
Set the initial conditions , ri t0( ) vi t0( )

Get new forces Fi ri( )

Solve the equations of motion numerically over time step : 
        

Δt
ri tn( ) ri tn 1+( )→ vi tn( ) vi tn 1+( )→

t t Δt+→

Get desired physical quantities

t tmax ?> Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P
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Calculating the forces between atoms

• The forces between atoms can be calculated in many different ways
• This lecture: 

• classical potentials. 
• pair potentials, many-body potentials

• Quantum mechanics

• A classical potential can be written in the form: 

V V1 ri( )
i
 V2 ri rj,( ) V3 ri rj rk, ,( ) …+

i j k, ,
+

i j,
+=

• V  is the total potential energy of an N  atom system. 
• In principle all sums loop from 1  to N  

• V1 : single particle potential: external forces

• V2 : pair potential which only depends on the distance between atoms rij  

• direct dependence on the vectors ri , rj   => dependence on the choice of the origin

• V3 : three-body potential which may have an angular dependence

• depends only on three variables, i.e. V3 V3 rij rik θijk, ,( )=  

• Four-body potentials, even five-body terms: chemical and biological applications
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Calculating the forces between atoms 

• V2  and V3  enough to describe the basic mechanical and structural properties of most elements and sim-

ple compounds

• In order that things would not be too straightforward, in many cases a environment-dependence (i.e. 
implicit three-body term) is embedded into the two-body term V2 . We will give examples on these later. 

• All terms which are not pure single particle or pair potentials are called many-body terms.
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Calculating the forces between atoms

• Classification of empirical interatomic potentials [A. E. Carlsson, Solid State Physics: Advances 
in Research and Applications, 43 (1990) 1]

• Pair Potential V VP rij( )
i j,
=  

• Pair Functional Potential V VPF ρi( )
i
= ,      ρi f rij( )

j i≠
= If  

 back to pair potential
f r( ) ar=

  

• Cluster Potential  V VCP rij rik rjk, ,( )
i j k≠ ≠
= Only clusters of 

three atoms here
    

• Cluster Functional Potential  V VCF ρi( )
i
= ,       ρi g rij rik rjk, ,( )

j k,
i j k≠ ≠

=  

• Real potentials often combinations of these: e.g. EAM for metals V VPF ρi( )
i
 VP rij( )

i j,
+=
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Force calculation for pair potentials

• Pure pair potential V rij( ) . The force acting on atom i  from atom j   

j

i
rij

fij

-fij

 
 

fij ∇– ri
V rij( ) ∇– rij

V rij( )
xij∂

∂V x̂
yij∂

∂V ŷ
zij∂

∂V ẑ+ +–= = =  , 

      (x̂ , ŷ , ẑ  unit vectors) 
 

rij ri rj–= ,  xij xi xj–=  etc., 
xij∂

∂V
rd

dV
xij∂

∂rij= ,  
xij∂

∂rij xij
rij
------=   

 

  fij rd
dV

r rij=

rij
rij
------×–=  

• To be precise ∇  operates on the position ri  of atom i . (Makes a difference for many-body poten-

tials.)

• Cut-off radius rc: atom pairs with rij rc>  do not interact,  rc a few Å≈ .  
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Force calculation for pair potentials

• In case the potential extends to infinity, an analytical correction can be made to the energy, and 
other quantities of interest: 

Vtot V2 Vcorr+ Ec 2πNρ r2V r( ) rd

rc

∞

+= =  

where ρ  is the atom density of the system. 

• This obviously assumes that when r rc>  the atom density is constant everywhere, and thus does not 

work when for example a surface is present.
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Force calculation for pair potentials

• Discontinuity at rc   jumps in energy

• Solution: take the potential to zero in  rc rc, Δr+[ ]  

• potential and the force are continuous (3rd order polynomial) or

• displace the potential, as the zero point of V  is arbitrary but this changes the value of Vtot                                          

• Many modern potentials are in fact defined so that they have a well-defined cutoff rc  where V  and at least 

the first derivative are ≡ 0.

rc

V(r)

r
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Force calculation for pair potentials

• Example: cut-off of Lennard-Jones potential

shift and tilt

polynomial

rc 2.3 Å= Δrc 0.2 Å=

VLJ r( )

P r( )

 
 

VLJ r( ) 4ε σ
r
--- 
  12 σ

r
--- 
  6

–=  

• Shift and tilt the potential: V r( )  and V' r( )  continuous at 

rc : 

 
V r( ) VLJ r( ) r rc–( )V'LJ rc( )– VLJ rc( )–=

• Problem: may change the potential at smaller r  values 

• Fit a polynomial P r( ) ar
3
br

2
cr d+ + +=  from 

rc rc Δrc+,[ ] : 

 
P rc( ) VLJ rc( )=

P' rc( ) V'LJ rc( )=

P rc Δrc+( ) 0=

P' rc Δrc+( ) 0=






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Force calculation for pair potentials

• Problem: high forces may result (see below) 
• Brenner potential for carbon (Well, this is not a pair potential): 

• Potential quickly to zero; doesn’t look too bad 

• However: huge forces; effect seen in fracture simulations  
(see also M. Sammalkorpi et al., Phys. Rev. B 70 (2004) 245416.) 

