
5.7. The Markov Chain Monte Carlo (MCMC) method

[Thijssen: Computational physics p. 275- and others]

There exists a completely different approach to doing importance sampling of a distribution than

the one presented earlier.

In the importance sampling and combined analytical-rejection random number generation methods

presented earlier in sections 4 and 5, points were generated in a distribution using some schemes to

select more points in the regions where the function is the strongest.

• But in both methods each point generated was completely independent of the previous

ones

– I.e. the points were in random order, uncorrelated.

The Markov chain Monte Carlo (MCMC) method takes the opposite extreme approach of generating

points such that each point is directly dependent on the previous one.

• Thus of course the points are correlated with each other

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 1



• But they are generated in such a way that they lead to a desired distribution when they

are ran long enough

5.7.1. Markov chains and ergodicity

Consider a system which evolves from one state to the next

x0 → x1 → x2 → x3 · · · (1)

where x denotes the momentaneous state of the system.

The state space x may be any discrete or continuous space.

A Markov chain is a sequence of states xi, where i is an integer, which has the property that the

probability P (xs) to reach a certain state xs is dependent on the immediately previous state of the

system, but no other states. That is,

P (xs) = T (xs−1 → xs) (2)

where T is the transition probability.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 2



• By contrast, in an uncorrelated system P (xs) = constant.

Now we are interested in the concept of generating a distribution f(x) using a Markov chain MC

simulation. It is obvious that in order for it to be possible to generate a distribution using a Markov

chain, every possible x value where the distribution is accessible needs to be reachable by the chain

in a finite number of steps, regardless of the starting point of the chain. This property is called

ergodicity.

5.7.1.1. Example

The above was a bit mathematical. Here is an example of what it all can be in practice.

• f(x) may simply be a one-dimensional function f(x) over real numbers x

• The transition step may be P (−1, 1)∆xmax where P (−1, 1) is a uniform random

number between -1 and 1.

This system is obviously ergodic if f(x) > 0 everywhere and ∆xmax > 0.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 3



But consider the following function:

f(x) =

8<:
(x− 1)e−x, x > 1

0, −1 < x < 1

(1− x)ex, x < −1

(3)

and a Markov chain where the probability to reach a point is ≤ f(x).

Then if ∆xmax < 2 this system is obviously non-ergodic!

5.7.2. The MCMC algorithm

Let us now for the remainder of this section assume we have an ergodic system.

We want to generate points in a distribution f(x) whose probability density ρ(x) is known, i.e.

f(x) ∝ ρ(x) for all x . (4)

• ρ does not need to be normalized, and we do not need to know the proportionality

constant

For concreteness we shall assume that x is a vector in cartesian space of some dimensionality M ,

and the transition is a displacement of this vector.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 4



• But the algorithm can in a rather obvious way be generalized to deal with an arbitrary

space and and arbitrary kind of displacement

The Metropolis version of the MCMC method to generate points with the probability distribution ρ

is as follows.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 5



0 a◦ Select an initial configuration x for which ρ(x) > 0

0 b◦ Choose a maximum displacement value ∆xmax

0 c◦ Calculate the initial ρ = ρ(x)

1◦ Store the current state as x0 = x

2◦ Generate a random number vector u = (u1, u2, . . . , uM) where each u is a uniform

random number between -1 and 1
3◦ Generate a new trial state x′ = x + u∆xmax

4◦ Calculate the value of the function in the trial state ρ′ = ρ(x′)

5◦ Choose whether to move to the new state as follows:

6◦ If ρ′ ≥ ρ accept the state

7◦ If ρ′ < ρ : accept the state only if u <
ρ′

ρ
where u is a random number ∈ [0, 1]

8 a◦ If the state is accepted, go to the new state: x = x′

8 a◦ If the state is rejected, return to the previous state: x = x0

9◦ Calculate the new ρ = ρ(x)

10◦ Do statistics of the current value of x or properties dependent on it

11◦ Return to step 1

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 6



• Note that it is extremely important that steps 9 and 10 are carried out regardless of

whether the state is accepted or not!

• It can be proven rigorously that this works, but we will not do it

– On the course “MC simulations in physics” this will be done.

