Set the initial conditions rl.(tO), Vl.(tO) |

'

> | Update neighborlist |

¢

| Get new forces Fi(ri) |

#

Solve the equations of motion numerically over time step At:
ri(t,)—>r(t vi(t,) > v (¢

'

Perform T, P scaling (ensembles)

J

t—>t+ At

'

Get desired physical quantities

'

n+1) n+1)

(?
> tmax Calculate results

and finish
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Solving the equations of motion

[Main source: Allen-Tildesley]

* In MD, what we really want to do is solve the equations of motion of N atoms (or particles in
general) interacting via a potential

« Lagrange equations of motion:
afa) o _ .
dt\9q,) dq; ’

L(q,q) = K(q.q)— ¥(q, q)
q = generalized coordinate

By using the cartesian coordinates

9% = 7
' I .2
K(r) = Zimiri’
I
V= V(r),

we get the familiar (Newtonian) form
ml.l'"l. =1,

where f, = V_L = -V_ 7V is the force acting in atom i

1 1
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Solving the equations of motion
« We can also start by considering the Hamiltonian equations of motion

_O0H . _ OH

qi a’ pi aql’

where p. = gi is the generalized momentum
9

and H(q,p) = Zqipi—L(q, q) the Hamiltonian function (we assume that g; can be given as a

l
function of p)

« If ¥ does not depend on the velocities, we get quickly back to the familiar form

H(q,p) = K(p) + V(q)
and if we again use cartesian coordinates the equations of motion will be:

. P
r, = —
m.

l

P; = _Vl‘iV = fi

- So we have two alternatives: )
1. Solve a system of 3N 2"d order ODE’s (ml.rl- = fi) derived from the Lagrangian or Newtonian formalism

2. Solve a system of 6N 15t order ODE’s derived from the Hamiltonian formalism
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Numerical solution of equations of motion

* Finite difference method: from a system configuration (atom positions, velocities etc.) at time ¢
we calculate the configuration at time ¢+ &¢

Ot can be constant or variable
« initial conditions r(0), v(0) have to be known (initial value problem)

* As an example a predictor-corrector -algorithm:

» Use a Taylor series to predict the system configuration at time ¢ + d¢ using the
small deviation 6¢:

2

rp(t +0t) = r(t)+otv(e) + 18t

1.3
5 a(t) + 5& b(t)+ ... Equations of motion

not (yet) used.

VP +86) = v(r) + Sra(s) + %Stzb(t) .

aP(1+81) = a(t) +81b (1) + ...

bp(t+ ot) = b(t) + ...

* v, a and b are higher time derivatives of r:
v = velocity, a = acceleration and b = the time derivative of acceleration.
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Numerical solution of equations of motion

» We can instead of b also use information from previous time steps:
{r (1), v(2), v(t—01), v(t—201) }
or r(t)a V(t)a a(t)a a(t_St)

» Correction step: we now have r?, from which we can get the forces

Equations of motion
Fl-(l‘pi) at t+ ot now used.

. C
—> accurate corrected accelerations a (¢ + o¢)

= error in accelerations Aa(z+d¢) = ac(t + 0t) — ap(t + 0t)
 Using this known error, one can calculate corrected positions, velocities and so on
r(t+81) = rP(t+81) + cyha(r+ 8t)
ve(r+8) = vP(t+80) + ¢ Aa(r + &)
a“(1+81) = al(1+80) + c,Aa(1+ 1)

be(¢+81) = bP(1+81) + cyAa(r+81)

* The constants ¢, depend on how many derivatives of r we include and the degree of the equation, etc.

» The correction can also be iterated in principle; but not sensuble in MD: calculating the forces expensive
= use an algorithm requiring only one evaluation of the force per time step (one correction)
* If the correction is not iterated, an obvious choice is ¢, = 1.
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Numerical solution of equations of motion

« Thus we reach the following approach to solving the MD equations of motion:
(a) predict r, v and a for the time ¢+ 8¢ using the present values
of the same variables
(b) calculate forces and hence a = f/m from the new r
(c) correct the predicted r, v and a etc. using the new a

* Requirements for a good MD algorithm

(a) fast (not that important)
(b) takes little memory (important)
(b) allows a long time step &¢ (important)
(c) reproduces the correct path (see below)
(d) conserves energy (and is reversible:
ot — -6t = back to original state) (very important)
(f) easy to implement (not that important)
(g) only one force evaluation/time step (important for complex 1)
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Numerical solution of equations of motion

* Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time.
Since all computers have limited floating-point precision, a small round-off error will eventually grow to a

large difference (Lennard-Jones system; in reduced units p* = 0.6, T* = 1.05):

p—
>
S}

—
<
<

—_
S
]

