
5. Monte Carlo integration

One of the main applications of MC is integrating functions.

At the simplest, this takes the form of integrating an ordinary 1- or multidimensional analytical

function. But very often nowadays the function itself is a set of values returned by a simulation (e.g.

MC or MD), and the actual function form need not be known at all. Most of the same principles of

MC integration hold regardless of whether we are integrating an analytical function or a simulation.
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5.1. MC integration

[Gould and Tobochnik ch. 11, Numerical Recipes 7.6]

To get the idea behind MC integration, it is instructive to recall how ordinary numerical integration

works. If we consider a 1-D case, the problem can be stated in the form that we want to find the

area A below an arbitrary curve in some interval [a, b].

In the simplest possible approach, this is achieved by a direct summation over N points occurring
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at a regular interval ∆x in x:

A =

N∑
i=1

f(xi)∆x (1)

where

xi = a+ (i− 0.5)∆x and ∆x =
b− a
N

(2)

i.e.

A =
b− a
N

N∑
i=1

f(xi)

This takes the value of f from the midpoint of each interval.

• Of course this can be made more accurate by using e.g. the trapezoidal or Simpson’s

method.

– But for the present purpose of linking this to MC integration, we need not concern

ourselves with that.

In M dimensions, the generalization of this is for an interval ([a1, b1], [a2, b2], . . . , [aM , bM ])
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giving an (M+1)-dimensional volume V (M+1)

V
(M+1)

=
(b1 − a1)(b2 − a2) · · · (bM − aM)

N1N2 · · ·NM

N1∑
i1=1

N2∑
i2=1

· · ·
NM∑
iM=1

f(xi)

where

xi = (xi1, xi2, . . . , xiM)

is the M-dimensional vector and each xi is defined as above in Eq. (2).

This can be rewritten as

V
(M+1)

=
V (M)

N

N1∑
i1=1

N2∑
i1=1

· · ·
NM∑
iM=1

f(xi) = V
(M)

∑N1
i1=1

∑N2
i2=1 · · ·

∑NM
iM=1 f(xi)

N
(3)

where V (M) is the M -dimensional volume defining the integration “area”, and N the total number

of points. The latter form shows that this can be interpreted simply as taking the average over f

in the interval in question, i.e. this can be written also as

V
(M+1)

= V
(M)〈f〉 (4)
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where 〈〉 denotes the average,

〈f〉 =

N∑
i=1

f(xi)

N

5.1.1. Sampling method

The sampling method for MC integration is very similar to the simple summing rules 1 and 3 given

above. Instead of sampling at regular intervals ∆x, we now sample at random points, and then

take the average over these.

Say we pick N points xi in the interval [a, b] in 1D. The integral then becomes

A =
b− a
N

N∑
i=1

f(xi)

which is identical to Eq. 1.

More generally, in M dimensions we have to pick vectors

xi = (x1, x2, . . . xM)
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at random in the interval ([a1, b1], [a2, b2], . . . , [aM , bM ]) which can be done very easily using

uniform random numbers for each dimension at a time. Having N such points, the MC estimate of

the (M + 1)-dimensional volume below the M -dimensional function f(x) is then

V
(M+1) ≈ V (M)

N∑
i=1

f(xi)

N
= V

(M)〈f〉 (5)

where the latter form emphasizes the similarity to the numerical integration.

How does the MC integration work in practice? Let us consider getting the volume of a sphere of

radius r. In this case, our region of integration is a circular area of radius r in the xy plane, and

the function is easily derived from

r
2

= x
2

+ y
2

+ z
2

=⇒ z =
√
r2 − (x2 + y2)

i.e.

f(x, y) =
√
r2 − (x2 + y2)

Integrating this will give half the volume of the sphere.
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• The simplest way to achieve this is by selecting points randomly in a square with the range

([−r, r], [−r, r]), reject those which are outside the circle of radius r, then do the MC

sum for the points inside.

• In this 2-dimensional case, we could also make a routine which generates points directly

within the circle, with no need for a rejection step.

– But this becomes increasingly complicated in higher dimensions.

Here is a C code which does the integration. The random number generator is ran2 identically

copied from Numerical Recipes, and hence not written out here. The code is pretty much

self-explanatory.

