of graphite is: 
  

• As noted above, this situation clearly can not be described with an explicit angle potential, but a 
bond order potential like Tersoff can handle this. 
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C potentials

• The Tersoff parametrization for C does, however, describe both bonding types well [Tersoff, 
Phys. Rev. Lett. 61 (1988) 2879], and is clearly the most used C potential in the materials phys-
ics community.

• But it describes the graphite-to-diamond potential poorly. But simply by increasing the parame-
ter S  in the potential to 2.46 Å [Nordlund et al., Phys. Rev. Lett. 77 (1996) 699] one can make 
this transition much better described: 
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C potentials 
 
 
 
 
 

 
                   

Fahy et al. Phys. Rev. B 34 (1986) 1191.
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C potentials

• But there is a significant problem with the Tersoff C potential: because of its short cutoff, it does 
not describe the interaction between graphite layers at all. 

• There are two good solutions to this. 

• Nordlund et al. have made an extension to the Tersoff potential which does describe the interaction 
between graphite layers well [Phys. Rev. Lett. 77 (1996) 699]. However, the additional terms are very 
weak except precisely for configurations very close to the flat graphite layers, and do not have a deep 
physical motivation 

• A more general formulation which includes Lennard-Jones-like long-range potentials for many carbon 
bonding types (including polymers) by Stuart et al. [J. Chem. Phys. 112 (2000) 6472].
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Ge-potentials

• As we saw above, pure Ge has two almost identical SW-parametrizations, and the Tersoff 
parametrization, which are all fairly good in the crystalline phase. 

• But they all severely overestimate the melting point of Ge, giving about 2500 - 3000 K when the 
experimental value is 1210 K. 

• Nordlund et al. tried to solve this in the same way as Stillinger and Weber obtained the right 
melting point for Si, i.e. decreasing the cohesive energy [Phys. Rev. B 57 (1998) 7556]. By 
decreasing the cohesive energy in the SW potential by 18 % (i.e. setting ε = 1.56 eV) they 
obtained a melting point 1230 ± 50 K, and at the same time the threshold displacement energy 
and mixing coefficient (important in ion irradiation physics) obtained reasonable values. 

• But it is clear that this kind of solution is problematic. 
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Potentials for compound semiconductors

• Compound semiconductors are an interesting alternative to Si in some applications, especially 
opto-electronics. 

• A Keating-type potential [Schabel and Martins, Phys. Rev. B 43 (1991) 11873] has been 
designed which can describe a large variety of semiconductors when the atoms are close to the 
ideal sites, but the model is absolutely terrible when the atoms are farther because it has a a 

harmonic (“r2 ”)-potential well. 

• For GaAs there is the Smith potential, based on the Tersoff formalism [Nucl. Instr. Meth. Phys. 
Res. B 67 (1992) 335], which uses all the normal Tersoff parameters for Ga-Ga, Ga-As and As-
As separately, except that λ3 0= . But this potential has a vanishingly small angular term, and 

hence all shear moduli are almost exactly 0. 

• Sayed started from the Smith parametrizations, but fitted anew the Ga-As-interactions, and con-
structed an AlAs-potential. The GaAs potential is terrible because the zincblende-structure is 
not its ground state! However, by setting λ3 = 0 it becomes fairly decent. 

• Ashu made a potential for InAs following Sayed’s approach, but this potential even has the 
wrong lattice spacing! However, Janne Nord has later made a reparametrization which 
describes InAs stably [Nordlund et al., Comput. Mater. Sci. 18 (2000) 283]. 
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Potentials for compound semiconductors

• There also exist a tight-binding-based Tersoff-like parametrization by Conrad et al, [Phys. Rev. 
B 58 (1998) 4538] but this potential is terrible far from the ground state, it collapses into a state 
with at least a factor of 2 lower energy than the correct zincblende structure. 

• The most recent approach is a modified Tersoff-like parametrization which gives the correct 
ground states for Ga, As and GaAs, as well as good melting properties for all three [Albe et al., 
Phys. Rev. B 66, 035205 (2002)]. The only major problem is As-rich surfaces and defects. 

• There is also a potential for GaN in this formalism.
• Modeling also like-ion interactions: e.g. Ga and As has many complex structures  
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Potentials for compound semiconductors

• Ground state of the Sayed potential for GaAs: 
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Bond order potentials for metals and compounds

• As noted in the description of bond-order potentials above, they are actually equivalent to the 
basic EAM form. Hence nothing actually prevents from constructing metals potentials from a 
bond order, e.g. Tersoff-like form. 