Ar 107

=
L,

oy
)
o

10—10

Phase space distance from the reference trajectory

(a)

time steps

P "’/I-_;
1 7
1000

107

y

Initial
displacement

4% ®)
0.4% 107
Ei 0 ‘ time steps
y %7 500 1000
—0.4%t §
- =
B; time steps ©
0 { { P
3 ]500 1000 S
B ' c
3]
—0.4%" g _8
0.4% 10 GEJ
i X
_ i{ 0 . time steps
5% 500 W| 1000
—0.4%%

Source: Allen-Tildesley

* A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccura-

cies.
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Common algorithms
* In the following we present some of the most common MD algorithms:
* Verlet

* Derived from the following two Taylor series:

r(t+0t) = r(t)+0rv(e) + %Stza(z‘) + ...

r(t—9t) = r(t)—0tv(e) + %Stza(t) + ...
« Sum them up and rearrange:
r(t+80) +r(1—81) = 2r(f) + 81 a(1)
Sor(1+81) = 20(£) — r(1— 8t) + 8 a (1)

« So we have an algorithm which essentially does:
{r(t),a(t),r(t—90t)} > {r(t+01),a(t+0¢)}.

» However, the velocities are missing; these can be calculated from
r(t+0t)—r(t—901)

vit) = 20t

» The error per iteration 0(8t4); in the velocities 0(812).

* Memory requirement: 9N.
* Numerical problems, fluctuates heavily
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Common algorithms

e Leap-frog
» Mathematically equivalent with Verlet (not numerically)

{r(t), a(1), V(z‘— %St) } — {r(z‘ + 0t), a(t + d1), v(t + %St)}

V<t+ %81‘) = V(t— %Bt) + ota(t)
r(t+9t) = r(t)+ 8tv(t + %St)

* Velocity

v(t) = %[V(t—%ﬁt) +V(t+%8tﬂ

for energies etc.
» Advantage: explicit v.

* Memory requirement 9N .

* But still velocities at different time than the positions.
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Common algorithms

* Velocity Verlet
 Eliminates the half-step velocity problem

{r(t),v(t),a(t)} = {r(t+0t), v(t+0t), a(t+ 91t}
r(t+0t) = r(t)+8tv(t)+%8t2a(t)
v(t+0t) = V(t)+%5t[a(t)+a(t+8t)]

« If we would eliminate v we would get back to normal Verlet
 This can also be considered to be a simple predictor-corrector-algorithm:

(same as three stage Gear with r correction = 0):
1. Predictor stage:
r(t+81) = r(1) +8v(1) + %Stza(t)
vp(t+ lﬁt) = v(£) + 28t (1)
2 2
2. Corrector stage:

vi(t+81) = vp(r+ %SI) + %5ta(z‘+ 8t)

» Memory requirement 9N .

Introduction to molecular dynamics 2015 4. Solving the equations of motion
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Common algorithms

« Schematic illustration of the progress of different Verlet algorithms:

fa)r—dt ¢ (44t =8t b kAt =8t 1 pedt =8t

r "'__.-—l‘——--.

Verlet ¥ X
a o

(b)
) C ] C ez CT e
Leap-frog v L ®WET 1T [d T Fd
B o R s . e e s s e 5

{c)

; % | | L
Velocity-Verlet v T B ] =
- | L

a

Source: Allen-Tildesley

* Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accu-
rate.
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Common algorithms

 Velocity Verlet as pseudocode:

do i=1,N
x(1)=x(1i) +deltat*vx(i)+0.5*deltat**2*ax (i)
vx(i)=vx(i)+0.5*deltat*ax (i)
((and same for y and z))

enddo

((get new forces F and accelerations ax(i)))

do i=1,N
vx(i)=vx(i)+0.5*deltat*ax (i)
((and same for y and z))
enddo

« Comparison of performance
* 500 Cu atoms at 300 K
« Euler: r(¢t+0t) = r(t) + otv(?)
v(t+0t) = v(t)+ dta(r)
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Common algorithms
« Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.)

 Equivalent with Verlet if v eliminated, but velocity more accurate

{r(2), v(t),a(t),a(t—0t)} = {r(t+9¢t), v(t +d¢), a(t +0¢t)} :
r(t+90t) = r(t)+8tv(t)+§Sl2a(t)—é5t2a(t—8t)

v(t+0t) = v(1) + %Sta(t +81) + gﬁta(t) — éSta(t— Ot)

* Memory requirement 12N

Introduction to molecular dynamics 2015 4. Solving the equations of motion
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Common algorithms

* lon irradiation physics
* Initially £ ~1-100 keV ;

*Intheend £__ ~kgT = variable time step

*Letusmarkr, = r(z);r, ,, = r(f, +061)
« Smith & Harrison (Computers in Physics 3 (1989) 68):

