Set the initial conditions rl.(tO), Vl.(tO) |

'

> | Update neighborlist |

¢

| Get new forces Fi(ri) |

#

Solve the equations of motion numerically over time step At:
ri(t,)—>r(t vi(t,) > v (¢

'

Perform T, P scaling (ensembles)

J

t—>t+ At

'

Get desired physical quantities

'

n+1) n+1)

(?
> tmax Calculate results

and finish

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Solving the equations of motion

[Main source: Allen-Tildesley]

* In MD, what we really want to do is solve the equations of motion of N atoms (or particles in
general) interacting via a potential

« Lagrange equations of motion:
afa) o _ .
dt\9q,) dq; ’

L(q,q) = K(q.q)— ¥(q, q)
q = generalized coordinate

By using the cartesian coordinates

9% = 7
' I .2
K(r) = Zimiri’
I
V= V(r),

we get the familiar (Newtonian) form
ml.l'"l. =1,

where f, = V_L = -V_ 7V is the force acting in atom i

1 1

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Solving the equations of motion
« We can also start by considering the Hamiltonian equations of motion

_O0H . _ OH

qi a’ pi aql’

where p. = gi is the generalized momentum
9

and H(q,p) = Zqipi—L(q, q) the Hamiltonian function (we assume that g; can be given as a

l
function of p)

« If ¥ does not depend on the velocities, we get quickly back to the familiar form

H(q,p) = K(p) + V(q)
and if we again use cartesian coordinates the equations of motion will be:

. P
r, = —
m.

l

P; = _Vl‘iV = fi

- So we have two alternatives:)
1. Solve a system of 3N 2"d order ODE’s (ml.rl- = fi) derived from the Lagrangian or Newtonian formalism

2. Solve a system of 6N 15t order ODE’s derived from the Hamiltonian formalism

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Numerical solution of equations of motion

* Finite difference method: from a system configuration (atom positions, velocities etc.) at time ¢
we calculate the configuration at time ¢+ &¢

Ot can be constant or variable
« initial conditions r(0), v(0) have to be known (initial value problem)

* As an example a predictor-corrector -algorithm:

» Use a Taylor series to predict the system configuration at time ¢ + d¢ using the
small deviation 6¢:

2

rp(t +0t) = r(t)+otv(e) + 18t

1.3
5 a(t) + 5& b(t)+ ... Equations of motion

not (yet) used.

VP +86) = v(r) + Sra(s) + %Stzb(t) .

aP(1+81) = a(t) +81b (1) + ...

bp(t+ ot) = b(t) + ...

* v, a and b are higher time derivatives of r:
v = velocity, a = acceleration and b = the time derivative of acceleration.

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Numerical solution of equations of motion

» We can instead of b also use information from previous time steps:
{r (1), v(2), v(t—01), v(t—201) }
or r(t)a V(t)a a(t)a a(t_St)

» Correction step: we now have r?, from which we can get the forces

Equations of motion
Fl-(l‘pi) at t+ ot now used.

. C
—> accurate corrected accelerations a (¢ + o¢)

= error in accelerations Aa(z+d¢) = ac(t + 0t) — ap(t + 0t)
 Using this known error, one can calculate corrected positions, velocities and so on
r(t+81) = rP(t+81) + cyha(r+ 8t)
ve(r+8) = vP(t+80) + ¢ Aa(r + &)
a“(1+81) = al(1+80) + c,Aa(1+ 1)

be(¢+81) = bP(1+81) + cyAa(r+81)

* The constants ¢, depend on how many derivatives of r we include and the degree of the equation, etc.

» The correction can also be iterated in principle; but not sensuble in MD: calculating the forces expensive
= use an algorithm requiring only one evaluation of the force per time step (one correction)
* If the correction is not iterated, an obvious choice is ¢, = 1.