• People in the Nordlund and Karsten Albe groups have done this, so far for Be, Fe, Cr, Au, Pt 
and W, obtaining potentials which are at least as good as the common EAM-like potentials for 
the same metals and a nunmber of their carbide and oxide compounds, showing that the bond 
order concept carries further even to complex compounds. The basic methodology and PtC part 
is published in [Albe et al., Phys. Rev. B 65, 195124 (2002)].
• Other references to these mixed potentials: 

• Au: M. Backman, N. Juslin, and K. Nordlund. Eur. Phys. J. B, 85:317, 2012.
• GaN: J. Nord, K. Albe, P. Erhart, and K. Nordlund, Journal of Physics: Condensed Matter 15, 5649 (2003).
• WCH:  N. Juslin et al, J. Appl. Phys. 98, 123520 (2005).
• ZnO: P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Muller, and K. Albe, J. Phys.: Condens. Matter 18, 6585 (2006).
• BeCWH: C. Björkas et al: : Condens. Matter 21, 445002 (2009); J. Phys.: Condens. Matter  22, 352206 (2010).
• FeCrC: K. O. E. Henriksson, C. Björkas, and K. Nordlund, Enabling atomistic simulations of stainless steels: A bond-

order potential for Fe-Cr-C system, J. Phys. Condens. Matt. 25, 445401 (2013).
• FeH: Kuopanportti et al, Interatomic Fe–H potential for irradiation and embrittlement simulations, Comput. Mater. Sci. 

111, 525 (2015).
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	Diamond and zincblende structure potentials
	• Only three elements have the diamond (DIA) structure: C, Si, Ge
	• However, since almost the whole semiconductor industry and micromechanical engineering industry is based on Si technology, the interest in studying diamond-structured semiconductors is immense.
	• In addition, the most common compound semiconductors (GaAs, AlAs, InAs, etc.) have the zincblende structure, which is essentially the same as diamond except that there are 2 atom types. This further increases the interest in describing this cryst...
	Diamond and zincblende structure potentials

	• The diamond structure is (2 ways of looking at the same thing)
	• Essentially two FCC structures inside each other which have been displaced by from each other.
	• The unit cell has 8 atoms
	• In terms of bonding the crucial feature is that every atom has exactly 4 neighbours. The bonds are covalent or predominantly covalent, and the nearest neighbours are distributed such that one atom is in the middle of a regular tetrahedron
	• The angle between any two bonds of the same atom becomes . Chemically this corresponds to the sp3 hybridization of electrons.
	Diamond and zincblende structure potentials

	• The zincblende structure is the same except that one FCC sublattice has atoms of one type, the other of the other type. One unit cell thus has 4 atoms of type A and 4 of type B.
	• If the (111) stacking is ...ABAB... instead of ..ABCABC... we have wurtzite
	• Note the analogy: fcc « hcp zincblende « wurtzite
	Diamond and zincblende structure potentials

	• Covalent bonds
	• In a covalent bonds atoms share electrons and thus in some sense achieve a filled electron shell.
	• In solids covalent bonds typically form between elements which have a similar outer electron structure.
	• Some elements: C, Si, Ge, S, Se, Te
	• III-V-componds (GaAs, InP, ...)
	• II-VI-compounds (ZnSe, CdTe, ...)
	• various compounds such as SiC
	• molecular crystals (e.g. oxygen where the basic element is the O2 molecule, H2O etc. etc.)

	• The electrons extend to the space between the atoms.
	• The electron structure of the Si2 dimer is compared to the superposition of the density of two Si atoms:
	Diamond and zincblende structure potentials

	• Because of the nature of the hybridization of the electron orbitals, the covalent bonds typically have a strong directional dependence, with some preferred angles between the bonds. For instance, the energy of three atoms will depend not only on ...
	• Si has 4 outer electrons, and these can form 4 bonds with sp3 hybridization, i.e. the angle of 109.47o .
	• From this directional dependence, it also follows that the crystal (or amorphous) structure of covalent solids is often fairly open:
	• Number of nearest neighbours only 2-4, (12 in close-packed structures!).
	• Packing fraction in diamond is only 0.34, whereas it in FCC is 0.74.
	Diamond and zincblende structure potentials

