Set the initial conditions rl.(tO), Vl.(tO) |

v
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¢
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#

Solve the equations of motion numerically over time step At:
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'

Get desired physical quantities

'
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Atomistic interaction models

» The true interaction energy between N nuclei and 7 electrons could be obtained by solving the
Schrodinger equation for the system comprising the N+ bodies.

« Assumes: interactions between the nucleons
Almost always true
neglected
* This is also assuming relativistic effects can be Not always true for heavy elements
ignored

» Time-dependent Schrodinger

equation: dynamics without MD Model Type Scaling Nmax
alogrithm Full solution of quantum mechanical, N 1
Schrédinger equation ab initio O(e )
 But solving the full equation IS HF (Hartee-Fock) quantum mechanical, O(N4_ 8) 50
) b initi
extremely expensive computa- ab e o)
tionally, and hence one always
. DFT (density functional  quantum mechanical, 1000

has to resort to various levels of & not always ab initio ON)

approximation O(N)
» Term “ab initio” or “first princi-

; ] i TB (Tight-binding) quantum mechanical N3 1000
ples” much used in this context (often semiempirical) O(N") 10000
to mean methods with no empiri- O(N)
cal input MBP (Many-body poten- classical, semiempirical O(N) 108

« But may have several, even dubi- tial)
ous, approximations! PP (Pair potential) classical, semiempirical O(N) 10°

* semi-empirical= some empirical
input used in choice of parameters
or model
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Atomistic interaction models

* O(N) variants of all classes of methods
» The quantum mechanical O(~N) methods new = work (so far) well only in a limited set of problems

- Prefactor in the efficiency, i.e. the factor 4 in speed=4 xN" for an O(N") method.
* A rule-of-thumb:
A

A
A

MBP ~ 3 X4pp
™ = 100 XAMBP
DForHF ~ 100X 4pg

« Quantum mechanical models (HF and DFT): ~ 100 atoms = e.g. small molecules, bulk proper-
ties of common phases, and point defect properties.

« TB, a minimal quantum mechanical model works well in a few materials (e.g. C, Si, Ge) but is
problematic in many others.

 Classical models: possible to simulate very large systems, such as large protein molecules, 2-
and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc.
* No information on the electronic properties of the material.
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Atomistic interaction models

« This chapter is a short overview on the methods; more information on other, specialized
courses on the subject
* A huge topic in itself! Mainly outside the scope of this course

e Literature:

* R. Phillips: Crystals, Defects and Microstructures, (Cambridge University Press, 2001), Chapter 4

 A. Sutton: Electronic Structure of Materials, (Oxford Science Publications, 1996)

* M. Finnis: Interatomic Forces in Condensed Matter, (Oxford Series in Materials Modelling, 2003)

* R. M. Martin: Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press,
2004)

» There is a large number of review articles. A good one for those who do DFT calculations but
are not quite experts in the field is

Designing meaningful density functional theory calculations in materials science—a primer
Ann E Mattsson et al. Modelling Simul. Mater. Sci. Eng. 13 (2005) R1-R31.
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Overview of quantum mechanical models

* A system of N nuclei and 7 electrons with coordinates r, (» = 1...N)and r, (i = 1...1):

« Schrodinger equation
HY = EY
* Hamiltonian operator H

I
> |f— (7.1)

Tn+ TC + Vee + Vne + Vnn

» Here:
. Tn and Te are the kinetic energies of the nuclei and electrons, respectively.

. Vee, Vne and Vnn are the electron-electron, electron-nucleus and nucleus-nucleus Coulomb interactions =

Schrdédinger equation.
(Tn + Te + Vee + Vne + Vnn)‘l’ = E¥Y (7.2)

« ¥ is the total wavefunction of the full nucleus-electron system.
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Born-Oppenheimer approximation

* For any given configuration of the nuclei one can assume that the electrons find their ground

state before the atoms move significantly.
» Classical simulations also based on the Born-Oppenheimer approximation: interatomic potentials do not
depend on the atom motion.

« Mathematically: the wavefunction ¥ is separated into a product
LP = \lj(na rl)n(n) ’

* y(n, r;) is the electron wave function, which is a function of the positions of the electrons r; and the posi-

tions of the nuclei »
* n1(n) is the wave function of the nuclei.

* y(n, r;) fulfills the wave equation

[Tyt Ve # Vo IW(n 1) = E(my(n,1)  (7.3)
where V_ is the nucleus-electron potential of the original Hamilton operator.

« Solution of this gives the electronic total energy of the system as a function of the positions of the nuclei.
» Can also be used to give the forces acting between atoms = atom motion can be simulated using the classical MD
algorithm (ab initio MD)
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Hartree-Fock methods

* In the Schrodinger equation (7.3) the most difficult part is the electron-electron interaction
2
e

Vee - ZZ‘I._
i

)

« The basic solution in Hartree-Fock (as well as in DFT) is to create some sort of average elec-
tron density with which every electron interacts independently:

Vee - ZV?V
 Pauli exclusion principle: a Slater determinant of one-electron wave functions
0, (ry) 0,(r,) (l)l(rN)
Oy(ry) Oy(ry) oo Oy(ry)
LP(rl,rz, ...,rN) = 241 242 2V°N
Op(ry) Op(ry) oo Oplry)
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Hartree-Fock methods

« Hence the Schrodinger eq. for electrons reduces to an equation to get a one-electron wave
function ¢.:

v
Z(Te,l+ Vne,i+ Vla )\Il(xly x27 ceey xn) = E\P(Xl, X2, ceey Xn)
I

(Te it Vie,i ™ Vi) = Fo,(x)) = e0,(x))
where F is the so called Fock-operator. The equation is the so called Hartree-Fock equation.

» Thus the new central problem becomes to find a good form for the average potential V?V.