#include <math.h>

#include <stdio.h>

main()

{

int seed=45629;

float pi=3.141592653589793238;
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int npoints=100000;

int n,npointsinside;

float x,y,r,sq,f,fsum,fmean,I;

float ran2(); /* Random number generator provided */

r=1.0;

fsum=0.0;

npointsinside=0;

for(n=0;n<npoints;n++) {

x=r*(2.0*ran2(&seed)-1.0);

y=r*(2.0*ran2(&seed)-1.0);

/*

Evaluate function i.e. calculate sqrt(r^2-(x1^2+x2^2))

but only for points inside the 2D circle

*/

sq=x*x+y*y;

if (sq < r*r) {

f=sqrt(r*r-sq);

fsum+=f;

npointsinside++;
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}

}

if (npointsinside==0) {

printf("No points inside. Increase npoints\n");

exit(0);

}

/* MC estimate of <f> */

fmean=fsum/npointsinside;

/* Actual integral: 2 V <f> ; volume is now pi r^2 */

I=2*pi*r*r*fmean;

printf("Sphere volume is %.6f hits %d\n",I,npointsinside);

}

Running the code gives

beam.helsinki.fi tests> cc 3Dsphere.c -lm

beam.helsinki.fi tests> a.out

Sphere volume is 4.182319 hits 78575

so the answer is quite close to the correct one, 4π/3 = 4.18879020.
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• We will below see how the uncertainty can be estimated.

5.1.1.1. When and why is MC better than numerical integration

Comparison of the sums in Eqs. 3 and 5,

V
(M+1)

=
V (M)

N

N1∑
i1=1

N2∑
i2=1

· · ·
NM∑
iM=1

f(xi) (6)

vs.

V
(M+1) ≈

V (M)

N

N∑
i=1

f(xi) (7)

illustrates a crucial difference: in numerical integration, we need M different sums, but in MC

integration only one is enough!

• This leads us to understand why MC integration is so important in many dimensions.

– In 1D there really is no major difference, and indeed using methods like Simpson’s the

conventional numerical integration can easily be made quite accurate and much more

efficient than MC integration.
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– But with increasing numbers of dimensions M , doing the M sums becomes

increasingly cumbersome, and eventually using the MC approach which only needs

one sum will clearly be simpler!

To be more specific about the cumbersomeness, for numerical integration we will always need at

least a few points Ni per dimension to get a sensible answer, so the number of summing steps

increases as NM
i .

• If e.g. Ni = 5 for all i (a very low value!), then in 10 dimensions we need 510 ≈ 10

million points to get any kind of sensible answer.

• But for MC integration we can use the same number of points N for any number of

dimensions.

To illustrate this, I did the following test. I calculated the volume of a sphere in M dimensions with

direct numerical integration (using the midpoint method) and MC integration.

• The number of intervals was 20 in the numerical integration in each dimension, and the

number of attempts in the MC simulation was always 105.
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• This happened to give results of comparable, about ∼ 0.5 % accuracy. I timed the result

simply with the Unix time command.

The results are as follows. The first column gives the number of dimensions M , the next two the

numerical execution time, the next two the MC results in the same way, and the last column the

correct answer (known analytically). The times are in seconds.

numerical MC

M time result time result Correct

---- ---- ------ ---- ------ -------

2 0.00 3.1524 0.01 3.1435 3.1415

3 0.00 4.1737 0.07 4.1896 4.1887

4 0.00 4.9023 0.08 4.9330 4.9348

5 0.02 5.2381 0.10 5.2787 5.2637

6 0.30 5.1451 0.13 5.1748 5.1677

7 5.02 4.6704 0.15 4.7098 4.7247

8 89.9 3.9595 0.17 4.0479 4.0587

9 1320 3.3998 0.20 3.3191 3.2985

So we see that for M < 6 the numerical method is faster, but after that becomes terribly much

slower.
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• What is most interesting is that the time required by the MC method is not rising almost

at all, even though the accuracy stays the same. This is what makes it so interesting for

high-dimensional integration!

5.1.2. Hit and miss method

There is another approach to MC integration, which is even simpler than the sampling approach.

It is essentially the same as the hit-and-miss method used to generate random numbers in a

nonuniform distribution.

