Set the initial conditions rl.(tO), Vl.(tO) |

'

> | Update neighborlist |

¢

| Get new forces Fi(ri) |

#

Solve the equations of motion numerically over time step At:

ri(tn)%ri(thrl) Vi(tn)ﬁvi(thrl)

'

Perform T, P scaling (ensembles)

J

t—>t+ At

'

Get desired physical quantities

'

Calculate results
>t 25— »
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Calculating the forces between atoms

» The forces between atoms can be calculated in many different ways
* This lecture:
» classical potentials.
* pair potentials, many-body potentials

* Quantum mechanics

A classical potential can be written in the form:

V = ZVl(ri) + ZVz(rl., rj) + Z Vy(r, i )t
i i, j ij, k

V' is the total potential energy of an N atom system.
* In principle all sums loop from 1 to N

* V,: single particle potential: external forces

* V,: pair potential which only depends on the distance between atoms i

» direct dependence on the vectors r, rj => dependence on the choice of the origin

* V5 three-body potential which may have an angular dependence

» depends only on three variables, i.e. V; = V3(rl.j, Fi eijk)

* Four-body potentials, even five-body terms: chemical and biological applications
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Calculating the forces between atoms

* V, and V5 enough to describe the basic mechanical and structural properties of most elements and sim-
ple compounds

* In order that things would not be too straightforward, in many cases a environment-dependence (i.e.
implicit three-body term) is embedded into the two-body term V', . We will give examples on these later.

« All terms which are not pure single particle or pair potentials are called many-body terms.
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Calculating the forces between atoms

« Classification of empirical interatomic potentials [A. E. Carlsson, Solid State Physics: Advances
in Research and Applications, 43 (1990) 1]

* Pair Potential V' = Z VP(rl.j)
L,J

o _ _ B B If f(r) = ar
Pair Functional Potential V' = Z Vep(Py)s  p; = Zf(’”,-j) = back to pair potential
i

J#I

) _ _ Only clusters of
Cluster Potential Z Vep(r i Vit T jk) threg atoms here

i#j#k

« Cluster Functional Potential V' = ZVCF(pl.), p, = Z g(rl.j, Vo ”jk)
i jk
i#zj#k

» Real potentials often combinations of these: e.g. EAM for metals V' = ZVPF(pi) + Z VP(rl.j)

I I,j
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Force calculation for pair potentials

* Pure pair potential V(r;)- The force acting on atom i from atom ;

; x99z

ov ~ JdV ~ IV
fy Vr‘V(rl]) Vl‘,jV(rlJ) ; » ijz} ,

(;;, y z unit vectors)

B B aV B dVv al"l-j 8rl.j_ xij
= T=T, X, = X,—x, etc., == = —

axl.]. dr axl.j axij T

r..
y dr r=r; rii

» To be precise V operates on the position r; of atom i. (Makes a difference for many-body poten-
tials.)

o Cut-off radius r.. atom pairs with Fii>Te do not interact, r =afew A.
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Force calculation for pair potentials

* In case the potential extends to infinity, an analytical correction can be made to the energy, and
other quantities of interest:

oo

Vit = Vo Veorr = B, 21Np [ r2V(r)dr

to

e

where p is the atom density of the system.

* This obviously assumes that when r>r  the atom density is constant everywhere, and thus does not
work when for example a surface is present.
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Force calculation for pair potentials
* Discontinuity at », = jumps in energy
« Solution: take the potential to zero in [r,, 7.+ Ar]

« potential and the force are continuous (3rGI order polynomial) or
« displace the potential, as the zero point of } is arbitrary but this changes the value of Vtot

* Many modern potentials are in fact defined so that they have a well-defined cutoff . where 7" and at least
the first derivative are = 0.

V(r)
A
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Force calculation for pair potentials

« Example: cut-off of Lennard-Jones potential

e = (8 -(9)]

« Shift and tilt the potential: V() and V'(7) continuous at

I”C.

Vir) = VLJ(’”) —(r— I”C) VLJ(’/C) - VLJ(FC)

* Problem: may change the potential at smaller » values

2
« Fit a polynomial P(r) = ar3 + br + cr+d from
[rc, rot Arc] :

( P(re) = Viyre)
P(r) = V'i4(r.)
< P(r +Ary) = 0

(P'(r,+Ar) =0

Introduction to molecular dynamics 2015 5. Calculating the forces
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Force calculation for pair potentials

* Problem: high forces may result (see below)
* Brenner potential for carbon (Well, this is not a pair potential):

* Potential quickly to zero; doesn’t look too bad

» However: huge forces; effect seen in fracture simulations
(see also M. Sammalkorpi et al., Phys. Rev. B 70 (2004) 245416.)

potential
(a)

0.5n
!
¥
\
\
— 1 A 8
o’ O t —
- ' -
b= ' LT
> ! g
1
. |
o 0.5 , X
T
' Brenner(1990)
- - — = modified Morse
|
. ] ek )
1 0 0.5 1
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force
) (b)
, Brenner(1990)
i1 Y R modified Morse
A | N W '-' - Lo~ ==
0 0.25 0.5 0.75 1
strain
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Force calculation for pair potentials

 Force calculation without periodic boundaries or neighbour list:

do i=1,N
do j=1,N
if (i==7j) cycle
rijx = rx(j)-rx(i)
rijy = ry(j)-ry(i)
rijz = rz(j)-rz (i)
rijsq = rljx**2+rijy**2+rijz**2

rij = sqrt(rijsq)
if (rij < rcut) then
V = (Potential energy per atom) /2

dvdr = .derivative of potential energy with respect to its only argument r...
a = —dVdr/m/Z 0 ! Unit transformations may be needed. Note the factor 1/2!!
ax (i) = ax(i)-rijx/rij*a ! The application on both
ax(3j) ax(j)+rijx/rij*a ! 1 and j ensures that
ay(i) = ay(i)-rijy/rij*a ! Newton’s third law is
ay (j) = ay(j)+rijy/rij*a ! fulfilled
az (i) = az(i)-rijz/rij*a
az(j) = az(j)+rijz/rij*a
endif
enddo
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Force calculation for pair potentials

« Use of Verlet neighbour list (cf. lecture 3):

startofineighbourlist=1
do i=1,N
nneighboursi=neighbourlist (startofineighbourlist)
do jj=1,nneighboursi
j=neighbourlist (startofineighbourlist+jj)

rijx = rx(j)-rx(i)
rijy = ry(J)-ry(i)
rijz = rz(j)-rz (i)
rijsqg = rijx**2+rijy**24rijz**2

rij = sqrt(rijsq)
if (rij < rcut) then
V = (Potential energy per atom) /2
dvdr = ...derivative of potential energy with respect to its only argument r...

a = -dvdr/m/2.0 ! Plus unit transformations ! Note the factor 1/2!!
ax (i) = ax(i)-rijx/rij*a
ax(j) ax (j)+rijx/rij*a
ay (i) = ay(i)-rijy/rij*a
ay(j) = ay(j)+rijy/rij*a
az (1) az(i)-rijz/rij*a
az(j) = az(j)+rijz/rij*a
endif
enddo
startofineighbourlist=startofineighbourlist+nneighboursi+1

enddo
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Force calculation for pair potentials
* Note that in the sum above every interaction is counted twice:

do i=1,N
do j=1,N
if (i==j) cycle

» That is, e.g. interaction 1-3 is counted both as 1-3 and 3-1. Hence the factor 1/2 in front of the potential energy summa-
tion and forces (this actually depends on the exact definition of the potentials, some already have a factor of 1/2 in
front).