T. Belytschko et al., Phys. Rev. B 65 (2002) 235430.

potential force
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Force calculation for pair potentials

• Force calculation without periodic boundaries or neighbour list:

do i=1,N 
   do j=1,N

if (i==j) cycle
rijx = rx(j)-rx(i)
rijy = ry(j)-ry(i)
rijz = rz(j)-rz(i) 
rijsq = rijx**2+rijy**2+rijz**2
rij = sqrt(rijsq) 
if (rij < rcut) then 
V = (Potential energy per atom)/2
dVdr = ...derivative of potential energy with respect to its only argument r...
a = -dVdr/m/2.0 ! Unit transformations may be needed. Note the factor 1/2!!
ax(i) = ax(i)-rijx/rij*a ! The application on both
ax(j) = ax(j)+rijx/rij*a ! i and j ensures that
ay(i) = ay(i)-rijy/rij*a ! Newton’s third law is
ay(j) = ay(j)+rijy/rij*a ! fulfilled
az(i) = az(i)-rijz/rij*a
az(j) = az(j)+rijz/rij*a

endif 
enddo 

enddo
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Force calculation for pair potentials

• Use of Verlet neighbour list (cf. lecture 3):

startofineighbourlist=1
do i=1,N
nneighboursi=neighbourlist(startofineighbourlist) 
do jj=1,nneighboursi
j=neighbourlist(startofineighbourlist+jj)
rijx = rx(j)-rx(i)
rijy = ry(j)-ry(i)
rijz = rz(j)-rz(i) 
rijsq = rijx**2+rijy**2+rijz**2
rij = sqrt(rijsq) 
if (rij < rcut) then 
V = (Potential energy per atom)/2
dVdr = ...derivative of potential energy with respect to its only argument r...
a = -dVdr/m/2.0 ! Plus unit transformations ! Note the factor 1/2!!
ax(i) = ax(i)-rijx/rij*a
ax(j) = ax(j)+rijx/rij*a
ay(i) = ay(i)-rijy/rij*a
ay(j) = ay(j)+rijy/rij*a
az(i) = az(i)-rijz/rij*a
az(j) = az(j)+rijz/rij*a

endif 
enddo
startofineighbourlist=startofineighbourlist+nneighboursi+1

enddo 
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Force calculation for pair potentials

• Note that in the sum above every interaction is counted twice:

do i=1,N 
   do j=1,N

if (i==j) cycle
...

• That is, e.g. interaction 1-3 is counted both as 1-3 and 3-1. Hence the factor 1/2 in front of the potential energy summa-
tion and forces (this actually depends on the exact definition of the potentials, some already have a factor of 1/2 in 
front).

• A straightforward solution:

do i=1,N-1 
   do j=i+1,N

...

(either in constructing the neighbour list or forces) reduces the calculation time to one half.  

• For some many-body potentials this does not work.

• V r( )  often is defined to give the total energy for a pair of atoms. When one wants the potential energy per 
atom one thus may have to include one more factor of 1/2. But this additional factor is not needed in the 
force calculation since the force always affects both atoms (Newton’s III law).

• Note that the sign conventions in defining rij  in the literature may vary.
Introduction to molecular dynamics 2015               5. Calculating the forces                                                                                                                                                     12



Force calculation for pair potentials

• One practical way of checking that you have correctly derived the forces from the potential 
energy and that all signs and factors of ½ are OK in you potential implementation:

1. Calculate Epot  at 0 K and compare with an analytical prediction for some simple system, e.g. a dimer or 

perfect lattice.
2. Simulate a two-atom system starting from a very small distance, so that Epot  is very large, much larger 

than the equilibrium energy per atom (say 10000 eV). When you run the simulation with a very small time 
step the atoms should explode outwards from each other so that the final Ekin /atom is the same as the 

original Epot /atom. If you are uncertain what a ‘very small’ time step is, keep decreasing it until the 

answer doesn’t change.

3. Another good test: numerical derivation of potential energy: 
 

Move one atom in direction ŝ  amount Δs .  

Directional derivative of the potential (assume ŝ 1= ): 
 

V r( )∂
ŝ∂

-------------- V r h ŝ+( ) V r( )–
h

-----------------------------------------
h 0→
lim ∇V r( ) ŝ⋅ F r( ) ŝ⋅–= = =

Computed from  
potential energy  
as ΔV Δs⁄

Computed from  
forces as 
 Fxsx Fysy Fzsz+ +

r

s F

F r( ) s⋅
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Force calculation for a three-body potential

• For a pure pair potential for an interaction between atoms i  and j  Vij Vji=  because 

V rij( ) V rji( )=  and hence also ∇iVij ∇iVji=  as described above. This symmetry simplifies the 

force calculation.

• For a three-body potential things get trickier because Vij  may not =  Vji . To get the force Fi  act-

ing on an atom i  one instead has to calculate 
 

Fi Vij Vji+( )
j
 Vjki

k


j
+i∇– Vi∇

ij
Vjii∇+( )

j
 Vi∇

jki
k


j
+–= =  

• Many practical three-body potentials have been written such that 
 

V3 rij rik θijk, ,( ) V3 rij rik θijkcos, ,( )=  
 
i.e. all angular information is in a cosine term. 
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Force calculation for a three-body potential

i

j
rij

krik

θijk

 

θijkcosi∇
rij rik⋅
rijrik

----------------
 
 
 

……
θijkcos

rij
2

------------------ 1
rijrik
------------– rij

θijkcos

rik
2

------------------ 1
rijrik
------------– rik+= =i∇=

• In this case one can utilize the following equalities: 

θijkcos
rij rik⋅
rijrik

----------------=  

    

that is, no need to evaluate cos function.