	• Dealing with covalent bonding: explicit angles vs. bond order
	• Before we proceed with semiconductors, let us think quite generally about the angular properties of covalent bonds.
	• Since we know for any given covalently bonded material that there is one or a few angles between the bonds which give a minimum in the energy, one can immediately see a purely geometrically motivated way of constructing a potential: simply put in...
	• For instance, consider a single water molecule H2O. We know that the angle between the two O-H bonds is about 105o. Thus if one wants to construct an interatomic potential to describe water, one could get the structure right simply by including a...
	• There is a problem: The minimum always at only one angle, and nowhere else.
	• However, for instance, consider the carbon allotropes graphite and diamond. In one the angle between bonds is 120o, in the other 109.47o. The energy difference between the two phases is vanishingly small. An explicit angular potential can not pos...
	• Thus although it is easy to construct explicit angular potentials for a known geometry, they do not have a fundamental physical motivation.
	Diamond and zincblende structure potentials

	• The Keating potential
	• Can be used when near to the equilibrium configuration and no bond breaking occurs.
	• Example of application: build amorphous Si and SiO2 using bond-switching MC
	Diamond and zincblende structure potentials

	• An alternative, physically motivated approach to construct potentials for covalent systems is through the concept of “bond order”.
	• By bond order one means is that the strength of a single chemical bond is affected by the chemical neighbourhood: the more neighbours an atom has, the weaker are the bonds which are formed to these atoms. This can be described in potentials of th...
	• - For simplicity we here deal with cases where only bonds to nearest-neighbour atoms are considered.

	• This idea is well motivated qualitatively from basic chemistry: if an atom has outer electrons, these can form (with other atoms of the same type in a symmetric configuration):
	• a single (dimer) bond with pairs of electrons
	• two bonds with pairs of electrons
	• three bonds with pairs of electrons and so forth

	• Since for every larger number of bonds one bond has less pairs of electrons, it is quite natural that the strength of a single bond tends to decrease.
	• However, the strength of the bond is not directly proportional to the number of electron pairs in it, and the behaviour of the energy/bond may vary quite a lot from one material to another.
	Diamond and zincblende structure potentials

	• If the energy/bond decreases very rapidly with the coordination number, the most stable form of the atom is a dimer. If, on the other hand, the dependence is weak, the material wants to maximize its coordination number and will end up in a close-...
	• In the limiting case of = constant we get a pure pair potential.

	• We can thus think that the strength of bond is a monotonously decreasing function of the coordination number. The equilibrium structure is determined by the balance between the number of bonds and the single bond strength, since the total energy ...
	• This formalism allows us to adjust how many numbers of neighbours an atom “wants to have”. This now gives a physical motivation to the preferred angles between bonds: if e.g. the ideal coordination is 4, and the bonds are arranged symmetrical...

	• The great advantage here is that now the angle needs not be fixed, because it is perfectly possible to construct potentials which give the same energy for 2 different configurations. Thus one can (and as we shall se people have) constructed poten...
	Diamond and zincblende structure potentials

	• Based on pseudopotential theory Abell [Phys. Rev. B 31 (1985) 6184.] has argued that the term should be of the form where is the coordination number and some number. More specifically, in the so called second-moment approximation of tight binding...
	• Let us make all this concrete with an example: carbon. The table below shows the energy/bond and energy/ atom for a number of different coordinations of carbon. The values for are from experiment and the values for the hypothetical phases  from a...
	Diamond and zincblende structure potentials

	• The last column shows a fit to the data obtained with a bond order model of the form. As you can see, a quite good fit is obtained for all phases, and especially the most important ones are described very well.
	• Note also that the bond order model correctly predicts that graphite and diamond are almost equal in energy.
	Diamond and zincblende structure potentials

	• The generality of this approach was shown by Brenner [Phys. Rev. Lett. 63 (1989) 1022.], who proved that this form is mathematically equivalent with the EAM formalism (after suitable transformations), and specifically that if  one can obtain exac...
	• Tersoff: , (or )
	• EAM: .
	Diamond and zincblende structure potentials
	• Assuming Finnis-Sinclair form , we get Thus if , , , we get the Tersoff potential!