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Numerical solution of equations of motion

« Thus we reach the following approach to solving the MD equations of motion:
(a) predict r, v and a for the time ¢+ 8¢ using the present values
of the same variables
(b) calculate forces and hence a = f/m from the new r
(c) correct the predicted r, v and a etc. using the new a

* Requirements for a good MD algorithm

(a) fast (not that important)
(b) takes little memory (important)
(b) allows a long time step &¢ (important)
(c) reproduces the correct path (see below)
(d) conserves energy (and is reversible:
ot — -6t = back to original state) (very important)
(f) easy to implement (not that important)
(g) only one force evaluation/time step (important for complex 1)

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Numerical solution of equations of motion

* Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time.
Since all computers have limited floating-point precision, a small round-off error will eventually grow to a

large difference (Lennard-Jones system; in reduced units p* = 0.6, T* = 1.05):

p—
>
S}

—
<
<

—_
S
]

Ar 107

=
L,

oy
)
o

10—10

Phase space distance from the reference trajectory

(a)

time steps

P "’/I-_;
1 7
1000

107

y

Initial
displacement

4% ®)
0.4% 107
Ei 0 ‘ time steps
y %7 500 1000
—0.4%t §
- =
B; time steps ©
0 { { P
3]500 1000 S
B ' c
3]
—0.4%" g _8
0.4% 10 GEJ
i X
_ i{ 0 . time steps
5% 500 W| 1000
—0.4%%

Source: Allen-Tildesley

* A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccura-

cies.

Introduction to molecular dynamics 2015

4. Solving the equations of motion

Common algorithms
* In the following we present some of the most common MD algorithms:
* Verlet

* Derived from the following two Taylor series:

r(t+0t) = r(t)+0rv(e) + %Stza(z‘) + ...

r(t—9t) = r(t)—0tv(e) + %Stza(t) + ...
« Sum them up and rearrange:
r(t+80) +r(1—81) = 2r(f) + 81 a(1)
Sor(1+81) = 20(£) — r(1— 8t) + 8 a (1)

« So we have an algorithm which essentially does:
{r(t),a(t),r(t—90t)} > {r(t+01),a(t+0¢)}.

» However, the velocities are missing; these can be calculated from
r(t+0t)—r(t—901)

vit) = 20t

» The error per iteration 0(8t4); in the velocities 0(812).

* Memory requirement: 9N.
* Numerical problems, fluctuates heavily

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Common algorithms

e Leap-frog
» Mathematically equivalent with Verlet (not numerically)

{r(t), a(1), V(z‘— %St) } — {r(z‘ + 0t), a(t + d1), v(t + %St)}

V<t+ %81‘) = V(t— %Bt) + ota(t)
r(t+9t) = r(t)+ 8tv(t + %St)

* Velocity

v(t) = %[V(t—%ﬁt) +V(t+%8tﬂ

for energies etc.
» Advantage: explicit v.

* Memory requirement 9N .

* But still velocities at different time than the positions.

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Common algorithms

* Velocity Verlet
 Eliminates the half-step velocity problem

{r(t),v(t),a(t)} = {r(t+0t), v(t+0t), a(t+ 91t}
r(t+0t) = r(t)+8tv(t)+%8t2a(t)
v(t+0t) = V(t)+%5t[a(t)+a(t+8t)]

« If we would eliminate v we would get back to normal Verlet
 This can also be considered to be a simple predictor-corrector-algorithm:

(same as three stage Gear with r correction = 0):
1. Predictor stage:
r(t+81) = r(1) +8v(1) + %Stza(t)
vp(t+ lﬁt) = v(£) + 28t (1)
2 2
2. Corrector stage:

vi(t+81) = vp(r+ %SI) + %5ta(z‘+ 8t)

» Memory requirement 9N .

Introduction to molecular dynamics 2015 4. Solving the equations of motion

10

Common algorithms

« Schematic illustration of the progress of different Verlet algorithms:

fa)r—dt ¢ (44t =8t b kAt =8t 1 pedt =8t

r "'__.-—l‘——--.

