Basics of molecular dynamics

* The basic idea of molecular dynamics (MD) simulations is to calculate how a system of particles

evolves in time.
» The method was first used by Alder and Wainwright in 1957 to calculate properties of many-body sys-

tems. They called the particles molecules.
* There is an interesting parallel to classical mechanics here. The two-body motion problem was solved by Newton way
back then. The three-body problem was solved by a Finnish guy, Sundman, in the early part of the last century - but

the solution is utterly impractical (108000000 tarms needed in a series expansion).

The N-body problem, N> 3, can not be solved analytically. MD can also described to be a
numerical way of solving the N-body problem. The solution is of course never exact, but if done
properly it can be done arbitrarily accurately.

Consider a set of atoms at positions r, and some interaction model which gives us the potential
energy of the system V({r})

In Newtonian mechanics we then get:

/ d
— = v, E(mivi) =F, =-Vy=-V, ZVz(ri, rj)+ZV3(ri, Tt
J Jrk

By solving the above set of equations numerically we can derive dr over some short time inter-
val d:.
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Basic MD algorithm (slightly simplified)

Set the initial conditions rl.(to), Vl.(to)

'

- Get new forces F (r )

|

Solve the equations of motion numerically over time step At:
vi(t) > v (t

rl.(tn) - rl.(tn+ 1)

n—i—l)

i

t—>t+ At

|

Get desired physical quantities

i

t>t N
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Calculate results
and finish
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An alternative view « Zoom in on 2 time steps (5
« MD-simulation of thermal motion over 100 time steps atoms):

* At time ¢ the distances rlj and
*® ¢ ¥ ¥ hence forces F ij between nearby
atoms are calculated
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the equations of motion, and
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el e | T velocities.
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General considerations

» The above was the simplest possible example, the so called microcanonical or NVE ensemble.
This means that the approach preserves the number of atoms ~, the volume of the cell ¥ and
the energy E. Other ensembles will be dealt with later on in the course. But the NVE ensemble

is the most natural one in that it is the true solution of the N-body problem, and corresponds to
the real atom motion.

e First MD simulations:

» Hard spheres: B. J. Alder, T. E. Wainwright: Phase transition for a Hard Sphere-System, J. Chem. Phys.
27 (1957) 1208

 Continuous potentials: J. B. Gibson, A. N. Goland, M. Milgram, G. H. Vineyard: Dynamics of Radiation
Damage, Phys. Rev. 120 (1960) 1229.

« State-of-the-art (2015):
 Of the order of 10 000 000 000 atoms can be done on many large supercomputers

* In Finland: CSC Cray (louhi.csc.fi): some 100 000 000 atoms with a realistic potential easily possible for
thousands of time steps.

« If all ¥ atoms interact with all atoms, one has to in principle calculate N* interactions. This is
prohibitively expensive for millions of atoms.
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General considerations

» Fortunately, in practice most atomic interactions decrease rapidly in strength as » — «~. In that
case it is enough to calculate only interactions to nearby atoms.
 E.g. in diamond-structured semiconductors (Si, Ge, GaAs...) atoms have 4 covalent bonds, so the calcu-
lation can be reduced to 4 neighbours =>4 N interactions.

* In metals atoms more than ~ 5 A far can usually be neglected => about 80 N interactions

* In ionic systems the interaction Vo 1/r, i.e. decreases very slowly. It can not be cut off, but there are
smart workarounds.
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Early MD simulations

Phase Transition for a Hard
Sphere System

B. J. AtpEr anp T. E. WAINWRIGHT
University of California Radiation Laboratory, Livermore, California
(Received August 12, 1957)

CALCULATION of molecular dynamic motion

has been designed principally to study the re-
laxations accompanying various nonequilibrium phe-
nomena. The method consists of solving exactly (to the
number of significant figures carried) the simultanecous
classical equations of motion of several hundred par-
ticles by means of fast electronic computors. Some of the
details as they relate to hard spheres and to particles
having square well potentials of attraction have been
described .}z The method has been used also to calculate
equilibrium properties, particularly the equation of
state of hard spheres where differences with previous
Monte Carlo® results appeared.

The calculation treats a system of particles in a
rectangular box with periodic boundary conditions.*
Initially, the particles are in an ordered lattice with
velocities of equal magnitude but with random orienta-
tions. After a very short initial run!2 the system reached
the Maxwell-Boltzmann velocity distribution so that
the pressure could thereafter be evaluated directly by
means of the virial theorem, that is by the rate of change
of the momentum of the colliding particles.* The
pressure has also been evaluated from the radial distri-
bution function.b? Agreement between the two methods
is within the accuracy of the calculation.
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A 32-particle system in a cube and initially in a face-
centered cubic lattice proceeded at about 300 collisions
an hour on the UNIVAC. For comparison a 96-particle
system in a rectangular box and initially in a hexagonal
arrangement has been calculated, however only at high
densities so far. No differences in the pressures can be
detected. It became apparent that some long runs were
necessary at intermediate densities, accordingly the
IBM-704 was utilized where, for 32 particles, an hour is
required for 7000 collisions. Larger systems of 108, 256,
and 500 particles can also conveniently be handled; in
an hour 2000, 1000, and 500 collisions, respectively, can
be calculated. The results for 256 and 500 particles are
not now presented due to inadequate statistics.
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Fic. 1. The equation of state of hard spheres. The heavy solid
curve represents Alder and Wainwright’s? 108 molecule results; +,
their 32 molecule results. @ and A represent the present and pre-
vious! Monte Carlo results. Virial=five term virial expression.!
Superposition = reference 3.