	Classical Si potentials

	• Because of the directional dependence of the bonds, all decent Si potentials have some sort of an angular dependence, and hence they are at least 3-body potentials.
	• Some potentials have an explicit 3-body form, i.e. the potential has the shape:
	• These potentials are called by Balamane cluster-potentials. They typically also are explicit angular potentials.
	• In other potentials the angular dependence is hidden in the 2-body part so that there is no explicit part. These are called by Balamane cluster functionals.

	• The philosophy of the cluster functionals is similar to the EMT/EAM potentials: calculate a pair potential, but let its strength be affected by the environment. A common formulation is which is the same as for bond-order potentials.
	• Here the attractive and repulsive parts themselves are pure pair potentials, but there is a coefficient which has an environment-dependence. The main difference to EAM is that although they can be cast in the form above, in them  has no angular d...
	• Hence in the Si potentials there also has to be a three-body loop which gives the angles.
	Efficiency of semiconductor vs. metal potentials

	• Assume the number of atoms is and the average number of neighbours per atom is
	• A pair potential and an EAM potential is then
	• A three-body potential is
	• So it would appear like the Si potentials are a factor of slower than EAM potentials.
	• But this is most of the time not true in reality. This is because for covalent bonding, long-range interactions are weak compared to the nearest neighbour-ones, so it is often enough to only include nearest-neighbour interactions. So for Si . But...
	• Because 42 < 50 the Si potentials with three-body terms may in fact be faster than EAM potentials without one!
	• But there are additional funny effects. For some Si potentials the cutoff is set so that in the crystalline phase , but it increases strongly in a disordered (amorphous or liquid) phase. So the speed of the potential may be strongly affected by w...
	The Stillinger-Weber-potential

	• Stillinger and Weber [Phys. Rev. B, 31 (1985) 5262] (SW) developed a potential, which describes fairly well both crystalline and liquid silicon - they in fact constructed it to give the melting temperature right. The potential has become quite po...
	• The potential is an explicit angular potential, and has the form . where is the pair potential and the three-body part. The are , where is the angle, which the vectors and make at the atom and the function is .
	The Stillinger-Weber-potential

	• So, in practical calculation all atom triplets being within the cut-off radius from each other must be handled.
	• As a hypothetical example take the triangular lattice:
	• Here the potential energy for one atom term takes the form: .
	• Note that in this case the Stillinger-Weber would not work!
	• However, in the diamond lattice all the bond pairs of a single atom have the same angle.
	The Stillinger-Weber-potential

	• The constants , , , , and are all positive and were determined by demanding that the diamond structure is the most stable one and that the melting point, cohesive energy and lattice parameter are about right.
	• According to rumours the potential was also fit to the elastic constants (which are reproduced fairly well), although the authors never stated this in the paper!
	• The actual parameter values are , , , , , , and .
	• The melting point was fit to be almost exactly right with a rather dirty trick: the authors modified the cohesive energy to get the melting point close to the right value of 1685 K. The cohesive energy of the potential is 4.334 eV, when the right...
	The Stillinger-Weber-potential

	• The authors examined the structure of molten Si by comparing the maxima and minima of the structure factor to measured values:
	• The potential describes fairly well melting and liquid Si. However, it is important to realize that the angle between bonds is ‘forced’ to the ideal tetrahedral angle with the cosine term . This is not a good feature, because of the reasons g...
	The Stillinger-Weber-potential

	• However, SW describes the Si (001) surface better than the Tersoff potentials [Nurminen et al., Phys. Rev. B 67 (2003) 035405.]
	The EDIP potential

	• The EDIP-potential is fairly similar to the SW one, but it has been derived from an ab initio-calculated database of the cohesive properties of Si both in the diamond and graphite phases.
	• The potential is:
	The EDIP potential

	• So the main difference to SW is the environment-dependence in the form of the effective coordination number , which modifies the terms.
	• The potential is available in the web http://www-math.mit.edu/~bazant/EDIP/ including Fortran and C codes by which it can be evaluated efficiently.
	• The parameter-values are:
	The EDIP potential

	• As required in a good fit, a large number of other properties have also been tested in the potential, the most important of which is that the diamond structure is the minimum of several common crystal structures:
	• But note that EDIP does overestimate the energy of many other phases fairly much compared to DFT.
	• Among the best properties of the EDIP potential is that it reproduces the elastic constants very well, gives both good point defect, stacking fault and dislocation properties, and describes amorphous Si well. Also the melting point is described w...
	• The thermodynamical properties of EDIP-Si have been studied by P. Keblinski et al.,[Phys. Rev. B 66 (2002) 064104.]
	The EDIP potential