Verlet ¥ X
a o

(b)
) C] C ez CT e
Leap-frog v L ®WET 1T [d T Fd
B o R s . e e s s e 5

{c)

; % | | L
Velocity-Verlet v T B] =
- | L

a

Source: Allen-Tildesley

* Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accu-
rate.

Introduction to molecular dynamics 2015 4. Solving the equations of motion 11

Common algorithms

 Velocity Verlet as pseudocode:

do i=1,N
x(1)=x(1i) +deltat*vx(i)+0.5*deltat**2*ax (i)
vx(i)=vx(i)+0.5*deltat*ax (i)
((and same for y and z))

enddo

((get new forces F and accelerations ax(i)))

do i=1,N
vx(i)=vx(i)+0.5*deltat*ax (i)
((and same for y and z))
enddo

« Comparison of performance
* 500 Cu atoms at 300 K
« Euler: r(¢t+0t) = r(t) + otv(?)
v(t+0t) = v(t)+ dta(r)

Introduction to molecular dynamics 2015 4. Solving the equations of motion

—
Euler

Velocity Verlet

Verlet

0 10 20

30

t(ps)

Common algorithms
« Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.)

 Equivalent with Verlet if v eliminated, but velocity more accurate

{r(2), v(t),a(t),a(t—0t)} = {r(t+9¢t), v(t +d¢), a(t +0¢t)} :
r(t+90t) = r(t)+8tv(t)+§Sl2a(t)—é5t2a(t—8t)

v(t+0t) = v(1) + %Sta(t +81) + gﬁta(t) — éSta(t— Ot)

* Memory requirement 12N

Introduction to molecular dynamics 2015 4. Solving the equations of motion

13

Common algorithms

* lon irradiation physics
* Initially £ ~1-100 keV ;

*Intheend £__ ~kgT = variable time step

*Letusmarkr, = r(z);r, ,, = r(f, +061)
« Smith & Harrison (Computers in Physics 3 (1989) 68):

{rn’vn’an’an—l}_){rn+1’vn+1’an+l} :

51,‘2 6z3

. _ n , n 4
* Taylor : r..1 = rn+vn8tn+an7+anT+O(Stn)

a —a
- Estimate a', = ”—”1+0(Szn_1)

Stn_l

= Predictor for positions:

r,., =r,tv,8 +[3+R)a —Ra]1—(1)

n+

Velocity:

2 3
or, or, 4
=v, +adl +a ——+a" — +0(3¢,)

v 2 n 6

n+1

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Time step ratio

Common algorithms

* Force calculation from r,. g

2 2
' an+1—R an_1+(R —l)an

n o6t (1+R)

a —Ra +(R+1)a
noo_ n+1 n—1 n
anZR{ }

2
6t (1 +R)

* Let's insert these into the Taylor series of v,

+1°
2
(3+2R)a, , | R*a 751,
:>V”+1:V”J{ T A I
« Algorithm:

(a) calculate new positions r, , ; using equation (1)

(b) calculate new accelerations a_ , ,

(c) calculate velocities using equation (2)

* Memory 12N, error O(Stn4).

(2)

[(d) correct the positions using

2+R)a

r,,, =r,tvot + TR

2
R a,

n

l1+R

but this demands two force evaluations per time step]

5th
12

» With a constant time step this reduces to the fairly simple form.

2
Btn

6 b

= r = rn+vn8tn+[4an—an_1] v

n+1 n+1

Introduction to molecular dynamics 2015 4. Solving the equations of motion

= Vn+[San+1+San—an_1]

8&1
12

Common algorithms

 Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD'.

() s nf . i
» Using the notation: r, = r (80 \yhere r'= o,
; or
rg(t+8t)))
P i - 7D
r,(+01) 1 11 1 11 (0
P 01 23 4 5||!
r,(t+ ot e
we get the predictor rf: 2)N _ 1o 0 1 3 6 10"
l‘g(t+6t) 0 0 0 1 4 10/|{ry(9)
00 00 1 5(|p (1)
P 4
r4(t+8t) 0000 0 1
P) ~ s
r5(t+8t)

* Note that the triangle is simply a Pascal’s triangle matrix.

