
Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P
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Theory behind atomistic simulations

[main source: Allen-Tildesley]

• An atomistic simulation (MD or MC) gives atom positions and velocities qi pi,{ }

• qi pi,{ }  (or in cartesian coordinates ri pi,{ } )  macroscopic quantities (This is what statistical 

physics is all about!)

• system Hamiltonian H q p,( )

• equations of motion:q·k pk∂
∂ H q p,( )= p·k qk∂

∂
H–= 

• N  particles  the system state at any given time is a point Γ  in a 6N -dimensional phase space.  

• The evolution of the system from one point Γ  to another is determined by the MD equations of motion or 
a Metropolis Monte Carlo simulation.
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Theory behind atomistic simulations

• One point in phase space qi pi,{ } Γ=  

• Measured (macroscopic) quantity Aobs  corresponding to (microscopic) physical quantity 

A A Γ( )=   from MD simulations as a time average: 
 

Aobs A  t A Γ t( )( )  t
1

tobs
--------- A Γ t( )( ) td

0

tobs

tobs ∞→
lim= = =  

• All practical simulations are of course over discrete steps, so the integral has to be rewritten 
 

Aobs A  t
1

τobs
----------= A Γ τ( )( )

τ 1=

τobs

=  

 
and because an MD simulation often fluctuates strongly in the beginning, we skip the first, say, 100 time 
steps: 
 

Aobs
1

τobs 100–
------------------------- A Γ τ( )( )

τ 101=

τobs

=
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Relation between simulations and statistical physics

• In MD a time average gives the experimental quantity A . 
• However: in statistical physics we use ensembles 

• a set of points Γ  in phase space

• the likelihood of system being in the dΓ  neigborhood of point Γ  is given by the probability distribution ρ Γ( )dΓ
• ρ Γ( )  depends on external conditions: (constant) NVE, NVT, NPT: 
e.g. with ρNVE Γ( )   

or generally, for any ensemble, ρens Γ( ) .

• In statistical physics the time average is replaced by an ensemble average (why?) 
• go through all the points qi pi,{ }  in the ensemble phase space.

• In a Monte Carlo simulations the time average is replaced by going through a large set of 
points in phase space (using a Markov chain):  
 

Aobs A ens A Γi( )ρens Γi( )

i 1=

Nsim

= =

• If ρens Γ( )  is independent of time (thermodynamic equilibrium), and the system is ergodic 
A  t A ens=
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Ergodicity

• In an ergodic system a long enough simulation will go through all points in phase space qi pi,{ } .

• An example of a non-ergodic system (each hexagon represents one point phase space 
qi pi,{ } ): 

• 

A
lle

n-
T

ild
es

le
y

In the darker area, the simulation moves in a close 
path, and can never get out of this area  the simu-
lation does not test all of phase space, i.e. is non-
ergodic.  

• In case there would be a single path which would go 
through the whole system, the system would be 
ergodic.

• Is it possible to prove that some system is 
ergodic? Not in the general case, and even for a 
given system it is usually very difficult in practice.

• In practice the system may not only have regions 
which are impossible to reach, but also regions 
which are surrounded by a high potential energy barrier so that reaching them in a finite simula-
tion may be very unlikely (such a barrier is illustrated by the grey thin regions in the figure). This 
may distort the simulation averages badly.
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Ergodicity

• A practical example: 

• Simulate diffusion in Cu at high temperature, around the melting point. In equilibrium the lattice has, say, 
10 vacancies which cause diffusion at a rate of e.g. 1 atom/1 ps. Hence in a 100 ps simulation one gets 
about 1000 atom jumps, which appears to give a good time average of the diffusion constant. 
 
But: about once in a ns a Frenkel pair, that is a pair of one vacancy and one atom at an interstitial posi-
tion, may be created. Because the interstitial moves very much faster than the vacancy, it can cause thou-
sands of atom jumps before it recombines with some vacancy. Because the interstitial causes a huge lot 
of diffusion, its presence can completely change the diffusion constant which would have been obtained in 
100 ps.  
 
So the system must be simulated for tens of ns’s to get a reliable estimate of the diffusion coefficient - and 
if one does not realize the possibility of Frenkel pair formation, one would probably never notice this in a 
single 100 ps simulation. [Nordlund and Averback, Phys. Rev. Lett. 80 (1998) 4201]

• To get reliable results one not only has to burn away computer time, but also understand the 
physics in the system well!
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Ergodicity

• Sometimes (in MC simulations) it is useful to use a weighting function wens Γ( )  to weight the 

ensemble and speed up getting the desired results: 

ρens Γ( )
wens Γ( )

Qens
--------------------=  

Qens wens Γ( )
Γ
=       (partition function) 

A ens

wens Γ( )A Γ( )
Γ


wens Γ( )
Γ


----------------------------------------=

• MC integration: the flatter the function, the faster it is to obtain a precise average
• Qens  will depend on the macroscopic properties of the system.

• Connection to thermodynamics: Ψens Qensln–=  = thermodynamic potential 

• In practice: set up the MC simulation Markov chain such that it generates points according to 
the desired weighting function. 
• A simple choice: wens Γ( ) ρens Γ( )=

• How this is achieved in practice will be dealt with in the MC course.
Introduction to molecular dynamics 2015               6. Different ensembles                                                                                                                                                     7



Ergodicity

• So, to summarize the purpose of equilibrium simulations can be stated as:

• go through phase space as efficiently as possible to get averages which correspond to experimentally 
observable quantities Aobs  

• molecular dynamics: A  t

• Monte Carlo: A ens  (importance sampling)

• In MD only the NVE ensemble is obtained by solving the ordinary Newton/Lagrange/Hamilto-
nian equations of motion. For the other ones, one has to generate equations of motion which 
behave according to the desired ensemble ρens Γ( )
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The most important ensembles

[source: L.E. Reichl, A Modern Course in Statistical Physics]

• As in thermodynamics, the ensembles are denoted by letters which indicate which physical 
quantities are conserved. The names are also the same.

1. Microcanonical (NVE) 
2. Canonical (NVT) 
3. Isothermal-isobaric (NPT) 
4. Grand canonical (μVT)

• Here N  is the number of atoms, V  the system volume, T  the temperature, P  the pressure, and μ  
the chemical potential [cf. e.g. Mandl “Statistical physics” chapters 2 and 11].

• Microcanonical: NVE constant (isolated) 
 

ρNVE Γ( ) δ H Γ( ) E–( )=  

QNVE δ H Γ( ) E–( )
Γ


1
N!
------ 1

h
3N

--------- rd pδ H r,p( ) E–( )d= =  

• Thermodynamical potential is the entropy: S
kB
------ QNVEln= .