	• For example the radial distribution function of amorphous Si compared to experiments is reproduced fairly well:
	• The EDIP potential clearly is one of the best Si potentials available now, most tests of its properties have been quite favourable to it.
	• Another Si potential is [Lenosky et al., Modelling and Simulation in Materials Science and Engineering 8 (2000) 825]. This is a combination of EAM and SW models, which gives truly excellent fits to a large number of elastic constants, different s...
	Tersoff potential

	• The Tersoff potential [first good Si fit in Phys. Rev. B 38 (1988) 9902] is a cluster-functional and bond order potential which has an environment dependence and no absolute minimum at the tetrahedral angle. Tersoff based his potential on the ide...
	• The original Tersoff potential has the following form. The total energy is , where .
	Tersoff potential

	• The various terms have the following forms: repulsive part , attractive part , potential cutoff function , and , , , and .
	Tersoff potential

	• Here, as above, the distance between atoms and is and the angle between bonds and is .
	• Inspection of the terms shows that there is an angular dependence, but because is embedded inside the term, it does not give a fixed minimum angle between bonds.
	• The relation to the bond order potential basic formalism is as follows: if , , , and we get the “pure” bond order potential with . Note that the sum excludes atom that is taken into account by adding one.
	• Tersoff could not find a parameter set which would describe well both the reconstructed Si surfaces and its elastic properties. Because of this he gave two parametrizations: Si C, which describes well elastic properties, and Si B, which gives goo...
	Tersoff potential

	• The parameter is an interesting case: it does not affect the equilibrium properties at all, only properties far from equilibrium. Tersoff himself said it can be set to 0, and this is often done. However, in far-from-equilibrium studies it has pro...
	• Note also that since , the two last equations in the potential form are meaningless (give exactly 1). Although Tersoff have these two equations, I am not aware of any case where they would actually have been used.
	Tersoff potential

	• Below is a comparison of the energies and bond lengths obtained with Tersoff for different coordination numbers compared to experimental and ab initio-calculations.
	Comparison of Si potentials

	• Balamane & co have done an extensive comparison of Si potentials, looking e.g. at bulk, surface, defect and small molecule properties. [H. Balamane, T. Halicioglu, W. A. Tiller, Phys. Rev. B 46 (1992) 2250.]. Unfortunately EDIP was not part of th...
	• Included were the SW, and Tersoff potentials Si(B) [T2] and Si(C) [T3]. Also included were the Biswas-Hamann potential (BH) [PRL 55 (1985) 2001, PRB 34 (1986) 895.], the Tersoff-like Dodson potential [DOD; Phys. Rev. B 35 (1987) 2795.] and the po...
	Comparison of Si potentials

	• Below is the pair term of the potentials . The spheres are ab initio results.
	• We see that except for DOD the potentials are fairly similar. BH and PTPH have a long range compared to the others.
	Comparison of Si potentials

	• Here is the energy of three Si atoms/atom:
	• Note that the energy becomes fairly large for small angles for all the potentials.
	Comparison of Si potentials

	• In the adjacent picture the cohesive energies of different structures are shown, compared to DFT calculations.
	• Note that PTHT predicts that the simple hexagonal structure is the most stable one.
	Comparison of Si potentials

	• And below are the elastic properties of the potentials
	• We see that T3 and SW give good elastic properties. Lattice vibrations are described well by the BH potential.
	Comparison of Si potentials

	• And here are a bunch of energies for lattice defects.
	• The table tells predominantly that the short-range potentials (SW, DOD, T2, T3) describe defects best. SW is good in that it predicts that the simple vacancy and split interstitial are the ground state defects, which agrees with ab initio results...
	Comparison of Si potentials
	• Finally a table of the properties of the Si (100) surface:

	Comparison of Si potentials

	• The conclusions of the authors are that no potential is clearly superior. Different potentials describe different properties well. SW, T3 and to some extent DOD are good for elastic properties T3, SW, DOD, T2 and BH give fairly good values for th...
	• EDIP was not part of this comparison, but it is clear it would be among the best at least for the elastic and defect properties.
	MEAM models
	• There also exist so called MEAM (modified EAM) models for Si. This is basically EAM to which an angular term has been added:
	• Baskes has developed some models, but is apparently not quite satisfied with them.
	• Applied (in addition to metals) to e.g. silicides (TaSi, MoSi; electronic components!)

