
v
Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?>
Calculate results 

and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Quantum
mechanical

models
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Atomistic interaction models

• The true interaction energy between N  nuclei and I  electrons could be obtained by solving the 
Schrödinger equation for the system comprising the N I+  bodies.
• Assumes: interactions between the nucleons 
neglected

Almost always true

Not always true for heavy elements• This is also assuming relativistic effects can be 
ignored

• Time-dependent Schrödinger 
equation: dynamics without MD 
alogrithm 

Model Type Scaling Nmax

Full solution of 
Schrödinger equation

quantum mechanical, 
ab initio

1

HF (Hartee-Fock) quantum mechanical, 
ab initio

50

DFT (density functional 
theory

quantum mechanical, 
not always ab initio

1000

TB (Tight-binding) quantum mechanical 
(often semiempirical)

1000 
10000

MBP (Many-body poten-
tial)

classical, semiempirical 108

PP (Pair potential) classical, semiempirical 109

O e
N( )

O N
4 8–( )

O N( )

O N
3( )

O N( )

O N
3( )

O N( )

O N( )

O N( )

• But solving the full equation is 
extremely expensive computa-
tionally, and hence one always 
has to resort to various levels of 
approximation

• Term “ab initio” or “first princi-
ples” much used in this context 
to mean methods with no empiri-
cal input
• But may have several, even dubi-
ous, approximations!

• semi-empirical= some empirical 
input used in choice of parameters 
or model
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Atomistic interaction models 

• O N( )  variants of all classes of methods
• The quantum mechanical O N( )  methods new   work (so far) well only in a limited set of problems

• Prefactor in the efficiency, i.e. the factor A  in  speed =A N
x×  for an O N

x( )  method. 
• A rule-of-thumb: 

AMBP 3 APP×=  

ATB 100 AMBP×=  

ADF or HF 100 ATB×=  

• Quantum mechanical models (HF and DFT): ~ 100 atoms  e.g. small molecules, bulk proper-
ties of common phases, and point defect properties.  

• TB, a minimal quantum mechanical model works well in a few materials (e.g. C, Si, Ge) but is 
problematic in many others.  

• Classical models:  possible to simulate very large systems, such as large protein molecules, 2- 
and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc.
• No information on the electronic properties of the material. 
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Atomistic interaction models

• This chapter is a short overview on the methods; more information on other, specialized 
courses on the subject
• A huge topic in itself! Mainly outside the scope of this course 

• Literature: 
• R. Phillips: Crystals, Defects and Microstructures, (Cambridge University Press, 2001), Chapter 4
• A. Sutton: Electronic Structure of Materials, (Oxford Science Publications, 1996)
• M. Finnis: Interatomic Forces in Condensed Matter, (Oxford Series in Materials Modelling, 2003)
• R. M. Martin: Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 
2004) 

• There is a large number of review articles. A good one for those who do DFT calculations but 
are not quite experts in the field is 
 

Designing meaningful density functional theory calculations in materials science—a primer 
Ann E Mattsson et al. Modelling Simul. Mater. Sci. Eng. 13 (2005) R1-R31.
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Overview of quantum mechanical models

• A system of N  nuclei and I  electrons with coordinates rn  (n 1…N= ) and ri  (i 1…I= ):

• Schrödinger equation 
HΨ EΨ=

• Hamiltonian operator H   

H
h

2

2Mn
-----------

rn
2

2

∂

∂

n 1=

N

–
h

2

2m
-------

ri
2

2

∂

∂

i 1=

I


1
2
--- e

2

rij
---------

j 1=

I


i 1=

I



Zne
2

rni
------------

i 1=

I


n 1=

N


1
2
---

ZnZle
2

rnl
-----------------

n 1=

N


l 1=

N



+

+ +

–

Tn Te Vee Vne Vnn+ + + +

=

=

     (7.1)

• Here:
• Tn  and Te  are the kinetic energies of the nuclei and electrons, respectively.

• Vee , Vne  and Vnn  are the electron-electron, electron-nucleus and nucleus-nucleus Coulomb  interactions  

Schrödinger equation. 
Tn Te Vee Vne Vnn+ + + +( )Ψ EΨ=    (7.2)

• Ψ  is the total wavefunction of the full nucleus-electron system.
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Born-Oppenheimer approximation

• For any given configuration of the nuclei one can assume that the electrons find their ground 
state before the atoms move significantly. 
• Classical simulations also based on the Born-Oppenheimer approximation: interatomic potentials do not 
depend on the atom motion. 

• Mathematically:  the wavefunction Ψ  is separated into a product  
 

Ψ ψ n ri,( )η n( )≈ ,  

• ψ n ri,( )  is the electron wave function, which is a function of the positions of the electrons ri  and the posi-

tions of the nuclei n
• η n( )  is the wave function of the nuclei.  

• ψ n ri,( )  fulfills the wave equation 
 

Te Vee+ Vne+{ }ψ n r,( ) Ee n( )ψ n r,( )=       (7.3) 
 
where Vne  is the nucleus-electron potential of the original Hamilton operator.  

• Solution of this gives the electronic total energy of the system as a function of the positions of the nuclei.
• Can also be used to give the forces acting between atoms  atom motion can be simulated using the classical MD 

algorithm (ab initio MD)
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Hartree-Fock methods

• In the Schrödinger equation (7.3) the most difficult part is the electron-electron interaction  

Vee
e

2

rij
---------

j


i
=  

• The basic solution in Hartree-Fock (as well as in DFT) is to create some sort of average elec-
tron density with which every electron interacts independently: 
 

V'ee Vi
av

i
=  

• Pauli exclusion principle: a Slater determinant of one-electron wave functions 

Ψ r1 r2 … rN, , ,( )

φ1 r1( ) φ1 r2( ) … φ1 rN( )

φ2 r1( ) φ2 r2( ) … φ2 rN( )

. . . .