» A straightforward solution:

do i=1,N-1
do j=i+1,N

(either in constructing the neighbour list or forces) reduces the calculation time to one half.
» For some many-body potentials this does not work.
» V(r) often is defined to give the total energy for a pair of atoms. When one wants the potential energy per
atom one thus may have to include one more factor of 1/2. But this additional factor is not needed in the

force calculation since the force always affects both atoms (Newton’s Il law).

* Note that the sign conventions in defining rii in the literature may vary.
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Force calculation for pair potentials

* One practical way of checking that you have correctly derived the forces from the potential
energy and that all signs and factors of 2 are OK in you potential implementation:
1. Calculate Epot at 0 K and compare with an analytical prediction for some simple system, e.g. a dimer or

perfect lattice.
2. Simulate a two-atom system starting from a very small distance, so that Epot is very large, much larger

than the equilibrium energy per atom (say 10000 eV). When you run the simulation with a very small time
step the atoms should explode outwards from each other so that the final £,. /atom is the same as the

original Epot/atom. If you are uncertain what a ‘very small’ time step is, keep decreasing it until the
answer doesn’t change.

3. Another good test: numerical derivation of potential energy:

F(r)-s

Move one atom in direction s amount As.
Directional derivative of the potential (assume |s| = 1): fs ¥
V() _ . V(r+hs)—V(r) - - ¢

— = lim = VV(r)-s = -F(r)-s

as h—0 h
r

Computed from Computed from

potentialenergy forces as

as AV/As Fos .+ Fysy tF.s,
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Force calculation for a three-body potential

» For a pure pair potential for an interaction between atoms i and ; Vii=Vy because
V(rl.j) = V(rjl.) and hence also VZ.VZ.]. = VZ.VJ.Z. as described above. This symmetry simplifies the
force calculation.

* For a three-body potential things get trickier because v, may not = Vi To get the force F, act-
ing on an atom i one instead has to calculate

F; = _Vi{Z(Vij_F V]l)—i_zz ij’} ) _{Z(V’.sz—i_viVﬁ)—Fzzviiji
j Jj k J J ok

» Many practical three-body potentials have been written such that
Va(rip Tip Oi1) = V37 7jjg €080,

i.e. all angular information is in a cosine term.
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Force calculation for a three-body potential

* In this case one can utilize the following equalities:

l"..-l".k
COSO.. = L
ijk r..r.
ij ik
r..-r. cosO.. cosO..
Vl-cosﬁ..k =V, Utk = ijk 1 r..+ ijk 1 i
1y v..r. 2 r.r.| v 2 r.r.. |t
ij ik rij ij' ik i ij" ik

that is, no need to evaluate cos function.

 In many-body potentials there are often symmetries which can be used to reduce the number of
operations needed in the force calculation even more.
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The physical/chemical origin of interactions

« Qualitatively a two-atom interaction looks like the following:

* The minimum, i.e. equilibrium distance, is

I"O.

« At small separations there is a strong
repulsion. Just below r, this derives pri-

V)

marily from the Pauli rule preventing elec-
trons being in states with the same
quantum numbers, and from the electron-
electron repulsion, whereas when the
nuclei are very close to each other, the
Coulombic repulsion between the nuclei
dominates completely.

At larger distances there may be an attraction, which can have different reasons: van der Waals
attraction, Coulomb attraction, a covalent bond, (due to pairing of valence electrons) or metallic
bonding

» Potential may also be purely repulsive
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« A few examples (1 bohr = 0.53 A)

(a) (b} {c)

3 o 3 40 s gooH"
3 ?’b )y 3 o o 3 600l
g -soH4 g G g
= h x e =
[ ~aof > 400
g -100 3  _so § 200t
2 g 2 - f c o
wl wl
-150 w20 9 o;_A-QL‘;'J_"-.
0 5 10 0 5 10 15 20 o 5 10

Internuclear distance ( bohrs)

Fig. 1.2. Electron density distribution contours generated by computer solution of the
Schrédinger equation for interactions in three atomic systems (a) H,, (b) LiF, and (c) He, .
At the bottom is plotted the potential energy of interaction at the different stages of the
process a-h. The separation is in atomic units. (After Wahl [3}.)
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» Overview of bonding expected in different cases, and illustration of electron distributions [Kittel,
Introduction to Solid State physics]

1 I m I v vi vi Noble

iod 1A HA IIIB IVB VB VIB VIIB VIIIB VIIIB IB 1IB IIIA IVA VA VIA VIIA gases
&
T| meracs lONIC N , 12
. . 1 lH . He
I p— 1.008 ' : 4.003
-_— 3 4 5 6 7 8 9 10
HeTALs Qe T 2|Li |Be B [c [N |O |F |Ne
111 —_ C«O 6.941 9.012 ) 10811} 12.011] 14.007] 15999 18.998] 20.179
_ 0“0\3 < L 1|1 ‘ 13 {14 |15 fis |17 |18
_semi et 3|Na | Mg Al |si |p |s |a [ar
v CO\{E__ @ O\)"a 22990 | 24305 26.982 | 28.086 | 30.974 | 32.064 | 35.453 | 39.948
| \AO?\? 19 |20 |21 (22 |23 24 125 |26 |27 |28 |29 [30 31 |32 [33 (34 |35 |36
v » ‘ 41K Ca [Sc |Ti |V Cr |Mn {Fe |Co |Ni [Cu [Zn |Ga |Ge |As |Se |Br |Kr
39.098 ] 40.08 | 44.956 | 47.90 |50.942 | 51.996§ 54.938 55.847| 58.933| 5870 | 63546) 6538 | 6972 | 7250 | 74.922] 78.96 | 79.904 | 83.80
Vi ‘ 37 {38 |39 [40 |41 42 143 |44 |45 |46 |47 |48 |49 |50 |51 {52 {53 |54
‘ 5/Rb |Sr |Y Zr |Nb |Mo [Tc {Ru |Rh |Pd |Ag |[Cd |In |{Sn [Sb |Te |I Xe
IONIC MOLECULAR B5.468 | 87.62 | 88.906 | 91.22 |92.906 | 95.94 99) 101.07 | 102.905] 106.4 |107.868] 112.41| 114.82] 118.69] 121.75] 127.60| 126.905| 131.30
Vil . CRYSTALS
55 156 |57 |72 |73 74 |75 |76 |77 178 |79 |80 [81 |82 |83 84 |85 |86
6i{Cs |Ba |La |Hf |Ta W JRe [Os |Ir Pt {Au |Hg {TI [{Pb |Bi {Po |At |Rn
132.905] 137.33 1138.905| 178.49 { 18049181 183.85] 186.2 190.2 {19222 195.021196.966 | 200.59{ 204.37} 207.19| 208.2 210y (210) (222)