	Potentials for semiconductor alloys

	• The alloys of Si are something of a hot topic.
	• Silicon carbide is interesting both for its mechanical hardness as well as its possibilities in high- voltage or high-current electronics.
	• Silicon-germanium compounds (Si1-xGex) again are very interesting because by adding some 20 % Ge to Si one can get the electron mobility (and hence integrated circuit speed) about as high as in GaAs, about twice the value in Si. But because the d...
	• In Si1-xGex-compounds there is, however, the problem that their lattice constant does not match that of Si (on top of which the SiGe is grown). The latest promising word is then Si1-x-yGexCy where x ~ 0.2 and y ~ x/ 10. That is, only a few years ...
	• For instance because of this it is interesting to have models for SiGe-, SiGeC and SiC-compounds.
	Potentials for semiconductor alloys

	• The Stillinger-Weber potential has two Ge-parametrizations [Ding and Andersen, Phys. Rev. B 34 (1986) 6987 and Wang and Stroud, Phys. Rev. B 38 (1988) 1384]. Out of these, the Ding and Andersen potential has:  and ; the other parameters are ident...
	• One can construct a SiGe compound potential simply by taking the geometric average of the Si and Ge parameters:

	• There is also actually a SW-parametrization for C [Pailthorpe and Mahon, Thin Solid Films 192/ 193 (1990) 34], but this should normally not be used - since SW has a minimum for sp3 bonding, but carbon also can be favourably in the triply bonded g...
	• But in describing the lattice compensation of Si1-x-yGexCy for y ~ 0.01 the combination of the three SW potentials actually does correctly reproduce the good lattice match to Si.
	Potentials for semiconductor alloys

	• Tersoff has also developed potentials for SiC and SiGe [PRB 39 (1989) 5566.]. The formalism is almost the same as for his Si potential: , , , , , , ,
	Potentials for semiconductor alloys
	• Here the indices and on the parameters denote the atom types. The mixed parameters are obtained by interpolation from the elemental parameters: , , , , , .


	• A new parameter is by which the mixed potential can be finetuned. Tersoff set and , so there is only one free parameter for the mixed interactions, all the others are determined from the elemental parameters. Moreover, could be used to finetune t...
	Potentials for semiconductor alloys

	• The parameter values for C, Si and Ge were obtained from a fit to the properties of different structures, and the finetuning parameters were obtained from the cohesive energies of SiC and (hypothetical) zinc-blende SiGe. The Si parameters are jus...
	Potentials for semiconductor alloys

	• The potential gives the following properties for SiC:
	• Tersoff also calculated the energies for a few stoichiometric defects (eV):
	Potentials for semiconductor alloys

	• The potential predicts the properties of SiC fairly well, especially considering that the potentials has only one parameter which is really fit to the properties of the compound (). And even this parameter is fairly close to 1. Only the shear mod...
	• One problem here is that in reality SiC is partly ionic in its bonding, which is not accounted for at all in the Tersoff potentials. One potential where this is taken into account is [Shimojo, Phys. Rev. Lett. 84 (2000) 3338] but this potential u...
	• Nowadays also a wealth of reparametrizations exist for the Tersoff formalism SiC potential - it seems almost every group working on SiC has made their own parametrization...
	C potentials

	• Constructing a potential for elemental C is complicated (as noted above) because it has two structures which are practically identical in energy: diamond and graphite. Both have a cohesive energy of about 7.4 eV. The structure of graphite is:
	• As noted above, this situation clearly can not be described with an explicit angle potential, but a bond order potential like Tersoff can handle this.
	C potentials

	• The Tersoff parametrization for C does, however, describe both bonding types well [Tersoff, Phys. Rev. Lett. 61 (1988) 2879], and is clearly the most used C potential in the materials physics community.
	• But it describes the graphite-to-diamond potential poorly. But simply by increasing the parameter in the potential to 2.46 Å [Nordlund et al., Phys. Rev. Lett. 77 (1996) 699] one can make this transition much better described:
	C potentials
	C potentials