The idea is that we find some region in space of known volume, which encloses the volume we want

to integrate, then generate random points everywhere in this region, and count the points which

actually do hit the volume we want to handle:
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Say the volume of the external region is Ve and the fraction of hits is fh. Then the volume of the

region to be integrated is simply

V = Vefh

This method can be rewritten to be formally equivalent to the previous one.

This can be understood as follows. Say we are working in M dimensions, the number of trial points
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is N , and the number of hits is Nh. Then the above equation can be rewritten as follows:

V = Vef = Ve
Nh

N
= Ve

Nh∑
i=1

1

N

If we further define an M-dimensional function

f(x) =

{
1 if x is inside the volume

0 elsewhere

we can write this as

V = Ve

N∑
i=1

f(xi)

N
Now we see that this is identical to eq. (5) !

In fact since the average of f is just the fraction of hits fh, we can simply write this as

V = Vefh = Ve〈f〉 (8)

The only difference is that because f now is dimensionless, V and Ve have the same dimension.
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5.2. Error analysis of MC integration

In any scientific study where statistics is collected (which includes most of experimental and

computational science), it is of utmost importance to be able to calculate not only the average

of something, but also the uncertainty of the average. For the MC simulation methods described

above this can be done as follows.

5.2.1. Sampling method

For the sampling method, the error can be obtained very simply. Remember that we consider the

volume calculations as a calculation of the average of the f function, 〈f〉.

• Then it is natural to calculate the error as the error of the average over the sampled

values of f , as this is usually done.

The general equation for the error of the average σx̄ of a set of points xi is [Pentikäinen]

σx̄ ≈
σ
√
N
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where the variance σ2 is obtained from

σ
2

=
1

N − 1

[(
N∑
i=1

x
2
i

)
−N(x̄)

2

]

in case the data is symmetric around 0. If not, then:

σ
2

=
1

N − 1

(
N∑
i=1

[xi − x̄]
2

)

Combining these and assuming N >> 1

σx̄ ≈
1
√
N

√∑N
i=1 x

2
i

N
− (x̄)

2

Now for MC integration the points xi are actually the values of the function f ! Using the same

notation as above for the average,

〈f〉 =

N∑
i=1

f(xi)

N
and 〈f2〉 =

N∑
i=1

f
2
(xi)

N
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we thus get that the error of the MC integration is

σV 〈f〉 ≈ V

√
〈f2〉 − 〈f〉2

N

and, to reiterate, the whole equation for the MC integration

∫
fdV ≈ V 〈f〉 ± V

√
〈f2〉 − 〈f〉2

N
(9)

Note that this gives the so called one sigma (1 σ) error.

• This means that if the data would be distributed in a Gaussian distribution, the probability

that the true value is within the one sigma error is about 2/3 (68.3 % to be more precise).

• One can also correspondingly give broader confidence intervals, 2 σ, 3 σ etc. with

increasingly large probabilities that the true value is within the measured value plus minus

its error bar. (FIGURE DRAWN ON LECTURE)

From this we also see why MC integration is particularly useful in multidimensions - the accuracy

increases as
√
N , but there is no dependence on the number of dimensions here!

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 18



• So to get comparable accuracy, one only needs to collect the same number of points N

regardless of dimension.

This is in clear contrast to direct numerical integration, where the number of points needed increases

as

N
d
1

where d is the number of dimensions and N1 the number of points needed in one dimension.

5.2.1.1. Caution: this may not be right

But there are two possible problems with this error estimate.

The first is that there is no guarantee the f points do have a Gaussian distribution, and

hence the error given by the equation (9) should be understood as only a rough idea of what level

of uncertainty may be expected.

• A better estimate of error can be obtained if it is possible to collect enough f(xi) points

to see what shape the distribution actually has, then analyze the error behaviour of this

distribution.

– If it is not some well-known distribution, it is always possible to use MC simulation

of the data distribution to deduce how the error should be calculated; this will be

discussed in the next section.
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The second problem is that even if the data does have a Gaussian distribution, Eq. 9 is not
right if N is very low!

One can understand this as follows: if one has very few data points, the estimate of the mean of

the distribution becomes inaccurate. The also the equation comparing the deviation to the mean

become inaccurate.

A more accurate estimate of the correct error is obtained by calculating the standard deviation using

N − 1 instead of N in the denominator,

σV 〈f〉 ≈ V

√√√√√
∑
i

(fi − 〈f〉)2

N − 1

After this one cannot get a better estimate without knowing the underlying data distribution. If

this is known, one can simulate the difference.