φN r1( ) φN r2( ) … φN rN( )

=
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Hartree-Fock methods

• Hence the Schrödinger eq. for electrons reduces to an equation to get a one-electron wave 
function φi : 

Te i, Vne i, Vi
av

+ +( )Ψ x1 x2 … xn, , ,( )
i
 EΨ x1 x2 … xn, , ,( )=  

Te i, Vne i, Vi
av

+ +( )φi x1( ) F̂φi x1( ) εiφi x1( )= =  

where F̂  is the so called Fock-operator. The equation is the so called Hartree-Fock equation. 

• Thus the new central problem becomes to find a good form for the average potential Vi
av . 

• Iteration: initial guess for the wave functions φi , plugged into the equation, solving to get a new φi  , and 

keeping on iterating until the solution does not change any more, i.e. until a self-consistent field has 
been found  (HF-SCF). 
 

• The eigenvalues of the energy have a clear physical interpretation: ionization energy of the 
electron 

• The SCF method fulfills the variational principle: 

• The eigenvalue of every inaccurate wave function is larger than that of the most accurate one. 
• So the smallest found energy is also the ‘most correct’ one.
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Hartree-Fock methods

• The molecular orbital (MO) of every electron φi  is written as a sum over atomic orbitals (LCAO - 

Linear Combination of Atomic Orbitals): 

φi Ciμχμ
μ
=  

• In the most straightforward approach the basis functions χμ  can be so called Slater type orbitals (STO) 

χ R r( )Ylm θ φ,( )= , 
R1s N1e

ζr–
=

R2s R2p N2re
ζr–

= =





 

which somewhat resemble orbitals of the hydrogen atom:  
ψnlm r θ φ, ,( ) e αr 2⁄– αr( )lLn l– 1–

2l 1+ αr( )Yl
m θ φ,( )∝ ,    α 2Z na0⁄= ,    a0 h2 me2⁄= . 

• Integrating these STO orbitals is numerically difficult, however.  
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Hartree-Fock methods 

• Computationally it is much more favourable to use Gaussian-type orbitals (GTO)  

χGTO
r( ) e

αr
2

–
=   

because a product of two Gaussians is a Gaussian: 

e α r RA–
2

– e β r RB–
2

– KABe γ r RC–
2

–= , 

γ α β+= , 

RC

αRA βRB+

α β+
-----------------------------= , 

KAB
2αβ

π α β+( )
---------------------

3 4/
e

αβ
γ

------- RA RB– 2–
=  

• But real electron wave functions are not Gaussian in shape  use a sum of GTO’s to describe the wave function: 

          χSTO
kvχv

GTO

v
=
Introduction to molecular dynamics 2015              7. Quantum mechanical potential models                                                                                                                                                     10



Hartree-Fock methods

• An example of an STO and how it can be approximated with one or more GTO’s. One GTO only 
is not very good, but 4 GTO’s already are quite close.

A
.R

.L
ea

ch
, M

ol
ec

ul
ar

 M
od

el
lin

g

• The most popular basis function sets χ{ }  are the Gaussian functions developed by the group of 
J. A. Pople (Nobel prize in chemistry 1998):
• In the so called minimal basis set there is one orbital for two core electron orbitals, and one orbital for 
each valence electron. Every STO is replaced by a sum of N  GTO-functions (STO-nG). The most com-
mon minimal set is the STO-3G set.

• To improve on the results the basic approach is to increase the size of the basis sets. In the so called 
“Double Zeta” set there are twice as many orbitals as in the minimal set. If the doubling is made only with 
valence electrons (which are usually the most interesting ones) one obtains the “Split Valence” set of 
basis functions.

• In the so called 3-21G set the first row elements have 3 GTO’s for 1s electrons, 2 GTO’s for 2s, 2p and so 
forth electrons, and the extra valence electrons are described by one GTO. This set is quite popular now-
adays.

• Other even larger basis sets: 6-31G, sets which have polarization functions, etc. etc. 
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Hartree-Fock methods

• Limitations of the basic Hartree-Fock method

• The method does not at all account for electron correlation, that is, the correlation between the momenta-
neous motion between electrons. This energy is usually only of the order of 1 % of the total, but can 
sometimes be comparable to the total binding energy of the system and hence quite significant. Several 
methods have been developed to take this into account: 

• In the Configuration Interaction (CI) method a linear combination out of Slater determinants is formed. This is a very 
good approach, but unfortunately also very slow. 

• In Møller-Plesset perturbation theory a perturbation series is made out of the error in the correlation energy. The most 
popular approach is MP2, which takes into account the lowest-order correction. 

• In Multiconfiguration SCF (MCSCF) a small CI term is included in the HF iteration.
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Density functional theory

• Density functional theory (DFT) is one of the most widely spread method to calculate elec-
tronic structure in materials. 

• Because it is computationally more efficient than HF, it has become especially popular among solid state 
physicists who need many atoms to describe a solid. 
 

• Starts with the Schrödinger equation for electrons  
 

h
2

2m
-------

ri
2

2

∂

∂

i 1=

I

– e
2

rij
2

-----------

j 1=

I


i 1=

I

 Vne+ +

 
 
 
 
 

Ψ n r,( ) Ee n( )Ψ n r,( )=      or 

Te Vee Vext+ +( )Ψ
i
 EΨ=  

 
where Vext  is the so called external potential acting on the electrons due to the nuclei. 