• In many-body potentials there are often symmetries which can be used to reduce the number of 
operations needed in the force calculation even more.
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The physical/chemical origin of interactions

• Qualitatively a two-atom interaction looks like the following:

r

V(r)

r0

• The minimum, i.e. equilibrium distance, is 
r0 . 

• At small separations there is a strong 
repulsion. Just below r0  this derives pri-

marily from the Pauli rule preventing elec-
trons being in states with the same 
quantum numbers, and from the electron-
electron repulsion, whereas when the 
nuclei are very close to each other, the 
Coulombic repulsion between the nuclei 
dominates completely. 

• At larger distances there may be an attraction, which can have different reasons: van der Waals 
attraction, Coulomb attraction, a covalent bond, (due to pairing of valence electrons) or metallic 
bonding 

• Potential may also be purely repulsive
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• A few examples (1 bohr = 0.53 Å)
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• Overview of bonding expected in different cases, and illustration of electron distributions [Kittel, 
Introduction to Solid State physics]
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• So for the pure elements we get the familiar division:
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Idealized potentials for theoretical and qualitative studies

Source: Allen-Tildesley

• Hard sphere:      V
HS

r( )
∞ r σ<,
0 r σ≥,




=  

• First MD simulations were carried out with 
this potential.

• The equations of motion reduce to calcu-
lating where the next collision occurs: true 
billiard ball physics 

• Applications in packing problems 

• Square well:     

V
SW

r( )

∞ r σ1<,

ε– σ1 r σ2<≤,

0 r σ2≥,





=  

• soft sphere:      V
SS
r( ) ε σ

r
---

ν
=
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“Realistic” pair potentials

• Lennard-Jones (LJ)  

                                V r( ) 4ε σ
r
--- 
  12 σ

r
--- 
  6

–=

• The attractive 1 r
6⁄ - term can be derived from the dipole-dipole interaction, or as the interactions between 

two oscillators (QM)  [Kittel, Introduction to Solid State Physics, 7th edition, p. 62]. It is also known as the 
Van der Waals or London interaction.

• The repulsive term 1 r
12⁄   chosen for convenience.

• Also other exponents used; notation for any two exponents A and B is LJ (A-B) potential.

• ε and σ are usually chosen by fitting into experimental data. σ gives the equilibrium distance ε the cohe-
sive energy.

• A few Lennard-Jones-parameters for gases [Ashcroft-Mermin s. 398]:
                                       Ne           Ar                 Kr          Xe

ε (eV)  0.0031      0.0104          0.0140    0.0200
σ (Å)      2.74         3.40          3.65        3.98

• Very weak interaction: e.g. Vmin 3.1 meV–=  for Ne. 

• LJ (12-6) potentials have proven to be good for noble gases (filled electron shells  almost always neu-
tral) close to equilibrium. But they are obviously terrible for very small r  (r 1 Å≤ ) since the true interaction 

is about  e
r–
r⁄  and not 1 r

12⁄ .
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“Realistic” pair potentials

• LJ potentials have been, and are used a lot, for instance in molecular modelling, in many cases even in 
systems where there is no physical motivation to using the LJ functional form. But if the fit is good for 
some purpose, using it may still be justified as long as the limitations are kept in mind.

• Reduced units 

• If a potential only has a couple of parameters, evaluating it can be really efficient in reduced units 

• Also, in reduced units the results are always the same, so the results can be transferred to different sys-
tems with straightforward scaling. 
 

• For instance for the Lennard-Jones-potential: 
 

V r( ) 4ε σ
r
--- 
  12 σ

r
--- 
  6

–=     [or any V r( ) εf r σ⁄( )= )] 

 
 Natural length unit = σ  

natural energy unit = ε  
 
 V* x( ) 4 x 12– x 6––[ ]=  
Introduction to molecular dynamics 2015               5. Calculating the forces                                                                                                                                                     22



“Realistic” pair potentials

• other units: 

t
*

t mσ2( ) ε⁄[ ]
1 2⁄

⁄=  

ρ* ρσ3=  

T
*

kBT ε⁄=  

P
*

Pσ3 ε⁄=  

f* fσ ε⁄=  

v
*

v ε m⁄[ ]1 2⁄⁄=  

• Reduced units were very popular when one had to save CPU time in every single multiplication, and 
when potentials were still as simple as LJ. 
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“Realistic” pair potentials

• Morse potential

• Simple metals (sp-metals, e.g. Na, Mg, Al; and metals with the 
fcc- or hcp-structure), are at least to some extent describable 
with a pair potential

Girifalco and Weizer, Phys. Rev. 114 (1959) 687.

 

• A popular choice: the Morse potential [P. M. Morse, Phys. Rev. 
34 (1930) 57.]:

 
                  V r( ) De 2α r r0–( )– 2De α r r0–( )––=  

• Designed originally to describe vibrations in molecules. 
• The Schrödinger equation happens to have an analytical solution for 

this functional form.  

• Efficient to evaluate, in the form above only one exponential 
function needs to be evaluated.  

• Decays faster at large r  than Lennard-Jones: less problems 
with cut-off.

• A fit for many metals [Girifalco and Weizer, Phys. Rev. 114 
(1959) 687.]

• Works decently for being a pair potential.
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“Realistic” pair potentials

• An ordinary pair potential has a close-packed structure as the ground state. (usually either 
“face-centered cubic”, FCC or “hexagonal close packed”, HCP).