87 88 89 104 |105 } 106 | 107 108 | 109 J 110 | 111
7{Fr |Ra [Ac |Rf(?)|Ha(®)
(223) {226) 227y }(261) |(262) (257) (260) (263) {266} (269) (272)

58 159 160 |61 |62 63 |64 [65 |66 |67 [68 |69 |70 |71
Ce {Pr |[Nd {Pm |Sm {Eu jGd {Tb |Dy |Ho [Er [Tm [Yb |Lu

140.12 | 140.907] 144.24 } (145) 150.35 151.96 1 157.251158.925] 162.50 ] 164.930] 167.26 | 168.934] 173.04 | 174.96

Cryslél_linea_rgan | : Sodl'u_m E:hluride
R "‘;;‘ﬁ 90 |91 92 193 194 95 196 |97 98 |99 100 | 101 } 102 | 103

Th |Pa U |Np |{Pu {Am {Cm |Bk {Cf |Es |Fm |Md |No |Lr
(232) 231 (238) (239) (239) (240) (242) (245 (246) 247 (249) €256) (254) {257)

00

(covalent)
{d}
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» So for the pure elements we get the familiar division:
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Idealized potentials for theoretical and qualitative studies

(a) (b)
o <G () | o(r)

* Hard sphere: VHS(r) = {
0,r=>0

* First MD simulations were carried out with
this potential.

fm 09—

» The equations of motion reduce to calcu-
lating where the next collision occurs: true
billiard ball physics

* Applications in packing problems © oo @ 1o

» Square well:
o0, 1< Oy

VSW(r)= ~£,6,<r<o, | | o k

O,I"ZGZ » r

r

Fig. 1.4 Idealized pair potentials. (a) The hard-sphere potential; (b) The square-well
potential; (c) The soft-sphere potential with repulsion parameter v = i; (d) The soft-sphere
potential with repulsion parameter v = 12,

Source: Allen-Tildesley

A%
* soft sphere: VSS(r) = e[ﬂ
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“Realistic” pair potentials

ror - (9 -(§)]

* The attractive 1/r6- term can be derived from the dipole-dipole interaction, or as the interactions between
two oscillators (QM) [Kittel, Introduction to Solid State Physics, 7th edition, p. 62]. It is also known as the
Van der Waals or London interaction.

* Lennard-Jones (LJ)

* The repulsive term l/r12 chosen for convenience.
* Also other exponents used; notation for any two exponents A and B is LJ (A-B) potential.

» ¢ and o are usually chosen by fitting into experimental data. ¢ gives the equilibrium distance € the cohe-
sive energy.

» A few Lennard-Jones-parameters for gases [Ashcroft-Mermin s. 398]:

Ne Ar Kr Xe
€ (eV) 0.0031 0.0104 0.0140 0.0200
c (A) 2.74 3.40 3.65 3.98

* Very weak interaction: e.g. V_. = -3.1 meV for Ne.

 LJ (12-6) potentials have proven to be good for noble gases (filled electron shells = almost always neu-
tral) close to equilibrium. But they are obviously terrible for very small » (<1 A) since the true interaction

is about e '/ and not l/rlz.
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“Realistic” pair potentials

* LJ potentials have been, and are used a lot, for instance in molecular modelling, in many cases even in
systems where there is no physical motivation to using the LJ functional form. But if the fit is good for
some purpose, using it may still be justified as long as the limitations are kept in mind.

 Reduced units

« If a potential only has a couple of parameters, evaluating it can be really efficient in reduced units

* Also, in reduced units the results are always the same, so the results can be transferred to different sys-
tems with straightforward scaling.

* For instance for the Lennard-Jones-potential:

V(r) = 48[(9)12—((—:)6:| [or any V(r) = ef(r/6))]

r

= Natural length unit= ¢
natural energy unit = ¢

= V' (x) = 4[x 12 - x76]
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“Realistic” pair potentials

 other units:

* o) 1/2
t = t/[(mc)/¢]
* 3
%
T = kBT/e
* 3
P = Po /¢
%k
f = fo/¢

*

v = v/le/m]

» Reduced units were very popular when one had to save CPU time in every single multiplication, and
when potentials were still as simple as LJ.
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“Realistic” pair potentials

* Morse potential

» Simple metals (sp-metals, e.g. Na, Mg, Al; and metals with the v S ,
fcc- or hep-structure), are at least to some extent describable ea [eV] [ A"il] [';{’]
with a pair potential

Na 0.06334 0.58993 5.336

_ _ Al 0.2703 1.1646 3.253

A popular choice: the Morse potential [P. M. Morse, Phys. Rev. K 0.05424 049767  6.369

34 (1930) 57.]: Ca 0.1623 0.80535  4.569

Cr 0.4414 1.5721 2.754

_ —20U(r—ry) —ou(r —ry) Fe 04174 1.3885 2.845

V(r) = De 2De Ni 04205 14199 2780

: - : : : : Cu 0.3429 1.3588 2.866

* Designed originally to describe vibrations in molecules. | Rb 004644 042981  7.207

» The Schrodinger equation happens to have an analytical solution for Sr 0.1513 0.73776 4.988

this functional form. Mo 0.8032 1.5079 2.976

Ag 0.3323 1.3690 3.115

- Efficient to evaluate, in the form above only one exponential Cs 004485 041569  7.557

function needs to be evaluated o 01416 065698 2373

u : W 0.9906 14116 3.032

Pb 0.2348 1.1836 3.733

. D.ecays faster at large r than Lennard-Jones: less problems Mo  0.997 1.500 2.800

with cut-off. Rh 0.7595 1.560 2.750

Rh 0.7595 1.080 2.750

« A fit for many metals [Girifalco and Weizer, Phys. Rev. 114 XV (1)22{5) igg‘; ;-gg‘z‘

(1959) 687.] - ' '

° Works decently for belng a palr pOtentIa| Girifalco and Weizer, Phys. Rev. 114 (1959) 687.
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“Realistic” pair potentials

« An ordinary pair potential has a close-packed structure as the ground state. (usually either
“face-centered cubic”, FCC or “hexagonal close packed”, HCP).