• The δ  function selects the states Γ  where the total energy = E .
• Natural for MD in the sense that the total energy is conserved.
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The most important ensembles

• Canonical: NVT constant (closed but not heat-isolated)
heat bath

 
ρNVT Γ( ) H Γ( )– kBT⁄( )exp∝  

QNVT H Γ( )– kBT⁄( )exp

Γ


1
N!
------ 1

h
3N

--------- rd p H r,p( )– kBT⁄( )expd= =  

 
- Thermodynamical potential is the Helmholtz free energy: 

A
kBT
---------- QNVTln–= ,    A E ST–=

• Isothermal-isobaric: NPT constant

heat bath

P = P0
 

ρNPT Γ( ) H Γ( )– PV+( ) kBT⁄( )exp∝  

QNPT H Γ( )– PV+( ) kBT⁄( )exp

Γ


1
N!
------ 1

h
3N

--------- 1
V0
------ rd p H r,p( )– PV+( ) kBT⁄( )expd

= =

• Thermodynamical potential the Gibbs free energy:   
G

kBT
---------- QNPTln–= ,   G E TS– PV+=

• In MD the volume has also to be made variable.
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The most important ensembles

• Grand canonical: μVT constant
heat bath

“particle reservoir”

 
 

ρμVT Γ( ) H Γ( )– μN+( ) kBT⁄( )exp∝  

QμVT H Γ( )– μN+( ) kBT⁄( )exp

Γ N,


1
N!
------ 1

h
3N

--------- μ– N kBT⁄( )exp rd p H r,p( )– kBT⁄( )expd
N


= =  

• Thermodynamic potential is the grand potential: 
 

        Ω–
kBT
---------- QμVTln–= ,   Ω E TS– μN– PV–= =

• Now the number of atoms is changing: we have to have an algorithm to add or remove particles [not trivial 
in most practical (condensed matter) systems].

• In the thermodynamic limit (system size N ∞→ ) all the ensembles are 
equivalent (but the fluctuations around the average may not be).
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Calculating thermodynamical quantities

• Internal energy, that is, total energy (in the mdmorse code Etot): 

E H  K  U +
pi

2

2mi
----------

i
  U q( ) += = =  

• U q( )  is obtained directly from the potential energy calculation.

• Temperature 

Ekin K  3
2
---NkBT= =             T 2K

3NkB
--------------

1
3NkB
--------------

pi
2

mi
----------

i 1=

N

= =

• So, on the average there is kBT 2⁄  of energy per degree of freedom, as the classical equipartition theo-

rem predicts.
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Calculating thermodynamical quantities

• Pressure (refer to Hamiltonian equations of motion): 

• Generalized equipartition theorem for atom positions: 

qk qk∂
∂H  kBT=         1

3
---– ri Uri

∇( )⋅

i 1=

N

  1
3
--- ri fi

tot⋅

i 1=

N

  NkBT–= = ; 

• Divide the force into two components: fi
tot fi

ext fi+=  

external pressure: 
1
3
--- ri fi

ext⋅

i 1=

N

  PV–=  

internal virial:        W 1
3
---– ri Uri

∇( )⋅

i 1=

N


1
3
--- ri fi⋅

i 1=

N

= =  

 

    
1
3
--- ri fi⋅

i 1=

N

  1
3
--- ri fi

ext⋅

i 1=

N

 + NkBT–=   which can be rewritten    W  PV– NkBT–=  

 
 desired pressure PV NkBT W +=
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Calculating thermodynamical quantities 

• Pair interaction V r( )  and periodic boundaries: 

W 1
3
---– w rij( )

j i>


i
= ;         w r( ) rij rijd

d V rij( )= ;     

• Calculation in the force routine:

! dVdr is the derivative of V, i.e. the force
virial=virial+dVdr*(dx/r*dx+dy/r*dy+dz/r*dz)
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• Calculating thermodynamical quantities 

• Thermodynamic potentials (free energies)

• Quantities which depend on the entropy 

• Energy/potential differences can be ‘easily’ calculated by integrating over a reversible path: 

A
NkBT
-------------- 
 

2

A
NkBT
-------------- 
 

1
–

E
NkBT
-------------- 
  βd

β
------

β1

β2


E

NkBT
-------------- 
  Td

T
------

T1

T2

–= =  

A
NkBT
-------------- 
 

2

A
NkBT
-------------- 
 

1
–

PV
NkBT
-------------- 
  ρd

ρ
------

ρ1

ρ2


PV

NkBT
-------------- 
  Vd

V
------

V1

V2

–= =  

• So one has to calculate a thermodynamic average for a large number of intermediate steps, then inte-
grate over the path. 

• Calculating absolute values with the Frenkel-Ladd method:
• Construct a potential energy which is dependent on a parameter λ : U U r λ,( )=  
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Calculating thermodynamical quantities 
 

       
λ∂

∂A kBT
λ∂

∂ r U r,λ( )– kBT⁄( )expdln–

r
λ∂

∂V
U– kBT⁄( )expd

r U– kBT⁄( )expd
----------------------------------------------------

λ∂
∂U 

=

=

=

• Construct U  so that for λ λ0=  the absolute value of A  can be calculated analytically or numerically: e.g. an ideal 

gas or a harmonic lattice. 

• Then get the absolute value of A  for any λ  using: 

         A λ( ) A λ0( )–
λ∂

∂U  λd

λ0

λ

=  
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Calculating thermodynamical quantities 

• Real potential function, for which we want A , is U0

• construct U U r λ,( )=  to interpolate between U0  and a harmonic lattice (Einstein’s model) with 

 

         U r λ,( ) U0 r( ) λ ri ri0–( )2

i 1=

N

+=  

      A λ 0=( ) A λ( )
λ∂

∂U  λ'd

0

λ

–=  

 
 
- At large values of λ  we have harmonic lattice: e.g. Helmholtz free energy is: 
 

         A λ( ) 3Nhω
2

--------------- 3NkBT 1 e
hω kBT⁄–

–( )ln O 1 λ⁄( )+–=  

 
and hence the free energy for our ‘real’ system U0  is A λ 0=( )  and can be calculated by integrating over U∂( ) λ∂( )⁄ . 

[Frenkel-Ladd, J. Chem. Phys. 81 (1984) 3188]
Introduction to molecular dynamics 2015               6. Different ensembles                                                                                                                                                     17



Calculating thermodynamical quantities

• Response functions

• How does the system react to a change in some thermodynamic variable?

• Some of the most important response functions: 
 

constant volume heat capacity CV T∂
∂E
 
 

V
=  

constant pressure heat capacity CP T∂
∂H
 
 

P
=  

thermal expansion coefficient αP V
1–

T∂
∂V
 
 

P
=  

isothermal compressibility βT V–
1–

P∂
∂V
 
 

T
=  

bulk modulus B 1 βT⁄=  

thermal pressure coefficient γV T∂
∂P
 
 

V
=

• Because αP βTγV=  it is enough to get one of these three coefficients
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Calculating thermodynamical quantities

• How can one get these from simulations?  