* Iteration: initial guess for the wave functions ¢,, plugged into the equation, solving to get a new ¢, , and

keeping on iterating until the solution does not change any more, i.e. until a self-consistent field has
been found (HF-SCF).

* The eigenvalues of the energy have a clear physical interpretation: ionization energy of the
electron

* The SCF method fulfills the variational principle:

* The eigenvalue of every inaccurate wave function is larger than that of the most accurate one.
» So the smallest found energy is also the ‘most correct’ one.
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Hartree-Fock methods

* The molecular orbital (MO) of every electron ¢, is written as a sum over atomic orbitals (LCAO -
Linear Combination of Atomic Orbitals):

9 = 2. Ciky
M

* In the most straightforward approach the basis functions Xy Can be so called Slater type orbitals (STO)

Rls = Nle_cr
X = R(1Y,,(6,0),

_ _ —Gr
st = Rzp = Nzre

which somewhat resemble orbitals of the hydrogen atom:
v (7,0, 0) e 2(0r)/ L2 () YN0, 0), o = 2Z/nay, ay = h?/me?.

* Integrating these STO orbitals is numerically difficult, however.
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Hartree-Fock methods

« Computationally it is much more favourable to use Gaussian-type orbitals (GTO)

2
XGTO(I’) _ e—ocr

because a product of two Gaussians is a Gaussian:
2 2 2
e—oc‘r—RA] e—B]r—RB| _ KABe—y]r—RC| ,

Y= o+p,
R R+ PR,
C OC"‘B !
K _ ZaB 3/4 —a—f|RA—RB2
4B [n(oﬁﬁ)J ¢

 But real electron wave functions are not Gaussian in shape = use a sum of GTO’s to describe the wave function:

STO GTO
X =Dk,
\%

Introduction to molecular dynamics 2015 7. Quantum mechanical potential models
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Hartree-Fock methods

« An example of an STO and how it can be approximated with one or more GTO’s. One GTO only
is not very good, but 4 GTO'’s already are quite close.

4 GTO
3GTO p

2GTO N

1 GTO ¢

A.R.Leach, Molecular Modelling

« The most popular basis function sets {y} are the Gaussian functions developed by the group of
J. A. Pople (Nobel prize in chemistry 1998):
* In the so called minimal basis set there is one orbital for two core electron orbitals, and one orbital for
each valence electron. Every STO is replaced by a sum of N GTO-functions (STO-nG). The most com-

mon minimal set is the STO-3G set.

» To improve on the results the basic approach is to increase the size of the basis sets. In the so called
“Double Zeta” set there are twice as many orbitals as in the minimal set. If the doubling is made only with
valence electrons (which are usually the most interesting ones) one obtains the “Split Valence” set of
basis functions.

* In the so called 3-21G set the first row elements have 3 GTQO’s for 1s electrons, 2 GTO’s for 2s, 2p and so
forth electrons, and the extra valence electrons are described by one GTO. This set is quite popular now-

adays.
» Other even larger basis sets: 6-31G, sets which have polarization functions, etc. etc.
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Hartree-Fock methods

» Limitations of the basic Hartree-Fock method

* The method does not at all account for electron correlation, that is, the correlation between the momenta-
neous motion between electrons. This energy is usually only of the order of 1 % of the total, but can

sometimes be comparable to the total binding energy of the system and hence quite significant. Several
methods have been developed to take this into account:

* In the Configuration Interaction (Cl) method a linear combination out of Slater determinants is formed. This is a very
good approach, but unfortunately also very slow.

* In Moller-Plesset perturbation theory a perturbation series is made out of the error in the correlation energy. The most
popular approach is MP2, which takes into account the lowest-order correction.

* In Multiconfiguration SCF (MCSCF) a small Cl term is included in the HF iteration.
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Density functional theory

* Density functional theory (DFT) is one of the most widely spread method to calculate elec-
tronic structure in materials.

» Because it is computationally more efficient than HF, it has become especially popular among solid state
physicists who need many atoms to describe a solid.

« Starts with the Schrodinger equation for electrons

1 I 1
h_2 82+ 62
NS ID)
_ r. ‘r|
i=1 Loj=1j=11"Yy

5 Ve Y(n,r) = Ee(n)‘P(n, r) or

ST+ Vet V¥ = E¥

i
where V_ . is the so called external potential acting on the electrons due to the nuclei.

* The basic idea of DFT: instead of manybody wavefunction ¥({r}) use electron density n(r)

* Only need to calculate a scalar function of one vector variable not / vectors
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Density functional theory

* DFT is based on the Hohenberg-Kohn theorems [Hohenberg and Kohn, Phys. Rev. 136 (1964)
B864]:

Theorem |: For any given set of electrons which are in an external potential v_ , this potential is
determined uniquely, except for a trivial additive constant, from the electron density n(r).

Corollary I: Because the system Hamiltonian is thus fully determined short of an energy shift,
the electron density can be used to fully derive the many-particle wave function and thus all
desired system properties.

Theorem ll: It is possible to define a universal functional for the energy E[»] depending on the
electron density »(r). The true ground state energy is the global minimum of the energy func-
tional, and the density »(r) which minimizes the functional is the exact ground state density.

Corollary II: The functional E[#] is enough to determine the true ground state energy and elec-
tron density. Excited states must be determined by other means.

Introduction to molecular dynamics 2015 7. Quantum mechanical potential models 14



Density functional theory
 Kohn-Sham ansatz [W. Kohn and L. J. Sham, Phys Rev. 140 (1965) A1133]

[see http://www.fysik.dtu.dk/~bligaard/wwwdirectory/phdthesis/phdproject.pdf]

» The idea of the ansatz is that the original, complicated Hamiltonian can be replaced by another Hamilto-
nian function which is easier to solve. This effective Hamiltonian describes non-interacting “electrons” in
a system which is assumed to have the same density as the true system with interacting electrons.