{rn’vn’an’an—l}_){rn+1’vn+1’an+l} :

51,‘2 6z3

. _ n , n 4
* Taylor : r..1 = rn+vn8tn+an7+anT+O(Stn )

a —a
- Estimate a', = ”—”1+0(Szn_1)

Stn_l

= Predictor for positions:

r,., =r,tv,8 +[3+R)a —Ra  ]1—(1)

n+

Velocity:

2 3
or, or, 4
=v, +adl +a ——+a" — +0(3¢, )

v 2 n 6

n+1
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Common algorithms

* Force calculation from r,. g

2 2
' an+1—R an_1+(R —l)an

n o6t (1+R)

a —Ra +(R+1)a
noo_ n+1 n—1 n
anZR{ }

2
6t (1 +R)

* Let's insert these into the Taylor series of v,

+1°
2
(3+2R)a, , | R*a 751,
:>V”+1:V”J{ T A I
« Algorithm:

(a) calculate new positions r, , ; using equation (1)

(b) calculate new accelerations a_ , ,

(c) calculate velocities using equation (2)

* Memory 12N, error O(Stn4).

(2)

[(d) correct the positions using

2+R)a

r,,, =r,tvot + TR

2
R a,

n

l1+R

but this demands two force evaluations per time step]

5th
12

» With a constant time step this reduces to the fairly simple form.

2
Btn

6 b

= r = rn+vn8tn+[4an—an_1] v

n+1 n+1
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Common algorithms

 Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD'.

() s nf . i
» Using the notation: r, = r (80 \yhere r'= o,
; or
rg(t+8t) ) )
P i - 7D
r,(+01) 1 11 1 11 (0
P 01 23 4 5||!
r,(t+ ot e
we get the predictor rf: 2 )N _ 1o 0 1 3 6 10"
l‘g(t+6t) 0 0 0 1 4 10/|{ry(9)
00 00 1 5(|p (1)
P 4
r4(t+8t) 0000 0 1
P ) ~ s
r5(t+8t)

* Note that the triangle is simply a Pascal’s triangle matrix.

« For 2" order (Newtonian) equations of motion, error term is 6r, = r, - rg.

1. G. W. Gear, Numerical initial value problems in ordinary differential equations, (Prentice-Hall, Englewook Cliffs, NJ, USA) 1971; Allen-Tildesley
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Common algorithms

3/16 0.1875

251/360 0.6972

. Corrector:r:l = r5+o¢5r2, o = 1 _ [1.0000
11/18 0.6111

1/6 0.1667

- 1/60 | 10.0167

* Note that if the forces may depend on the velocities, we should have o, = 3/20 instead.
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Common algorithms

ot |
3 -2 -1
« The fluctuations in energy of different 1? 1? 1?
algorithms as a function of the time step
is illustrated on the right .
(Lennard-Jones system; in reduced units 110
p* = 0.6, T* = 1.05) |
H107
» So the ‘better’ algorithms have much less —107
fluctuations for very short timesteps. N
4~ 8
10 “'5
Velocity Verlet -
—107°
—10°°
Gear4d
—H107
Gear5 Gear6 _ _
Source: Allen-Tildesley :
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Common algorithms

 Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K.

Potential = EAM

— 10fs
—— 8 fs
— 0Ofs
— 4fs

2 fs

e
n

Velocity Verlet

O P v

AE, Jatom (10° eV)
=) =

—
o

-1.5
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50 r .
— 20fs
—— 15fs
— 12fs
40 — 10fs
I~
%30
v
-
=N
E20
8 ‘ Gear5
< |
=]
=1
& 0
<
0 Velocity Verlet
”‘I‘f Ao,
-10 ¥ T
0 4 5 6 7 8 9 10

t (ps)

Curves are shifted in y direction in order
to make the figures clearer.
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Newer algorithms

* Tuckerman, Berne and Martyna developed around 1990 new reversible MD-algorithms using a
Trotter factorisation of Liouville propagators.

* The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms
[Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]

« It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accu-
racy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

* So, what algorithm should one use?

* A quick solution which works well with short time steps: velocity Verlet.
« If one wants minimal oscillations in the total energy: Gear5s.