• The basic idea of DFT: instead of manybody wavefunction Ψ ri{ }( )  use electron density n r( )   

• Only need to calculate a scalar function of one vector variable not I  vectors
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Density functional theory

• DFT is based on the Hohenberg-Kohn theorems [Hohenberg and Kohn, Phys. Rev. 136 (1964) 
B864]: 
 
Theorem I: For any given set of electrons which are in an external potential Vext  , this potential is 

determined uniquely, except for a trivial additive constant, from the electron density n r( ) .  
 
Corollary I: Because the system Hamiltonian is thus fully determined short of an energy shift, 
the electron density can be used to fully derive the many-particle wave function and thus all 
desired system properties. 
 
Theorem II: It is possible to define a universal functional for the energy E n[ ]  depending on the 
electron density n r( ) . The true ground state energy is the global minimum of the energy func-
tional, and the density n r( )  which minimizes the functional is the exact ground state density. 
 
Corollary II: The functional E n[ ]  is enough to determine the true ground state energy and elec-
tron density. Excited states must be determined by other means. 
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Density functional theory

• Kohn-Sham ansatz [W. Kohn and L. J. Sham, Phys Rev. 140 (1965) A1133] 
[see  http://www.fysik.dtu.dk/~bligaard/wwwdirectory/phdthesis/phdproject.pdf] 
 

• The idea of the ansatz is that the original, complicated Hamiltonian can be replaced by another Hamilto-
nian function which is easier to solve. This effective Hamiltonian describes non-interacting “electrons”   in 
a system which is assumed to have the same density as the true system with interacting electrons. 

• To put it in another way: We assume that there exists a system of non-interacting electrons that produce 
the same electron density n r( ) . 

• The orbitals ψi r( )  of the non-interacting electrons are called Kohn-Sham orbitals. 

• Apply Hohenberg-Kohn variational principle to the Kohn-
Sham orbitals  the Kohn-Sham orbital equations 

E n[ ] T0 n[ ] 1
2
--- n r( )n r'( )

r r'–
-----------------------d

3rd3r' Vext r( )n r( )d
3r Exc n[ ]+ + += , 

where T0 n[ ]  in now the kinetic energy of non-interacting elec-

trons.

Note that the Hartree atomic units are 
used here: e m h 4πε0 1= = = =

• All the problematic terms are collected under Exc n[ ] :  

error in the kinetic energy:  T n[ ] T0 n[ ]–  

error in the Coulomb interaction between electrons: Eee
1
2
--- n r( )n r'( )

r r'–
-----------------------d

3rd3r'–  

correlation and exchange energies (quantum mechanical effects).
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Density functional theory

• What we have gained here is that the above terms in Exc   are (usually) small corrections and can be cal-

culated in an approximative way. 

• The variational principle gives then  
δE n[ ]

δn
--------------- 0=  1

2
---∇2– Veff r( )+ 

 ψi r( ) εiψi r( )=  

 
where i  runs over all electrons, εi  is the Kohn-Sham eigenvalue of electron i , and the effective one-parti-

cle potential is: 

Veff r( ) Vext r( ) φe r( )
δExc n r( )[ ]

δn r( )
----------------------------+ +=

• Here Vext  is the external potential and  

φe r( ) r'd
n r'( )
r r'–
---------------= ,     n r( ) ψi r( ) 2

i 1=

N

=  
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Density functional theory

• Pictorially this can be presented as1 
 
 
 

Vext r( )

Ψi r{ }( ) Ψ0 r{ }( )

n0 r( )
HK

n0 r( )

ψi 1 N,= r( ) ψi r( )

Veff r( )
HK0KS

Real system Independent particle system

1. Adapted from R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 2004), Fig. 7.1
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Density functional theory

• If the exchange-correlation energy is known, these equations can be solved by self-consistent 
iteration 
• Note, however, that the Kohn-Sham orbitals and their eigenvalues εi do not have a clear physical inter-
pretation. There is no guarantee that they have any relation to real electron energies and wave functions, 
but it appears that they are in fact a surprisingly good approximation of the real electron properties. 

• Local density approximation (LDA) 

• So far the DFT approach has not made any approximations. 

• To obtain the exchange-correlation functional Exc n[ ]  the local density approximation, (LDA) is used: 

 

Exc n[ ] rd n r( )εxc n[ ] r,( )=    , 

 
where εxc n r( )( )  is the exchange and correlation energy of a homogeneous electron gas per one electron.  

• The exchange functional can be as simple as (Dirac LDA) 

Ex Dirac,
LDA 3

4
--- 3

π
--- 
  1 3⁄

n r( )4 3⁄
dr–=  
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Density functional theory

• Once an exchange and correlation energy for a homogeneous gas is introduced (several exist), 
the equations can be solved with an iteration process: 
1) Start with some Veff r( ) . 
2) Calculate the one-electron wave functions ψi   new density n r( )  
3) New n r( )   new Veff r( ) . 
4) Repeat steps 2 and 3 until we have obtained a self-consistent solution. 

• Spin in the exchange and correlation term: local spin density approximation, LSDA.
• DFT-LDA results compared with experimental data: 

1) Generally too large cohesive energies for solids 
2) Too large total energies for atoms 
3) Too small energy gaps for many semiconductors (LDA actually predicts zero gap for Ge!). 
4) Unstable for negative ions and gives a too diffuse electron density.

• To improve on the accuracy of DFT people have introduced exchange-and-correlation function-
als which also depend on the variation of the electron density: 

Exc n r( ) dn r( ),[ ] .