 To put it in another way: We assume that there exists a system of non-interacting electrons that produce

the same electron density n(r).

* The orbitals v, (r) of the non-interacting electrons are called Kohn-Sham orbitals.

» Apply Hohenberg-Kohn variational principle to the Kohn-
Sham orbitals = the Kohn-Sham orbital equations
_ n(r)n(r
Eln] = Toln] + 5[ [0
where T,[»] in now the kinetic energy of non-interacting elec-

) 3 ' Note that the Hartree atomic units are
Erd’r +IV t(r)n(r)d r+ £, [nl, used here: e = m = # = 4ng; = 1

trons.
* All the problematic terms are collected under E  [n]:
error in the kinetic energy: T[n] - To[”]

n(r)n(r'
r—r
correlation and exchange energies (quantum mechanical effects).

error in the Coulomb interaction between electrons: E ee 2” )d a’ r
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Density functional theory

* What we have gained here is that the above terms in £, are (usually) small corrections and can be cal-

culated in an approximative way.

 The variational principle gives then

oF 1
OELL] — (- 3924 V) () = (1)

where i runs over all electrons, €; is the Kohn-Sham eigenvalue of electron i, and the effective one-parti-

cle potential is:

SE_ [n(r)]
Vetr(®) = Vg1 + 0,0 + —52

* Here V_,, is the external potential and

N
0r) = [ar . nr) = 3wy

lr
i=1

Introduction to molecular dynamics 2015 7. Quantum mechanical potential models
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Density functional theory

* Pictorially this can be presented as’

Real system Independent particle system

HK KS HK,
Vext(T) | < | 71()(T) - no(r) | e | V(1)

¥.({r}) ¥,({r}) V=, n(1) y,(r)

1. Adapted from R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 2004), Fig. 7.1
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Density functional theory

« If the exchange-correlation energy is known, these equations can be solved by self-consistent
iteration
* Note, however, that the Kohn-Sham orbitals and their eigenvalues ¢, do not have a clear physical inter-

pretation. There is no guarantee that they have any relation to real electron energies and wave functions,
but it appears that they are in fact a surprisingly good approximation of the real electron properties.

 Local density approximation (LDA)

» So far the DFT approach has not made any approximations.

* To obtain the exchange-correlation functional EXC[n] the local density approximation, (LDA) is used:

Eylnl = [drn(rye, (inl,r)
where SXC(n(r)) is the exchange and correlation energy of a homogeneous electron gas per one electron.

» The exchange functional can be as simple as (Dirac LDA)

LDA 33173 4/3
Ex, Dirac _Z(;) jn(r) dr
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Density functional theory

« Once an exchange and correlation energy for a homogeneous gas is introduced (several exist),
the equations can be solved with an iteration process:
1) Start with some V_x(r).

2) Calculate the one-electron wave functions vy, = new density n(r)
3) New n(r) = new 7 g(r).
4) Repeat steps 2 and 3 until we have obtained a self-consistent solution.

« Spin in the exchange and correlation term: local spin density approximation, LSDA.
* DFT-LDA results compared with experimental data:
1) Generally too large cohesive energies for solids
2) Too large total energies for atoms
3) Too small energy gaps for many semiconductors (LDA actually predicts zero gap for Ge!).
4) Unstable for negative ions and gives a too diffuse electron density.
« To improve on the accuracy of DFT people have introduced exchange-and-correlation function-
als which also depend on the variation of the electron density:
E . [n(r),dn(r)].
» There are numerous of these so called Generalized Gradient Approximations (GGA).

* In practice there are a large number of GGA’s around, and people choose one which for some reason has been “found
to work well” in their system. This gives a semi-empirical character to the methods, i.e. they are not pure ab initio

« The DFT solution method does not restrict the way we express the Kohn-Sham wave functions.

 Below are given two nowadays common ways to build the basis sets used in DFT calculations:
plane waves and atomic-type orbitals.
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Plane-wave methods

* In plane-wave methods the basic algorithms are as in DFT but:

* The outer valence electrons are described as a sum

of plane waves: Search for wave functions — search for coefficients

N

—iK;-r
V= Zfl(Kl)e l
[
where the wave vectors K; are chosen to that they have the same periodicity as the simulation cell.

» Any shape of the electron wave functions can in principle be described with this sum provided the sum
has enough terms N;,.

* Names of some common plane wave methods:
- APW = Augmented Plane Wave
- LAPW = Linear APW
- FLAPW = Fully LAPW
- SAPW = Spline APW
- OPW = Orthogonal Plane Wave

» The main measure of the accuracy of plane-wave methods is the number of plane waves used to
describe the system.
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Plane-wave methods

« Examples of results of DFT / plane-wave calculation results:
Atomization energies of molecules (eV).

Molecule HF LSD - Pw3T -' Expt.
C,° 0.73 7.51 - 6.55 6.36
CH2 45.19 6842 6134 5967
H," 329 465 452 4.49
H,0" | 5.71 11.00 959 951
0, 1.25 748 593 5.12

“From [19], using a basis set of 18 s-type, nine p-type, and -

four d-type single Gaussians on eacti atom. For C, and
CeHg, the zero-point vibrational energy has been omitied
fbrom the calculated and experimental values.

PWO1, using a triple-zeta valence plus polarization basis
set, and Expt. are from [38]; #r, using a 6-316* basis, from
[[28]]; and tsp, using a basis-free numerical method, from
23]. |
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LCAO methods

* In the LCAO (Linear Combination of Atomic Orbitals) method the basis set consists of orbitals
localized around each atom in the system.

« Compare with plane waves that are as non-localized as possible.
* Orbitals can be obtained from quantum mechanical atomic calculations. (Or pseudo-atomic; see below)

» The accuracy is not so straightforward to adjust as in the plane wave method.