• Direct simulation 

• E.g. heat capacity CV  can be obtained by doing simulations at different temperatures, thus obtaining E T( )   

CV T( )
T∂

∂E
 
 

V
=  

• From the fluctuations in the system (remember from basic thermodynamics that for a finite-sized system 
of N atoms, there should be fluctuations of the order of N  in thermodynamic quantities such as T and P!)

• E. g.  CV  from a single simulation in the canonical ensemble: 

δH
2 NVT kBT

2
CV=   (H  is the momentaneous enthalpy) 

• Because δKδU NVT 0= , CV  can be separated into a kinetic and potential energy part: 
 

δH
2 NVT δU

2 NVT δK
2 NVT+=  

• Kinetic energy part: δK
2 NVT

3N
2

------- kBT( )2 3N

2β2
---------= =      ideal-gas heat capacity   CV

id 3
2
---NkB= . 
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Calculating thermodynamical quantities

• By combining these we get  
 

δU
2 NVT kBT

2
CV

3
2
---NkB– 

 =

• So we can calculate CV  solely from the fluctuations of the potential energy. 

• Similar fluctuation identities can also be derived for many other response functions  
(see e.g. Allen-Tildesley chapter 2.5.) 

• These identities really depend on the ensemble used.  
E.g. in the microcanonical ensemble: 
 

δK
2 NVE δU

2 = NVE
3
2
---Nk

B

2
T

2
1

3NkB
2CV

--------------–
 
 
 

=
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Calculating thermodynamical quantities

• Structural quantities 

• Pair correlation function 
 
g2 ri rj,( ) g2 rij( ) g r( )= =  
 
which tells at what distances atoms are from each 
other.  

• It can be calculated as 
 

g r( ) ρ 2– δ ri( )δ rj r–( )
j i≠


i
 

N
2

V
2

------ δ r rij–( )
i j≠


i
 

=

=

 

• g r( )  gives information on the structure of the mate-
rial. For instance melting: 
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Calculating thermodynamical quantities

• In practice it is of course not handy to use a delta function on a computer. So what is done instead is to 
collect statistics of what atom distances exist in some finite interval Δr :

integer :: stat(0:10000)

do i=0,10000
    stat(i) = 0
enddo

binwidth=0.01
do i=1,N
   do j=1,N

if (i==j) cycle
dx=x(j)-x(i)
dy=y(j)-y(i)
dz=z(j)-z(i)
rsq=dx*dx+dy*dy+dz*dz
r=sqrt(rsq)
ir = int(r/binwidth+0.5)
if (ir > 10000) ir=10000
stat(ir) = stat(ir) + 1

   enddo
enddo

• Note: no boundary condition checks.

• The normalization factor 4πr
2Δr  can be added afterwards, when printing the statistics.

• In practice if N  is small (say 100 or less) the statistics will be poor  time averaging.
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Calculating thermodynamical quantities 

• g r( )  is also useful because the average of any pair function can be given in the form: 
 

a ri rj,( )  1
V
--- ri rig ri rj,( )a ri rj,( )dd=  or  

A  a rij( )
j i>


i
  1

2
---Nρ a r( )g r( )4πr

2
rd

0

∞

= =

• E.g.  the energy (pair interaction V r( ))E
3
2
---NkBT 2πNρ V r( )g r( )r

2
rd

0

∞

+=   

or the pressure PV NkBT
2
3
---πNρ w r( )g r( )r

2
rd

0

∞

–=  
Introduction to molecular dynamics 2015               6. Different ensembles                                                                                                                                                     23



Calculating thermodynamical quantities

• Structure factor in reciprocal k -space (Fourier transformation of positions): 
 

ρ k( ) ik r⋅( )exp

i 1=

N

=   

• The square of ρ k( )  gives the structure factor S k( ) : 
 

S k( ) N
1– ρ k( )ρ k–( ) = , 

 
which can be measured with x-ray or neutron scattering

• This quantity can be shown to be related to g r( )  through a 3-dimensional Fourier transform: 
 

S k( ) 1 ρĝ k( )+ 1 4πρ krsin
kr

-------------g r( )r
2

rd

0

∞

+= =  

• Because g r( )  is a measurable quantity, it is often useful in testing how realistic a potential energy function 
is in describing some structure, especially a liquid or amorphous phase. 

• However, this test is actually not all that sensitive to the detailed structure.
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Calculating thermodynamical quantities

• Transport coefficients

• The correlation between any two quantities A  and B  is  
 

cAB
δAδB 

σ A( )σ B( )
-------------------------=  

σ2
A( ) δA

2  A
2  A 2

–= =   ;     
δA A A –=  
0 cAB 1≤ ≤

• The time dependent correlation function cAB t( ) : A  and B  at different times, e.g. A t( )  and B 0( )

• Autocorrelation function cAA t( )

• Correlation time tA cAA t( ) td

0

∞

=

• These give information on  
- the dynamics of the material 
- transport coefficients 
- can be related to experimental spectra by Fourier transformations
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Calculating thermodynamical quantities

• Transport coefficients: system response to an external disturbance ρ t( ) ρens δρ t( )+=  

• For instance diffusion coefficient: particle flux ↔ concentration gradient. 

• ρ t( )  → time dependent averages. 

• Comparison to transport equations → transport coefficients. 

• Coefficients usually of the form γ A· t( ) A· 0( )( )  td

0

∞

=  

• For a large time there also always exists an Einstein relation 
 

2tγ A t( ) A 0( )–( )2 =  
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Calculating thermodynamical quantities

• Some transport coefficients for the NVE-ensemble:

• Diffusion constant D
1
3
--- vi t( ) vi 0( )⋅  td

0

∞

=

• Simple form to evaluate:  2tD
1
3
--- ri t( ) ri 0( )–( )2 =

• Thermal conductivity λT
V

kBT
2

------------ ji
ε

t( )ji
ε

0( )  td

0

∞

= ,  

2tλT
V

kBT
2

------------ δεα t( ) δεα 0( )–( )2 = , where  

δεα
1
V
--- riα εi εi –( )

i
= ;   

ji
ε

t∂
∂δεα= ;   

εi

pi
2

2mi
---------

1
2
--- V rij( )

i j≠
+=  
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Algorithms for simulating ensembles
[most material from Allen-Tildesley ch. 7.4]

• Pure NVE: see lectures 2-5 

• NVE-scaling or constraint methods:

• Often even in an NVE simulation one does some simple tricks to control temperature and/or pressure. 
This gives something of an NVT or NVP and NVE hybrid: T  and P  fluctuate, and the system does not 
behave as a true NVT or NVP ensemble in the thermodynamic sense. But on average T  and P  have the 
desired value. In true NVT or NPT algorithms it is possible to have T  and P  have exactly the desired 
value, and the simulation directly corresponds to the thermodynamic ensembles.