HCP FCC
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“Realistic” pair potentials

• A pair potential can thus not describe well elements with other structures than FCC or HCP. But 
this doesn’t mean people haven’t tried:

• Diamond lattice: open structure, four nearest neighbours, very far from close packed.
• Still, it is actually possible to make diamond stable locally with a pair potential, but this will become rather 
pathological (Mazzone potential for Si, [Phys. Stat. Sol (b) 165 (1991) 395.]):

r

V(r)

r0

Morse harmonic well

• Does actually work close to perfect lattice.
• But what happens when atoms leave the har-
monic well due to e.g. a high temperature?
• System will collapse to close-packed structure => 

applicability of potential extremely limited 

• Unfortunately this is not uncommon regarding 
interatomic potentials: one has to be very crit-
ical of any new potential! Even well-respected 
physicists have presented potentials which 
have some very pathological features...
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“Realistic” pair potentials

• Ionic compounds

• Different ions, between which the electron density is very 
small. The ions have filled electron shells, and are thus 
unlikely to change their electron configuration 

• An extreme examples: NaCl: 

• A pair potential approximation works quite well, and poten-
tials abound in the literature, as there is much experimental 
data available for the alkali halides which can be used in 
potential fitting. 

• Potentials typically contain a short-range (SR) term and the 
Coulomb interaction: 
 

V rij( ) VSR rij( )
z1z2e

2

4πε0rij
------------------+= ; zi  = ion charges 

• VSR : repulsive force between electrons packed closely together and an attractive van der Waals (vdW) 

interaction 
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“Realistic” pair potentials

• Most common forms for the short range potential: 
 

Buckingham:  VSR r( ) Ae r ρ/– C

r6
-----–=  

 

Born-Huggins-Mayer:  VSR r( ) Ae B r σ–( )– C

r6
----- D

r8
-----––=  

 

Morse: VSR r( ) De 2α r r0–( )– 2De α r r0–( )––=  
 

• 1 r
6⁄ -term comes from the dipole-dipole interaction (again) 

 

• The repulsion is usually significant only for nearest neighbours, and the vdW interaction for next-nearest neighbours. 
Frequently for instance in oxides the only interaction assumed between cations is their Coulombic repulsion. 
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Fitting of potential parameters

• In almost all classical potentials there is a number of free parameters, e.g. in Lennard-Jones 2 
(ε  and σ ), Morse 3 (D , α , r0 ) etc.

• An extreme example: the ReaxFF model for hydrocarbons: 
A.C.T. van Duin et al., J. Chem. Phys. A 105 (2001) 9396.
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Fitting of potential parameters

• Two main approaches to develop a potential exist:

1. Derivation from so called ab initio (quantum mechanical) calculations

2. Fit to empirical and/or ab initio data

• Although the previous approach is better motivated physically, in practice the latter approach, or a combi-
nation of the two, often works better.

• A good classical potential is one which with a small number of free parameters can describe a 
wide range of properties well (usually 5-20 % accuracy in condensed matter physics is consid-
ered to be “well”, since experiments seldom are much more accurate than this).  

• A related concept is that a good potential should be transferable, which means that it should 
be able to describe properties of other states of the material than those it was originally fitted to.
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Fitting of potential parameters

• Regarding fitting the parameters in a potential of type 2, there are two opposite extreme 
approaches:

1. “Blind fitting” : choose a functional form and a set of data to which the parameters are fit. Then use some fitting 
routine to obtain a best fit to all the data. 

2. “Parameter choice by hand”: use reliable experimental or ab initio data of crucial data to set as many potential 
parameters as possible exactly, then fit only the remaining (if any) parameters. For instance, the equilibrium separa-
tion, binding energy and vibration frequency for a dimer can be used to fix all the 3 Morse potential parameters.

• A pure approach 1 is dangerous in that quantities which are outside the original parameter set may obtain 
completely pathological values. 
• Example: some Si bulk potentials predict that the Si dimer is non-bonding. 

• Also, if some potential parameter happens to be insensitive to all quantities in the data set, the fit may 
give ridiculously small or large values for it, which may cause trouble elsewhere.

• To obtain transferable potentials, approach 2 is thus usually to be preferred. On the other hand, if optimal 
precision in a limited set of systems (say, elastic properties of a perfect bulk crystal) is desirable, 
approach 1 may still be the better way to go.

• Most authors use approaches somewhere between 1 and 2.
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Fitting of potential parameters

• A functional form can sometimes be derived from experimental equations of state P V( ) . Exam-
ple: solid Ne and Ar:
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Fitting of potential parameters

• Here is a short list of macroscopic, physical, properties which can and often are used to derive 
or fit interatomic potentials:

Physical property Atom-level property

Crystal structure Balance of atomic forces.

Cohesive energy Potential energy at the equilibrium 
atom positions

Elastic constants Long-wavelength acoustic vibrations 
Elastic distortions of unit cell.

Equation of state Compression or expansion of material

Neutron scattering Phonon  in the Brillouin zone.

Dielectric constant Electronic polarizability

Dielectric constant 
Polarizarization of electrons and lat-
tice; long-wavelength optical vibration 
modes;

Infrared absorption Long-wavelength vibrations with a 
dipole moment.