HCP

Introduction to molecular dynamics 2015 5. Calculating the forces
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“Realistic” pair potentials

A pair potential can thus not describe well elements with other structures than FCC or HCP. But

this doesn’t mean people haven't tried:

» Diamond lattice: open structure, four nearest neighbours, very far from close packed.
« Still, it is actually possible to make diamond stable locally with a pair potential, but this will become rather
pathological (Mazzone potential for Si, [Phys. Stat. Sol (b) 165 (1991) 395.]):

» Does actually work close to perfect lattice.
» But what happens when atoms leave the har-
monic well due to e.g. a high temperature?
» System will collapse to close-packed structure =>
applicability of potential extremely limited

» Unfortunately this is not uncommon regarding
interatomic potentials: one has to be very crit-
ical of any new potential! Even well-respected
physicists have presented potentials which
have some very pathological features...
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“Realistic” pair potentials

* lonic compounds

» Different ions, between which the electron density is very
small. The ions have filled electron shells, and are thus
unlikely to change their electron configuration

* An extreme examples: NaCl:

* A pair potential approximation works quite well, and poten-
tials abound in the literature, as there is much experimental
data available for the alkali halides which can be used in
potential fitting.

* Potentials typically contain a short-range (SR) term and the
Coulomb interaction:

2
Z1z,€

V(rij) = VSR(rl.j) + ; z; = lon charges

4n80rU

* Vqg ' repulsive force between electrons packed closely together and an attractive van der Waals (vdW)
interaction
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“Realistic” pair potentials

* Most common forms for the short range potential:

H . _ —7 C
Buckingham: Vg (r) = Ae /P__6

r

Born-Huggins-Mayer: Vp(r) = AeB0r=0) - C_

D
1”6 7"8

Morse: Vg (r) = De >* 770 _ape 7o)

6
« 1/r -term comes from the dipole-dipole interaction (again)

» The repulsion is usually significant only for nearest neighbours, and the vdW interaction for next-nearest neighbours.
Frequently for instance in oxides the only interaction assumed between cations is their Coulombic repulsion.
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Fitting of potential parameters
* In almost all classical potentials there is a number of free parameters, e.g. in Lennard-Jones 2
(e and ¢), Morse 3 (D, a, r,) etc.

* An extreme example: the ReaxFF model for hydrocarbons:
A.C.T. van Duin et al., J. Chem. Phys. A 105 (2001) 9396.

Esyslem - Ebond + Eover + JE'umler + E\'al + E'pen + Etors +
Econj + E\-'cl\-\’aals + ECoulomb
TABLE 1: General Parameters
— - TABLE 2: Atom Parameters As Used in Equations 2, 6, 7, 12, 13, and 14°
parameter value description equation
- T o - bond radii under/over coordination Coulomb parameters heat increments
A 50.0  overcoordination bond order correction 3c
Az 15.61 overcoordination bond order correction  3d units A Fox A Foqa A Pover keal/mol Punder kcal/mol n EV ¥ EV v A Tkcal/mol
Ag 5.02 1—3 bond order correction 3ef -
A 18.32 1—3 bond order correction 3ef C 1.399 1.266 1.236 32.13 29.4 7.41 412 0.69 218.6
s 8.32  1—3 bond order correction 3e,f H 0.656 - 117.5 9.14 2.26 0.37 54.3
As —8.90 overcoordination energy 6
At 1.94  undercoordination energy Ta
As —3.47 undercoordination energy Ta
A 5.79 | linati ay 7l
l?o f2.38 ::Ea:ggg;;;:l:[;gz g:::;{. 73 TABLE 4: Bond Parameters (D, in kcal/mol) As Used in Equations 2 and 3
A 1.49  valence angle energy i 8b bond D .
Az 1.28  valence angle energy 8b one : Prel Prez Prol Proz Pros Prod Pros Pros
A 6.30 valence angle energy 8c c—-C 145.2 0.318 0.65 —0.097 6.38 —0.26 9.37 —0.391 16.87
A 2.72  valence angle energy 8c C-H 183.8 —0.454 12.80 —0.013 7.65
L1 33.87  valence angle energy 8c H-H 168.4 —0.310 10.25 —0.016 5.98
A 6.70  valence angle energy 8d
A 1.06  valence angle energy 8d
s 2.04  valence angle energy 8d
Ao 36.0  penalty energy 9a TABLE 5: Valence Angle Parameters As Used in Equations TABLE 6: Torsion and Conjugation Parameters (V; and V;
Az T.98  penalty energy 9a 8a—d in kcal/mol) As Used in Equations 10a—c
Az 0.40  penalty energy 9b ) "
Az 4.00  penalty energy 9b valence oo k &y torsion angle? |8 Vi P
A3 3.17  torsion energy 10b angle units  degree  keal/mol  (I/radian)?*  p.s Puz
2 : orsion energy C C-C-C 71.312 354 1.37 0.01 077 C—C—C—H 30.5 0.58 —284
Azs 0.90  torsion energy 10c _C— e £ e " ’ :
4 114 confusation ceray 1 C-C-H  7L56 2965 5.29 H-C-C—H 26.5 0.37 -2.33
T 217 confugation cneray i H-CoH o001 1mar 100
) o e W o C-H-C 0 28.5 6.00
Azs 1.69  van der Waals energy 12b H-H—0C 0 0 6,00
H-H-H 0 27.9 6.00 TABLE 3: van der Waals Parameters Used in Equation 122
atom units Feaw A € keal/mol a Vw A
C 3.912 0.0862 10.71 1.41
H 3.649 0.0194 10.06 5.36
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Fitting of potential parameters

« Two main approaches to develop a potential exist:
1. Derivation from so called ab initio (quantum mechanical) calculations
2. Fit to empirical and/or ab initio data

* Although the previous approach is better motivated physically, in practice the latter approach, or a combi-
nation of the two, often works better.

» A good classical potential is one which with a small number of free parameters can describe a
wide range of properties well (usually 5-20 % accuracy in condensed matter physics is consid-
ered to be “well”, since experiments seldom are much more accurate than this).

A related concept is that a good potential should be transferable, which means that it should
be able to describe properties of other states of the material than those it was originally fitted to.
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Fitting of potential parameters

« Regarding fitting the parameters in a potential of type 2, there are two opposite extreme
approaches:

1. “Blind fitting” : choose a functional form and a set of data to which the parameters are fit. Then use some fitting
routine to obtain a best fit to all the data.

2. “Parameter choice by hand”: use reliable experimental or ab initio data of crucial data to set as many potential
parameters as possible exactly, then fit only the remaining (if any) parameters. For instance, the equilibrium separa-
tion, binding energy and vibration frequency for a dimer can be used to fix all the 3 Morse potential parameters.

A pure approach 1 is dangerous in that quantities which are outside the original parameter set may obtain
completely pathological values.
« Example: some Si bulk potentials predict that the Si dimer is non-bonding.

* Also, if some potential parameter happens to be insensitive to all quantities in the data set, the fit may
give ridiculously small or large values for it, which may cause trouble elsewhere.

« To obtain transferable potentials, approach 2 is thus usually to be preferred. On the other hand, if optimal
precision in a limited set of systems (say, elastic properties of a perfect bulk crystal) is desirable,
approach 1 may still be the better way to go.