The difference is known as the so called Student’s dilatation factor or also as the “error of the

error”.
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Here is an example of simulated values of the dilatation factor for some distributions.

N : 2 3 4 5 10 100

Gaussian distribution: 1.25 1.13 1.08 1.06 1.03 1.002

Binomial distribution: 2.67 1.44 1.20 1.10 1.03 1.002

Poisson e−x distribution: 1.44 1.26 1.19 1.15 1.09 1.009

We see that this correction is probably needed essentially only when N < 10 (an error of an error

of less than 5% is almost certainly not meaningful in most contexts). Since in most MC simulations

N certainly is larger than 10, this is not a problem.

A standard way of estimating the “error of the error” is to use the so called “Student’s dilatation

factor”. This can be derived from the Student’s t distribution, one of the standard statistical

distributions.

This is implemented in common Spreadsheet softwares like OpenOffice and Excel. In these, the

function TINV can be used to give the correction factor for a given confidence interval. For instance,

to get the value for a statistics of 5 and a 1 sigma confidence interval, one can use the Excel formula

=TINV(1-0.682869;5) which gives about 1.11.

For further information, see e.g. pages 120-123 in Parratt: Probability and experimental errors

in science (Wiley, 1961) or pages 49-51 in Box-Hunter-Hunter, Statistics for experimenters (Wiley

1978).
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• Note, however, that if you look at larger confidence intervals (2σ, 3σ etc.) the correction

becomes significantly larger even for larger N .

Unfortunately in many cases the shape of the f function is not known, and evaluating it is so slow

that it can be sampled at so few points (a few ten or even less) that it is not possible to deduce

what distribution it actually has.

• In such cases, the most common way to go is to simply use equation (9) and hope it is in

the right ballpark.

– Of course if the magnitude of the error bars is crucial for supporting the conclusions

you want to draw, this is not acceptable!

In published work, the general trend seems to be that if nothing is said about the way the error

is calculated, it is implicit that the errors given are 1 σ errors or standard deviations calculated

assuming Gaussian statistics.

• Highly annoyingly, many authors do not specify whether they use the error or standard

deviation...
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• Most natural scientists probably are not even aware of the possible problems with assuming

Gaussian statistics, so now that you are, you already are doing better than the majority!

5.2.2. Hit and miss method

The hit-and-miss method gave the volume of an integrated area simply as

V = Vef = Ve
Nh

N

where Nh is the number of hits, and N the number of trials.

To find the error of the hit and miss method, we utilize our observation that the hit-and-miss

method is actually just a variety of the sampling method. Eq. (8):

V = Vefh = Ve〈f〉

where f was our artificial function:

f(x) =

{
1 if x is inside the volume

0 elsewhere
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So the error is now as above,

σVe〈f〉 ≈ Ve

√
〈f2〉 − 〈f〉2

N
with

〈f〉 =

N∑
i=1

f(xi)

N
and 〈f2〉 =

N∑
i=1

f
2
(xi)

N

But taking into account the simple form of f we see that this can be simplified, 〈f〉 is just Nh/N ,

and so is 〈f2〉 ! Hence the error becomes

σVe〈f〉 ≈ Ve

√
(Nh/N)− (Nh/N)

2

N
= Ve

√
Nh −N2

h/N

N2
= Ve

√
Nh −N2

h/N

N

and we can write the equation for the integrated volume and its error in the hit-and-miss method as

V = Ve
Nh

N
± Ve

√
Nh −N2

h/N

N
(10)
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Finally, if Nh << N we can simplify further to get

V = Ve
Nh

N
± Ve

√
Nh

N
if Nh << N

This is the same “square root” error equation as that used for Poisson “counting” statistics.
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5.3. Utilizing nonuniform random numbers

Above we assumed the random numbers are generated in a M-dimensional box.

• But in case the volume to be integrated fills only a small fraction of that box, the fraction

of misses can be enormous.

– In that case it may be highly advantageous to find some other distribution which

better encloses the volume we are integrating over, and generate random numbers

only in this.

– If the enclosing function is such that we know how to generate random numbers in

this distribution analytically, the savings in time can be enormous.