• There are numerous of these so called Generalized Gradient Approximations (GGA). 
• In practice there are a large number of GGA’s around, and people choose one which for some reason has been “found 

to work well” in their system. This gives a semi-empirical character to the methods, i.e. they are not pure ab initio 

• The DFT solution method does not restrict the way we express the Kohn-Sham wave functions.
• Below are given two nowadays common ways to build the basis sets used in DFT calculations: 

plane waves and atomic-type orbitals.
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Plane-wave methods

• In plane-wave methods the basic algorithms are as in DFT but: 

• The outer valence electrons are described as a sum 
of plane waves: 

ψ fl
l

Nl

 Kl( )e
iKl r⋅–

=  

Search for wave functions → search for coefficients

where the wave vectors Kl  are chosen to that they have the same periodicity as the simulation cell.   

• Any shape of the electron wave functions can in principle be described with this sum provided the sum 
has enough terms Nl .  

• Names of some common plane wave methods: 
- APW = Augmented Plane Wave 
- LAPW = Linear APW 
- FLAPW = Fully LAPW 
- SAPW = Spline APW 
- OPW = Orthogonal Plane Wave 

• The main measure of the accuracy of plane-wave methods is the number of plane waves used to 
describe the system.  
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Plane-wave methods

• Examples of results of DFT / plane-wave calculation results: 
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LCAO methods 

• In the LCAO (Linear Combination of Atomic Orbitals) method the basis set consists of orbitals 
localized around each atom in the system.   

• Compare with plane waves that are as non-localized as possible.  

• Orbitals can be obtained from quantum mechanical atomic calculations. (Or pseudo-atomic; see below) 

• The accuracy is not so straightforward to adjust as in the plane wave method. 
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Pseudopotentials 

• In most cases the filled inner electron shells of atoms do not 
have any effect on the behavior of the system. 

r

Ze
r

------

Vpseudo

ψAE

ψpseudo

rc

• The idea is to remove the core electrons and the strong 
nuclear potential and replace them with a weaker pseudo-
potential.

• Outside some cut-off radius rc  the pseudo wavefunctions 

and the pseudopotential are indentical to those of the real 
atom.. 

• The counterpart to pseudopotential methods are the all 
electron methods. 

• Pseudopotentials are commonly used with DFT calculations 
both with planewaves and atomic type orbitals. 
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Pseudopotentials

• Results for the lattice constant a and bulk modulus B for C and Si: 

• So it is quite possible to obtain the quantities to an accuracy ~ 1 %. 

• Car-Parrinello MD

• The Car Parrinello method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] is a method where 
the electron and atom motion is updated at the same time. The method has become very popular 
because it is highly efficient and can also be parallelized well. 
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Example of scaling of a DFT calculation

• CPU time usage of a SIESTA1 calculation: 

• Si with simple SZ basis set. 

• CPU time for one energy calculation  
(~ time step). 

• Simulations by E. Holmström. 

1. Spanish Initiative for Electronic Simulations with Thousands of Atoms.
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Commercial HF and DFT programs 

• In practice, a large fraction of modern HF, DFT- and empirical simulations are carried out with 
commercial codes. 

• In commercial codes, the algorithms are typically 5-15 years or old. This is a mixed blessing: the state-of-
the art methods may not be available, but on the other hand the algorithms in there are usually well 
tested. Roughly speaking especially the methods favoured by chemists have moved over to commercial 
codes, whereas physicists tend to stick to their own or non-commercial codes. 

• The commercial codes have flashy and easy-to-use graphical user interfaces. This is good in one sense, 
but also makes the risk to do garbage in–garbage out  kinds of simulations very large. So don’t blindly 
start using a commercial code, you should understand its inner workings and the physics in there first! 
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Commercial HF and DFT programs

• HF-codes:
• GaussianThe code deriving from Poples work. Very popular and versatile code.  

Nowadays also a DFT version is part of the package.
• TurboMole 

• DFT-codes
• CASTEP Plane-wave DFT code, commercial

• DMol3 DFT code based on numerical basis sets, rather than Gaussian Sets
• VASP Semi-commercial plane-wave DFT code developed in Vienna. Very widely used. 

http://cms.mpi.univie.ac.at/vasp/
• Quantum Espressohttp://www.quantum-espresso.org/ 

Open Source, Free
• GPAW Python-based code, under active development. Real-space, scales well. 

https://wiki.fysik.dtu.dk/gpaw/
• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)  

- Home page: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/ 
- A fully self-consistent O N( )  DFT code.  Uses LCAO basis sets. 
- Source code available, can be used as a force routine in your MD code (parcas_siesta!) 
- Free for academic use.

• Other important stuff
• InsightII The graphical user interface of Accelrys Inc., from which most codes of Accelrys  

and some non-commercial codes such as DMol and Gaussian can be run. 
http://www.accelrys.com

• See also http://electronicstructure.org/
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Tight-binding methods
[Main source: Foulkes et al., Phys. Rev. B 39 (1989) 12520.]

• Tight-binding (TB) models can be considered “minimal” quantum mechanical models. They 
are most often semi-empirical, and the quality of the results varies a lot. At best, one can 
achieve results comparable to DFT with a 100 times less computer capacity, at worst they are 
no better or even worse than semi-empirical models but a 100 times slower! 

• In semi-empirical TB one starts with the assumption that total electronic energy E  can be written 
as  

E εi

i 1=

N


1
2
--- U rij( )

j


i
+=  

 
where U  is a repulsive classical pair potential acting between the atoms, and the εi  are eigen-

values of some self-consists Schrödinger-like equation, 

Ĥψi r( ) 1
2
---∇2

– V r( )+ ψi r( ) εi r( )= =  

• This resembles the DFT formalism, and can be derived with various approximations.  