» Most authors use approaches somewhere between 1 and 2.
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Fitting of potential parameters

A functional form can sometimes be derived from experimental equations of state P(1). Exam-
ple: solid Ne and Ar:
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Figure 5. Pressure-volume isbtherms of Ne at
293 K. O, experimental data (after [19]); @, cpmp
(Lennard-Jones 6-12); &, CPMD (Siska et al [21]).
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Preésure_. (GPa)

Figure 6. Pressure-volume isotherms of Ar at
293 K. The upper isotherm is in the pressure
region 0 to 10 GPa and the lower one in the region
01080 GPa. O, experiment (after[19]); V, exper-
iment (after [20]); @, cPmD (Lennard-Jones 6~
12); A, CPMD (exp-6 [20]). :
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Fitting of potential parameters

« Here is a short list of macroscopic, physical, properties which can and often are used to derive

or fit interatomic potentials:

Physical property

Atom-level property

4 Crystal structure Balance of atomic forces.
Cohesive energy Potential energy at the equilibrium
© atom positions
$)
'g Elastic constants ¢ Long_—wa_veler_lgth acougtic vibrations
S po Elastic distortions of unit cell.
g Equation of state P (V) Compression or expansion of material
4 Neutron scattering Phonon ®(K) in the Brillouin zone.
Dielectric constant € _ Electronic polarizability
. . e Polarizarization of electrons and lat-
2 Dielectric constant =0 tice; long-wavelength optical vibration
© modes;
Q2
o Infrared absorption Long-wavelength vibrations with a
dipole moment.
 § Raman scattering Long-wavelength vibrations which

change the polarizability.

 Out of these, the first five depend purely on the mechanical properties of the material, and are relevant to
almost all solids. The latter four involve electric properties and may or may not be relevant depending on
what kind of materials and properties are studied.
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Fitting of potential parameters

» Crystal structure:
» The equilibrium crystal structure should be stable if one wants to describe any process where large atom
displacements may occur (melting, surfaces, deposition, etc. etc.).
* In equilibrium the force acting on every atom in the unit cell i should vanish:

* Here the potential is only tested at a few i values. (The smaller the crystal symmetry, the more values.)

* Any potential has a minimum potential energy con- _3.8
figuration, or many configurations with the same -~
energy. 5 —4.0F 7
| | S 42t :
« Example: Tersoff potential for Si [J. Tersoff, Phys. °
Rev. B 38 (1988) 9902.] z —4.4r ]
g _46t . |
@ diamond
4.8 : : :

10 14 18 22 26
atomic volume ( f\a )

FIG. 3. Calculated cohesive energy vs volume per atom of
silicon in the diamond, simple cubic (sc), B-tin (B), simple hex-
agonal (sh), bcc, and fec structures. For B-tin, the dotted curve
shows the result of the potential as given in Table I, while the
solid curve results from taking R =2.75 A and D=0.1 A, as
discussed in text.
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Fitting of potential parameters

* Local stability is easy to achieve in a classical potential. But global stability (that is, that the real crystal
structure is indeed the global minimum of the potential) may be surprisingly difficult.

» Even well-known authors make mistakes. For instance, the first Si potential of Tersoff [Tersoff, Phys. Rev.
Lett. 56 (1986) 632.] was well motivated, well derived, and published in the best journal in physics. But the
formation energy of the vacancy turned out to be negative, which means it did not have the right ground
state structure...

» A good way to test the minimum energy: start from random atom positions, and quench the cell slowly
enough so that it crystallizes. If the structure is the correct one, it probably is indeed the ground state.
Unfortunately doing this may take forever.

* Another test: simulate a liquid and solid in equilibrium at the melting point, and check that the solid

remains stable and the liquid recrystallizes to the same structure on slight cooling below 7,
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Fitting of potential parameters

« Cohesive energy (£, = energy difference between free atoms and the solid):

coh

* Directly related to the potential minimum energy level
 Often easy to get right exactly.

. Elastic constants'’ s
» Related to deformation in the material
R(K) = F—r = u ()X + uy(F)y + u(r)z

and to the external stress (pressure) c:
% = 2po’s
(0

* Voigt notation for p- and c-indexing: xx > 1, yy —>2,zz—>3,yz—>4,zx > 5, xy > 6
» Here the strain (crystal distortion) components e;; are

e..Z% : e..=1%+%
1 axi vy o2 axj axl.

1. See e.qg. Kittel, Introduction to solid state physics, 7th edition, ch. 3.
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Fitting of potential parameters

* The stress component O is the force which acts on the plane with the normal X; in the direction x,

* In principle there are 36 stress and strain components, but their number reduces to much smaller num-
bers in practice.
 For instance in a cubic crystal there are only three independent

elastic constants cjp = ¢ Clp = ¢ and Cqq = C

xxxx’ xXxXyy xXyxy:

* Particularly important if there are deformations (compression, shear, melting) in the simulations. Also
related to defect properties and the melting point = if we get the elastic constants about right we are
already on a good way to a good potential.
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* An example of an (unusually)

good fit: F. Ercolessi, J. B.
Adams, Europhys. Lett. 26
(1994) 583.
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F. ERCOLESSI el al.: INTERATOMIC POTENTIALS FROM FIRST-PRINCIPLES CALCULATIONS: ETC. 587
TABLE 1. - Experimental and calculated (with the potential optimized in this work, and with those in
ref.[13,14]) values for equilibrium lattice spacing, cohesive energy, bulk modulus, elastic constants,
phonon frequencies at the points X, L and K of the Brillowin zone, vacancy formation and migration
energies, intrinsic (111) stacking fault energy, surface energy and surface relaxation between the two
outmost layers for the (111), (100) and (110) surfaces, thermal-expansion coefficient at room
temperature, melting temperature, latent heat and volume change on melting. All the energies are at
T =0 and tnclude relaxation effects.

Experimental This work ref. [13] ref.[14]
ay (R) 4.032 4.032 4.05 (%) 4.05(%)
E, (eV/atom) 3.36 3.36 3.36 3.58(%
B (MBar) 0.809 () 0.809 0.79(® 0.81
Cy; (MBar) 1.180 (%) 1.181 1.07 1.08
C,> (MBar) 0.624 (%) 0.623 0.652 0.68
Cy (MBar) 0.325 (%) 0.367 0.322 0.45
vy (X) (THz) 9.68(°) 9.29 8.55 9.03
vp(X) (THz) 5.81(°) 5.80 5.20 6.23
vy, (L) (THz) 9.69 () 9.51 8.87 9.04
vp(L) (THz) 4.22(9 4.02 3.70 4.26
vy, (K) (THz) 8.67(°) 8.38 7.76 8.30
v (K) (THz) 7.55(%) 7.50 6.87 7.32
vro (K) (THz) 5.62 (%) 5.34 4.80 5.67
El.(eV) 0.66 (%) 0.69 0.63 0.62
ED. (eV) 0.62 (%) 0.61 0.30 0.54
Egr (meV/A2%) 75-9.0() 6.5 47 2.9
7111 (meV/Az) T1-75(9) 54.3 51.4 31.1
100 (meV/A2) T1-75(9) 58.8 53.3 34.1
110 (meV/A%) T1-75 (%) 64.7 59.9 36.5
dys (111) (%) +09+ 07" +0.9 -1.6 -0.8
d,5 (100) (%) -12+1.2( -15 -2.9 -17
dys (110) (%) -85+1.00 -46 —-104 —-54
(1/a)(da/dT)107°K"!) 235 1.6 4.2 3.1
T, (K) 933.6 939 £ 5 590 + 15 740 = 10
L., (eV/atom) 0.108 0.105 0.053 0.098
AV, (%) 6.5 8.4 4.9 9.5
(a) Fitted exactly on a different set of experimental data. (f) Ref.[19].
(b) Extrapolated classically to T =0 from data in ref.[15]. (g) Estimates for an «average» orientation, ref.[20].
(¢) Frequencies at 80 K from ref.[16]. (k) Ref.[21].
(d) Ref.[17]. (i) Ref.[22].
(e) Ref.[18]. (7) Ref.[23]. Ref.[21] reports —8.4 = 0.8,
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Weaknesses of pair potentials