Early MD simulations

Purely repulsive poten-
tial was used:

V) = Ve P

cohesion: inward force

on border atoms

* By current standards,
both features extremely
questionable...

» But for 1960, very
impressice feat!

500 atoms on IBM 704:

1 minute/time step
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PHYSICAL REVIEW

VOLUME 120, NUMBER ¢4 NOVEMBER

Dynamics of Radiation Damage*

J. B. Gison, A. N. GorLanp,f M. MiLcraM, aND G. H. VINEVARD
Brookhaven National Laboratory, Upton, New York

(Received July 14, 1960)

Radiation damage events at low and moderate energies (up to 400 ev) are studied by machine calculations
in a model representing copper. Orbits of knock-on atoms are found and the resulting damaged configurations
are observed to consist of interstitials and vacancies. Thresholds for producing permanently displaced atoms
(i.e., interstitials) are about 25 ev in the (100} direction, 25 to 30 ev in the {110} direction, and around 85 ev
in the (111} direction. Collision chains in the (100) and (110) directions are prominent; at low energies the
chains focus, at higher energies they defocus. Above threshold, the chains transport matter, as well as
energy, and produce an interstitial at a distance. The range of {110 chains has been studied in detail.
Localized vibrational modes associated with interstitials, agitations qualitatively like thermal spikes, ring
annealing processes, and a higher energy process somewhat like a displacement spike have been observed.
Replacements have been found to be very numerous.

The configurations of various static defects have also been studied in this model. The interstitial is
found to reside in a “split” configuration, sharing a lattice site with another atom. The crowdion is found
not to be stable, and Frenkel pairs are stable only beyond minimum separations, which are found to be
very much dependent on orientation.
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Fi1c. 1. Two of the sets of atoms used in the calculations.
Set A is above, Set B is below.
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I'16. 6. Atomic orbits produced by shot in (100) plane at 40 ev.
Knock-on was at 4 and was directed 15° above —v axis. Large
circles give initial positions of atoms in plane; small dots are
initial positions in plane below. Vacancy is created at A, split
interstitial at 2. Run to time 99. (Run No. 12).



Simulation cell

* In practice in most cases the atoms are arranged in a
orthogonal simulation cell which has a size §_x S, XS,

* It is also perfectly possible to use a simulation cell with axes
than are not orthogonal.

* Problem: what should we do with the atoms at the bor-
ders.

1. Nothing: “free” boundaries

* This works fine if we want to deal with e.g. a molecule, nanocluster or
nanotube in vacuum.

* If we want to describe a continuous medium, this does not work: the
atoms are left “hanging” on the surface as if they would be on the sur-
face.
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Simulation cell

2. Fix the boundary atoms:

« Completely unphysical, this should be avoided if possible. Sometimes it is needed

and with a fairly large “sacrificial” region next to the fixed ones can be perfectly OK. ]

3. Periodic boundary conditions

 To implement this very important boundary condition two things have to be done

1. An atom which passes over the cell boundary comes back on the other side:
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Simulation cell

* In practice this can be implemented as follows (Fortran 90) (note that atomic coordinates are between —Sx/2 and

S /2):

I x : particle coordinate
|periodicx : = true periodic, false free
Ixsize : MD cell size (S;)

if (periodicx) then
if (x < -xsize/2.0) x
if (x >= xsize/2.0) x
endif

X + Xsize
X - Xsize

« Similarly for y and z

2. When distances between atoms are calculated, the periodic boundaries
have to be taken into account:

« The solid box is the simulation cell, with atoms i, j, k£ and /. Because of the
periodic boundaries, all atoms have image atoms in the repeated cells, for
instance ', k', ['.

* When we want to get the distance between atom i and j, which distance should we use?

* Because here rij > rl.j', we use for the distance between atoms 7 and j the vector 7, AN
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Simulation cell

* As a pseudo-algorithm (Fortran 90) in the x dimension:

if (periodicx) then

dx = x(j) - x(1i)

if (dx > Xsize/2.0) dx = dx - xsize

if (dx <= -xsize/2.0) dx = dx + xsize
endif

and similarly for y and z

« Example in 1D

X=X —>Xa—X; = —[(‘—g—x) +(—+x.ﬂ =x.—x.— 8
J ! J ! 2 , J 2‘ l J l

, ,
,
,
,
,
J 1 Jj

d | d |
B i "““I . | ._I“""""""““““““““““““
S 0 S
2 2

* Note that if the maximum distance by which atoms can interact r ;o5 > xSize/2 the atom i should actually interact both
with atom j and j°. To prevent unphysical double interactions we need to have xsize > 2 rqtoff
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Simulation cell

» Thus we get a system where the simulation cell has an infinite number of image cells in all directions, and
a model of an infinite system.