« If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.
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	Solving the equations of motion
	• In MD, what we really want to do is solve the equations of motion of atoms (or particles in general) interacting via a potential
	• Lagrange equations of motion: ; = generalized coordinate
	• By using the cartesian coordinates , , we get the familiar (Newtonian) form , where is the force acting in atom


	Solving the equations of motion
	• We can also start by considering the Hamiltonian equations of motion , , where is the generalized momentum and the Hamiltonian function (we assume that can be given as a function of )
	• If does not depend on the velocities, we get quickly back to the familiar form and if we again use cartesian coordinates the equations of motion will be:
	• So we have two alternatives:
	1. Solve a system of 2nd order ODE’s () derived from the Lagrangian or Newtonian formalism
	2. Solve a system of 1st order ODE’s derived from the Hamiltonian formalism


	Numerical solution of equations of motion
	• Finite difference method: from a system configuration (atom positions, velocities etc.) at time we calculate the configuration at time
	• can be constant or variable
	• initial conditions , have to be known (initial value problem)

	• As an example a predictor-corrector -algorithm:
	• Use a Taylor series to predict the system configuration at time using the small deviation :
	• , and are higher time derivatives of : = velocity, = acceleration and = the time derivative of acceleration.


	Numerical solution of equations of motion
	• We can instead of also use information from previous time steps: or
	• Correction step: we now have , from which we can get the forces at Þ accurate corrected accelerations Þ error in accelerations
	• Using this known error, one can calculate corrected positions, velocities and so on
	• The constants depend on how many derivatives of we include and the degree of the equation, etc.
	• The correction can also be iterated in principle; but not sensuble in MD: calculating the forces expensive Þ use an algorithm requiring only one evaluation of the force per time step (one correction)
	• If the correction is not iterated, an obvious choice is .


	Numerical solution of equations of motion
	• Thus we reach the following approach to solving the MD equations of motion: (a) predict , and for the time using the present values of the same variables (b) calculate forces and hence from the new (c) correct the predicted , and etc. using the new
	• Requirements for a good MD algorithm (a) fast (not that important) (b) takes little memory (important) (b) allows a long time step (important) (c) reproduces the correct path (see below) (d) conserves energy (and is reversible:  Þ back to origin...

	Numerical solution of equations of motion
	• Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time. Since all computers have limited floating-point precision, a small round-off error will eventually grow to a large difference (Lennard-Jon...
	• A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccuracies.

	Common algorithms
	• In the following we present some of the most common MD algorithms:
	• Verlet
	• Derived from the following two Taylor series:
	• Sum them up and rearrange: Þ
	• So we have an algorithm which essentially does: .
	• However, the velocities are missing; these can be calculated from .
	• The error per iteration ; in the velocities .
	• Memory requirement: .
	• Numerical problems, fluctuates heavily


	Common algorithms
	• Leap-frog
	• Mathematically equivalent with Verlet (not numerically)
	• Velocity for energies etc.
	• Advantage: explicit .
	• Memory requirement .
	• But still velocities at different time than the positions.


	Common algorithms
	• Velocity Verlet
	• Eliminates the half-step velocity problem
	• If we would eliminate we would get back to normal Verlet
	• This can also be considered to be a simple predictor-corrector-algorithm: (same as three stage Gear with correction ): 1. Predictor stage: 2. Corrector stage:
	• Memory requirement .


	Common algorithms
	• Schematic illustration of the progress of different Verlet algorithms:
	• Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accurate.

	Common algorithms
	• Velocity Verlet as pseudocode:
	• Comparison of performance
	• 500 Cu atoms at 300 K
	• Euler:


	Common algorithms
	• Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.)
	• Equivalent with Verlet if eliminated, but velocity more accurate :
	• Memory requirement


	Common algorithms
	• Ion irradiation physics
	• Initially ;
	• In the end Þ variable time step
	• Let us mark ;
	• Smith & Harrison (Computers in Physics 3 (1989) 68): :
	• Taylor :
	• Estimate Þ Predictor for positions: (1) Velocity:


	Common algorithms
	• Force calculation from : Þ
	• Let’s insert these into the Taylor series of : Þ (2)
	• Algorithm: (a) calculate new positions using equation (1) (b) calculate new accelerations (c) calculate velocities using equation (2)
	• Memory , error .
	• With a constant time step this reduces to the fairly simple form. Þ ,

	Common algorithms
	• Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD.
	• Using the notation: , where we get the predictor :
	• Note that the triangle is simply a Pascal’s triangle matrix.
	• For 2nd order (Newtonian) equations of motion, error term is .


	Common algorithms
	• Corrector:,
	• Note that if the forces may depend on the velocities, we should have instead.

	Common algorithms
	• The fluctuations in energy of different algorithms as a function of the time step is illustrated on the right (Lennard-Jones system; in reduced units , )
	• So the ‘better’ algorithms have much less fluctuations for very short timesteps.


	Common algorithms
	• Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K. Potential = EAM

	Newer algorithms
	• Tuckerman, Berne and Martyna developed around 1990 new reversible MD-algorithms using a Trotter factorisation of Liouville propagators.
	• The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms [Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]
	• It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accuracy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

	• So, what algorithm should one use?
	• A quick solution which works well with short time steps: velocity Verlet.
	• If one wants minimal oscillations in the total energy: Gear5.
	• If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.