This is actually exactly what was done in the previous section when we discussed the combined
analytical-rejection method to generate random numbers. The algorithm there was

1◦ Generate a uniformly distributed number u = Pu(0, 1)

2◦ Generate a number distributed as g(x): x = G−1(u)

3◦ Generate a uniformly distributed number y = Pu(0, ag(x))
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4◦ If y > f(x) this is a miss: return to 1◦

5◦ Otherwise this is a hit: return x

In this case, if we would be integrating a function h(x, y) over a 2-dimensional volume bound by

the x axis and f(x), then we would just change step 5◦ to return both x and y, then evaluate h

in the point (x, y).

Of course, with increasing dimensions this becomes increasingly complicated.
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5.4. Importance sampling

[Karimäki notes]

One approach to improving the MC accuracy is reducing the variance σ2 in the data.

Remember that σ2 for any non-constant data distribution is a quantity which goes towards some

finite, non-zero value when N →∞, whereas the error of course goes to 0 with increasing N .

• Since the MC error is ∝ σ√
N

, it is clear that if we can reduce the variance σ2 the error

will also go down for the same N .

This is also simple to understand intuitively. Consider e.g. the following functional shape we would

want to integrate:
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It is quite obvious that most of the integral comes from the region of the peak. But if we generate

points evenly in the interval [a, b], most points won’t be in the peak area, and their contribution to

the total will be relatively small.

In fact, some simply thought indicates that the least effort will be spent in case the distribution is

fairly flat. In that case the variance σ2 will become smaller.

The idea behind importance sampling is to transform f(x) into another, flatter function which is

then MC integrated. Of course there has to be a back-transformation to give the original integral

we really want.
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So let’s say we have a function g(x) normalized over the integration interval [a, b] which gives the

property that

f(x)

g(x)

is fairly flat. g(x) has to be > 0 for all x in the interval. We now want to calculate

I =

∫ b

a

f(x)dx =

∫ b

a

f(x)

g(x)
g(x)dx =

∫ b

a

f(x)

g(x)
dG(x)

where

G(x) =

∫ x

a

g(x)dx

is the integral of g(x).

If we now make a variable change r = G(x) we get

I =

∫ G(b)

G(a)

f(G−1(r))

g(G−1(r))
dr

which gives the same integral, but more efficiently because the integrand is flatter than the original.
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Evaluating this with MC is done in the same way as for any other function,

I =
1

N

N∑
i=1

f(G−1(ri))

g(G−1(ri))

where the ri are uniform random numbers.

So we have to be able to determine G−1. But there is an alternative: it is actually enough that we

can generate random points distributed as g(x) by any means (not necessarily analytically). In this

case the MC sum is

I =
1

N

N∑
i=1

f(x
(g)
i ))

g(x
(g)
i )

where the x
(g)
i are random numbers distributed as g(x).

What is actually the advantage of this compared to using hit-and-miss MC integration with the

combined rejection method for some function ag(x) ? In that case, using g(x) reduces the number

of misses a lot, and since we integrate in one more dimension, all points have equal value (1), and

hence the variance should be low as well?
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• One advantage is that now we do not have to go up in dimensions, nor require that

ag(x) > f(x), which may sometimes be difficult or impossible to prove, especially in

high dimensions.

Let us make this concrete with a simple example. Say we want to evaluate part of a Gaussian

function,

I =

∫ 1

0

e
−x2

dx

In this region, the function decreases from 1 to 1/e. The simple exponential function e−x does the

same, so let’s use that for g(x). We first have to normalize g, so we calculate∫ 1

0

e
−x
dx = −

1

e
+ 1 = 1−

1

e
=
e− 1

e

and see that our normalized weighting function is

g(x) =
e−xe

(e− 1)

Then

G(x) =

∫ x

0

e−xe

e− 1
dx =

(1− e−x)e
e− 1
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and solving G(x) = u with respect to x gives

G
−1

(u) = − log

(
1− u

e− 1

e

)

Does this seem complicated? Well, it is not. An entire code to do the integral over e−x
2

utilizing

the g function is given here (awk/C):
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gawk -v N=$1 ’BEGIN {

srand();

e=exp(1);

sum=0.0;

for(i=0;i<N;i++) {

r=-log(1-rand()*(e-1)/e);

foverg=exp(-r*r)/( exp(-r)*e/(e-1) );

sum+=foverg;