« However, be careful! = 5 o o o e T e e o T T e S o -

* Periodicity brings an artificial interaction over the simula-
tion cell borders. e e o o o o o o o o o o o o o

* For instance, a strain field arising from a point source, | © © o o o o o o o o o o o o o
which is infinite, will obviously be distorted at the periodic 1® ¢ ¢ ¢ ¢ (& ¢ ¢ ¢ ¢ (o ¢ o o o |
borders. Examples: e~ & "6 o o o o o o o Jo o ¢ o o

* A single vacancy (one missing atom) in Sizinquantum "4 "4 4 4 o o o o e o o o o o o
mechanical calculations at least some 200 atomsare e o e o o ¢ o o o o (o o o o o
required to get the energy reliably [Puska 1998 Phys.

Rev. B] | e ) ° ) ° ) ° ° ° ° ° ° ° ° o

« And for instance a 5 nm Co cluster in Cu: about 10° r°_ L N L ) _:
atoms needed to get the strain energy reliably. o o o o o e e e e ettt

» Upper limit for the phonon wavelength. | | | |

* To test this: simulate with different N and monitor the con- ® © o o o o o o o o o o o o o
vergence. L 0 _C *_ 0 o, 0 0 6 0 o 0_° 0 _0°
* In general, this kind of size scaling test is very impor-
tant in any simulations done for a finite-size system
aiming to mimic any real much larger system
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Simulation cell

« Simulating surfaces:

* periodic boundaries only in x- and y-directions
« free surface:
* the bottom either:
a) free: simulation of a free-standing thin foil with two surfaces

or b) fixed to model a bulk below:
« very bottommost atoms fixed
- a few atom layers above fixed layers damped with e.g. a temperature control algorithm
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Simulation cell

« Simulation of energetic processes:

* In a simulation where a lot of energy is brought into
the MD cell in a local region, the energy has to be
scaled out from the system to model a much cooler
‘heat bath’ in a realistic system.

» The energetic processes may also introduce a lot of
momentum into the cell, which could cause the entire
cell to move.

« Solution: fix all boundary atoms except at the surface,

and do T scaling in a few atom layers above these, as
above.

» Here also: watch out the finite-size effects! Do some size-scaling tests!
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Initial conditions: creating atoms

 For cubic lattices (FCC, BCC, SC, DIA) it is easy to create the lattice.

basis(1,1)=0.0; basis(1,2)=0.0; basis(1,3)=0.0;
basis(2,1)=0.5; basis(2,2)=0.5; basis(2,3)=0.0; To refresh your memory:
basis(3,1)=0.5; basis(3,2)=0.0; basis(3,3)=0.5;
basis(4,1)=0.0; basis(4,2)=0.5; basis(4,3)=0.5; Coordinates between FCC : face centered cubic
offset( )=0.25; offset (2)=0.25; offset (3)=0.25; BCC : body centred cubic
nbasis=4; . .
n=0; S and S SC: simple cubic
do i=0,nx-1 2 DIA: diamond
do j=0,ny-1 HCP: hexagonal close-
do k=O,nZ—1 , packed
do m=1,nbasis *
n=n+1
x(n)=-xsize/2+ (i+offset (1) +basis(m,1)) *a
y(n)=-ysize/2+ (j+offset (2)+basis(m,2)) *a
z(n)=-zsize/2+ (k+offset (3)+basis(m,3)) *a
enddo
enddo
enddo
enddo
« The HCP lattice is also very common, but
not orthogonal in the conventional repre-
sentation. b'
* Because in the HCP structure a = b, and
because cos60° = 1/2, the HCP lattice can b
be transformed into an equivalent orthogonal .
representation. Now the new unit cell (shaded 60 >

For instance FCC:

area) corresponds to two of the conventional
HCP unit cells.
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Initial atom velocities

 How do we set the cell temperature to

a desired value?

» WWe have to generate initial atom velocities which correspond to the Maxwell-Boltzmann distribution (which

is surprisingly well valid even in crystals):

1 100

m. \1/2 |
l
P(v;y) = LGkBTj exp(—im.v.2 /kBT); o =Xx,)2z.

 This is just a Gaussian function with suitable scaling, and exactly correct within an ideal gas model for

atom velocities

* We usually also want to set the total
momentum of the cell to zero to pre-
vent the entire cell from starting to
move:

N
P = Zmivi
i=1

» So in practice all this can be achieved
with the code fragment on the right:

sigma2v=gsqgrt (kB*2*T/ (m*u) ) /vunit

do i=1,n
vx (i) =sigma2v*gaussrandom(iseed)
vy (i) =sigma2v*gaussrandom (iseed)
vz (i) =sigma2v*gaussrandom(iseed)

vxtot=vxtot+vx (1) ! If all atoms have the same mass,
vytot=vytot+vy (i) ! it is enough to scale the total v

vztot=vztot+vz (i) ! to zero
enddo
vxtot=vxtot/n
vytot=vytot/n
vztot=vztot/n
do i=1,n
vx (1)=vx (i) -vxtot
vy (i) =vy (i) -vytot
vz (i)=vz (i) -vztot
enddo

2
V. kT
Note: exp( lo;), (52 - B

20 mn;
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Initial atom velocities