Raman scattering Long-wavelength vibrations which 
change the polarizability.

cρσ

P V( )

ω k( )

ε∞

ε0

m
ec

h
an

ic
a

l
el

ec
tr

ic

• Out of these, the first five depend purely on the mechanical properties of the material, and are relevant to 
almost all solids. The latter four involve electric properties and may or may not be relevant depending on 
what kind of materials and properties are studied.
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Fitting of potential parameters

• Crystal structure:
• The equilibrium crystal structure should be stable if one wants to describe any process where large atom 
displacements may occur (melting, surfaces, deposition, etc. etc.).

• In equilibrium the force acting on every atom in the unit cell i  should vanish:
 

                            fij
j
 0=  

• Here the potential is only tested at a few rij values. (The smaller the crystal symmetry, the more values.) 

• Any potential has a minimum potential energy con-
figuration, or many configurations with the same 
energy.

• Example: Tersoff potential for Si [J. Tersoff, Phys. 
Rev. B 38 (1988) 9902.]
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Fitting of potential parameters

• Local stability is easy to achieve in a classical potential. But global stability (that is, that the real crystal 
structure is indeed the global minimum of the potential) may be surprisingly difficult.

• Even well-known authors make mistakes. For instance, the first Si potential of Tersoff [Tersoff, Phys. Rev. 
Lett. 56 (1986) 632.] was well motivated, well derived, and published in the best journal in physics. But the 
formation energy of the vacancy turned out to be negative, which means it did not have the right ground 
state structure...

• A good way to test the minimum energy: start from random atom positions, and quench the cell slowly 
enough so that it crystallizes. If the structure is the correct one, it probably is indeed the ground state. 
Unfortunately doing this may take forever.

• Another test: simulate a liquid and solid in equilibrium at the melting point, and check that the solid 
remains stable and the liquid recrystallizes to the same structure on slight cooling below Tmelt .
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Fitting of potential parameters 

• Cohesive energy (Ecoh  = energy difference between free atoms and the solid):

• Directly related to the potential minimum energy level
• Often easy to get right exactly. 

• Elastic constants1 cρσ
• Related to deformation in the material 

R r( ) r' r– u1 r( )x̂ u2 r( )ŷ u3 r( )ẑ+ += =   

 and to the external stress (pressure) σ : 

σρ cρσeσ
σ
=

• Voigt notation for ρ - and σ -indexing: xx 1→ , yy 2→ , zz 3→ , yz 4→ , zx 5→ , xy 6→
• Here the strain (crystal distortion) components eij  are 

eii xi∂
∂ui=   ;  eij

1
2
---

xj∂
∂ui

xi∂
∂uj+

 
 
 

=

1. See e.g. Kittel, Introduction to solid state physics, 7th edition, ch. 3.
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Fitting of potential parameters

• The stress component σij  is the force which acts on the plane with the normal xj  in the direction xi
• In principle there are 36 stress and strain components, but their number reduces to much smaller num-
bers in practice.

• For instance in a cubic crystal there are only three independent  
elastic constants c11 cxxxx= , c12 cxxyy=  and c44 cxyxy= .

• Particularly important if there are deformations (compression, shear, melting) in the simulations. Also 
related to defect properties and the melting point  if we get the elastic constants about right we are 
already on a good way to a good potential.
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• An example of an (unusually) 
good fit: F. Ercolessi,  J. B. 
Adams, Europhys. Lett. 26 
(1994) 583.
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Weaknesses of pair potentials

• A pair potential can never describe well the directional properties of covalent bonds. For 
instance in the diamond/zincblende structure (C, Si, Ge, α-Sn, many compound semiconduc-

tors) the ideal angle between bonds = 109.47o
 . Similarly, in almost all molecules the directional 

properties of covalent bonds is of crucial importance.

• Also longer-range angular dependence is completely neglected. For instance in the structure of 
polymers torsional terms are important. Also, recent calculations of BCC metals have shown 
that 4-particle interactions are about 50 % of the bond.

• Pair potentials also do not account for the environmental dependence. They predict that the 
strength of the two-atom bond is as strong in a dimer as inside a material, which almost never is 
true. 
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Weaknesses of pair potentials

• For instance the Ga-As interaction:
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Weaknesses of pair potentials

• Moreover, a pair potential always predicts 
that the elastic constants c12 c44=  for 

cubic crystals. but in reality:

Source: Ashcroft-Mermin

 

• Also, vacancy formation energies are often 
completely wrong in pair potentials (see 
below).

• Pair potentials also usually give bad sur-
face properties.

• Summa summarum: the pair potential 
approximation:
• may work well close to equilibrium structure in 
many materials

• is good for noble gases
• is rather good for ionic compounds such as 
alkali halides

• is rather bad for FCC and HCP metals
• is terrible for covalently bonded materials

• But for all these groups much better, and only slightly slower, models exist. These will be 
described later on this course.
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Weaknesses of pair potentials

• Simple estimate of vacancy formation energy using pair potentials: 

Evac
f

Etot vacancy N,( ) Etot perfect N,( )–=

• nearest neighbor pair potential, energy/bond=V rnn( ) φ≡
• no relaxation
• fcc structure  12 neighbors 

Etot vacancy N,( ) 1
2
--- N 12–( )12φ 12 12 1–( )φ+[ ] 6 N 1–( )φ= =  

Etot perfect N,( ) 1
2
---N12φ 6Nφ= =  

  Evac
f 6φ– Ecoh–= =  

• However, ab initio calculations1: 

Element  (eV)  (eV)

V 5.31 2.1 ± 0.2

Nb 7.57 2.6 ± 0.3

W 8.90 4.0 ± 0.2

Ecoh Evac
f

 

• Relaxation: only minor effect (far less than 1 eV).