« For 2" order (Newtonian) equations of motion, error term is 6r, = r, - rg.

1. G. W. Gear, Numerical initial value problems in ordinary differential equations, (Prentice-Hall, Englewook Cliffs, NJ, USA) 1971; Allen-Tildesley

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Common algorithms

3/16 0.1875

251/360 0.6972

. Corrector:r:l = r5+o¢5r2, o = 1 _ [1.0000
11/18 0.6111

1/6 0.1667

- 1/60 | 10.0167

* Note that if the forces may depend on the velocities, we should have o, = 3/20 instead.

Introduction to molecular dynamics 2015 4. Solving the equations of motion

Common algorithms

ot |
3 -2 -1
« The fluctuations in energy of different 1? 1? 1?
algorithms as a function of the time step
is illustrated on the right .
(Lennard-Jones system; in reduced units 110
p* = 0.6, T* = 1.05) |
H107
» So the ‘better’ algorithms have much less —107
fluctuations for very short timesteps. N
4~ 8
10 “'5
Velocity Verlet -
—107°
—10°°
Gear4d
—H107
Gear5 Gear6 _ _
Source: Allen-Tildesley :

Introduction to molecular dynamics 2015 4. Solving the equations of motion 18

Common algorithms

 Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K.

Potential = EAM

— 10fs
—— 8 fs
— 0Ofs
— 4fs

2 fs

e
n

Velocity Verlet

O P v

AE, Jatom (10° eV)
=) =

—
o

-1.5

Introduction to molecular dynamics 2015

10

4. Solving the equations of motion

50 r .
— 20fs
—— 15fs
— 12fs
40 — 10fs
I~
%30
v
-
=N
E20
8 ‘ Gear5
< |
=]
=1
& 0
<
0 Velocity Verlet
”‘I‘f Ao,
-10 ¥ T
0 4 5 6 7 8 9 10

t (ps)

Curves are shifted in y direction in order
to make the figures clearer.

19

Newer algorithms

* Tuckerman, Berne and Martyna developed around 1990 new reversible MD-algorithms using a
Trotter factorisation of Liouville propagators.

* The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms
[Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]

« It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accu-
racy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

* So, what algorithm should one use?

* A quick solution which works well with short time steps: velocity Verlet.
« If one wants minimal oscillations in the total energy: Gear5s.

« If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.

Introduction to molecular dynamics 2015 4. Solving the equations of motion 20

	Solving the equations of motion
	• In MD, what we really want to do is solve the equations of motion of atoms (or particles in general) interacting via a potential
	• Lagrange equations of motion: ; = generalized coordinate
	• By using the cartesian coordinates , , we get the familiar (Newtonian) form , where is the force acting in atom

	Solving the equations of motion
	• We can also start by considering the Hamiltonian equations of motion , , where is the generalized momentum and the Hamiltonian function (we assume that can be given as a function of)
	• If does not depend on the velocities, we get quickly back to the familiar form and if we again use cartesian coordinates the equations of motion will be:
	• So we have two alternatives:
	1. Solve a system of 2nd order ODE’s () derived from the Lagrangian or Newtonian formalism
	2. Solve a system of 1st order ODE’s derived from the Hamiltonian formalism

	Numerical solution of equations of motion
	• Finite difference method: from a system configuration (atom positions, velocities etc.) at time we calculate the configuration at time
	• can be constant or variable
	• initial conditions , have to be known (initial value problem)

	• As an example a predictor-corrector -algorithm:
	• Use a Taylor series to predict the system configuration at time using the small deviation :
	• , and are higher time derivatives of : = velocity, = acceleration and = the time derivative of acceleration.