* Note the factor of 2: if the sim- E)
ulation is started from per-
fect lattice sites, or bound \V(r) Yo
equilibrium positions in a I >
molecule, half of the initial
Kinetic energy will be
changed to potential energy

after a while.
/ ha Eyp and Epot

0 50 100 15;0 200 250 300
* It is also possible to get real- AN 1 (fs)
istic initial random displace- Exip only
ments.
* This can be derived from the Debye model: the thermal
displacement in the direction of the axis i is a Gaussian distribution of the form

_S2/942
W(Si, 7) = [2nc]"}/2e 07/20 where

2
g = 20.89 ﬁA,where 2089 = |2 A K
ﬁ@D A4 kBu

@D = Debye temperature of the material, 4 = Atomic mass

* The initial position can now be obtained with Gaussian-distributed random numbers as above.
* Note, however, that this does not account for quantum mechanical zero-point vibrations which give addi-
tional displacements near 0 K.
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Generating random numbers

(This topic is dealt with in much more detail on the Monte Carlo simulation course)

« Almost all kinds of simuations in physics use random numbers somewhere. As we saw above,
MD simulations need them at least for initial velocity generation.

« Computer-generated random numbers are of course not truly random, but if they have been
generated with a good algorithm, they start to repeat each other only after a very large (e.g.

1020 ) number of iterations. If the number of random numbers used in the entire simulation is
much less than the repeat number, the algorithm probably is good enough for the application.

« Random numbers can be generated for different distributions. This means that if we generate a
large number of numbers and make statistics out of them, they will eventually approach some
distribution.

« The most common is of course an even distribution in an interval, another very common is
Gaussian-distributed numbers:

2 A 24
N N
| |
0 1 0
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Generating random numbers

» Evenly distributed random numbers:

* Many programming languages offer their own random number generator (e.g. in ANSI-C rand()). A good
rule-of-thumb regarding these is:

Never use them for anything serious !

» The reason is simply that the language standard only specifies that the generator has to be there, not that it works sen-
sibly. Since there are no guarantees it does (there are famous examples of the opposite) it should not be used

* Most random number generators are based on modulo-arithmetics and iteration. In the simplest possible

form:

1

i1 = alj (mod m)

» Park and Miller ‘minimal standard’-generator: a = 16807, m = 231 —1

* In the beginning the number /, i.e. the seed number is chosen randomly.

 This can be done e.g. by using the current system time.
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Generating random numbers

* One practical implementation (Fortran90):

real function uniformrand (seed)
implicit none

. . ) integer :: seed,IA,IM,IQ,IR,MASK
» The repeat interval for this routine ~ real :: ran0,AM
2 1.109 integer :: k
. . . . . . parameter (IA=16807,IM=2147483647,AM=1.0/1IM)
_ThIS rOUt_In.e IS eaSIIy gOOd enOUgh If: fOr parameter (IQ=127773,IR=2836,MASK=123459876)
instance it is only needed for the choice of
random numbers in the beginning of an seed=ieor (seed, MASK)
. ) k=seed/IQ
MD simulation. seed=IA* (seed-k*IQ)-IR*k

if (seed < 0) seed=seed+IM
uniformrand=AM*seed
seed=ieor (seed, MASK)

* In a long Monte Carlo integration where
random numbers are used all the time, return
the repeat interval may be reached, after
which continued running will not improve
on the results (and for instance the error
estimate of the result will be calculated
outright wrong).

end function uniformrand

* More on this topic for instance from the book: Press, Teukolsky, Vetterling, Flannery: Numerical Recipes
in C/Fortran, 2nd. ed., chapter 7.

* The book is on-line in its entirety (see http://www.nr.com/).

 But see also: “Why not use Numerical Recipes?”, http://math.jpl.nasa.gov/nr/
and the reply to this: http://www.nr.com/bug-rebutt.html
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Generating random numbers

« To generate Gaussian random velocities we need to be able to generate Gaussian-distributed
random numbers.

* How to do this is dealt with in great detail in Numerical Recipes chapter 7.2. Here we only present the
most efficient accurate algorithm for this:

2 2
1° Obtain two evenly distributed random numbers v4 and v, between -1 and 1, then calculate w = viTty,

2° If w>1 return to step 1°

3° Calculate r = J/—2logw
4° Calculate x = rvl/ﬁ and y = rvz/J;v

5° Return x and on next step y

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics
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Choosing the MD time step

* Depends on the integration algorithm used, but not too strongly.

» The change in the atom position in the potential used should not
be too strong.

« A practical, rough rule-of-thumb: the atoms should not move
more than 1/20 of the nearest-neighbour distance.

« Thermal velocity of atoms (Maxwell-Boltzmann distribution):
_3 _ 1 2 _ [BkT
E = ikBT =MV S Vg = —
* But the distribution continues much beyond this.

* Rough estimate of the time step needed: 300 K Cu (m = 63.55u):

« 5y = 0.017 A/fs

_2.55/20

fs = 7.5 f
0017 =751

 Nearest-neighbour distance 2.55 A=> At

* In practice for stability Ar<4 fs.

Introduction to molecular dynamics 2015 2. Basics of molecular dynamics
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Choosing the MD time step

* In pure MD there is no way to increase the time step above ~ 10 fs in atom systems at ordinary
temperatures (77 K and up).

« If we would want to simulate a process which, say, takes 1 s, we would need at least 10" time steps!

* This gives an easy way to estimate the order-of-magnitude of the upper limit for the time scale
MD can handle in a given time:

» Most realistic classical MD interatomic potentials require at least of the order of 100 flops/atom/time step.