« A pair potential can never describe well the directional properties of covalent bonds. For
instance in the diamond/zincblende structure (C, Si, Ge, o-Sn, many compound semiconduc-

tors) the ideal angle between bonds = 109.47° . Similarly, in almost all molecules the directional
properties of covalent bonds is of crucial importance.

 Also longer-range angular dependence is completely neglected. For instance in the structure of
polymers torsional terms are important. Also, recent calculations of BCC metals have shown
that 4-particle interactions are about 50 % of the bond.

 Pair potentials also do not account for the environmental dependence. They predict that the
strength of the two-atom bond is as strong in a dimer as inside a material, which almost never is
true.
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Weaknesses of pair potentials

* For instance the Ga-As interaction:

Ga-As 2-atom interaction

5 T T T T T
4} Ga-As T Dimer intaraction (Dmol) -
31 ' .
2t -
% 0 i _
- B l‘.l \/ 4
2 y IO i
-3 i “.n ,"“" 7
4+ Samee - -
-5 1 1 1 1 1
0 1 2 3 4 5 6
r (A)
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Weaknesses of pair potentials

« Moreover, a pair potential always predicts
that the elastic constants ¢,, = ¢,, for

cubic crystals. but in reality:

 Also, vacancy formation energies are often
completely wrong in pair potentials (see
below).

 Pair potentials also usually give bad sur-
face properties.

« Summa summarum: the pair potential

approximation:
* may work well close to equilibrium structure in
many materials
* is good for noble gases
« is rather good for ionic compounds such as
alkali halides
« is rather bad for FCC and HCP metals
* is terrible for covalently bonded materials

ELASTIC CONSTANTS FOR SOME CUBIC CRYSTALS®

SUBSTANCE Ci C, Cyy REFERENCE®
Li (78 K) 0.148 0.125 0.108 1
Na 0.070 0.061 0.045 2
Cu 1.68 - 1.21 0.75 3
Ag 1.24 0.93 0.46 3
Au 1.86 1.57 0.42 3
Al 1.07 0.61 0.28 4
Pb 0.46 0.39 0.144 5
Ge 1.29 0.48 0.67 1

Si 1.66 0.64 0.80 3
v 0 2.29 1.19 0.43 6
Ta - 2.67 1.61 0.82 6 .
Nb 2.47 1.35 0.287 6
Fe 2.34 1.36 1.18 7
Ni 2.45 1.40 1.25 8
LiCl 0.494 0.228 0.246 9
NaCl 0.487 0.124 0.126 9
KF 0.656 0.146 0.125 9
RbCl 0.361 0.062 0.047 10

¢ Elastic constants in 1012 dynes-cm~2 at 300 K.

Source: Ashcroft-Mermin

 But for all these groups much better, and only slightly slower, models exist. These will be

described later on this course.
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Weaknesses of pair potentials

« Simple estimate of vacancy formation energy using pair potentials:

f
E = E (vacancy, N) — E

vac

¢ Ot(perfect, N)

* nearest neighbor pair potential, energy/bond=V(r_)=0

* no relaxation
» fcc structure = 12 neighbors

E, (vacancy, N) = %[(N—12)12¢+ 12(12-1)¢] = 6(N—1)d

1
E, (perfect, N) = ENIZ(]) = 6NO

f
= Evac = 60 = _Ecoh

 However, ab initio calculations’:
f

Element ECoh (eV) Evac (eV)
Vv 5.31 211+0.2
Nb 7.57 26+0.3
w 8.90 40+0.2

* Relaxation: only minor effect (far less than 1 eV).

1. A. E. Carlsson, Solid State Physics: Advances in Research and Applications, 43 (1990) 1.
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	Calculating the forces between atoms
	• The forces between atoms can be calculated in many different ways
	• This lecture:
	• classical potentials.
	• pair potentials, many-body potentials

	• Quantum mechanics

	• A classical potential can be written in the form:
	• is the total potential energy of an atom system.
	• In principle all sums loop from to
	• : single particle potential: external forces
	• : pair potential which only depends on the distance between atoms
	• direct dependence on the vectors , => dependence on the choice of the origin

	• : three-body potential which may have an angular dependence
	• depends only on three variables, i.e.

	• Four-body potentials, even five-body terms: chemical and biological applications


	Calculating the forces between atoms
	• and enough to describe the basic mechanical and structural properties of most elements and simple compounds
	• In order that things would not be too straightforward, in many cases a environment-dependence (i.e. implicit three-body term) is embedded into the two-body term . We will give examples on these later.
	• All terms which are not pure single particle or pair potentials are called many-body terms.

	Calculating the forces between atoms
	• Classification of empirical interatomic potentials [A. E. Carlsson, Solid State Physics: Advances in Research and Applications, 43 (1990) 1]
	• Pair Potential
	• Pair Functional Potential ,
	• Cluster Potential
	• Cluster Functional Potential ,
	• Real potentials often combinations of these: e.g. EAM for metals


	Force calculation for pair potentials
	• Pure pair potential . The force acting on atom from atom , (, , unit vectors) , etc., , Þ
	• To be precise operates on the position of atom . (Makes a difference for many-body potentials.)
	• Cut-off radius : atom pairs with do not interact, .

	Force calculation for pair potentials
	• In case the potential extends to infinity, an analytical correction can be made to the energy, and other quantities of interest: where is the atom density of the system.
	• This obviously assumes that when the atom density is constant everywhere, and thus does not work when for example a surface is present.


	Force calculation for pair potentials
	• Discontinuity at Þ jumps in energy
	• Solution: take the potential to zero in
	• potential and the force are continuous (3rd order polynomial) or
	• displace the potential, as the zero point of is arbitrary but this changes the value of

	• Many modern potentials are in fact defined so that they have a well-defined cutoff where and at least the first derivative are º 0.