1. A. E. Carlsson, Solid State Physics: Advances in Research and Applications, 43 (1990) 1.
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	Calculating the forces between atoms
	• The forces between atoms can be calculated in many different ways
	• This lecture:
	• classical potentials.
	• pair potentials, many-body potentials

	• Quantum mechanics

	• A classical potential can be written in the form:
	• is the total potential energy of an atom system.
	• In principle all sums loop from to
	• : single particle potential: external forces
	• : pair potential which only depends on the distance between atoms
	• direct dependence on the vectors , => dependence on the choice of the origin

	• : three-body potential which may have an angular dependence
	• depends only on three variables, i.e.

	• Four-body potentials, even five-body terms: chemical and biological applications


	Calculating the forces between atoms
	• and enough to describe the basic mechanical and structural properties of most elements and simple compounds
	• In order that things would not be too straightforward, in many cases a environment-dependence (i.e. implicit three-body term) is embedded into the two-body term . We will give examples on these later.
	• All terms which are not pure single particle or pair potentials are called many-body terms.

	Calculating the forces between atoms
	• Classification of empirical interatomic potentials [A. E. Carlsson, Solid State Physics: Advances in Research and Applications, 43 (1990) 1]
	• Pair Potential
	• Pair Functional Potential ,
	• Cluster Potential
	• Cluster Functional Potential ,
	• Real potentials often combinations of these: e.g. EAM for metals


	Force calculation for pair potentials
	• Pure pair potential . The force acting on atom from atom , (, , unit vectors) , etc., , Þ
	• To be precise operates on the position of atom . (Makes a difference for many-body potentials.)
	• Cut-off radius : atom pairs with do not interact, .

	Force calculation for pair potentials
	• In case the potential extends to infinity, an analytical correction can be made to the energy, and other quantities of interest: where is the atom density of the system.
	• This obviously assumes that when the atom density is constant everywhere, and thus does not work when for example a surface is present.


	Force calculation for pair potentials
	• Discontinuity at Þ jumps in energy
	• Solution: take the potential to zero in
	• potential and the force are continuous (3rd order polynomial) or
	• displace the potential, as the zero point of is arbitrary but this changes the value of

	• Many modern potentials are in fact defined so that they have a well-defined cutoff where and at least the first derivative are º 0.


	Force calculation for pair potentials
	• Example: cut-off of Lennard-Jones potential
	• Shift and tilt the potential: and continuous at :
	• Problem: may change the potential at smaller values

	• Fit a polynomial from :


	Force calculation for pair potentials
	• Problem: high forces may result (see below)
	• Brenner potential for carbon (Well, this is not a pair potential):
	• Potential quickly to zero; doesn’t look too bad
	• However: huge forces; effect seen in fracture simulations (see also M. Sammalkorpi et al., Phys. Rev. B 70 (2004) 245416.)

	Force calculation for pair potentials
	• Force calculation without periodic boundaries or neighbour list:

	Force calculation for pair potentials
	• Use of Verlet neighbour list (cf. lecture 3):

	Force calculation for pair potentials
	• Note that in the sum above every interaction is counted twice:
	• That is, e.g. interaction 1-3 is counted both as 1-3 and 3-1. Hence the factor 1/2 in front of the potential energy summation and forces (this actually depends on the exact definition of the potentials, some already have a factor of 1/2 in front).

	• A straightforward solution:
	(either in constructing the neighbour list or forces) reduces the calculation time to one half.
	• For some many-body potentials this does not work.

	• often is defined to give the total energy for a pair of atoms. When one wants the potential energy per atom one thus may have to include one more factor of 1/2. But this additional factor is not needed in the force calculation since the force alw...
	• Note that the sign conventions in defining in the literature may vary.

	Force calculation for pair potentials
	• One practical way of checking that you have correctly derived the forces from the potential energy and that all signs and factors of ½ are OK in you potential implementation:
	1. Calculate at 0 K and compare with an analytical prediction for some simple system, e.g. a dimer or perfect lattice.
	2. Simulate a two-atom system starting from a very small distance, so that is very large, much larger than the equilibrium energy per atom (say 10000 eV). When you run the simulation with a very small time step the atoms should explode outwards from ...
	3. Another good test: numerical derivation of potential energy: Move one atom in direction amount . Directional derivative of the potential (assume ):

	Force calculation for a three-body potential
	• For a pure pair potential for an interaction between atoms and because and hence also as described above. This symmetry simplifies the force calculation.
	• For a three-body potential things get trickier because may not = . To get the force acting on an atom one instead has to calculate
	• Many practical three-body potentials have been written such that i.e. all angular information is in a cosine term.

	Force calculation for a three-body potential
	• In this case one can utilize the following equalities: that is, no need to evaluate cos function.
	• In many-body potentials there are often symmetries which can be used to reduce the number of operations needed in the force calculation even more.