« Say our time step is 1 fs, and we want to simulate a 10000 atom system.

- Hence we need 10° flops/time step. Togetto 1 ns = 109 fs we would need 101° flops. Assuming 1 Gflop/

s processor, the simulation would thus require 107%/10° seconds = 10° s i.e. about 11 days. Togetto 1 us
would require some 30 years on this processor.

« Hence we see that ordinary MD is restricted to < 100 ns processes in most practical uses.
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Choosing the MD step

* In ordinary equilibrium MD At is usually constant throughout simulation

« But if the maximum velocity of atoms changes a lot during the simulation, it is best to use a variable time
step, which increases as the maximum velocity decreases.

» Simulations of energetic processes [K. Nordlund, Comput. Mater. Sci. 3, 448 (1995)]:

.k £y
Atn v = mm(v , » ’CAtAtn’tmaX)
max max max
k, maximum movement distance/time step (e.g. 0.1A)
E, maximum allowed energy change/time step (e.g. 300 eV)
C 4 prevents too large sudden changes (e.g. ¢ ,, = 1.1)
Vihax maximum atom speed in system
max Mmaximum force on any atom in system
! ax time step once heat bath T has been reached

« The example values above have been found to work well for binary collisions up to 1 GeV in
many materials.
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Choosing the MD step

« What happens if At is too long?
* The energy is not conserved.

* For instance solid copper (FCC lat-
tice, a = 3.615A, EAM potential,

code parcas) NVE simulation at 300
K:

» Hence the real criterion for selecting
the time step becomes energy con-
servation: for every:

* new kind of system

* new kind of process simulated
* new material

* new interaction potential

* For every new system, one needs to
check that energy is conserved ‘well
enough’ by some test simulations,
before starting the real production
runs.

Introduction to molecular dynamics 2015
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Acceleration methods

» Speeding up MD

 This can be achieved at least in some cases where we are
interested in transitions induced by thermally activated pro-
cesses, i.e. processes which follow a behaviour of the type

~E, /kgT
vV = DO e

where v is the rate of the process occurring.

» System spends most of its time in local potential energy min-
ima B, (basins).

» Every once in a while it gets enough kinetic energy to go over
the barrier £, : rare events.

 Acceleration: increase v by increasing the probability for barrier crossing.

* Modify £, or T (??)
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Acceleration methods

 Art Voter has presented so called Hyperdynamics [A. F. Voter, J. Chem. Phys. 106 (1997) 4665;
Phys. Rev. Lett. 78 (1997) 3908]. It can in some cases speed up MD by a factor of the order of
100-1000, in others not at all.

* In this method, Ar does not increase, but the potential well is made shallower so that the probability of
processes with a large activation energy increases. The error which is thus formed is compensated by
transition state theory (which is beyond the scope of this course).

» The method is well suited for cases where we have to overcome a high potential energy barrier in an
ordered system, e.g. vacancy and adatom diffusion. But if the energy barrier is low (e.g. interstitial migra-
tion in metals) or if we have numerous local energy minima close to each other, like in most amorphous
and liquid systems, the method is useless.
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Acceleration methods

« Temperature accelerated dynamics (TAD)

* There is of course always is the Arrhenius extrapolation method: if we know that in our system there is
only one single activated process occurring, and nothing else, we can simulate at higher 7" and then
extrapolate the Arrhenius-like exponential exp(-£, /kyT) to lower T to know the rate or time scale at

lower T.

» A smart extension to Arrhenius extrapolation is Art Voter's TAD method [e.g. Sorensen, Phys. Rev. B 62
(2000) 3658; a review of Voters methods is given in Ann. Rev. Mater. Res. 32 (2002) 321]

 To understand the idea in this, let us consider a system with exactly 2 activation energies (this is just a
tutorial example, the method works in principle for any number of activation energies). We want to simu-
late what the system does at 300 K, but the processes are so slow nothing happens there. So we will use

a higher T, say 800 K.
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Acceleration methods

* Let us then assume that the Arrhenius plot of the system looks as follows:

V=", e = logv = logv,——

log v, rate of event occurance

| | | >
0 1/800 1/300
1/T (1/K)

* Now when we simulate at 800 K, event type 1 will occur much more frequently than type 2. But we want
to know the behaviour at 300 K, so this is wrong. The idea in TAD is to recognize every transition that

occurs, determine its activation energy, and then leave out the events that would not occur at the lower T.
In our example, this means that (almost) only events of type 2 would be accepted.
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Acceleration methods

* In principle this is an excellent idea, but in practice one needs thousands of force evaluations to recognize
a transition barrier. Hence the difference between the rates of occurrance needs to be very large for a sig-
nificant gain to be achieved. But the gain can be huge (Example: simulating growth of Cu (001) surface at

77 K the speedup factor is 107 )

* Like hyperdynamics, if there are lots of shallow minima TAD tends to get stuck and never really gets any-
where.

» TAD is developing rapidly towards wider applicability, so it will be interesting to follow the progress

» As of 2015, Hyperdynamics, TAD and other similar-in-spirit acceleration methods have found many appli-
cations in close-to-equilibrium simulations, typically such involving diffusion and an underlying crystal
structure. In completely disordered, inhomogeneous systems (such as bio-systems) and far-from-equilib-
rium simulations, no atom-based acceleration method has found wide applicability.