Introduction to molecular dynamics 2015 7. Quantum mechanical potential models
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Pseudopotentials

* In most cases the filled inner electron shells of atoms do not
have any effect on the behavior of the system.

* The idea is to remove the core electrons and the strong
nuclear potential and replace them with a weaker pseudo-
potential.

* Outside some cut-off radius r_ the pseudo wavefunctions

and the pseudopotential are indentical to those of the real
atom..

* The counterpart to pseudopotential methods are the all
electron methods.

» Pseudopotentials are commonly used with DFT calculations
both with planewaves and atomic type orbitals.

Introduction to molecular dynamics 2015 7. Quantum mechanical potential models
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Pseudopotentials
» Results for the lattice constant a and bulk modulus B for C and_Si:

Examples of Resulls - Diamond Structure

Carbon Silicon
a (A} B (Mb) a{A} B(Mb
Experiment 3.56 4.42 543 0989
Ab Initic Pseudopotential : '
Yins, Cohen, 1980-2 3.60 433 545 0.98
Biswas, et. al., 1984 3.54 494 - .-
Nielsen, Martin, 1983 - - 540 093
LMTO :
Giolzel, Segall, Andersen, 1980 3.53 490 . 5.41 G:98
McMahan, 1984 3.55 '4.64 5.45 0.85
LCAD ' ' '
Harmon, Weber, Hamann, 1982 e - 5.48 0867

» So it is quite possible to obtain the quantities to an accuracy ~ 1 %.

e Car-Parrinello MD

» The Car Parrinello method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] is a method where
the electron and atom motion is updated at the same time. The method has become very popular
because it is highly efficient and can also be parallelized well.
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Example of scaling of a DFT calculation

« CPU time usage of a SIESTA' calculation:

 Si with simple SZ basis set.

» CPU time for one energy calculation 5000 — T T T T T 1

(~ time step). 4500 + b /7
fcpu = a Ny A

« Simulations by E. Holmstrém. 4000
- —— fitall N,  b=2.5+0.8

3500 I — fit: N, > 500, b=2.8+0.3 -
3000

2500 |
2000 |
1500 |
1000 |
500 |

0 | = 1 1 1 | 1 |
0 200 400 600 800 1000

tcpy (s/time step)

1. Spanish Initiative for Electronic Simulations with Thousands of Atoms.
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Commercial HF and DFT programs

* In practice, a large fraction of modern HF, DFT- and empirical simulations are carried out with
commercial codes.

 In commercial codes, the algorithms are typically 5-15 years or old. This is a mixed blessing: the state-of-
the art methods may not be available, but on the other hand the algorithms in there are usually well
tested. Roughly speaking especially the methods favoured by chemists have moved over to commercial
codes, whereas physicists tend to stick to their own or non-commercial codes.

» The commercial codes have flashy and easy-to-use graphical user interfaces. This is good in one sense,

but also makes the risk to do garbage in—garbage out kinds of simulations very large. So don’t blindly
start using a commercial code, you should understand its inner workings and the physics in there first!
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Commercial HF and DFT programs

 HF-codes:
» Gaussian The code deriving from Poples work. Very popular and versatile code.
Nowadays also a DFT version is part of the package.
* TurboMole

* DFT-codes
« CASTEP Plane-wave DFT code, commercial

- DMol® DFT code based on numerical basis sets, rather than Gaussian Sets

* VASP  Semi-commercial plane-wave DFT code developed in Vienna. Very widely used.
http://cms.mpi.univie.ac.at/vasp/

* Quantum Espressohttp://www.quantum-espresso.org/
Open Source, Free

« GPAW Python-based code, under active development. Real-space, scales well.
https://wiki.fysik.dtu.dk/gpaw/

* SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)
- Home page: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/
- A fully self-consistent O(N) DFT code. Uses LCAO basis sets.
- Source code available, can be used as a force routine in your MD code (parcas_siestal)
- Free for academic use.

e Other important stuff
* Insightll The graphical user interface of Accelrys Inc., from which most codes of Accelrys
and some non-commercial codes such as DMol and Gaussian can be run.
http://www.accelrys.com
e See also http://lelectronicstructure.org/
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Tight-binding methods

[Main source: Foulkes et al., Phys. Rev. B 39 (1989) 12520.]

 Tight-binding (TB) models can be considered “minimal” quantum mechanical models. They
are most often semi-empirical, and the quality of the results varies a lot. At best, one can
achieve results comparable to DFT with a 100 times less computer capacity, at worst they are
no better or even worse than semi-empirical models but a 100 times slower!

 In semi-empirical TB one starts with the assumption that total electronic energy £ can be written
as

N
DA N AL
i=1 Lo

where U is a repulsive classical pair potential acting between the atoms, and the ¢, are eigen-
values of some self-consists Schrodinger-like equation,

iy ) =[5V 10 Jw) = &)

 This resembles the DFT formalism, and can be derived with various approximations.

* The eigenvalues ¢ are negative, and the repulsive energy positive. U(r) is either constructed
by empirical fitting to give the desired total energy, or derived from DFT.
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Tight-binding methods
« Bonding of H,

» Wave function: [y) = a,|0,) + a,|9,)

» Schrodinger equation
Hly) = E|y)

» Project to states |¢,) and |0,)

9

O [HIw) = (@] Ew) {anl +ha, = Ea,
f—

O |HIW) = (0-|E[w) ha) +Eya, = Ea,

h = (0,|H|0,) = (0,|H|0,) (We know (?) that #<0.)