• But one can intuitively understand fairly well why this works:

– Imagine being in a minimum of ρ(x) at some xmin. Then the new trial state ρ′ is

guaranteed to be larger than ρ, and it will always be accepted.

– Imagine being next to a minimum of ρ(x) at some xlarger. Then if the trial state

ρ′ would happen to go to the minimum xmin, ρ′/ρ < 1 and we have a smaller

probability of accepting the move.

• Combining the above two examples, we see that the system is more likely to go to, or

remain in, states with larger ρ values !

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 7



One thing is very clear here: the sequence of states x0, x1, x2, ... are highly correlated! Thus for a

low statistics this is probably a very poor way of generating points in a distribution

• The proof of the algorithm actually only shows that for an infinite number of steps the

correct distribution is reached, if the system is ergodic.

– But the proof does not tell anything about how large a number of steps is enough in

practice!

Another thing of interest is that the algorithm only deals with the ratio of ρ′/ρ (steps 6◦ and 7◦

can be rewritten as comparing ρ′/ρ with 1).

• Thus clearly the algorithm is independent of the proportionality constant between f(x)

and ρ(x)

– It works even if the proportionality constant is not known!

– On the other hand it thus can not be used to integrate the function f(x)

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 8



The algorithm can be used to generate random numbers distributed as some arbitrary distribution

f(x) (compare with section 4.6).

But it is even more useful because it can be used to integrate properties which depend on the

probability distribution of the points x.

The simplest example is just calculating the average of points x distributed according to f(x).

This is normally achieved using

< x >=

R
xf(x)dxR
f(x)dx

(5)

However, in the MCMC method the x points are distributed directly as f(x). This means that we

can achieve the calculation of the average simply by taking the average over all x points generated

during the MCMC run! 1

5.7.3. Other versions of the algorithm

The Metropolis version of the MCMC method is the original algorithm used. However, it is by no

means the only one.

Let us introduce the concept of an acceptance criterion Axx′ which gives the probability that a

1This is of course also true for any other method which generates points x distributed as f(x).

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 9



transition x → x′ is accepted. In the Metropolis version presented above this criterion is

Axx′ = min

„
1,

ρ(x′)
ρ(x)

«
(6)

In fact one can show that any acceptance criterion which fullfills the so called detailed balance
condition

Axx′

Ax′x
=

ρ(x′)
ρ(x)

(7)

leads to the desired result.

It is easy to show that the Metropolis equation fulfills this.

It is clear that the Metropolis scheme is not the only possible way of fulfilling detailed balance. In

fact there is a wide range of other criteria used – but none has proved to be overall superior to the

original one.

Also the transition type can of course be much different from the one presented above. If we

denote a generalized transition type from state x to state x ’ with Txx′, then the so called

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 10



Metropolis-Hastings method says that the transition probability is

Axx′ = min

„
1,

ρ(x′)Txx′

ρ(x)Tx′x

«
(8)

• In the original formulation the transitions are symmetric and hence Txx′/Tx′x = 1 and

we get back the original algorithm.

5.7.4. Example

As an example, I wrote a code which generates points with the MCMC method in the

one-dimensional distribution

f(x) =


(x− 1)2e−(x−1), x > 1

0 x ≤ 1
(9)

and runs it for different numbers of MC steps N . Here is an illustration of the result:

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 11



0 2 4 6 8 10 12 14
x

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f(x
) N=107

N=106
N=105
N=104
Exact answer

The figure shows clearly that for small numbers of steps, N < 105, the method gives absolutely

horrible results. But for N > 106 it gives a result practically indistinguishable from the exact

result.

The code also calculated < x >, for which the analytical answer is exactly 4. Here are the results

for < x > as a function of N :

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 12



N < x >

104 8.812

105 4.542

106 3.983

107 3.963

108 3.997

Exact 4.000

It is also important to realize that one cannot calculate the uncertainty of the results of the MCMC

method in the same manner as for ordinary MC integration. The reason is that the simple equations

for calculating an error require that the points are uncorrelated, which they by definition are not in

the MCMC method!

Of course one can always repeat the MCMC runs a few times with different seeds and calculate the

error as the error over the different runs.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 13