• The eigenvalues εi  are negative, and the repulsive energy positive. U r( )  is either constructed 

by empirical fitting to give the desired total energy, or derived from DFT.
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Tight-binding methods

• Bonding of H2  

• Wave function: ψ|  a1 φ1|  a2 φ2| +=  

• Schrödinger equation 
Ĥ ψ|  E ψ| =  

• Project to states φ1|   and φ2|   

φ1 |Ĥ ψ|  φ1 |E ψ| =

φ2 |Ĥ ψ|  φ2 |E ψ| =






   
E0a1 ha2+ Ea1=

ha1 E0a2+ Ea2=



,  

h φ1 |Ĥ φ2|  φ2 |Ĥ φ1| = =  (We know (?) that h 0< .) 

• Let’s shift energy origin so that E0 0=   we get the equation 

0 h–

h– 0

a1

a2

E
a1

a2

=  

• Solutions E h±= , ψ|  1

2
------- φ1 φ2+−( )=
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Tight-binding methods

• The TB Schrödinger is solved with the variational principle for some set of basis functions φα{ }  

which leads to a secular equation 
H εS– 0=  

where 
Hαβ φα Ĥ φβ | =                                          

and 
Sαβ φα φβ | =

• Often one still assumes that the set of basis functions is orthogonal, in which case S  reduces to the unit 
matrix. 

• Usually the basis set is put to contain only the outermost electrons, with all others treated with 
the repulsive potential U r( ) . The elements in the basis function set are usually also fit to experi-
mental data. 
• For instance, to treat a material where only the outer s and p electrons are important, one can get away 
with using only for basis functions (ssσ, spσ, ppσ and ppπ). If one want to also describe d electrons, one 
needs at least 10 basis functions.

• Roughly speaking it seems that TB methods usually works well in materials with only covalent bonding. 
Systems where much work has been done and which have been found to work well are at least C, Si and 
their hydrogen compounds. 

• See for example Foulkes et al., Phys. Rev. B 39 (1989) 12520, and Sutton et al., J. Phys. C: 
Solid State Phys. 21 (1988) 35. for the DFT foundations of the TB model 
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Tight-binding methods

• An example of a O N( )  TBMD application [G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994) 3471] 

• A fullerene C60 colliding with a diamond surface with different kinetic ener-

gies Ek  (the surface is a reconstructed (111) surface with no dangling 
bonds):

120 eV

150 eV

300 eV

 

• When Ek ≤ 120 eV no bonds are formed between the fullerene and the 
surface, and the fullerene simply bounces off it. 
 
- When 120 eV < Ek < 240 eV a few bonds are formed between the fuller-
ene and the surface, and the fullerene may stick to the surface. The bonds 
may also be quickly broken again and the fullerene can bounce off again. 
 
 
- When Ek ≥ 240 eV several bonds are formed between the fullerene and 
the surface, the fullerene breaks down almost completely, and sticks to the 
surface.
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Very brief mention of a few other methods

• Quantum Monte Carlo (QMC) methods are a set of DFT-related methods where Monte Carlo 
simulation techniques are used to minimize the correlation term of DFT.  

• Computationally very expensive, but they can give very accurate results, especially for the correlation 
term which is difficult to treat otherwise. 

• The most common varieties: Diffusion Monte Carlo (DMC) and Variational Monte Carlo (VMC) 

• Just an example on results [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870]: 
 

• DMC gives all energies correct within the uncertainties, and clearly outshines HF and plain LDA.
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Very brief mention of a few other methods

• What is the minimum-energy configuration of C20 [Grossman et al., Phys. Rev. Lett. 75 (1995) 

3870.]? 

 
• According to QMC:n it is the “bowl” shape
• Note the large differences between the supposedly reliable DFT and HF methods, and that none of the 
agrees with the QMC behaviour. 
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Very brief mention of a few other methods

• Path Integral Molecular Dynamics

• Path Integral MD (PIMD) is a DFT / Car-Parrinello type of method which uses a Feynman path integral 
representation of the density matrix. 

• Also hideously expensive computationally, but claimed to be the only really good method to describe 
water-related reactions. 

• A rough rule of thumb for both QMC and PIMD is that the number of atoms is limited to ~ 20 or so... 

• Time-dependent HF, DFT, TB 

• The methods described until now are all normally used to obtain the ground state. This means one 
assumes that the electron system has time to come to rest before the processes of interest happen. Since 
electronic relaxation times are typically of the order of femtoseconds, this is often a very good approxima-
tion.  

• However, if one is interested in e.g. electronic excitation, this approximation is not valid, and one has to 
actually solve the time-dependent Schrödinger equation. This can be done by iterating over time. 

• Time-dependent (TD)-methods are somewhat of a hot topic in electronic structure calculations now, and 
there are TD variations of all the main methods: HF, DFT and TB. 

• A rough rule of thumb is that a TD-method is at least a factor of 100 slower than the corresponding ordi-
nary method
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	Atomistic interaction models
	• The true interaction energy between nuclei and electrons could be obtained by solving the Schrödinger equation for the system comprising the bodies.
	• Assumes: interactions between the nucleons neglected
	• This is also assuming relativistic effects can be ignored
	• Time-dependent Schrödinger equation: dynamics without MD alogrithm

	• But solving the full equation is extremely expensive computationally, and hence one always has to resort to various levels of approximation
	• Term “ab initio” or “first principles” much used in this context to mean methods with no empirical input
	• But may have several, even dubious, approximations!
	• semi-empirical= some empirical input used in choice of parameters or model


	Atomistic interaction models
	• variants of all classes of methods
	• The quantum mechanical methods new Þ work (so far) well only in a limited set of problems

	• Prefactor in the efficiency, i.e. the factor in for an method.
	• A rule-of-thumb:

	• Quantum mechanical models (HF and DFT): ~ 100 atoms Þ e.g. small molecules, bulk properties of common phases, and point defect properties.
	• TB, a minimal quantum mechanical model works well in a few materials (e.g. C, Si, Ge) but is problematic in many others.
	• Classical models: possible to simulate very large systems, such as large protein molecules, 2- and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc.
	• No information on the electronic properties of the material.