	• But there is a significant problem with the Tersoff C potential: because of its short cutoff, it does not describe the interaction between graphite layers at all.
	• There are two good solutions to this.
	• Nordlund et al. have made an extension to the Tersoff potential which does describe the interaction between graphite layers well [Phys. Rev. Lett. 77 (1996) 699]. However, the additional terms are very weak except precisely for configurations ver...
	• A more general formulation which includes Lennard-Jones-like long-range potentials for many carbon bonding types (including polymers) by Stuart et al. [J. Chem. Phys. 112 (2000) 6472].
	Ge-potentials

	• As we saw above, pure Ge has two almost identical SW-parametrizations, and the Tersoff parametrization, which are all fairly good in the crystalline phase.
	• But they all severely overestimate the melting point of Ge, giving about 2500 - 3000 K when the experimental value is 1210 K.
	• Nordlund et al. tried to solve this in the same way as Stillinger and Weber obtained the right melting point for Si, i.e. decreasing the cohesive energy [Phys. Rev. B 57 (1998) 7556]. By decreasing the cohesive energy in the SW potential by 18 % ...
	• But it is clear that this kind of solution is problematic.
	Potentials for compound semiconductors

	• Compound semiconductors are an interesting alternative to Si in some applications, especially opto-electronics.
	• A Keating-type potential [Schabel and Martins, Phys. Rev. B 43 (1991) 11873] has been designed which can describe a large variety of semiconductors when the atoms are close to the ideal sites, but the model is absolutely terrible when the atoms a...
	• For GaAs there is the Smith potential, based on the Tersoff formalism [Nucl. Instr. Meth. Phys. Res. B 67 (1992) 335], which uses all the normal Tersoff parameters for Ga-Ga, Ga-As and As- As separately, except that . But this potential has a van...
	• Sayed started from the Smith parametrizations, but fitted anew the Ga-As-interactions, and constructed an AlAs-potential. The GaAs potential is terrible because the zincblende-structure is not its ground state! However, by setting l3 = 0 it becom...
	• Ashu made a potential for InAs following Sayed’s approach, but this potential even has the wrong lattice spacing! However, Janne Nord has later made a reparametrization which describes InAs stably [Nordlund et al., Comput. Mater. Sci. 18 (2000)...
	Potentials for compound semiconductors

	• There also exist a tight-binding-based Tersoff-like parametrization by Conrad et al, [Phys. Rev. B 58 (1998) 4538] but this potential is terrible far from the ground state, it collapses into a state with at least a factor of 2 lower energy than t...
	• The most recent approach is a modified Tersoff-like parametrization which gives the correct ground states for Ga, As and GaAs, as well as good melting properties for all three [Albe et al., Phys. Rev. B 66, 035205 (2002)]. The only major problem ...
	• There is also a potential for GaN in this formalism.
	• Modeling also like-ion interactions: e.g. Ga and As has many complex structures
	Potentials for compound semiconductors

	• Ground state of the Sayed potential for GaAs:
	Bond order potentials for metals and compounds

	• As noted in the description of bond-order potentials above, they are actually equivalent to the basic EAM form. Hence nothing actually prevents from constructing metals potentials from a bond order, e.g. Tersoff-like form.
	• People in the Nordlund and Karsten Albe groups have done this, so far for Be, Fe, Cr, Au, Pt and W, obtaining potentials which are at least as good as the common EAM-like potentials for the same metals and a nunmber of their carbide and oxide com...
	• Other references to these mixed potentials:
	• Au: M. Backman, N. Juslin, and K. Nordlund. Eur. Phys. J. B, 85:317, 2012.
	• GaN: J. Nord, K. Albe, P. Erhart, and K. Nordlund, Journal of Physics: Condensed Matter 15, 5649 (2003).
	• WCH: N. Juslin et al, J. Appl. Phys. 98, 123520 (2005).
	• ZnO: P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Muller, and K. Albe, J. Phys.: Condens. Matter 18, 6585 (2006).
	• BeCWH: C. Björkas et al: : Condens. Matter 21, 445002 (2009); J. Phys.: Condens. Matter 22, 352206 (2010).
	• FeCrC: K. O. E. Henriksson, C. Björkas, and K. Nordlund, Enabling atomistic simulations of stainless steels: A bond- order potential for Fe-Cr-C system, J. Phys. Condens. Matt. 25, 445401 (2013).
	• FeH: Kuopanportti et al, Interatomic Fe–H potential for irradiation and embrittlement simulations, Comput. Mater. Sci. 111, 525 (2015).