}

print sum/N;

exit;

}’

Is this really advantageous, then? I did a comparison of this vs. direct MC integration of the same

function. The results are here:
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Direct sampling Importance sampling

N result time result time

------ ------ ----- ------ -----

10000 0.743275 0.20 0.746915 0.06

100000 0.746407 0.20 0.746801 0.52

1000000 0.746966 2.21 0.746829 4.95

10000000 0.746771 21.72 0.746830 48.77

(Note that using the scripting language awk for this is of course hideously slow compared to C or

Fortran)

The correct answer is, to 6 decimals, erf(1) ∗
√

(π)/2 = 0.746824, where erf(x) is the error

function.

• So we see that although for the same N importance sampling is about two times slower,

it gets closer to the correct answer for a much smaller number of iterations.

– At N = 10000000 the error in the direct method is 53/106, but only 6/106 in the

importance sampled method.

So clearly it is worth using the importance sampling.
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5.4.1. Control variates

The idea here is similar to importance sampling. We want to replace the function to be integrated

by something flatter to reduce the variance and thus the error of the data. But instead of division,

we use subtraction.

The operation is simply

I =

∫ b

a

=

∫ b

a

(f(x)− g(x))dx+

∫ b

a

g(x)dx

and the idea is to find a g(x) such that

• Var(f − g) < Var(f)

•
∫ b

a

g(x) dx is known.

The integral
∫ b
a
(f(x)− g(x))dx is evaluated with ordinary MC. This approach has the following

advantages compared to importance sampling:

• It does not matter if g(x) is zero somewhere in the interval
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• We do not need to know how to distribute random numbers according to g(x)

• g can also be negative

The variance of f − g is

Var(f − g) = Var(f) + Var(g)− 2Cov(f, g)

where the last term is the covariance between f and g. In order that this be useful, we should thus

have

2Cov(f, g) > Var(g)

i.e. f and g are positively correlated (have similar shapes).
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5.5. Stratified sampling

Importance sampling is a fine way to improve on MC integration, but has the disadvantage that

the function, or at least its overall shape, has to be known. However, often it is not. As mentioned

above, f may actually be a number returned by some other, hugely complicated simulation. This

could e.g. be an MD, electronic structure or another MC simulation.

• In principle one could first do a set of simulations to determine the rough shape of f on a

numeric grid, then use this numeric data as the weighting function g

– Remember that it is possible to form random numbers also for a function existing only

in numeric form.

• This would probably work fine in one or only a few dimensions. But in a high number

of dimensions M , we would need memory proportional to NM
points to store the numeric

function.

Stratified sampling does not have these problems. It can be used for any function, even when

nothing is known about its shape, and does not require storage increasing with the dimensionality.

Generating random numbers in a stratified or quasi-random manner was already discussed in the

last section. Now we see why this may be important: as we derived above, the error of the ordinary
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MC method decreases as
1
√
N

for true and pseudo-random numbers. But as mentioned in the last section, with stratified sampling

or quasi-random numbers one can achieve at best an error decreasing as

1

N

which may give an enormous saving in time.

5.5.0.1. Motivation of 1/N dependence [Numerical Recipes ch. 7.8.]

I will now derive a simple expression for why stratified sampling may sometimes be more efficient

than direct Monte Carlo, although I will not derive the best possible 1/N formula.

Recall that the error of MC integration normally is

σV 〈f〉 ≈ V

√
〈f2〉 − 〈f〉2

N
= V

√
σ2

N

where σ2 is the variance.
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Let us now use the following notation: 〈〈f〉〉 is the true average of the integral in the region of

interest, 〈f〉 the basic MC integration estimate of this:

〈〈f〉〉 =
1

V

∫
fdV and 〈f〉 =

1

N

N∑
i=1

f(xi)

The variance of the MC integration result (i.e. the variation of how the integration is converging

towards the desired result), σ2
〈f〉 = Var(〈f〉) is related to the variance of the true function,

Var(f) = 〈〈f2〉〉 − 〈〈f〉〉2

by

Var(〈f〉) =
Var(f)

N
when N → ∞, because we are now looking at the variance of the mean rather than the variance

of the function.

(If this seems unclear, draw a picture with a sample function to clarify it to yourself).