* Let's shift energy origin so that £, = 0 = we get the equation
0 —Alf|“1 = g|“
—|hl 0 |la, a,

« Solutions E = £|A|, |v) = L

2
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Tight-binding methods

 The TB Schrodinger is solved with the variational principle for some set of basis functions {¢}
which leads to a secular equation

|H—¢S| =0
where
Hyp = (0oJH|0p)
and
Sup = (0gl0p)
» Often one still assumes that the set of basis functions is orthogonal, in which case S reduces to the unit
matrix.

» Usually the basis set is put to contain only the outermost electrons, with all others treated with

the repulsive potential U(r). The elements in the basis function set are usually also fit to experi-
mental data.

 For instance, to treat a material where only the outer s and p electrons are important, one can get away

with using only for basis functions (ssc, spo, ppc and ppmn). If one want to also describe d electrons, one
needs at least 10 basis functions.

* Roughly speaking it seems that TB methods usually works well in materials with only covalent bonding.
Systems where much work has been done and which have been found to work well are at least C, Si and
their hydrogen compounds.

» See for example Foulkes et al., Phys. Rev. B 39 (1989) 12520, and Sutton et al., J. Phys. C:
Solid State Phys. 21 (1988) 35. for the DFT foundations of the TB model
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Tight-binding methods
* An example of a o) TBMD application [G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994) 3471]

» A fullerene Cg colliding with a diamond surface with different kinetic ener-

gies Ek (the surface is a reconstructed (111) surface with no dangling
bonds):

* When E, <120 eV no bonds are formed between the fullerene and the
surface, and the fullerene simply bounces off it.

- When 120 eV < E, < 240 eV a few bonds are formed between the fuller-

ene and the surface, and the fullerene may stick to the surface. The bonds
may also be quickly broken again and the fullerene can bounce off again.

- When E, > 240 eV several bonds are formed between the fullerene and

the surface, the fullerene breaks down almost completely, and sticks to the
surface.

Introduction to molecular dynamics 2015 7. Quantum mechanical potential models 31



Very brief mention of a few other methods

* Quantum Monte Carlo (QMC) methods are a set of DFT-related methods where Monte Carlo
simulation techniques are used to minimize the correlation term of DFT.

« Computationally very expensive, but they can give very accurate results, especially for the correlation
term which is difficult to treat otherwise.

» The most common varieties: Diffusion Monte Carlo (DMC) and Variational Monte Carlo (VMC)

 Just an example on results [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870]:

TABLE I. Binding energies (eV) of small hydrocarbons cal-
culated using the HF, LDA, and DMC methods. Experimental
values are listed for comparison.

HF LDA DMC Exp.
Methane (CH,) 14.20 20.59 18.28(5) 18.19
Acytylene (C,H»,) 12.70 20.49 17.53(5) 17.59
Ethylene (C,H,) 18.54 28.19 24.44(5) 24.41
Ethane (C,Hy) 23.87 35.37 31.10(5) 30.85
Allene (C;H,) 22.63 35.87 30.36(5) 30.36
Propyne (C;Hy) 22.70 35.70 30.55(5) 30.45
Benzene (C¢Hy) 44 .44 70.01 59.2(1) 59.24

* DMC gives all energies correct within the uncertainties, and clearly outshines HF and plain LDA.
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Very brief mention of a few other methods

« What is the minimum-energy configuration of C,, [Grossman et al., Phys. Rev. Lett. 75 (1995)
3870.]?

4.5
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35 r
3.0 r
25 r
20 f
1.6

Relative energy [eV]

1.0
0.5

T

0.0

-0.5
ring bowl cage

FIG. 1. The three isomers of Cy and their corresponding HF FIG. 2. 'The relative energy differences for the ring, bowl, and
valence electron density isosurfaces. There are ten triple bonds cage Cy isomers (DMC error bars are 0.2 eV). For each theory
in the ring and five in the bowl, and a much more covalent the lowest energy structure is taken as a reference. BLYP refers
bonding character in the cage. to calculations done with the Becke-Lee-Yang-Parr functional.

 According to QMC:n it is the “bowl” shape
* Note the large differences between the supposedly reliable DFT and HF methods, and that none of the
agrees with the QMC behaviour.
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Very brief mention of a few other methods

* Path Integral Molecular Dynamics

 Path Integral MD (PIMD) is a DFT / Car-Parrinello type of method which uses a Feynman path integral
representation of the density matrix.

* Also hideously expensive computationally, but claimed to be the only really good method to describe
water-related reactions.

* A rough rule of thumb for both QMC and PIMD is that the number of atoms is limited to ~ 20 or so...

 Time-dependent HF, DFT, TB

* The methods described until now are all normally used to obtain the ground state. This means one
assumes that the electron system has time to come to rest before the processes of interest happen. Since
electronic relaxation times are typically of the order of femtoseconds, this is often a very good approxima-
tion.

» However, if one is interested in e.g. electronic excitation, this approximation is not valid, and one has to
actually solve the time-dependent Schrodinger equation. This can be done by iterating over time.

» Time-dependent (TD)-methods are somewhat of a hot topic in electronic structure calculations now, and
there are TD variations of all the main methods: HF, DFT and TB.

A rough rule of thumb is that a TD-method is at least a factor of 100 slower than the corresponding ordi-
nary method
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	Atomistic interaction models
	• The true interaction energy between nuclei and electrons could be obtained by solving the Schrödinger equation for the system comprising the bodies.
	• Assumes: interactions between the nucleons neglected
	• This is also assuming relativistic effects can be ignored
	• Time-dependent Schrödinger equation: dynamics without MD alogrithm

	• But solving the full equation is extremely expensive computationally, and hence one always has to resort to various levels of approximation
	• Term “ab initio” or “first principles” much used in this context to mean methods with no empirical input
	• But may have several, even dubious, approximations!
	• semi-empirical= some empirical input used in choice of parameters or model


	Atomistic interaction models
	• variants of all classes of methods
	• The quantum mechanical methods new Þ work (so far) well only in a limited set of problems

	• Prefactor in the efficiency, i.e. the factor in for an method.
	• A rule-of-thumb:

	• Quantum mechanical models (HF and DFT): ~ 100 atoms Þ e.g. small molecules, bulk properties of common phases, and point defect properties.
	• TB, a minimal quantum mechanical model works well in a few materials (e.g. C, Si, Ge) but is problematic in many others.
	• Classical models: possible to simulate very large systems, such as large protein molecules, 2- and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc.
	• No information on the electronic properties of the material.