	The physical/chemical origin of interactions
	• Qualitatively a two-atom interaction looks like the following:
	• The minimum, i.e. equilibrium distance, is .
	• At small separations there is a strong repulsion. Just below this derives primarily from the Pauli rule preventing electrons being in states with the same quantum numbers, and from the electron- electron repulsion, whereas when the nuclei are ver...
	• At larger distances there may be an attraction, which can have different reasons: van der Waals attraction, Coulomb attraction, a covalent bond, (due to pairing of valence electrons) or metallic bonding
	• Potential may also be purely repulsive
	• A few examples (1 bohr = 0.53 Å)
	• Overview of bonding expected in different cases, and illustration of electron distributions [Kittel, Introduction to Solid State physics]
	• So for the pure elements we get the familiar division:

	Idealized potentials for theoretical and qualitative studies
	• Hard sphere:
	• First MD simulations were carried out with this potential.
	• The equations of motion reduce to calculating where the next collision occurs: true billiard ball physics
	• Applications in packing problems

	• Square well:
	• soft sphere:

	“Realistic” pair potentials
	• Lennard-Jones (LJ)
	• The attractive - term can be derived from the dipole-dipole interaction, or as the interactions between two oscillators (QM) [Kittel, Introduction to Solid State Physics, 7th edition, p. 62]. It is also known as the Van der Waals or London intera...
	• The repulsive term chosen for convenience.
	• Also other exponents used; notation for any two exponents A and B is LJ (A-B) potential.
	• e and s are usually chosen by fitting into experimental data. s gives the equilibrium distance e the cohesive energy.
	• A few Lennard-Jones-parameters for gases [Ashcroft-Mermin s. 398]:
	• Very weak interaction: e.g. for Ne.
	• LJ (12-6) potentials have proven to be good for noble gases (filled electron shells Þ almost always neutral) close to equilibrium. But they are obviously terrible for very small () since the true interaction is about and not .


	“Realistic” pair potentials
	• LJ potentials have been, and are used a lot, for instance in molecular modelling, in many cases even in systems where there is no physical motivation to using the LJ functional form. But if the fit is good for some purpose, using it may still be ...
	• Reduced units
	• If a potential only has a couple of parameters, evaluating it can be really efficient in reduced units
	• Also, in reduced units the results are always the same, so the results can be transferred to different systems with straightforward scaling.
	• For instance for the Lennard-Jones-potential: [or any )] Þ Natural length unit = natural energy unit = Þ


	“Realistic” pair potentials
	• other units:
	• Reduced units were very popular when one had to save CPU time in every single multiplication, and when potentials were still as simple as LJ.

	“Realistic” pair potentials
	• Morse potential
	• Simple metals (sp-metals, e.g. Na, Mg, Al; and metals with the fcc- or hcp-structure), are at least to some extent describable with a pair potential
	• A popular choice: the Morse potential [P. M. Morse, Phys. Rev. 34 (1930) 57.]:
	• Designed originally to describe vibrations in molecules.
	• The Schrödinger equation happens to have an analytical solution for this functional form.

	• Efficient to evaluate, in the form above only one exponential function needs to be evaluated.
	• Decays faster at large than Lennard-Jones: less problems with cut-off.
	• A fit for many metals [Girifalco and Weizer, Phys. Rev. 114 (1959) 687.]
	• Works decently for being a pair potential.


	“Realistic” pair potentials
	• An ordinary pair potential has a close-packed structure as the ground state. (usually either “face-centered cubic”, FCC or “hexagonal close packed”, HCP).

	“Realistic” pair potentials
	• A pair potential can thus not describe well elements with other structures than FCC or HCP. But this doesn’t mean people haven’t tried:
	• Diamond lattice: open structure, four nearest neighbours, very far from close packed.
	• Still, it is actually possible to make diamond stable locally with a pair potential, but this will become rather pathological (Mazzone potential for Si, [Phys. Stat. Sol (b) 165 (1991) 395.]):
	• Does actually work close to perfect lattice.
	• But what happens when atoms leave the harmonic well due to e.g. a high temperature?
	• System will collapse to close-packed structure => applicability of potential extremely limited

	• Unfortunately this is not uncommon regarding interatomic potentials: one has to be very critical of any new potential! Even well-respected physicists have presented potentials which have some very pathological features...


	“Realistic” pair potentials
	• Ionic compounds
	• Different ions, between which the electron density is very small. The ions have filled electron shells, and are thus unlikely to change their electron configuration
	• An extreme examples: NaCl:
	• A pair potential approximation works quite well, and potentials abound in the literature, as there is much experimental data available for the alkali halides which can be used in potential fitting.
	• Potentials typically contain a short-range (SR) term and the Coulomb interaction: ; = ion charges
	• : repulsive force between electrons packed closely together and an attractive van der Waals (vdW) interaction


	“Realistic” pair potentials
	• Most common forms for the short range potential: Buckingham: Born-Huggins-Mayer: Morse:
	• -term comes from the dipole-dipole interaction (again)
	• The repulsion is usually significant only for nearest neighbours, and the vdW interaction for next-nearest neighbours. Frequently for instance in oxides the only interaction assumed between cations is their Coulombic repulsion.


	Fitting of potential parameters
	• In almost all classical potentials there is a number of free parameters, e.g. in Lennard-Jones 2 ( and ), Morse 3 (, , ) etc.
	• An extreme example: the ReaxFF model for hydrocarbons: A.C.T. van Duin et al., J. Chem. Phys. A 105 (2001) 9396.


	Fitting of potential parameters
	• Two main approaches to develop a potential exist:
	1. Derivation from so called ab initio (quantum mechanical) calculations
	2. Fit to empirical and/or ab initio data
	• Although the previous approach is better motivated physically, in practice the latter approach, or a combination of the two, often works better.

	• A good classical potential is one which with a small number of free parameters can describe a wide range of properties well (usually 5-20 % accuracy in condensed matter physics is considered to be “well”, since experiments seldom are much mor...
	• A related concept is that a good potential should be transferable, which means that it should be able to describe properties of other states of the material than those it was originally fitted to.