The point of generating random numbers for stratified sampling was to divide V into a number of

boxes, then generate one or more random numbers in each box.
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Let’s now consider the simplest possible case of dividing V into two equally large regions a and b,

both of which are sampled at N/2 points. Then the MC integration gives an alternative estimate

〈f〉′ of the true integral 〈〈f〉〉,
〈f〉′ =

1

2
(〈f〉a + 〈f〉b)

and the variance of this is now

Var(〈f〉′) =
1

4
[Var(〈f〉a) + Var(〈f〉b)]

=
1

4

[
Vara(〈〈f〉〉)

N/2
+

Varb(〈〈f〉〉)
N/2

]
=

1

2N
[Vara(〈〈f〉〉) + Varb(〈〈f〉〉)]

On the other hand, let us calculate the variance of the true function,

Var(f) = Var(〈〈f〉〉) = 〈〈f2〉〉 − 〈〈f〉〉2

=
1

V

(∫
a

f
2
dV +

∫
b

f
2
dV

)
−
(

1

V

(∫
a

fdV +

∫
b

fdV

))2

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 41



=
1

2

〈〈f2〉〉a︷ ︸︸ ︷
2

V

∫
a

f
2
dV +

1

2

〈〈f2〉〉b︷ ︸︸ ︷
2

V

∫
b

f
2
dV

−

1

2

〈〈f〉〉a︷ ︸︸ ︷
2

V

∫
a

fdV


2

−

1

2

〈〈f〉〉b︷ ︸︸ ︷
2

V

∫
b

fdV


2

−
1

2

〈〈f〉〉a︷ ︸︸ ︷
2

V

∫
a

fdV

〈〈f〉〉b︷ ︸︸ ︷
2

V

∫
b

fdV

=
1

2
〈〈f2〉〉a +

1

2
〈〈f2〉〉b −

1

4
〈〈f〉〉2a −

1

4
〈〈f〉〉2b −

1

2
〈〈f〉〉a〈〈f〉〉b

=
1

2
〈〈f2〉〉a +

1

2
〈〈f2〉〉b −

1

2
〈〈f〉〉2a −

1

2
〈〈f〉〉2b︸ ︷︷ ︸+

1

4
〈〈f〉〉2a +

1

4
〈〈f〉〉2b −

1

2
〈〈f〉〉a〈〈f〉〉b︸ ︷︷ ︸

=

1/2Vara(〈〈f〉〉)︷ ︸︸ ︷
1

2
〈〈f2〉〉a −

1

2
〈〈f〉〉2a

1/2Varb(〈〈f〉〉)︷ ︸︸ ︷
+

1

2
〈〈f2〉〉b −

1

2
〈〈f〉〉2b +

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2

=
1

2
Vara(〈〈f〉〉) +

1

2
Varb(〈〈f〉〉) +

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2
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Comparison with the previous equations gives

Var(〈f〉′) =
1

N

(
Var(f)−

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2

)
= Var(〈f〉)−

1

4N
(〈〈f〉〉a − 〈〈f〉〉b)2

Since the square has to be ≥ 0, we see that the variance (and hence accuracy of the MC simulation)

in the two intervals is at most the same as that for the single interval. And if there is large variation

between 〈〈f〉〉a and 〈〈f〉〉b, it can be considerably less!

• A similar calculation for larger numbers of intervals will give a similar result: the stratified

sampling can considerably reduce the variance and error for the same number of samples

N .

– One does not even have to require that each subregion has the same number of points.

One can show that the optimal allocation is achieved when the number of points in

each subinterval i is proportional to σi in that interval.

Unfortunately there is no guarantee one can always achieve the 1/N dependence – it is very much

dependent on the application. In practice, for a new kind of MC integration it is probably best simply
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to test whether an advantage over 1√
N

is achievable by some stratified sampling or quasi-random

number method.
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5.6. Combined and advanced methods

[Numerical recipes]

It is perfectly possible, and sometimes quite useful, to combine the importance and stratified

sampling methods.

• Remember that importance sampling essentially focuses the effort on the regions which

contribute most to the integral, while stratified sampling improves on the convergence.

• Thus one could e.g. do importance sampling first to flatten the distribution, then stratified

sampling to reduce the variance and further improve on the convergence.

Moreover, it is possible to make parts of the routine adaptive.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 45