* In biosystems, coarse-graining, i.e. replacing single atoms with larger objects describing e.g. part of a molecule, can
often give major speedups. These are beyond the scope of this coarse.
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	• Zoom in on 2 time steps (5 atoms):
	• At time the distances and hence forces between nearby atoms are calculated
	• From these forces we can solve the equations of motion, and hence get new positions and velocities.

	• The displacement over a time step is denoted .
	• has to be much smaller than the distance between nearby atoms.

	Basics of molecular dynamics
	• The basic idea of molecular dynamics (MD) simulations is to calculate how a system of particles evolves in time.
	• The method was first used by Alder and Wainwright in 1957 to calculate properties of many-body systems. They called the particles molecules.
	• There is an interesting parallel to classical mechanics here. The two-body motion problem was solved by Newton way back then. The three-body problem was solved by a Finnish guy, Sundman, in the early part of the last century - but the solution is...


	• The -body problem, , can not be solved analytically. MD can also described to be a numerical way of solving the -body problem. The solution is of course never exact, but if done properly it can be done arbitrarily accurately.
	• Consider a set of atoms at positions and some interaction model which gives us the potential energy of the system
	• In Newtonian mechanics we then get: ,
	• By solving the above set of equations numerically we can derive over some short time interval .

	Basic MD algorithm (slightly simplified)
	An alternative view
	• MD-simulation of thermal motion over 100 time steps

	General considerations
	• The above was the simplest possible example, the so called microcanonical or NVE ensemble. This means that the approach preserves the number of atoms , the volume of the cell and the energy . Other ensembles will be dealt with later on in the cou...
	• First MD simulations:
	• Hard spheres: B. J. Alder, T. E. Wainwright: Phase transition for a Hard Sphere-System, J. Chem. Phys. 27 (1957) 1208
	• Continuous potentials: J. B. Gibson, A. N. Goland, M. Milgram, G. H. Vineyard: Dynamics of Radiation Damage, Phys. Rev. 120 (1960) 1229.

	• State-of-the-art (2015):
	• Of the order of 10 000 000 000 atoms can be done on many large supercomputers
	• In Finland: CSC Cray (louhi.csc.fi): some 100 000 000 atoms with a realistic potential easily possible for thousands of time steps.

	• If all atoms interact with all atoms, one has to in principle calculate interactions. This is prohibitively expensive for millions of atoms.

	General considerations
	• Fortunately, in practice most atomic interactions decrease rapidly in strength as . In that case it is enough to calculate only interactions to nearby atoms.
	• E.g. in diamond-structured semiconductors (Si, Ge, GaAs...) atoms have 4 covalent bonds, so the calculation can be reduced to 4 neighbours => 4 interactions.
	• In metals atoms more than ~ 5 Å far can usually be neglected => about 80 interactions
	• In ionic systems the interaction , i.e. decreases very slowly. It can not be cut off, but there are smart workarounds.


	Early MD simulations
	• By current standards, both features extremely questionable...
	• But for 1960, very impressice feat!

	Simulation cell
	• In practice in most cases the atoms are arranged in a orthogonal simulation cell which has a size .
	• It is also perfectly possible to use a simulation cell with axes than are not orthogonal.

	• Problem: what should we do with the atoms at the borders.
	1. Nothing: “free” boundaries
	• This works fine if we want to deal with e.g. a molecule, nanocluster or nanotube in vacuum.
	• If we want to describe a continuous medium, this does not work: the atoms are left “hanging” on the surface as if they would be on the surface.


	Simulation cell
	2. Fix the boundary atoms:
	• Completely unphysical, this should be avoided if possible. Sometimes it is needed and with a fairly large “sacrificial” region next to the fixed ones can be perfectly OK.

	3. Periodic boundary conditions
	• To implement this very important boundary condition two things have to be done
	1. An atom which passes over the cell boundary comes back on the other side:


	Simulation cell
	• In practice this can be implemented as follows (Fortran 90) (note that atomic coordinates are between and ) :
	• Similarly for and
	2. When distances between atoms are calculated, the periodic boundaries have to be taken into account:
	• The solid box is the simulation cell, with atoms , , and . Because of the periodic boundaries, all atoms have image atoms in the repeated cells, for instance , , .
	• When we want to get the distance between atom and , which distance should we use?
	• Because here , we use for the distance between atoms and the vector .


	Simulation cell
	• As a pseudo-algorithm (Fortran 90) in the x dimension:
	and similarly for and
	• Example in 1D
	• Note that if the maximum distance by which atoms can interact rcutoff > xsize/2 the atom i should actually interact both with atom j and j’ . To prevent unphysical double interactions we need to have xsize > 2 rcutoff


	Simulation cell
	• Thus we get a system where the simulation cell has an infinite number of image cells in all directions, and a model of an infinite system.
	• However, be careful!
	• Periodicity brings an artificial interaction over the simulation cell borders.
	• For instance, a strain field arising from a point source, which is infinite, will obviously be distorted at the periodic borders. Examples:
	• A single vacancy (one missing atom) in Si: in quantum mechanical calculations at least some 200 atoms are required to get the energy reliably [Puska 1998 Phys. Rev. B]
	• And for instance a 5 nm Co cluster in Cu: about 106 atoms needed to get the strain energy reliably.