	Atomistic interaction models
	• This chapter is a short overview on the methods; more information on other, specialized courses on the subject
	• A huge topic in itself! Mainly outside the scope of this course

	• Literature:
	• R. Phillips: Crystals, Defects and Microstructures, (Cambridge University Press, 2001), Chapter 4
	• A. Sutton: Electronic Structure of Materials, (Oxford Science Publications, 1996)
	• M. Finnis: Interatomic Forces in Condensed Matter, (Oxford Series in Materials Modelling, 2003)
	• R. M. Martin: Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 2004)

	• There is a large number of review articles. A good one for those who do DFT calculations but are not quite experts in the field is Designing meaningful density functional theory calculations in materials science—a primer Ann E Mattsson et al. M...

	Overview of quantum mechanical models
	• A system of nuclei and electrons with coordinates () and ():
	• Schrödinger equation
	• Hamiltonian operator
	• Here:
	• and are the kinetic energies of the nuclei and electrons, respectively.
	• , and are the electron-electron, electron-nucleus and nucleus-nucleus Coulomb interactions Þ Schrödinger equation. (7.2)
	• is the total wavefunction of the full nucleus-electron system.



	Born-Oppenheimer approximation
	• For any given configuration of the nuclei one can assume that the electrons find their ground state before the atoms move significantly.
	• Classical simulations also based on the Born-Oppenheimer approximation: interatomic potentials do not depend on the atom motion.

	• Mathematically: the wavefunction is separated into a product ,
	• is the electron wave function, which is a function of the positions of the electrons and the positions of the nuclei
	• is the wave function of the nuclei.
	• fulfills the wave equation (7.3) where is the nucleus-electron potential of the original Hamilton operator.
	• Solution of this gives the electronic total energy of the system as a function of the positions of the nuclei.
	• Can also be used to give the forces acting between atoms Þ atom motion can be simulated using the classical MD algorithm (ab initio MD)



	Hartree-Fock methods
	• In the Schrödinger equation (7.3) the most difficult part is the electron-electron interaction
	• The basic solution in Hartree-Fock (as well as in DFT) is to create some sort of average electron density with which every electron interacts independently:
	• Pauli exclusion principle: a Slater determinant of one-electron wave functions

	Hartree-Fock methods
	• Hence the Schrödinger eq. for electrons reduces to an equation to get a one-electron wave function : where is the so called Fock-operator. The equation is the so called Hartree-Fock equation.
	• Thus the new central problem becomes to find a good form for the average potential .
	• Iteration: initial guess for the wave functions , plugged into the equation, solving to get a new , and keeping on iterating until the solution does not change any more, i.e. until a self-consistent field has been found (HF-SCF).

	• The eigenvalues of the energy have a clear physical interpretation: ionization energy of the electron
	• The SCF method fulfills the variational principle:
	• The eigenvalue of every inaccurate wave function is larger than that of the most accurate one.
	• So the smallest found energy is also the ‘most correct’ one.


	Hartree-Fock methods
	• The molecular orbital (MO) of every electron is written as a sum over atomic orbitals (LCAO - Linear Combination of Atomic Orbitals):
	• In the most straightforward approach the basis functions can be so called Slater type orbitals (STO) , which somewhat resemble orbitals of the hydrogen atom: , , .
	• Integrating these STO orbitals is numerically difficult, however.


	Hartree-Fock methods
	• Computationally it is much more favourable to use Gaussian-type orbitals (GTO) because a product of two Gaussians is a Gaussian: , , ,
	• But real electron wave functions are not Gaussian in shape Þ use a sum of GTO’s to describe the wave function:


	Hartree-Fock methods
	• An example of an STO and how it can be approximated with one or more GTO’s. One GTO only is not very good, but 4 GTO’s already are quite close.
	• The most popular basis function sets are the Gaussian functions developed by the group of J. A. Pople (Nobel prize in chemistry 1998):
	• In the so called minimal basis set there is one orbital for two core electron orbitals, and one orbital for each valence electron. Every STO is replaced by a sum of GTO-functions (STO-nG). The most common minimal set is the STO-3G set.
	• To improve on the results the basic approach is to increase the size of the basis sets. In the so called “Double Zeta” set there are twice as many orbitals as in the minimal set. If the doubling is made only with valence electrons (which are ...
	• In the so called 3-21G set the first row elements have 3 GTO’s for 1s electrons, 2 GTO’s for 2s, 2p and so forth electrons, and the extra valence electrons are described by one GTO. This set is quite popular nowadays.
	• Other even larger basis sets: 6-31G, sets which have polarization functions, etc. etc.


	Hartree-Fock methods
	• Limitations of the basic Hartree-Fock method
	• The method does not at all account for electron correlation, that is, the correlation between the momentaneous motion between electrons. This energy is usually only of the order of 1 % of the total, but can sometimes be comparable to the total bi...
	• In the Configuration Interaction (CI) method a linear combination out of Slater determinants is formed. This is a very good approach, but unfortunately also very slow.
	• In Møller-Plesset perturbation theory a perturbation series is made out of the error in the correlation energy. The most popular approach is MP2, which takes into account the lowest-order correction.
	• In Multiconfiguration SCF (MCSCF) a small CI term is included in the HF iteration.