• Temperature scaling 

• Trivial scaling: force during every time step the system temperature to be exactly T . This may be a rather 
severe perturbation of the atom motion especially if there are only a few atoms. It suppresses the normal 
T  fluctuations, and does still not correspond to a true NVT ensemble. But the error in ensemble averages 
usually is O 1 N⁄( )  so with a large number of atoms one may get away with it.
Introduction to molecular dynamics 2015               6. Different ensembles                                                                                                                                                     28



Algorithms for simulating ensembles

• The Berendsen method: essentially a direct scaling but softened with a time constant. [Berend-
sen et al. J. Chem. Phys. 81 (1984) 3684].  

• Coupling to heat bath, Langevin dynamics: mv· F mγv– R t( )+=
• Global coupling + local noise

• Replace the local noise by its average behvior in 
td

dEk    

               
td

dT
 
 

bath
2γ T0 T–( )=   

               mv· F mγ
T0
T
------ 1– 
  v+=

• Let T0  be the desired temperature, Δt  the time step of the system and τT 1 2γ⁄=  the time constant of the control. 

In the Berendsen method in order to change the temperature in one timestep by 2γΔt T0 T–( ) Δt
τT
----- T0 T–( )=  all 

atom velocities are scaled at every time step with a factor λ , where 
 

       λ 1
Δt
τT
-----

T0
T
------ 1– 
 +=  (*) 

• Note: if τT 100Δt>  then the system has natural thermal fluctuations about the average.
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Algorithms for simulating ensembles

• The derivation above lacks a factor 21. 

• Let’s write the temperature behavior as 
dT
dt
------

1
τT
----- T0 T–( )= . From this we can solve T t( )  as  

              T t( ) T0 Ti T0–( )e t τT⁄–+= , where Ti T 0( )=  is the initial temperature.

• On the other hand when we scale velocity v λv→  the change in the internal energy is δE λ2 1–( )3
2
---NkBT= ,

• Now the heat capacity is CV
δE
δT
------= . From this and from the differential equation of the temperature we get 

δT
δt
------

1
τT
----- T0 T–( )=   δT

δt
τT
----- T0 T–( )= . 

• From the definition of heat capacity we obtain CV
δE
δT
------

λ2 1–( )3
2
---NkBT

δt
τT
----- T0 T–( )

--------------------------------------= = .

• By solving λ  from this we get λ2
2CVδt

3kBNτT
--------------------

T0
T
------ 1– 
  1+= .

• Let’s make the bold assumption that the heat capacity is given by the Dulong-Petit law: CV 3NkB=

1. Ideas for this derivation are from Kalevi Kokko’s lecture notes at http://vanha.physics.utu.fi/opiskelu/kurssit/XFYS4416/
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Algorithms for simulating ensembles

• Finally we obtain the expression for λ : 
 

                       λ2 2δt
τT
--------

T0
T
------ 1– 
  1+= .  (**)

• As we shall see in exercise 7, this is the right expression in the sense that it reproduces the behavior dictated by the 

equation 
dT
dt
------

1
τT
----- T0 T–( )= .

• Effect of parameter τT  on time development of T

FCC copper
Morse potential
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Algorithms for simulating ensembles

• ... and on T  fluctuations

simulation 
time = 50ps 
 
first 10ps 
skipped

:   simulation for , i.e. no temperature controlτT ∞=
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Algorithms for simulating ensembles

• Pressure scaling (Berendsen)

• Pressure is put to a desired value by changing the cell size. 
• If the desired pressure is P0  and τP  is the time constant, the scaling factor is  

 

                 μ 1 βΔt
τP

---------– P0 P–( )3=  

 
where β  is the isothermal compressibility of the system = 1/bulk modulus.  

• β  only occurs in the division over the time constant τP  it is just a factor which makes the typical time constant values 

roughly independent of the material.

• Scaling implemented by changing all atom positions x  and the system size S  every time step 
                 x t Δt+( ) μx t( )=  
                 S t Δt+( ) μS t( )=  

• Also the system volume V  changes:

                   V t Δt+( ) μ3
V t( )=

• Pressure scaling done after the solution of the equations of motion 

• τP 100Δt>
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Algorithms for simulating ensembles

• Another (better) way to derive μ : 

• We want 
td

dP 1
τP
------ P0 P t( )–[ ]=    (*)

• Volume scaling V μ3V→ . Definition of compressibility: β 1
V
---

P∂
∂V

–=
V∂

∂P 1
Vβ
-------–= .

• Now 
td

dP
Vd

dP
td

dV 1
Vβ
------- μ3 1–( )V

Δt
------------------------– 1 μ3–

βΔt
---------------= = = . 

• From this and (*) we get  
1 μ3–

βΔt
---------------

1
τP
------ P0 P t( )–[ ]= , from which we solve μ : 

 

           μ3 1
βΔt
τP

--------- P0 P t( )–[ ]–=
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Algorithms for simulating ensembles

• Effect of parameter τP  
 

• The Berendsen scaling can be used to 
control T  and P . If the system is in 
equilibrium the total energy E  should 
still be conserved, but if phase transi-
tions, such as melting occur, E  does 
not necessarily stay conserved until 
equilibrium is reached again.

• In the Berendsen method P , T , V  and 
Epot  all fluctuate, and because the 

time constants τ  have to be fairly large 
it can take quite a while to reach a 
desired pressure or temperature.

• But in equilibrium and with large enough time constants, the method gives quite realistic fluctuations in T  
and P . And it is almost as trivial to implement as direct scaling. Hence it is much to be preferred over 
direct scaling.
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Algorithms for simulating ensembles

• True NVT algorithms 

• The Andersén method [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)]. 

• Give the atom with some probability a new velocity which corresponds to a desired heat bath temperature 
T0

• Physical interpretation clear: connection to external heat bath

• Suitable for calculating thermodynamic averages, but not for looking at atomic processes in detail, since 
the random velocity is obviously an unphysical perturbation on the motion of a single atom. 

• Nosé-Hoover-method [W. Hoover, Phys. Rev. A 31, 1695-1697 (1985).]

• A fictional degree of freedom s  which has its own kinetic and potential energy is added to the system, and 
this degree of freedom controls the temperature. The system total energy, i.e. Hamiltonian: 
 

H
pi

2mi
---------

i
 V qi( ) Q

2
----ps

2
qkT sln+ + +=  

 
where ps  is the momentum associated with the degree of freedom.  
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Algorithms for simulating ensembles

• Now the Hamiltonian equations of motion become: 
 
dqi
dt

--------
pi
mi
------= ;       

dpi
dt

-------- dV
dqi
--------– pspi–= ,     

dps
dt

--------
pi
mi
------

i
 gkT–
 
 
 

Q⁄=  

• These can be solved with some suitable algorithm.  

• Q  is a fictional mass related to the extra degree of freedom, which describes the rate at which the temper-
ature changed. 

• Nosé suggested Q gkBT∼  where g  is the number of degrees of freedom in the system, typically 6N . For large Q  the 

connection to the heat bath weakens, and for small Q  the energy E  may oscillate too much.
 

• Nosé-Hoover chains [Tobias, Martyna, Klein, J. Phys. Chem. 97 (1993) 12959]

• Also control the new degree s  of freedom with another Nosé-Hoover-algorithm and so forth, i.e. form a 
chain of these.