	Force calculation for pair potentials
	• Example: cut-off of Lennard-Jones potential
	• Shift and tilt the potential: and continuous at :
	• Problem: may change the potential at smaller values

	• Fit a polynomial from :


	Force calculation for pair potentials
	• Problem: high forces may result (see below)
	• Brenner potential for carbon (Well, this is not a pair potential):
	• Potential quickly to zero; doesn’t look too bad
	• However: huge forces; effect seen in fracture simulations (see also M. Sammalkorpi et al., Phys. Rev. B 70 (2004) 245416.)

	Force calculation for pair potentials
	• Force calculation without periodic boundaries or neighbour list:

	Force calculation for pair potentials
	• Use of Verlet neighbour list (cf. lecture 3):

	Force calculation for pair potentials
	• Note that in the sum above every interaction is counted twice:
	• That is, e.g. interaction 1-3 is counted both as 1-3 and 3-1. Hence the factor 1/2 in front of the potential energy summation and forces (this actually depends on the exact definition of the potentials, some already have a factor of 1/2 in front).

	• A straightforward solution:
	(either in constructing the neighbour list or forces) reduces the calculation time to one half.
	• For some many-body potentials this does not work.

	• often is defined to give the total energy for a pair of atoms. When one wants the potential energy per atom one thus may have to include one more factor of 1/2. But this additional factor is not needed in the force calculation since the force alw...
	• Note that the sign conventions in defining in the literature may vary.

	Force calculation for pair potentials
	• One practical way of checking that you have correctly derived the forces from the potential energy and that all signs and factors of ½ are OK in you potential implementation:
	1. Calculate at 0 K and compare with an analytical prediction for some simple system, e.g. a dimer or perfect lattice.
	2. Simulate a two-atom system starting from a very small distance, so that is very large, much larger than the equilibrium energy per atom (say 10000 eV). When you run the simulation with a very small time step the atoms should explode outwards from ...
	3. Another good test: numerical derivation of potential energy: Move one atom in direction amount . Directional derivative of the potential (assume ):

	Force calculation for a three-body potential
	• For a pure pair potential for an interaction between atoms and because and hence also as described above. This symmetry simplifies the force calculation.
	• For a three-body potential things get trickier because may not = . To get the force acting on an atom one instead has to calculate
	• Many practical three-body potentials have been written such that i.e. all angular information is in a cosine term.

	Force calculation for a three-body potential
	• In this case one can utilize the following equalities: that is, no need to evaluate cos function.
	• In many-body potentials there are often symmetries which can be used to reduce the number of operations needed in the force calculation even more.

	The physical/chemical origin of interactions
	• Qualitatively a two-atom interaction looks like the following:
	• The minimum, i.e. equilibrium distance, is .
	• At small separations there is a strong repulsion. Just below this derives primarily from the Pauli rule preventing electrons being in states with the same quantum numbers, and from the electron- electron repulsion, whereas when the nuclei are ver...
	• At larger distances there may be an attraction, which can have different reasons: van der Waals attraction, Coulomb attraction, a covalent bond, (due to pairing of valence electrons) or metallic bonding
	• Potential may also be purely repulsive
	• A few examples (1 bohr = 0.53 Å)
	• Overview of bonding expected in different cases, and illustration of electron distributions [Kittel, Introduction to Solid State physics]
	• So for the pure elements we get the familiar division:

	Idealized potentials for theoretical and qualitative studies
	• Hard sphere:
	• First MD simulations were carried out with this potential.
	• The equations of motion reduce to calculating where the next collision occurs: true billiard ball physics
	• Applications in packing problems

	• Square well:
	• soft sphere:

	“Realistic” pair potentials
	• Lennard-Jones (LJ)
	• The attractive - term can be derived from the dipole-dipole interaction, or as the interactions between two oscillators (QM) [Kittel, Introduction to Solid State Physics, 7th edition, p. 62]. It is also known as the Van der Waals or London intera...
	• The repulsive term chosen for convenience.
	• Also other exponents used; notation for any two exponents A and B is LJ (A-B) potential.
	• e and s are usually chosen by fitting into experimental data. s gives the equilibrium distance e the cohesive energy.
	• A few Lennard-Jones-parameters for gases [Ashcroft-Mermin s. 398]:
	• Very weak interaction: e.g. for Ne.
	• LJ (12-6) potentials have proven to be good for noble gases (filled electron shells Þ almost always neutral) close to equilibrium. But they are obviously terrible for very small () since the true interaction is about and not .


	“Realistic” pair potentials
	• LJ potentials have been, and are used a lot, for instance in molecular modelling, in many cases even in systems where there is no physical motivation to using the LJ functional form. But if the fit is good for some purpose, using it may still be ...
	• Reduced units
	• If a potential only has a couple of parameters, evaluating it can be really efficient in reduced units
	• Also, in reduced units the results are always the same, so the results can be transferred to different systems with straightforward scaling.
	• For instance for the Lennard-Jones-potential: [or any )] Þ Natural length unit = natural energy unit = Þ


	“Realistic” pair potentials
	• other units:
	• Reduced units were very popular when one had to save CPU time in every single multiplication, and when potentials were still as simple as LJ.

	“Realistic” pair potentials
	• Morse potential
	• Simple metals (sp-metals, e.g. Na, Mg, Al; and metals with the fcc- or hcp-structure), are at least to some extent describable with a pair potential
	• A popular choice: the Morse potential [P. M. Morse, Phys. Rev. 34 (1930) 57.]:
	• Designed originally to describe vibrations in molecules.
	• The Schrödinger equation happens to have an analytical solution for this functional form.

	• Efficient to evaluate, in the form above only one exponential function needs to be evaluated.
	• Decays faster at large than Lennard-Jones: less problems with cut-off.
	• A fit for many metals [Girifalco and Weizer, Phys. Rev. 114 (1959) 687.]
	• Works decently for being a pair potential.


	“Realistic” pair potentials
	• An ordinary pair potential has a close-packed structure as the ground state. (usually either “face-centered cubic”, FCC or “hexagonal close packed”, HCP).

	“Realistic” pair potentials
	• A pair potential can thus not describe well elements with other structures than FCC or HCP. But this doesn’t mean people haven’t tried:
	• Diamond lattice: open structure, four nearest neighbours, very far from close packed.
	• Still, it is actually possible to make diamond stable locally with a pair potential, but this will become rather pathological (Mazzone potential for Si, [Phys. Stat. Sol (b) 165 (1991) 395.]):
	• Does actually work close to perfect lattice.
	• But what happens when atoms leave the harmonic well due to e.g. a high temperature?
	• System will collapse to close-packed structure => applicability of potential extremely limited

	• Unfortunately this is not uncommon regarding interatomic potentials: one has to be very critical of any new potential! Even well-respected physicists have presented potentials which have some very pathological features...