	Atomistic interaction models
	• This chapter is a short overview on the methods; more information on other, specialized courses on the subject
	• A huge topic in itself! Mainly outside the scope of this course

	• Literature:
	• R. Phillips: Crystals, Defects and Microstructures, (Cambridge University Press, 2001), Chapter 4
	• A. Sutton: Electronic Structure of Materials, (Oxford Science Publications, 1996)
	• M. Finnis: Interatomic Forces in Condensed Matter, (Oxford Series in Materials Modelling, 2003)
	• R. M. Martin: Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 2004)

	• There is a large number of review articles. A good one for those who do DFT calculations but are not quite experts in the field is Designing meaningful density functional theory calculations in materials science—a primer Ann E Mattsson et al. M...

	Overview of quantum mechanical models
	• A system of nuclei and electrons with coordinates () and ():
	• Schrödinger equation
	• Hamiltonian operator
	• Here:
	• and are the kinetic energies of the nuclei and electrons, respectively.
	• , and are the electron-electron, electron-nucleus and nucleus-nucleus Coulomb interactions Þ Schrödinger equation. (7.2)
	• is the total wavefunction of the full nucleus-electron system.



	Born-Oppenheimer approximation
	• For any given configuration of the nuclei one can assume that the electrons find their ground state before the atoms move significantly.
	• Classical simulations also based on the Born-Oppenheimer approximation: interatomic potentials do not depend on the atom motion.

	• Mathematically: the wavefunction is separated into a product ,
	• is the electron wave function, which is a function of the positions of the electrons and the positions of the nuclei
	• is the wave function of the nuclei.
	• fulfills the wave equation (7.3) where is the nucleus-electron potential of the original Hamilton operator.
	• Solution of this gives the electronic total energy of the system as a function of the positions of the nuclei.
	• Can also be used to give the forces acting between atoms Þ atom motion can be simulated using the classical MD algorithm (ab initio MD)



	Hartree-Fock methods
	• In the Schrödinger equation (7.3) the most difficult part is the electron-electron interaction
	• The basic solution in Hartree-Fock (as well as in DFT) is to create some sort of average electron density with which every electron interacts independently:
	• Pauli exclusion principle: a Slater determinant of one-electron wave functions

	Hartree-Fock methods
	• Hence the Schrödinger eq. for electrons reduces to an equation to get a one-electron wave function : where is the so called Fock-operator. The equation is the so called Hartree-Fock equation.
	• Thus the new central problem becomes to find a good form for the average potential .
	• Iteration: initial guess for the wave functions , plugged into the equation, solving to get a new , and keeping on iterating until the solution does not change any more, i.e. until a self-consistent field has been found (HF-SCF).

	• The eigenvalues of the energy have a clear physical interpretation: ionization energy of the electron
	• The SCF method fulfills the variational principle:
	• The eigenvalue of every inaccurate wave function is larger than that of the most accurate one.
	• So the smallest found energy is also the ‘most correct’ one.


	Hartree-Fock methods
	• The molecular orbital (MO) of every electron is written as a sum over atomic orbitals (LCAO - Linear Combination of Atomic Orbitals):
	• In the most straightforward approach the basis functions can be so called Slater type orbitals (STO) , which somewhat resemble orbitals of the hydrogen atom: , , .
	• Integrating these STO orbitals is numerically difficult, however.


	Hartree-Fock methods
	• Computationally it is much more favourable to use Gaussian-type orbitals (GTO) because a product of two Gaussians is a Gaussian: , , ,
	• But real electron wave functions are not Gaussian in shape Þ use a sum of GTO’s to describe the wave function:


	Hartree-Fock methods
	• An example of an STO and how it can be approximated with one or more GTO’s. One GTO only is not very good, but 4 GTO’s already are quite close.
	• The most popular basis function sets are the Gaussian functions developed by the group of J. A. Pople (Nobel prize in chemistry 1998):
	• In the so called minimal basis set there is one orbital for two core electron orbitals, and one orbital for each valence electron. Every STO is replaced by a sum of GTO-functions (STO-nG). The most common minimal set is the STO-3G set.
	• To improve on the results the basic approach is to increase the size of the basis sets. In the so called “Double Zeta” set there are twice as many orbitals as in the minimal set. If the doubling is made only with valence electrons (which are ...
	• In the so called 3-21G set the first row elements have 3 GTO’s for 1s electrons, 2 GTO’s for 2s, 2p and so forth electrons, and the extra valence electrons are described by one GTO. This set is quite popular nowadays.
	• Other even larger basis sets: 6-31G, sets which have polarization functions, etc. etc.


	Hartree-Fock methods
	• Limitations of the basic Hartree-Fock method
	• The method does not at all account for electron correlation, that is, the correlation between the momentaneous motion between electrons. This energy is usually only of the order of 1 % of the total, but can sometimes be comparable to the total bi...
	• In the Configuration Interaction (CI) method a linear combination out of Slater determinants is formed. This is a very good approach, but unfortunately also very slow.
	• In Møller-Plesset perturbation theory a perturbation series is made out of the error in the correlation energy. The most popular approach is MP2, which takes into account the lowest-order correction.
	• In Multiconfiguration SCF (MCSCF) a small CI term is included in the HF iteration.



	Density functional theory
	• Density functional theory (DFT) is one of the most widely spread method to calculate electronic structure in materials.
	• Because it is computationally more efficient than HF, it has become especially popular among solid state physicists who need many atoms to describe a solid.