• At least in simulations of proteins this can give a very good temperature control.

• “Massive” Nosé-Hoover-chain: add a Nosé-Hoover thermostat chain to every degree of freedom (!)
• Advantage: as Nosé-Hoover, but in addition very efficient in equipartitioning the energy and thus getting the system 

into equilibrium. Disadvantage: even more coding
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Algorithms for simulating ensembles

• True NPT algorithms

• Andersén pressure control [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)]

• The cell size V  a dynamic variable, but the system shape may not change. The size is controlled by a fic-

tional piston which has a mass Q  (in units of m/l4). The kinetic and potential energy of the piston are: 
 

EkinV
1
2
---QV·

2
=   and   EpotV PV=   

 

and if the atom positions r  and velocities v  are written in reduced units s  such that r V
1 3⁄

s=  and 

v V
1 3⁄

s·=  we get the equations of motion 
 

s·· f

mV
1 3⁄

-----------------
2
3
---s·V·

V
---–=  

 
 

V··
Pt P–

Q
---------------=  

 
where f  are the forces acting on atoms, Pt  is the momentaneous pressure and P  the desired pressure.
Introduction to molecular dynamics 2015               6. Different ensembles                                                                                                                                                     38



Algorithms for simulating ensembles

• Parrinello-Rahman-pressure control [Parrinello and Rahman, J. Appl. Phys. 52 (1981) 7182]

• This method also allows a variable simulation cell shape, that is, the angles between the axes do not 

have to be 90o. 

• The cell size and shape is given by vectors a , b  and c . If we form a 3 3× -matrix h out of these the atom 
positions r  can be written in the form 
r hs= . 
 
where s  is an ordinary vector. 

• The equations of motion can be derived to be: 
 

si
·· dV

dr
------- 1

mirij
------------ si sj–( ) G·

G
----s·–

j
–=  

Wh·· P pI–( )σ hΣ–=  
 

where G h
T

h= , σ  is a tensor which defines reciprocal space, and P  is the generalized 3 3×  pressure 
tensor: 

P
1
V
--- mivivi

i


1
rij
-----

rijd
du rijrij

j i>


i
–= .
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Algorithms for simulating ensembles

• The diagonal elements of P  are the pressures in x , yand z , the other elements are shear elements.  

• The hydrostatic “ordinary” pressure P trP( ) 3⁄ P11 P22 P33+ +( ) 3⁄= = .  

• Σ  is a quantity which depends on the external pressure tensor S: 
 

Σ h0
1–

S p–( )h0
T 1– Ω0=  

 
where h0   and Ω0  are the original (reference) shape and volume of the system.  

• W  is a fictional “mass” which is used to control the rate of change of the pressure (compare with Q  in the 
NVT algorithms above). 
Introduction to molecular dynamics 2015               6. Different ensembles                                                                                                                                                     40



Algorithms for simulating ensembles

• This allows us to simulate a system which changes shape, for instance a cubic to hexagonal phase trans-
formation. 

 

Source: Allen-Tildesley

by
 H

an
nu

 H
äk

ki
ne

n

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• An example of the effects of the mass 
parameter Q :A Lennard-Jones-system 
 (Ne); T=0.1 K; constant pressure-MD: 
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Algorithms for simulating ensembles

• μVT-methods

• Chemical potential μ  stays constant, number of atoms fluctuates 

• Rarely used in MD, more often in MC simulations where it is more natural to add and remove atoms from 
the system.  

• An alternative to adding or removing atoms is to add or remove “control volume”. 

• In condensed matter simulations the problem is that just adding an atom on a random place can easily 
lead to completely unphysical configurations.  

• Also adding or removing control volume without distrorting the system state too much may be tricky. 

• If you need this, see e.g. [Lynch, Pettitt: J. Chem. Phys. 107 (1997) 8594] or [Heffelfinger, J. Chem. Phys. 
100 (1994) 7548]. 
Introduction to molecular dynamics 2015               6. Different ensembles                                                                                                                                                     42



Algorithms for simulating ensembles

• What T  and P  control to use? 

• For T  or P  scaling: Berendsen is fast to implement, and does work well provided the time con-
stants are large enough. 

• If one wants accurate T  control or needs to do NVT thermodynamic averaging, one of the Nosé-
Hoover methods is probably best 

• For orthogonal box NPT simulations: Andersén 

• If one wants needs to deal with shear pressure or changes in crystal structure  Parrinello-
Rahman
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Other types of MD simulations 

• Non-equilibrium MD (NEMD) 

• Any MD simulation of a system which is not in thermodynamic equilibrium. 
• Usually some perturbative term is added to the equations of motion.
• For instance for simulating viscosity, heat conductivity and atomic diffusion there are special NEMD algo-
rithms.

• At its simplest, the perturbation can be an external force acting on some of the atoms.
• The external force heats the system up, which can be compensated by temperature control. 

 

• Brownian dynamics or Langevin dynamics 

• Random forces are let to act on some atoms some of the time. This can be useful e.g. in speeding up 
infrequent events.

• This can also correspond to e.g. a large protein molecule in a liquid solvent. If the protein atoms do not 
react with the solvent atoms, and the solvent atoms are not interesting in themselves, their effect on the 
protein can be thought to reduce to random Langevin forces. 
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Other types of MD simulations

• Multiple time step methods

• In these methods the simulation is sped up by using different time steps for different atoms or parts of the 
system.

• A simple example of where this may be useful: a molecule which has light and much heavier particles. 
The light particles move much faster, so their motion can be simulated with a short time step Δt1  and the 

heavy ones with a longer time step Δt2 . 

• Another possibility: count near interactions acting on atom i with a short time step Δt1  and those farther 

away with a longer one Δt2 . In here, we assume the movement of the atoms far away is so small that they 

do not move significantly with respect to atom i  during the shorter time Δt1 .

• MD far from equilibrium 

• Many processes of modern interest involve physical interactions which occur very far from thermody-
namic equilibrium. 

• E.g.  two nanoparticles colliding in vacuum, or an energetic ion from an accelerator hits a material. 
• In both cases very violent interactions occur over ps timescales, and the surrounding medium does not have time to 

equilibrate the system into anything close to thermodynamic equilibrium during the time when the interesting pro-
cesses occur.

• Simulating such a system is simple: simply use ordinary NVE with no T  or P  scaling. 
• But watch out for possible finite size effects! 
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Other types of MD simulations

• An example of NEMD: heat conduction in crystalline and amorphous Si [von Alfthan et al., MRS Sympo-
sium Proceedings, 703 (2002) V6.2.1]

• Straightforward way: impose a T  gradient  heat flux J   k J
xd

dT⁄–= .

• Problems: large fluctuations in J   large dT dx⁄  needed. 
 

hotcold cold
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Other types of MD simulations

• Another way [Müller-Plathe, J. 
Chem. Phys. 106 (1997) 
6082.]: impose heat flux by 
exchanging particle velocities 
between hot and cold parts of 
the system

am
or

ph
ou

s

crystalline

• Results for c-Si size dependent, moreover experimental 
 !