	Numerical solution of equations of motion
	• We can instead of also use information from previous time steps: or
	• Correction step: we now have , from which we can get the forces at Þ accurate corrected accelerations Þ error in accelerations
	• Using this known error, one can calculate corrected positions, velocities and so on
	• The constants depend on how many derivatives of we include and the degree of the equation, etc.
	• The correction can also be iterated in principle; but not sensuble in MD: calculating the forces expensive Þ use an algorithm requiring only one evaluation of the force per time step (one correction)
	• If the correction is not iterated, an obvious choice is .

	Numerical solution of equations of motion
	• Thus we reach the following approach to solving the MD equations of motion: (a) predict , and for the time using the present values of the same variables (b) calculate forces and hence from the new (c) correct the predicted , and etc. using the new
	• Requirements for a good MD algorithm (a) fast (not that important) (b) takes little memory (important) (b) allows a long time step (important) (c) reproduces the correct path (see below) (d) conserves energy (and is reversible: Þ back to origin...

	Numerical solution of equations of motion
	• Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time. Since all computers have limited floating-point precision, a small round-off error will eventually grow to a large difference (Lennard-Jon...
	• A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccuracies.

	Common algorithms
	• In the following we present some of the most common MD algorithms:
	• Verlet
	• Derived from the following two Taylor series:
	• Sum them up and rearrange: Þ
	• So we have an algorithm which essentially does: .
	• However, the velocities are missing; these can be calculated from .
	• The error per iteration ; in the velocities .
	• Memory requirement: .
	• Numerical problems, fluctuates heavily

	Common algorithms
	• Leap-frog
	• Mathematically equivalent with Verlet (not numerically)
	• Velocity for energies etc.
	• Advantage: explicit .
	• Memory requirement .
	• But still velocities at different time than the positions.

	Common algorithms
	• Velocity Verlet
	• Eliminates the half-step velocity problem
	• If we would eliminate we would get back to normal Verlet
	• This can also be considered to be a simple predictor-corrector-algorithm: (same as three stage Gear with correction): 1. Predictor stage: 2. Corrector stage:
	• Memory requirement .

	Common algorithms
	• Schematic illustration of the progress of different Verlet algorithms:
	• Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accurate.

	Common algorithms
	• Velocity Verlet as pseudocode:
	• Comparison of performance
	• 500 Cu atoms at 300 K
	• Euler:

	Common algorithms
	• Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.)
	• Equivalent with Verlet if eliminated, but velocity more accurate :
	• Memory requirement

	Common algorithms
	• Ion irradiation physics
	• Initially ;
	• In the end Þ variable time step
	• Let us mark ;
	• Smith & Harrison (Computers in Physics 3 (1989) 68): :
	• Taylor :
	• Estimate Þ Predictor for positions: (1) Velocity:

	Common algorithms
	• Force calculation from : Þ
	• Let’s insert these into the Taylor series of : Þ (2)
	• Algorithm: (a) calculate new positions using equation (1) (b) calculate new accelerations (c) calculate velocities using equation (2)
	• Memory , error .
	• With a constant time step this reduces to the fairly simple form. Þ ,

	Common algorithms
	• Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD.
	• Using the notation: , where we get the predictor :
	• Note that the triangle is simply a Pascal’s triangle matrix.
	• For 2nd order (Newtonian) equations of motion, error term is .

	Common algorithms
	• Corrector:,
	• Note that if the forces may depend on the velocities, we should have instead.

	Common algorithms
	• The fluctuations in energy of different algorithms as a function of the time step is illustrated on the right (Lennard-Jones system; in reduced units ,)
	• So the ‘better’ algorithms have much less fluctuations for very short timesteps.

	Common algorithms
	• Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K. Potential = EAM

	Newer algorithms
	• Tuckerman, Berne and Martyna developed around 1990 new reversible MD-algorithms using a Trotter factorisation of Liouville propagators.
	• The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms [Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]
	• It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accuracy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

	• So, what algorithm should one use?
	• A quick solution which works well with short time steps: velocity Verlet.
	• If one wants minimal oscillations in the total energy: Gear5.
	• If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.