	• Starts with the Schrödinger equation for electrons or where is the so called external potential acting on the electrons due to the nuclei.
	• The basic idea of DFT: instead of manybody wavefunction use electron density
	• Only need to calculate a scalar function of one vector variable not vectors


	Density functional theory
	• DFT is based on the Hohenberg-Kohn theorems [Hohenberg and Kohn, Phys. Rev. 136 (1964) B864]: Theorem I: For any given set of electrons which are in an external potential , this potential is determined uniquely, except for a trivial additive cons...

	Density functional theory
	• Kohn-Sham ansatz [W. Kohn and L. J. Sham, Phys Rev. 140 (1965) A1133] [see http://www.fysik.dtu.dk/~bligaard/wwwdirectory/phdthesis/phdproject.pdf]
	• The idea of the ansatz is that the original, complicated Hamiltonian can be replaced by another Hamiltonian function which is easier to solve. This effective Hamiltonian describes non-interacting “electrons” in a system which is assumed to ha...
	• To put it in another way: We assume that there exists a system of non-interacting electrons that produce the same electron density .
	• The orbitals of the non-interacting electrons are called Kohn-Sham orbitals.

	• Apply Hohenberg-Kohn variational principle to the Kohn- Sham orbitals Þ the Kohn-Sham orbital equations , where in now the kinetic energy of non-interacting electrons.
	• All the problematic terms are collected under : error in the kinetic energy: error in the Coulomb interaction between electrons: correlation and exchange energies (quantum mechanical effects).


	Density functional theory
	• What we have gained here is that the above terms in are (usually) small corrections and can be calculated in an approximative way.
	• The variational principle gives then Þ where runs over all electrons, is the Kohn-Sham eigenvalue of electron , and the effective one-particle potential is:
	• Here is the external potential and ,

	Density functional theory
	• Pictorially this can be presented as

	Density functional theory
	• If the exchange-correlation energy is known, these equations can be solved by self-consistent iteration
	• Note, however, that the Kohn-Sham orbitals and their eigenvalues do not have a clear physical interpretation. There is no guarantee that they have any relation to real electron energies and wave functions, but it appears that they are in fact a s...

	• Local density approximation (LDA)
	• So far the DFT approach has not made any approximations.
	• To obtain the exchange-correlation functional the local density approximation, (LDA) is used: , where is the exchange and correlation energy of a homogeneous electron gas per one electron.

	• The exchange functional can be as simple as (Dirac LDA)


	Density functional theory
	• Once an exchange and correlation energy for a homogeneous gas is introduced (several exist), the equations can be solved with an iteration process: 1) Start with some . 2) Calculate the one-electron wave functions Þ new density 3) New Þ new . 4...
	• Spin in the exchange and correlation term: local spin density approximation, LSDA.
	• DFT-LDA results compared with experimental data: 1) Generally too large cohesive energies for solids 2) Too large total energies for atoms 3) Too small energy gaps for many semiconductors (LDA actually predicts zero gap for Ge!). 4) Unstable for ...
	• To improve on the accuracy of DFT people have introduced exchange-and-correlation functionals which also depend on the variation of the electron density: .
	• There are numerous of these so called Generalized Gradient Approximations (GGA).
	• In practice there are a large number of GGA’s around, and people choose one which for some reason has been “found to work well” in their system. This gives a semi-empirical character to the methods, i.e. they are not pure ab initio


	• The DFT solution method does not restrict the way we express the Kohn-Sham wave functions.
	• Below are given two nowadays common ways to build the basis sets used in DFT calculations: plane waves and atomic-type orbitals.


	Plane-wave methods
	• In plane-wave methods the basic algorithms are as in DFT but:
	• The outer valence electrons are described as a sum of plane waves: where the wave vectors are chosen to that they have the same periodicity as the simulation cell.
	• Any shape of the electron wave functions can in principle be described with this sum provided the sum has enough terms .
	• Names of some common plane wave methods: - APW = Augmented Plane Wave - LAPW = Linear APW - FLAPW = Fully LAPW - SAPW = Spline APW - OPW = Orthogonal Plane Wave
	• The main measure of the accuracy of plane-wave methods is the number of plane waves used to describe the system.

	Plane-wave methods
	• Examples of results of DFT / plane-wave calculation results:

	LCAO methods
	• In the LCAO (Linear Combination of Atomic Orbitals) method the basis set consists of orbitals localized around each atom in the system.
	• Compare with plane waves that are as non-localized as possible.
	• Orbitals can be obtained from quantum mechanical atomic calculations. (Or pseudo-atomic; see below)
	• The accuracy is not so straightforward to adjust as in the plane wave method.


	Pseudopotentials
	• In most cases the filled inner electron shells of atoms do not have any effect on the behavior of the system.
	• The idea is to remove the core electrons and the strong nuclear potential and replace them with a weaker pseudopotential.
	• Outside some cut-off radius the pseudo wavefunctions and the pseudopotential are indentical to those of the real atom..
	• The counterpart to pseudopotential methods are the all electron methods.
	• Pseudopotentials are commonly used with DFT calculations both with planewaves and atomic type orbitals.

	Pseudopotentials
	• Results for the lattice constant a and bulk modulus B for C and Si:
	• So it is quite possible to obtain the quantities to an accuracy ~ 1 %.
	• Car-Parrinello MD
	• The Car Parrinello method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] is a method where the electron and atom motion is updated at the same time. The method has become very popular because it is highly efficient and can also be p...


	Example of scaling of a DFT calculation
	• CPU time usage of a SIESTA calculation:
	• Si with simple SZ basis set.
	• CPU time for one energy calculation (~ time step).
	• Simulations by E. Holmström.