	• Upper limit for the phonon wavelength.
	• To test this: simulate with different and monitor the convergence.
	• In general, this kind of size scaling test is very important in any simulations done for a finite-size system aiming to mimic any real much larger system



	Simulation cell
	• Simulating surfaces:
	• periodic boundaries only in - and -directions
	• free surface:
	• the bottom either: a) free: simulation of a free-standing thin foil with two surfaces or b) fixed to model a bulk below:
	• very bottommost atoms fixed
	• a few atom layers above fixed layers damped with e.g. a temperature control algorithm



	Simulation cell
	• Simulation of energetic processes:
	• In a simulation where a lot of energy is brought into the MD cell in a local region, the energy has to be scaled out from the system to model a much cooler ‘heat bath’ in a realistic system.
	• The energetic processes may also introduce a lot of momentum into the cell, which could cause the entire cell to move.
	• Solution: fix all boundary atoms except at the surface, and do scaling in a few atom layers above these, as above.
	• Here also: watch out the finite-size effects! Do some size-scaling tests!


	Initial conditions: creating atoms
	• For cubic lattices (FCC, BCC, SC, DIA) it is easy to create the lattice. For instance FCC:
	• The HCP lattice is also very common, but not orthogonal in the conventional representation.
	• Because in the HCP structure , and because , the HCP lattice can be transformed into an equivalent orthogonal representation. Now the new unit cell (shaded area) corresponds to two of the conventional HCP unit cells.


	Initial atom velocities
	• How do we set the cell temperature to a desired value?
	• We have to generate initial atom velocities which correspond to the Maxwell-Boltzmann distribution (which is surprisingly well valid even in crystals):
	; .

	• This is just a Gaussian function with suitable scaling, and exactly correct within an ideal gas model for atom velocities
	• We usually also want to set the total momentum of the cell to zero to prevent the entire cell from starting to move:
	• So in practice all this can be achieved with the code fragment on the right:


	Initial atom velocities
	• Note the factor of 2: if the simulation is started from perfect lattice sites, or bound equilibrium positions in a molecule, half of the initial kinetic energy will be changed to potential energy after a while.
	• It is also possible to get realistic initial random displacements.
	• This can be derived from the Debye model: the thermal displacement in the direction of the axis is a Gaussian distribution of the form
	where
	, where
	= Debye temperature of the material, = Atomic mass

	• The initial position can now be obtained with Gaussian-distributed random numbers as above.
	• Note, however, that this does not account for quantum mechanical zero-point vibrations which give additional displacements near 0 K.


	Generating random numbers
	(This topic is dealt with in much more detail on the Monte Carlo simulation course)
	• Almost all kinds of simuations in physics use random numbers somewhere. As we saw above, MD simulations need them at least for initial velocity generation.
	• Computer-generated random numbers are of course not truly random, but if they have been generated with a good algorithm, they start to repeat each other only after a very large (e.g. 1020 ) number of iterations. If the number of random numbers us...
	• Random numbers can be generated for different distributions. This means that if we generate a large number of numbers and make statistics out of them, they will eventually approach some distribution.
	• The most common is of course an even distribution in an interval, another very common is Gaussian-distributed numbers:

	Generating random numbers
	• Evenly distributed random numbers:
	• Many programming languages offer their own random number generator (e.g. in ANSI-C rand()). A good rule-of-thumb regarding these is: Never use them for anything serious !
	• The reason is simply that the language standard only specifies that the generator has to be there, not that it works sensibly. Since there are no guarantees it does (there are famous examples of the opposite) it should not be used

	• Most random number generators are based on modulo-arithmetics and iteration. In the simplest possible form:
	• Park and Miller ‘minimal standard’-generator: ,
	• In the beginning the number i.e. the seed number is chosen randomly.
	• This can be done e.g. by using the current system time.



	Generating random numbers
	• One practical implementation (Fortran90):
	• The repeat interval for this routine ~ 2.1•109
	• This routine is easily good enough if for instance it is only needed for the choice of random numbers in the beginning of an MD simulation.
	• In a long Monte Carlo integration where random numbers are used all the time, the repeat interval may be reached, after which continued running will not improve on the results (and for instance the error estimate of the result will be calculated ...
	• More on this topic for instance from the book: Press, Teukolsky, Vetterling, Flannery: Numerical Recipes in C/Fortran, 2nd. ed., chapter 7.
	• The book is on-line in its entirety (see http://www.nr.com/).
	• But see also: “Why not use Numerical Recipes?”, http://math.jpl.nasa.gov/nr/ and the reply to this: http://www.nr.com/bug-rebutt.html

	Generating random numbers
	• To generate Gaussian random velocities we need to be able to generate Gaussian-distributed random numbers.
	• How to do this is dealt with in great detail in Numerical Recipes chapter 7.2. Here we only present the most efficient accurate algorithm for this:
	1o Obtain two evenly distributed random numbers v1 and v2 between -1 and 1, then calculate
	2o If return to step 1o
	3o Calculate
	4o Calculate and
	5o Return and on next step



	Choosing the MD time step
	• Depends on the integration algorithm used, but not too strongly.
	• The change in the atom position in the potential used should not be too strong.
	• A practical, rough rule-of-thumb: the atoms should not move more than 1/20 of the nearest-neighbour distance.
	• Thermal velocity of atoms (Maxwell-Boltzmann distribution):
	• But the distribution continues much beyond this.
	• Rough estimate of the time step needed: 300 K Cu ():
	•
	• Nearest-neighbour distance =>

	• In practice for stability .