	“Realistic” pair potentials
	• Ionic compounds
	• Different ions, between which the electron density is very small. The ions have filled electron shells, and are thus unlikely to change their electron configuration
	• An extreme examples: NaCl:
	• A pair potential approximation works quite well, and potentials abound in the literature, as there is much experimental data available for the alkali halides which can be used in potential fitting.
	• Potentials typically contain a short-range (SR) term and the Coulomb interaction: ; = ion charges
	• : repulsive force between electrons packed closely together and an attractive van der Waals (vdW) interaction


	“Realistic” pair potentials
	• Most common forms for the short range potential: Buckingham: Born-Huggins-Mayer: Morse:
	• -term comes from the dipole-dipole interaction (again)
	• The repulsion is usually significant only for nearest neighbours, and the vdW interaction for next-nearest neighbours. Frequently for instance in oxides the only interaction assumed between cations is their Coulombic repulsion.


	Fitting of potential parameters
	• In almost all classical potentials there is a number of free parameters, e.g. in Lennard-Jones 2 ( and ), Morse 3 (, , ) etc.
	• An extreme example: the ReaxFF model for hydrocarbons: A.C.T. van Duin et al., J. Chem. Phys. A 105 (2001) 9396.


	Fitting of potential parameters
	• Two main approaches to develop a potential exist:
	1. Derivation from so called ab initio (quantum mechanical) calculations
	2. Fit to empirical and/or ab initio data
	• Although the previous approach is better motivated physically, in practice the latter approach, or a combination of the two, often works better.

	• A good classical potential is one which with a small number of free parameters can describe a wide range of properties well (usually 5-20 % accuracy in condensed matter physics is considered to be “well”, since experiments seldom are much mor...
	• A related concept is that a good potential should be transferable, which means that it should be able to describe properties of other states of the material than those it was originally fitted to.

	Fitting of potential parameters
	• Regarding fitting the parameters in a potential of type 2, there are two opposite extreme approaches:
	1. “Blind fitting” : choose a functional form and a set of data to which the parameters are fit. Then use some fitting routine to obtain a best fit to all the data.
	2. “Parameter choice by hand”: use reliable experimental or ab initio data of crucial data to set as many potential parameters as possible exactly, then fit only the remaining (if any) parameters. For instance, the equilibrium separation, binding...
	• A pure approach 1 is dangerous in that quantities which are outside the original parameter set may obtain completely pathological values.
	• Example: some Si bulk potentials predict that the Si dimer is non-bonding.

	• Also, if some potential parameter happens to be insensitive to all quantities in the data set, the fit may give ridiculously small or large values for it, which may cause trouble elsewhere.
	• To obtain transferable potentials, approach 2 is thus usually to be preferred. On the other hand, if optimal precision in a limited set of systems (say, elastic properties of a perfect bulk crystal) is desirable, approach 1 may still be the bette...
	• Most authors use approaches somewhere between 1 and 2.


	Fitting of potential parameters
	• A functional form can sometimes be derived from experimental equations of state . Example: solid Ne and Ar:

	Fitting of potential parameters
	• Here is a short list of macroscopic, physical, properties which can and often are used to derive or fit interatomic potentials:
	• Out of these, the first five depend purely on the mechanical properties of the material, and are relevant to almost all solids. The latter four involve electric properties and may or may not be relevant depending on what kind of materials and pro...


	Fitting of potential parameters
	• Crystal structure:
	• The equilibrium crystal structure should be stable if one wants to describe any process where large atom displacements may occur (melting, surfaces, deposition, etc. etc.).
	• In equilibrium the force acting on every atom in the unit cell should vanish:
	• Here the potential is only tested at a few values. (The smaller the crystal symmetry, the more values.)
	• Any potential has a minimum potential energy configuration, or many configurations with the same energy.
	• Example: Tersoff potential for Si [J. Tersoff, Phys. Rev. B 38 (1988) 9902.]


	Fitting of potential parameters
	• Local stability is easy to achieve in a classical potential. But global stability (that is, that the real crystal structure is indeed the global minimum of the potential) may be surprisingly difficult.
	• Even well-known authors make mistakes. For instance, the first Si potential of Tersoff [Tersoff, Phys. Rev. Lett. 56 (1986) 632.] was well motivated, well derived, and published in the best journal in physics. But the formation energy of the vaca...
	• A good way to test the minimum energy: start from random atom positions, and quench the cell slowly enough so that it crystallizes. If the structure is the correct one, it probably is indeed the ground state. Unfortunately doing this may take for...
	• Another test: simulate a liquid and solid in equilibrium at the melting point, and check that the solid remains stable and the liquid recrystallizes to the same structure on slight cooling below .

	Fitting of potential parameters
	• Cohesive energy ( = energy difference between free atoms and the solid):
	• Directly related to the potential minimum energy level
	• Often easy to get right exactly.

	• Elastic constants
	• Related to deformation in the material and to the external stress (pressure) :
	• Voigt notation for - and -indexing: , , , , ,
	• Here the strain (crystal distortion) components are ;


	Fitting of potential parameters
	• The stress component is the force which acts on the plane with the normal in the direction
	• In principle there are 36 stress and strain components, but their number reduces to much smaller numbers in practice.
	• For instance in a cubic crystal there are only three independent elastic constants , and .
	• Particularly important if there are deformations (compression, shear, melting) in the simulations. Also related to defect properties and the melting point Þ if we get the elastic constants about right we are already on a good way to a good poten...
	• An example of an (unusually) good fit: F. Ercolessi, J. B. Adams, Europhys. Lett. 26 (1994) 583.

	Weaknesses of pair potentials
	• A pair potential can never describe well the directional properties of covalent bonds. For instance in the diamond/zincblende structure (C, Si, Ge, a-Sn, many compound semiconductors) the ideal angle between bonds = 109.47o . Similarly, in almost...
	• Also longer-range angular dependence is completely neglected. For instance in the structure of polymers torsional terms are important. Also, recent calculations of BCC metals have shown that 4-particle interactions are about 50 % of the bond.
	• Pair potentials also do not account for the environmental dependence. They predict that the strength of the two-atom bond is as strong in a dimer as inside a material, which almost never is true.

	Weaknesses of pair potentials
	• For instance the Ga-As interaction:

	Weaknesses of pair potentials
	• Moreover, a pair potential always predicts that the elastic constants for cubic crystals. but in reality:
	• Also, vacancy formation energies are often completely wrong in pair potentials (see below).
	• Pair potentials also usually give bad surface properties.
	• Summa summarum: the pair potential approximation:
	• may work well close to equilibrium structure in many materials
	• is good for noble gases
	• is rather good for ionic compounds such as alkali halides
	• is rather bad for FCC and HCP metals
	• is terrible for covalently bonded materials

	• But for all these groups much better, and only slightly slower, models exist. These will be described later on this course.

	Weaknesses of pair potentials
	• Simple estimate of vacancy formation energy using pair potentials:
	• nearest neighbor pair potential, energy/bond=
	• no relaxation
	• fcc structure Þ 12 neighbors Þ
	• However, ab initio calculations:
	• Relaxation: only minor effect (far less than 1 eV).