• Phonon mean free path in c-Si ~ 1000 Å

• Results for  reasonable.

• No thermal boundary resistance observed.

kc 160 W/mK=

ka

• Flux ‘exact’, controlled by 
exchange interval

• dT dx⁄ ‘s for different simula-
tion system sizes: (a) 
Lc 296 Å= , La 100 Å= , 

d 32 Å=  
(b) Lc 187 Å= , La 38 Å= , 

d 16 Å=  
(c) Lc 187 Å= , La 38 Å= , 

d 32 Å=

System ka  (W/mk) kc  (W/mk)

(a) 0.93 13

(b) 0.85 9

(c) 0.80 15
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	Theory behind atomistic simulations
	• An atomistic simulation (MD or MC) gives atom positions and velocities
	• (or in cartesian coordinates ) Þ macroscopic quantities (This is what statistical physics is all about!)
	• system Hamiltonian
	• equations of motion:
	• particles Þ the system state at any given time is a point in a -dimensional phase space.
	• The evolution of the system from one point to another is determined by the MD equations of motion or a Metropolis Monte Carlo simulation.

	Theory behind atomistic simulations
	• One point in phase space
	• Measured (macroscopic) quantity corresponding to (microscopic) physical quantity from MD simulations as a time average:
	• All practical simulations are of course over discrete steps, so the integral has to be rewritten and because an MD simulation often fluctuates strongly in the beginning, we skip the first, say, 100 time steps:

	Relation between simulations and statistical physics
	• In MD a time average gives the experimental quantity .
	• However: in statistical physics we use ensembles
	• a set of points in phase space
	• the likelihood of system being in the neigborhood of point is given by the probability distribution

	• depends on external conditions: (constant) NVE, NVT, NPT: e.g. with or generally, for any ensemble, .
	• In statistical physics the time average is replaced by an ensemble average (why?)

	• go through all the points in the ensemble phase space.
	• In a Monte Carlo simulations the time average is replaced by going through a large set of points in phase space (using a Markov chain):
	• If is independent of time (thermodynamic equilibrium), and the system is ergodic


	Ergodicity
	• In an ergodic system a long enough simulation will go through all points in phase space .
	• An example of a non-ergodic system (each hexagon represents one point phase space ):
	• In the darker area, the simulation moves in a close path, and can never get out of this area Þ the simulation does not test all of phase space, i.e. is non- ergodic.
	• In case there would be a single path which would go through the whole system, the system would be ergodic.
	• Is it possible to prove that some system is ergodic? Not in the general case, and even for a given system it is usually very difficult in practice.
	• In practice the system may not only have regions which are impossible to reach, but also regions which are surrounded by a high potential energy barrier so that reaching them in a finite simulation may be very unlikely (such a barrier is illustra...


	Ergodicity
	• A practical example:
	• Simulate diffusion in Cu at high temperature, around the melting point. In equilibrium the lattice has, say, 10 vacancies which cause diffusion at a rate of e.g. 1 atom/1 ps. Hence in a 100 ps simulation one gets about 1000 atom jumps, which appe...
	• To get reliable results one not only has to burn away computer time, but also understand the physics in the system well!

	Ergodicity
	• Sometimes (in MC simulations) it is useful to use a weighting function to weight the ensemble and speed up getting the desired results: (partition function)
	• MC integration: the flatter the function, the faster it is to obtain a precise average
	• will depend on the macroscopic properties of the system.
	• Connection to thermodynamics: = thermodynamic potential
	• In practice: set up the MC simulation Markov chain such that it generates points according to the desired weighting function.

	• A simple choice:
	• How this is achieved in practice will be dealt with in the MC course.

	Ergodicity
	• So, to summarize the purpose of equilibrium simulations can be stated as:
	• go through phase space as efficiently as possible to get averages which correspond to experimentally observable quantities
	• molecular dynamics:
	• Monte Carlo: (importance sampling)
	• In MD only the NVE ensemble is obtained by solving the ordinary Newton/Lagrange/Hamiltonian equations of motion. For the other ones, one has to generate equations of motion which behave according to the desired ensemble


	The most important ensembles
	• As in thermodynamics, the ensembles are denoted by letters which indicate which physical quantities are conserved. The names are also the same.
	• Here is the number of atoms, the system volume, the temperature, the pressure, and the chemical potential [cf. e.g. Mandl “Statistical physics” chapters 2 and 11].
	• Microcanonical: NVE constant (isolated)
	• Thermodynamical potential is the entropy: .
	• The function selects the states where the total energy = .
	• Natural for MD in the sense that the total energy is conserved.

	The most important ensembles
	• Canonical: NVT constant (closed but not heat-isolated) - Thermodynamical potential is the Helmholtz free energy: ,
	• Isothermal-isobaric: NPT constant
	• Thermodynamical potential the Gibbs free energy: ,
	• In MD the volume has also to be made variable.

	The most important ensembles
	• Grand canonical: mVT constant
	• Thermodynamic potential is the grand potential: ,
	• Now the number of atoms is changing: we have to have an algorithm to add or remove particles [not trivial in most practical (condensed matter) systems].
	• In the thermodynamic limit (system size ) all the ensembles are equivalent (but the fluctuations around the average may not be).


	Calculating thermodynamical quantities
	• Internal energy, that is, total energy (in the mdmorse code Etot):
	• is obtained directly from the potential energy calculation.
	• Temperature Þ

	• So, on the average there is of energy per degree of freedom, as the classical equipartition theorem predicts.

	Calculating thermodynamical quantities
	• Pressure (refer to Hamiltonian equations of motion):
	• Generalized equipartition theorem for atom positions: Þ ;
	• Divide the force into two components: external pressure: internal virial: Þ which can be rewritten Þ desired pressure


	Calculating thermodynamical quantities
	• Pair interaction and periodic boundaries: ; ;
	• Calculation in the force routine:
	! dVdr is the derivative of V, i.e. the force
	virial=virial+dVdr*(dx/r*dx+dy/r*dy+dz/r*dz)
	• Calculating thermodynamical quantities
	• Thermodynamic potentials (free energies)

	• Quantities which depend on the entropy
	• Energy/potential differences can be ‘easily’ calculated by integrating over a reversible path:
	• So one has to calculate a thermodynamic average for a large number of intermediate steps, then integrate over the path.
	• Calculating absolute values with the Frenkel-Ladd method:
	• Construct a potential energy which is dependent on a parameter :


	Calculating thermodynamical quantities Þ
	• Construct so that for the absolute value of can be calculated analytically or numerically: e.g. an ideal gas or a harmonic lattice.
	• Then get the absolute value of for any using:


	Calculating thermodynamical quantities
	• Real potential function, for which we want , is
	• construct to interpolate between and a harmonic lattice (Einstein’s model) with Þ - At large values of we have harmonic lattice: e.g. Helmholtz free energy is: and hence the free energy for our ‘real’ system  is  and can be calculated by i...