	Commercial HF and DFT programs
	• In practice, a large fraction of modern HF, DFT- and empirical simulations are carried out with commercial codes.
	• In commercial codes, the algorithms are typically 5-15 years or old. This is a mixed blessing: the state-of- the art methods may not be available, but on the other hand the algorithms in there are usually well tested. Roughly speaking especially ...
	• The commercial codes have flashy and easy-to-use graphical user interfaces. This is good in one sense, but also makes the risk to do garbage in–garbage out kinds of simulations very large. So don’t blindly start using a commercial code, you s...


	Commercial HF and DFT programs
	• HF-codes:
	• Gaussian The code deriving from Poples work. Very popular and versatile code. Nowadays also a DFT version is part of the package.
	• TurboMole

	• DFT-codes
	• CASTEP Plane-wave DFT code, commercial
	• DMol3 DFT code based on numerical basis sets, rather than Gaussian Sets
	• VASP Semi-commercial plane-wave DFT code developed in Vienna. Very widely used. http://cms.mpi.univie.ac.at/vasp/
	• Quantum Espresso http://www.quantum-espresso.org/ Open Source, Free
	• GPAW Python-based code, under active development. Real-space, scales well. https://wiki.fysik.dtu.dk/gpaw/
	• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - Home page: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/ - A fully self-consistent DFT code. Uses LCAO basis sets. - Source code available, can be use...

	• Other important stuff
	• InsightII The graphical user interface of Accelrys Inc., from which most codes of Accelrys and some non-commercial codes such as DMol and Gaussian can be run. http://www.accelrys.com

	• See also http://electronicstructure.org/

	Tight-binding methods
	• Tight-binding (TB) models can be considered “minimal” quantum mechanical models. They are most often semi-empirical, and the quality of the results varies a lot. At best, one can achieve results comparable to DFT with a 100 times less compute...
	• In semi-empirical TB one starts with the assumption that total electronic energy can be written as where is a repulsive classical pair potential acting between the atoms, and the are eigenvalues of some self-consists Schrödinger-like equation,
	• This resembles the DFT formalism, and can be derived with various approximations.

	• The eigenvalues are negative, and the repulsive energy positive. is either constructed by empirical fitting to give the desired total energy, or derived from DFT.

	Tight-binding methods
	• Bonding of H2
	• Wave function:
	• Schrödinger equation
	• Project to states and Þ , (We know (?) that .)
	• Let’s shift energy origin so that Þ we get the equation
	• Solutions ,


	Tight-binding methods
	• The TB Schrödinger is solved with the variational principle for some set of basis functions which leads to a secular equation where and
	• Often one still assumes that the set of basis functions is orthogonal, in which case reduces to the unit matrix.

	• Usually the basis set is put to contain only the outermost electrons, with all others treated with the repulsive potential . The elements in the basis function set are usually also fit to experimental data.
	• For instance, to treat a material where only the outer s and p electrons are important, one can get away with using only for basis functions (sss, sps, pps and ppp). If one want to also describe d electrons, one needs at least 10 basis functions.
	• Roughly speaking it seems that TB methods usually works well in materials with only covalent bonding. Systems where much work has been done and which have been found to work well are at least C, Si and their hydrogen compounds.

	• See for example Foulkes et al., Phys. Rev. B 39 (1989) 12520, and Sutton et al., J. Phys. C: Solid State Phys. 21 (1988) 35. for the DFT foundations of the TB model

	Tight-binding methods
	• An example of a TBMD application [G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994) 3471]
	• A fullerene C60 colliding with a diamond surface with different kinetic energies (the surface is a reconstructed (111) surface with no dangling bonds):
	• When Ek £ 120 eV no bonds are formed between the fullerene and the surface, and the fullerene simply bounces off it. - When 120 eV < Ek < 240 eV a few bonds are formed between the fullerene and the surface, and the fullerene may stick to the sur...


	Very brief mention of a few other methods
	• Quantum Monte Carlo (QMC) methods are a set of DFT-related methods where Monte Carlo simulation techniques are used to minimize the correlation term of DFT.
	• Computationally very expensive, but they can give very accurate results, especially for the correlation term which is difficult to treat otherwise.
	• The most common varieties: Diffusion Monte Carlo (DMC) and Variational Monte Carlo (VMC)

	• Just an example on results [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870]:
	• DMC gives all energies correct within the uncertainties, and clearly outshines HF and plain LDA.


	Very brief mention of a few other methods
	• What is the minimum-energy configuration of C20 [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870.]?
	• According to QMC:n it is the “bowl” shape
	• Note the large differences between the supposedly reliable DFT and HF methods, and that none of the agrees with the QMC behaviour.


	Very brief mention of a few other methods
	• Path Integral Molecular Dynamics
	• Path Integral MD (PIMD) is a DFT / Car-Parrinello type of method which uses a Feynman path integral representation of the density matrix.
	• Also hideously expensive computationally, but claimed to be the only really good method to describe water-related reactions.
	• A rough rule of thumb for both QMC and PIMD is that the number of atoms is limited to ~ 20 or so...

	• Time-dependent HF, DFT, TB
	• The methods described until now are all normally used to obtain the ground state. This means one assumes that the electron system has time to come to rest before the processes of interest happen. Since electronic relaxation times are typically of...
	• However, if one is interested in e.g. electronic excitation, this approximation is not valid, and one has to actually solve the time-dependent Schrödinger equation. This can be done by iterating over time.
	• Time-dependent (TD)-methods are somewhat of a hot topic in electronic structure calculations now, and there are TD variations of all the main methods: HF, DFT and TB.
	• A rough rule of thumb is that a TD-method is at least a factor of 100 slower than the corresponding ordinary method