	Density functional theory
	• Density functional theory (DFT) is one of the most widely spread method to calculate electronic structure in materials.
	• Because it is computationally more efficient than HF, it has become especially popular among solid state physicists who need many atoms to describe a solid.

	• Starts with the Schrödinger equation for electrons or where is the so called external potential acting on the electrons due to the nuclei.
	• The basic idea of DFT: instead of manybody wavefunction use electron density
	• Only need to calculate a scalar function of one vector variable not vectors


	Density functional theory
	• DFT is based on the Hohenberg-Kohn theorems [Hohenberg and Kohn, Phys. Rev. 136 (1964) B864]: Theorem I: For any given set of electrons which are in an external potential , this potential is determined uniquely, except for a trivial additive cons...

	Density functional theory
	• Kohn-Sham ansatz [W. Kohn and L. J. Sham, Phys Rev. 140 (1965) A1133] [see http://www.fysik.dtu.dk/~bligaard/wwwdirectory/phdthesis/phdproject.pdf]
	• The idea of the ansatz is that the original, complicated Hamiltonian can be replaced by another Hamiltonian function which is easier to solve. This effective Hamiltonian describes non-interacting “electrons” in a system which is assumed to ha...
	• To put it in another way: We assume that there exists a system of non-interacting electrons that produce the same electron density .
	• The orbitals of the non-interacting electrons are called Kohn-Sham orbitals.

	• Apply Hohenberg-Kohn variational principle to the Kohn- Sham orbitals Þ the Kohn-Sham orbital equations , where in now the kinetic energy of non-interacting electrons.
	• All the problematic terms are collected under : error in the kinetic energy: error in the Coulomb interaction between electrons: correlation and exchange energies (quantum mechanical effects).


	Density functional theory
	• What we have gained here is that the above terms in are (usually) small corrections and can be calculated in an approximative way.
	• The variational principle gives then Þ where runs over all electrons, is the Kohn-Sham eigenvalue of electron , and the effective one-particle potential is:
	• Here is the external potential and ,

	Density functional theory
	• Pictorially this can be presented as

	Density functional theory
	• If the exchange-correlation energy is known, these equations can be solved by self-consistent iteration
	• Note, however, that the Kohn-Sham orbitals and their eigenvalues do not have a clear physical interpretation. There is no guarantee that they have any relation to real electron energies and wave functions, but it appears that they are in fact a s...

	• Local density approximation (LDA)
	• So far the DFT approach has not made any approximations.
	• To obtain the exchange-correlation functional the local density approximation, (LDA) is used: , where is the exchange and correlation energy of a homogeneous electron gas per one electron.

	• The exchange functional can be as simple as (Dirac LDA)


	Density functional theory
	• Once an exchange and correlation energy for a homogeneous gas is introduced (several exist), the equations can be solved with an iteration process: 1) Start with some . 2) Calculate the one-electron wave functions Þ new density 3) New Þ new . 4...
	• Spin in the exchange and correlation term: local spin density approximation, LSDA.
	• DFT-LDA results compared with experimental data: 1) Generally too large cohesive energies for solids 2) Too large total energies for atoms 3) Too small energy gaps for many semiconductors (LDA actually predicts zero gap for Ge!). 4) Unstable for ...
	• To improve on the accuracy of DFT people have introduced exchange-and-correlation functionals which also depend on the variation of the electron density: .
	• There are numerous of these so called Generalized Gradient Approximations (GGA).
	• In practice there are a large number of GGA’s around, and people choose one which for some reason has been “found to work well” in their system. This gives a semi-empirical character to the methods, i.e. they are not pure ab initio


	• The DFT solution method does not restrict the way we express the Kohn-Sham wave functions.
	• Below are given two nowadays common ways to build the basis sets used in DFT calculations: plane waves and atomic-type orbitals.


	Plane-wave methods
	• In plane-wave methods the basic algorithms are as in DFT but:
	• The outer valence electrons are described as a sum of plane waves: where the wave vectors are chosen to that they have the same periodicity as the simulation cell.
	• Any shape of the electron wave functions can in principle be described with this sum provided the sum has enough terms .
	• Names of some common plane wave methods: - APW = Augmented Plane Wave - LAPW = Linear APW - FLAPW = Fully LAPW - SAPW = Spline APW - OPW = Orthogonal Plane Wave
	• The main measure of the accuracy of plane-wave methods is the number of plane waves used to describe the system.

	Plane-wave methods
	• Examples of results of DFT / plane-wave calculation results:

	LCAO methods
	• In the LCAO (Linear Combination of Atomic Orbitals) method the basis set consists of orbitals localized around each atom in the system.
	• Compare with plane waves that are as non-localized as possible.
	• Orbitals can be obtained from quantum mechanical atomic calculations. (Or pseudo-atomic; see below)
	• The accuracy is not so straightforward to adjust as in the plane wave method.


	Pseudopotentials
	• In most cases the filled inner electron shells of atoms do not have any effect on the behavior of the system.
	• The idea is to remove the core electrons and the strong nuclear potential and replace them with a weaker pseudopotential.
	• Outside some cut-off radius the pseudo wavefunctions and the pseudopotential are indentical to those of the real atom..
	• The counterpart to pseudopotential methods are the all electron methods.
	• Pseudopotentials are commonly used with DFT calculations both with planewaves and atomic type orbitals.

	Pseudopotentials
	• Results for the lattice constant a and bulk modulus B for C and Si:
	• So it is quite possible to obtain the quantities to an accuracy ~ 1 %.
	• Car-Parrinello MD
	• The Car Parrinello method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] is a method where the electron and atom motion is updated at the same time. The method has become very popular because it is highly efficient and can also be p...


	Example of scaling of a DFT calculation
	• CPU time usage of a SIESTA calculation:
	• Si with simple SZ basis set.
	• CPU time for one energy calculation (~ time step).
	• Simulations by E. Holmström.