	Calculating thermodynamical quantities
	• Response functions
	• How does the system react to a change in some thermodynamic variable?
	• Some of the most important response functions: constant volume heat capacity constant pressure heat capacity thermal expansion coefficient isothermal compressibility bulk modulus thermal pressure coefficient
	• Because it is enough to get one of these three coefficients

	Calculating thermodynamical quantities
	• How can one get these from simulations?
	• Direct simulation
	• E.g. heat capacity can be obtained by doing simulations at different temperatures, thus obtaining Þ

	• From the fluctuations in the system (remember from basic thermodynamics that for a finite-sized system of N atoms, there should be fluctuations of the order of in thermodynamic quantities such as T and P!)
	• E. g. from a single simulation in the canonical ensemble: ( is the momentaneous enthalpy)

	• Because , can be separated into a kinetic and potential energy part:
	• Kinetic energy part: Þ ideal-gas heat capacity .

	Calculating thermodynamical quantities
	• By combining these we get
	• So we can calculate solely from the fluctuations of the potential energy.
	• Similar fluctuation identities can also be derived for many other response functions (see e.g. Allen-Tildesley chapter 2.5.)
	• These identities really depend on the ensemble used. E.g. in the microcanonical ensemble:

	Calculating thermodynamical quantities
	• Structural quantities
	• Pair correlation function which tells at what distances atoms are from each other.
	• It can be calculated as
	• gives information on the structure of the material. For instance melting:

	Calculating thermodynamical quantities
	• In practice it is of course not handy to use a delta function on a computer. So what is done instead is to collect statistics of what atom distances exist in some finite interval :
	integer :: stat(0:10000)
	do i=0,10000
	stat(i) = 0
	enddo
	binwidth=0.01
	do i=1,N
	do j=1,N
	if (i==j) cycle
	dx=x(j)-x(i)
	dy=y(j)-y(i)
	dz=z(j)-z(i)
	rsq=dx*dx+dy*dy+dz*dz
	r=sqrt(rsq)
	ir = int(r/binwidth+0.5)
	if (ir > 10000) ir=10000
	stat(ir) = stat(ir) + 1
	enddo
	enddo

	• Note: no boundary condition checks.
	• The normalization factor can be added afterwards, when printing the statistics.
	• In practice if is small (say 100 or less) the statistics will be poor Þ time averaging.

	Calculating thermodynamical quantities
	• is also useful because the average of any pair function can be given in the form: or
	• E.g. the energy (pair interaction ) or the pressure

	Calculating thermodynamical quantities
	• Structure factor in reciprocal -space (Fourier transformation of positions):
	• The square of gives the structure factor : , which can be measured with x-ray or neutron scattering
	• This quantity can be shown to be related to through a 3-dimensional Fourier transform:
	• Because is a measurable quantity, it is often useful in testing how realistic a potential energy function is in describing some structure, especially a liquid or amorphous phase.
	• However, this test is actually not all that sensitive to the detailed structure.

	Calculating thermodynamical quantities
	• Transport coefficients
	• The correlation between any two quantities and is ;
	• The time dependent correlation function : and at different times, e.g. and
	• Autocorrelation function
	• Correlation time
	• These give information on - the dynamics of the material - transport coefficients - can be related to experimental spectra by Fourier transformations

	Calculating thermodynamical quantities
	• Transport coefficients: system response to an external disturbance
	• For instance diffusion coefficient: particle flux « concentration gradient.
	• ® time dependent averages.
	• Comparison to transport equations ® transport coefficients.
	• Coefficients usually of the form
	• For a large time there also always exists an Einstein relation


	Calculating thermodynamical quantities
	• Some transport coefficients for the NVE-ensemble:
	• Diffusion constant
	• Simple form to evaluate:

	• Thermal conductivity , , where ; ;

	Algorithms for simulating ensembles
	• Pure NVE: see lectures 2-5
	• NVE-scaling or constraint methods:
	• Often even in an NVE simulation one does some simple tricks to control temperature and/or pressure. This gives something of an NVT or NVP and NVE hybrid: and fluctuate, and the system does not behave as a true NVT or NVP ensemble in the thermodyn...
	• Temperature scaling

	• Trivial scaling: force during every time step the system temperature to be exactly . This may be a rather severe perturbation of the atom motion especially if there are only a few atoms. It suppresses the normal  fluctuations, and does still not ...

	Algorithms for simulating ensembles
	• The Berendsen method: essentially a direct scaling but softened with a time constant. [Berendsen et al. J. Chem. Phys. 81 (1984) 3684].
	• Coupling to heat bath, Langevin dynamics:
	• Global coupling + local noise
	• Replace the local noise by its average behvior in Þ Þ
	• Let be the desired temperature, the time step of the system and the time constant of the control. In the Berendsen method in order to change the temperature in one timestep by all atom velocities are scaled at every time step with a factor , wher...
	• Note: if then the system has natural thermal fluctuations about the average.


	Algorithms for simulating ensembles
	• The derivation above lacks a factor 2.
	• Let’s write the temperature behavior as . From this we can solve as , where is the initial temperature.
	• On the other hand when we scale velocity the change in the internal energy is ,
	• Now the heat capacity is . From this and from the differential equation of the temperature we get Þ .
	• From the definition of heat capacity we obtain .
	• By solving from this we get .
	• Let’s make the bold assumption that the heat capacity is given by the Dulong-Petit law:

	Algorithms for simulating ensembles
	• Finally we obtain the expression for : . (**)
	• As we shall see in exercise 7, this is the right expression in the sense that it reproduces the behavior dictated by the equation .
	• Effect of parameter on time development of

	Algorithms for simulating ensembles
	• ... and on fluctuations

	Algorithms for simulating ensembles
	• Pressure scaling (Berendsen)
	• Pressure is put to a desired value by changing the cell size.
	• If the desired pressure is and is the time constant, the scaling factor is where is the isothermal compressibility of the system = 1/bulk modulus.
	• only occurs in the division over the time constant it is just a factor which makes the typical time constant values roughly independent of the material.
	• Scaling implemented by changing all atom positions and the system size every time step
	• Also the system volume changes:
	• Pressure scaling done after the solution of the equations of motion
	•


	Algorithms for simulating ensembles
	• Another (better) way to derive :
	• We want (*)
	• Volume scaling . Definition of compressibility: .
	• Now .
	• From this and (*) we get , from which we solve :


	Algorithms for simulating ensembles
	• Effect of parameter
	• The Berendsen scaling can be used to control and . If the system is in equilibrium the total energy should still be conserved, but if phase transitions, such as melting occur, does not necessarily stay conserved until equilibrium is reached again.
	• In the Berendsen method , , and all fluctuate, and because the time constants have to be fairly large it can take quite a while to reach a desired pressure or temperature.
	• But in equilibrium and with large enough time constants, the method gives quite realistic fluctuations in and . And it is almost as trivial to implement as direct scaling. Hence it is much to be preferred over direct scaling.