	Fitting of potential parameters
	• Regarding fitting the parameters in a potential of type 2, there are two opposite extreme approaches:
	1. “Blind fitting” : choose a functional form and a set of data to which the parameters are fit. Then use some fitting routine to obtain a best fit to all the data.
	2. “Parameter choice by hand”: use reliable experimental or ab initio data of crucial data to set as many potential parameters as possible exactly, then fit only the remaining (if any) parameters. For instance, the equilibrium separation, binding...
	• A pure approach 1 is dangerous in that quantities which are outside the original parameter set may obtain completely pathological values.
	• Example: some Si bulk potentials predict that the Si dimer is non-bonding.

	• Also, if some potential parameter happens to be insensitive to all quantities in the data set, the fit may give ridiculously small or large values for it, which may cause trouble elsewhere.
	• To obtain transferable potentials, approach 2 is thus usually to be preferred. On the other hand, if optimal precision in a limited set of systems (say, elastic properties of a perfect bulk crystal) is desirable, approach 1 may still be the bette...
	• Most authors use approaches somewhere between 1 and 2.


	Fitting of potential parameters
	• A functional form can sometimes be derived from experimental equations of state . Example: solid Ne and Ar:

	Fitting of potential parameters
	• Here is a short list of macroscopic, physical, properties which can and often are used to derive or fit interatomic potentials:
	• Out of these, the first five depend purely on the mechanical properties of the material, and are relevant to almost all solids. The latter four involve electric properties and may or may not be relevant depending on what kind of materials and pro...


	Fitting of potential parameters
	• Crystal structure:
	• The equilibrium crystal structure should be stable if one wants to describe any process where large atom displacements may occur (melting, surfaces, deposition, etc. etc.).
	• In equilibrium the force acting on every atom in the unit cell should vanish:
	• Here the potential is only tested at a few values. (The smaller the crystal symmetry, the more values.)
	• Any potential has a minimum potential energy configuration, or many configurations with the same energy.
	• Example: Tersoff potential for Si [J. Tersoff, Phys. Rev. B 38 (1988) 9902.]


	Fitting of potential parameters
	• Local stability is easy to achieve in a classical potential. But global stability (that is, that the real crystal structure is indeed the global minimum of the potential) may be surprisingly difficult.
	• Even well-known authors make mistakes. For instance, the first Si potential of Tersoff [Tersoff, Phys. Rev. Lett. 56 (1986) 632.] was well motivated, well derived, and published in the best journal in physics. But the formation energy of the vaca...
	• A good way to test the minimum energy: start from random atom positions, and quench the cell slowly enough so that it crystallizes. If the structure is the correct one, it probably is indeed the ground state. Unfortunately doing this may take for...
	• Another test: simulate a liquid and solid in equilibrium at the melting point, and check that the solid remains stable and the liquid recrystallizes to the same structure on slight cooling below .

	Fitting of potential parameters
	• Cohesive energy ( = energy difference between free atoms and the solid):
	• Directly related to the potential minimum energy level
	• Often easy to get right exactly.

	• Elastic constants
	• Related to deformation in the material and to the external stress (pressure) :
	• Voigt notation for - and -indexing: , , , , ,
	• Here the strain (crystal distortion) components are ;


	Fitting of potential parameters
	• The stress component is the force which acts on the plane with the normal in the direction
	• In principle there are 36 stress and strain components, but their number reduces to much smaller numbers in practice.
	• For instance in a cubic crystal there are only three independent elastic constants , and .
	• Particularly important if there are deformations (compression, shear, melting) in the simulations. Also related to defect properties and the melting point Þ if we get the elastic constants about right we are already on a good way to a good poten...
	• An example of an (unusually) good fit: F. Ercolessi, J. B. Adams, Europhys. Lett. 26 (1994) 583.

	Weaknesses of pair potentials
	• A pair potential can never describe well the directional properties of covalent bonds. For instance in the diamond/zincblende structure (C, Si, Ge, a-Sn, many compound semiconductors) the ideal angle between bonds = 109.47o . Similarly, in almost...
	• Also longer-range angular dependence is completely neglected. For instance in the structure of polymers torsional terms are important. Also, recent calculations of BCC metals have shown that 4-particle interactions are about 50 % of the bond.
	• Pair potentials also do not account for the environmental dependence. They predict that the strength of the two-atom bond is as strong in a dimer as inside a material, which almost never is true.

	Weaknesses of pair potentials
	• For instance the Ga-As interaction:

	Weaknesses of pair potentials
	• Moreover, a pair potential always predicts that the elastic constants for cubic crystals. but in reality:
	• Also, vacancy formation energies are often completely wrong in pair potentials (see below).
	• Pair potentials also usually give bad surface properties.
	• Summa summarum: the pair potential approximation:
	• may work well close to equilibrium structure in many materials
	• is good for noble gases
	• is rather good for ionic compounds such as alkali halides
	• is rather bad for FCC and HCP metals
	• is terrible for covalently bonded materials

	• But for all these groups much better, and only slightly slower, models exist. These will be described later on this course.

	Weaknesses of pair potentials
	• Simple estimate of vacancy formation energy using pair potentials:
	• nearest neighbor pair potential, energy/bond=
	• no relaxation
	• fcc structure Þ 12 neighbors Þ
	• However, ab initio calculations:
	• Relaxation: only minor effect (far less than 1 eV).