	Choosing the MD time step
	• In pure MD there is no way to increase the time step above ~ 10 fs in atom systems at ordinary temperatures (77 K and up).
	• If we would want to simulate a process which, say, takes 1 s, we would need at least 1014 time steps!

	• This gives an easy way to estimate the order-of-magnitude of the upper limit for the time scale MD can handle in a given time:
	• Most realistic classical MD interatomic potentials require at least of the order of 100 flops/atom/time step.
	• Say our time step is 1 fs, and we want to simulate a 10000 atom system.
	• Hence we need 106 flops/time step. To get to 1 ns = 109 fs we would need 1015 flops. Assuming 1 Gflop/ s processor, the simulation would thus require 1015/109 seconds = 106 s i.e. about 11 days. To get to 1 ms would require some 30 years on this ...

	• Hence we see that ordinary MD is restricted to £ 100 ns processes in most practical uses.

	Choosing the MD step
	• In ordinary equilibrium MD Dt is usually constant throughout simulation
	• But if the maximum velocity of atoms changes a lot during the simulation, it is best to use a variable time step, which increases as the maximum velocity decreases.
	• Simulations of energetic processes [K. Nordlund, Comput. Mater. Sci. 3, 448 (1995)]: maximum movement distance/time step (e.g. ) maximum allowed energy change/time step (e.g. 300 eV) prevents too large sudden changes (e.g. )  maximum atom speed i...

	• The example values above have been found to work well for binary collisions up to 1 GeV in many materials.

	Choosing the MD step
	• What happens if Dt is too long?
	• The energy is not conserved.
	• For instance solid copper (FCC lattice, , EAM potential, code parcas) NVE simulation at 300 K:
	• Hence the real criterion for selecting the time step becomes energy conservation: for every:
	• new kind of system
	• new kind of process simulated
	• new material
	• new interaction potential

	• For every new system, one needs to check that energy is conserved ‘well enough’ by some test simulations, before starting the real production runs.


	Acceleration methods
	• Speeding up MD
	• This can be achieved at least in some cases where we are interested in transitions induced by thermally activated processes, i.e. processes which follow a behaviour of the type where is the rate of the process occurring.
	• System spends most of its time in local potential energy minima (basins).
	• Every once in a while it gets enough kinetic energy to go over the barrier : rare events.
	• Acceleration: increase by increasing the probability for barrier crossing.
	• Modify or (??)


	Acceleration methods
	• Art Voter has presented so called Hyperdynamics [A. F. Voter, J. Chem. Phys. 106 (1997) 4665; Phys. Rev. Lett. 78 (1997) 3908]. It can in some cases speed up MD by a factor of the order of 100-1000, in others not at all.
	• In this method, does not increase, but the potential well is made shallower so that the probability of processes with a large activation energy increases. The error which is thus formed is compensated by transition state theory (which is beyond t...
	• The method is well suited for cases where we have to overcome a high potential energy barrier in an ordered system, e.g. vacancy and adatom diffusion. But if the energy barrier is low (e.g. interstitial migration in metals) or if we have numerous...


	Acceleration methods
	• Temperature accelerated dynamics (TAD)
	• There is of course always is the Arrhenius extrapolation method: if we know that in our system there is only one single activated process occurring, and nothing else, we can simulate at higher and then extrapolate the Arrhenius-like exponential  ...
	• A smart extension to Arrhenius extrapolation is Art Voter’s TAD method [e.g. Sorensen, Phys. Rev. B 62 (2000) 3658; a review of Voters methods is given in Ann. Rev. Mater. Res. 32 (2002) 321]
	• To understand the idea in this, let us consider a system with exactly 2 activation energies (this is just a tutorial example, the method works in principle for any number of activation energies). We want to simulate what the system does at 300 K,...


	Acceleration methods
	• Let us then assume that the Arrhenius plot of the system looks as follows:
	• Now when we simulate at 800 K, event type 1 will occur much more frequently than type 2. But we want to know the behaviour at 300 K, so this is wrong. The idea in TAD is to recognize every transition that occurs, determine its activation energy, ...

	Acceleration methods
	• In principle this is an excellent idea, but in practice one needs thousands of force evaluations to recognize a transition barrier. Hence the difference between the rates of occurrance needs to be very large for a significant gain to be achieved....
	• Like hyperdynamics, if there are lots of shallow minima TAD tends to get stuck and never really gets anywhere.
	• TAD is developing rapidly towards wider applicability, so it will be interesting to follow the progress
	• As of 2015, Hyperdynamics, TAD and other similar-in-spirit acceleration methods have found many applications in close-to-equilibrium simulations, typically such involving diffusion and an underlying crystal structure. In completely disordered, in...
	• In biosystems, coarse-graining, i.e. replacing single atoms with larger objects describing e.g. part of a molecule, can often give major speedups. These are beyond the scope of this coarse.