	Algorithms for simulating ensembles
	• True NVT algorithms
	• The Andersén method [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)].
	• Give the atom with some probability a new velocity which corresponds to a desired heat bath temperature
	• Physical interpretation clear: connection to external heat bath
	• Suitable for calculating thermodynamic averages, but not for looking at atomic processes in detail, since the random velocity is obviously an unphysical perturbation on the motion of a single atom.
	• Nosé-Hoover-method [W. Hoover, Phys. Rev. A 31, 1695-1697 (1985).]

	• A fictional degree of freedom which has its own kinetic and potential energy is added to the system, and this degree of freedom controls the temperature. The system total energy, i.e. Hamiltonian: where  is the momentum associated with the degree...

	Algorithms for simulating ensembles
	• Now the Hamiltonian equations of motion become: ; ,
	• These can be solved with some suitable algorithm.
	• is a fictional mass related to the extra degree of freedom, which describes the rate at which the temperature changed.
	• Nosé suggested where is the number of degrees of freedom in the system, typically . For large the connection to the heat bath weakens, and for small the energy may oscillate too much.
	• Nosé-Hoover chains [Tobias, Martyna, Klein, J. Phys. Chem. 97 (1993) 12959]

	• Also control the new degree of freedom with another Nosé-Hoover-algorithm and so forth, i.e. form a chain of these.
	• At least in simulations of proteins this can give a very good temperature control.
	• “Massive” Nosé-Hoover-chain: add a Nosé-Hoover thermostat chain to every degree of freedom (!)
	• Advantage: as Nosé-Hoover, but in addition very efficient in equipartitioning the energy and thus getting the system into equilibrium. Disadvantage: even more coding


	Algorithms for simulating ensembles
	• True NPT algorithms
	• Andersén pressure control [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)]
	• The cell size a dynamic variable, but the system shape may not change. The size is controlled by a fictional piston which has a mass (in units of m/l4). The kinetic and potential energy of the piston are: and and if the atom positions  and veloci...

	Algorithms for simulating ensembles
	• Parrinello-Rahman-pressure control [Parrinello and Rahman, J. Appl. Phys. 52 (1981) 7182]
	• This method also allows a variable simulation cell shape, that is, the angles between the axes do not have to be 90o.
	• The cell size and shape is given by vectors , and . If we form a -matrix out of these the atom positions can be written in the form . where is an ordinary vector.
	• The equations of motion can be derived to be: where , is a tensor which defines reciprocal space, and is the generalized pressure tensor: .

	Algorithms for simulating ensembles
	• The diagonal elements of are the pressures in , and , the other elements are shear elements.
	• The hydrostatic “ordinary” pressure .
	• is a quantity which depends on the external pressure tensor : where and are the original (reference) shape and volume of the system.
	• is a fictional “mass” which is used to control the rate of change of the pressure (compare with in the NVT algorithms above).

	Algorithms for simulating ensembles
	• This allows us to simulate a system which changes shape, for instance a cubic to hexagonal phase transformation.
	• An example of the effects of the mass parameter :A Lennard-Jones-system (Ne); T=0.1 K; constant pressure-MD:

	Algorithms for simulating ensembles
	• mVT-methods
	• Chemical potential stays constant, number of atoms fluctuates
	• Rarely used in MD, more often in MC simulations where it is more natural to add and remove atoms from the system.
	• An alternative to adding or removing atoms is to add or remove “control volume”.

	• In condensed matter simulations the problem is that just adding an atom on a random place can easily lead to completely unphysical configurations.
	• Also adding or removing control volume without distrorting the system state too much may be tricky.
	• If you need this, see e.g. [Lynch, Pettitt: J. Chem. Phys. 107 (1997) 8594] or [Heffelfinger, J. Chem. Phys. 100 (1994) 7548].

	Algorithms for simulating ensembles
	• What and control to use?
	• For or scaling: Berendsen is fast to implement, and does work well provided the time constants are large enough.
	• If one wants accurate control or needs to do NVT thermodynamic averaging, one of the Nosé- Hoover methods is probably best
	• For orthogonal box NPT simulations: Andersén
	• If one wants needs to deal with shear pressure or changes in crystal structure Þ Parrinello- Rahman

	Other types of MD simulations
	• Non-equilibrium MD (NEMD)
	• Any MD simulation of a system which is not in thermodynamic equilibrium.
	• Usually some perturbative term is added to the equations of motion.
	• For instance for simulating viscosity, heat conductivity and atomic diffusion there are special NEMD algorithms.
	• At its simplest, the perturbation can be an external force acting on some of the atoms.
	• The external force heats the system up, which can be compensated by temperature control.
	• Brownian dynamics or Langevin dynamics

	• Random forces are let to act on some atoms some of the time. This can be useful e.g. in speeding up infrequent events.
	• This can also correspond to e.g. a large protein molecule in a liquid solvent. If the protein atoms do not react with the solvent atoms, and the solvent atoms are not interesting in themselves, their effect on the protein can be thought to reduce...

	Other types of MD simulations
	• Multiple time step methods
	• In these methods the simulation is sped up by using different time steps for different atoms or parts of the system.
	• A simple example of where this may be useful: a molecule which has light and much heavier particles. The light particles move much faster, so their motion can be simulated with a short time step and the heavy ones with a longer time step .
	• Another possibility: count near interactions acting on atom i with a short time step and those farther away with a longer one . In here, we assume the movement of the atoms far away is so small that they do not move significantly with respect to ...
	• MD far from equilibrium

	• Many processes of modern interest involve physical interactions which occur very far from thermodynamic equilibrium.
	• E.g. two nanoparticles colliding in vacuum, or an energetic ion from an accelerator hits a material.
	• In both cases very violent interactions occur over ps timescales, and the surrounding medium does not have time to equilibrate the system into anything close to thermodynamic equilibrium during the time when the interesting processes occur.

	• Simulating such a system is simple: simply use ordinary NVE with no or scaling.
	• But watch out for possible finite size effects!


	Other types of MD simulations
	• An example of NEMD: heat conduction in crystalline and amorphous Si [von Alfthan et al., MRS Symposium Proceedings, 703 (2002) V6.2.1]
	• Straightforward way: impose a gradient Þ heat flux Þ .
	• Problems: large fluctuations in Þ large needed.


	Other types of MD simulations
	• Another way [Müller-Plathe, J. Chem. Phys. 106 (1997) 6082.]: impose heat flux by exchanging particle velocities between hot and cold parts of the system
	• Results for c-Si size dependent, moreover experimental !
	• Phonon mean free path in c-Si ~ 1000 Å

	• Results for reasonable.
	• No thermal boundary resistance observed.
	• Flux ‘exact’, controlled by exchange interval

	• ‘s for different simulation system sizes: (a) , , (b) , , (c) , ,