	Commercial HF and DFT programs
	• In practice, a large fraction of modern HF, DFT- and empirical simulations are carried out with commercial codes.
	• In commercial codes, the algorithms are typically 5-15 years or old. This is a mixed blessing: the state-of- the art methods may not be available, but on the other hand the algorithms in there are usually well tested. Roughly speaking especially ...
	• The commercial codes have flashy and easy-to-use graphical user interfaces. This is good in one sense, but also makes the risk to do garbage in–garbage out kinds of simulations very large. So don’t blindly start using a commercial code, you s...


	Commercial HF and DFT programs
	• HF-codes:
	• Gaussian The code deriving from Poples work. Very popular and versatile code. Nowadays also a DFT version is part of the package.
	• TurboMole

	• DFT-codes
	• CASTEP Plane-wave DFT code, commercial
	• DMol3 DFT code based on numerical basis sets, rather than Gaussian Sets
	• VASP Semi-commercial plane-wave DFT code developed in Vienna. Very widely used. http://cms.mpi.univie.ac.at/vasp/
	• Quantum Espresso http://www.quantum-espresso.org/ Open Source, Free
	• GPAW Python-based code, under active development. Real-space, scales well. https://wiki.fysik.dtu.dk/gpaw/
	• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - Home page: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/ - A fully self-consistent DFT code. Uses LCAO basis sets. - Source code available, can be use...

	• Other important stuff
	• InsightII The graphical user interface of Accelrys Inc., from which most codes of Accelrys and some non-commercial codes such as DMol and Gaussian can be run. http://www.accelrys.com

	• See also http://electronicstructure.org/

	Tight-binding methods
	• Tight-binding (TB) models can be considered “minimal” quantum mechanical models. They are most often semi-empirical, and the quality of the results varies a lot. At best, one can achieve results comparable to DFT with a 100 times less compute...
	• In semi-empirical TB one starts with the assumption that total electronic energy can be written as where is a repulsive classical pair potential acting between the atoms, and the are eigenvalues of some self-consists Schrödinger-like equation,
	• This resembles the DFT formalism, and can be derived with various approximations.

	• The eigenvalues are negative, and the repulsive energy positive. is either constructed by empirical fitting to give the desired total energy, or derived from DFT.

	Tight-binding methods
	• Bonding of H2
	• Wave function:
	• Schrödinger equation
	• Project to states and Þ , (We know (?) that .)
	• Let’s shift energy origin so that Þ we get the equation
	• Solutions ,


	Tight-binding methods
	• The TB Schrödinger is solved with the variational principle for some set of basis functions which leads to a secular equation where and
	• Often one still assumes that the set of basis functions is orthogonal, in which case reduces to the unit matrix.

	• Usually the basis set is put to contain only the outermost electrons, with all others treated with the repulsive potential . The elements in the basis function set are usually also fit to experimental data.
	• For instance, to treat a material where only the outer s and p electrons are important, one can get away with using only for basis functions (sss, sps, pps and ppp). If one want to also describe d electrons, one needs at least 10 basis functions.
	• Roughly speaking it seems that TB methods usually works well in materials with only covalent bonding. Systems where much work has been done and which have been found to work well are at least C, Si and their hydrogen compounds.

	• See for example Foulkes et al., Phys. Rev. B 39 (1989) 12520, and Sutton et al., J. Phys. C: Solid State Phys. 21 (1988) 35. for the DFT foundations of the TB model

	Tight-binding methods
	• An example of a TBMD application [G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994) 3471]
	• A fullerene C60 colliding with a diamond surface with different kinetic energies (the surface is a reconstructed (111) surface with no dangling bonds):
	• When Ek £ 120 eV no bonds are formed between the fullerene and the surface, and the fullerene simply bounces off it. - When 120 eV < Ek < 240 eV a few bonds are formed between the fullerene and the surface, and the fullerene may stick to the sur...


	Very brief mention of a few other methods
	• Quantum Monte Carlo (QMC) methods are a set of DFT-related methods where Monte Carlo simulation techniques are used to minimize the correlation term of DFT.
	• Computationally very expensive, but they can give very accurate results, especially for the correlation term which is difficult to treat otherwise.
	• The most common varieties: Diffusion Monte Carlo (DMC) and Variational Monte Carlo (VMC)

	• Just an example on results [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870]:
	• DMC gives all energies correct within the uncertainties, and clearly outshines HF and plain LDA.


	Very brief mention of a few other methods
	• What is the minimum-energy configuration of C20 [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870.]?
	• According to QMC:n it is the “bowl” shape
	• Note the large differences between the supposedly reliable DFT and HF methods, and that none of the agrees with the QMC behaviour.


	Very brief mention of a few other methods
	• Path Integral Molecular Dynamics
	• Path Integral MD (PIMD) is a DFT / Car-Parrinello type of method which uses a Feynman path integral representation of the density matrix.
	• Also hideously expensive computationally, but claimed to be the only really good method to describe water-related reactions.
	• A rough rule of thumb for both QMC and PIMD is that the number of atoms is limited to ~ 20 or so...

	• Time-dependent HF, DFT, TB
	• The methods described until now are all normally used to obtain the ground state. This means one assumes that the electron system has time to come to rest before the processes of interest happen. Since electronic relaxation times are typically of...
	• However, if one is interested in e.g. electronic excitation, this approximation is not valid, and one has to actually solve the time-dependent Schrödinger equation. This can be done by iterating over time.
	• Time-dependent (TD)-methods are somewhat of a hot topic in electronic structure calculations now, and there are TD variations of all the main methods: HF, DFT and TB.
	• A rough rule of thumb is that a TD-method is at least a factor of 100 slower than the corresponding ordinary method



