
11. b. Quantum Monte Carlo

[Gould-Tobochnik ch. 18; for basic quantum mechanics see e.g. Eisberg-Resnick p. 210 - 220 and appendix H, or Gasiorowicz. Also David

Ceperleys QMC notes, material/ceperley.ps]

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 1



11.1. Introduction

Quantum MC means methods where Monte Carlo approaches are used to study quantum mechanical

systems. This is a large area of research, and on this course I will only touch the surface by first

going through a very simple example in detail, then mentioning the basic principles of a few other

methods.

11.1.1. Reminder of the basics of quantum physics

In quantum physics particles are not considered point-like, but instead have wave-like properties. In

1+1 dimensions (x, t) a particle is described by a wave function

Ψ(x, t) (1)

from which the probability that the particle is in a given region of space at a given time P (x, t) is

obtained as

P (x, t) = |Ψ(x, t)|2dx (2)

which requires that Ψ is normalized asZ ∞

−∞
Ψ
∗
(x, t)Ψ(x, t)dx = 1. (3)

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 2



In the non-relativistic limit the development of the system is determined by the time-dependent

Schrödinger equation

−
~2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) = i~

∂Ψ(x, t)

∂t
(4)

where V is some potential energy function. If V is independent of time, one can separate the

position and time dependence as

Ψ(x, t) = ψ(x)e
−iEt/~

(5)

and by insertion into the time-dependent equation 4 obtain the time-independent Schrödinger

equation

−
~2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x) (6)

By defining the Hamiltonian operator

Hop = −
~2

2m

∂2

∂x2
+ V (x, t) (7)

this can also be written as

Hopψ(x) = Eψ(x) (8)

ψ(x) is an eigenfunction and E an eigenvalue of Hop. Often this equation has several different

solutions with energies En, n = 1, . . .

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 3



11.2. Variational Quantum MC (VMC)

One of the most important uses of the time-independent Schrödinger equation in atomic, molecular

and materials physics is in determining the ground state energy solution E0 of the Schrödinger

equation.

• This is because the Born-Oppenheimer approximation usually holds well in these systems,

i.e. the electrons have time to relax to their ground state for every given position of the

nuclei.

• This means that the E0 solution will give the normal energy state for e.g. a single

molecule.

The variational principle is very useful for determining E0. The principle states that for any

Hamiltonian Hop and any arbitrary trial wave function ψ

E[ψ] =

R
ψ∗(x)Hopψ(x)dxR
ψ∗(x)ψ(x)dx

≥ E0 (9)

(for a proof, see e.g. Gasiorowicz p. 292-293).

This means that if the potential V in the system is known, then one can in principle start with any

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 4



arbitrarily bad guess of ψtrial which depends on a set of variable parameters vi. If the functional

form is flexible enough, then by minimizing E[ψ] by optimizing the vi one should eventually arrive

at the correct ψ(x) and E0.

Doing such optimization is a task well suited for computers.

• As an ultimate case one can think of making the trial function ψtrial fully numerical, i.e.

letting the parameters vi just be a set of points which describe the function by numerical

interpolation.

• Then the function indeed is fully flexible, and by using enough number crunching one

should in principle be able to solve the Schrödinger equation for any V .

– This approach actually can be used for linear molecules [Leif Laaksonen, PhD thesis].

The optimization of the vi can be carried out in many different ways, and in simple cases obviously

ordinary numerical optimization methods are likely to be the most efficient ones. But on this MC

course we will not deal with these.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 5



The subject of this course, Monte Carlo methods, can actually be useful in at least two respects for

solving eq. 9:

1. Monte Carlo methods such as simulated annealing may be used to carry out the minimization

of E[ψ].

2. Monte Carlo integration can be used to carry out the integrals in eq. 9.

Although we have now written everything in one dimension, in practice most systems studied are

highly multidimensional.

• E.g. if we study just a 10-atom molecule with 6 electrons per atom, there are 70 particles

of interest.

• Even if every particle could be described with a single wave function with only three

coordinate parameters (x, y, z) we would have a 210-dimensional system at hand.

• As we know, for such high dimensions MC integration is the most efficient way to carry

out numerical integration.

Moreover, by a slight rewriting of eq. 9 one can also use an MCMC method to carry out the

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 6



integral. We consider bound states, for which ψ∗ = ψ, and write

E[ψ] =

Z
ψ

2
(x)EL(x)dx (10)

where

EL =
Hopψ(x)

ψ(x)
. (11)

Now the upper equation is a weighted average with the weight being

ψ2(x)R
ψ2(x)dx

(12)

One can use an MCMC method to generate points x distributed as ψ2(x) so that the MC estimate

of E is

E[ψ] = lim
n→∞

1

n

nX
i=1

EL(xi) (13)

The algorithm for this is

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 7



0◦ Select a trial change size δ

1◦ Choose a trial position xtrial = xi + (1− 2u)δ where u is a random number between

0 and 1

2◦ Calculate w = p(xtrial)/p(xi), where in this case p(x) = ψ2(x)

3◦ If w ≥ 1 accept the change

4◦ If w < 1 :

4 a◦ Generate a random number u between 0 and 1

4 b◦ Accept the state only if u ≤ w

5◦ If the trial was accepted let xn+1 = xtrial. Else let xn+1 = xi

6◦ Return to step 1

This gives a sequence of points xi which can be used to calculate the sum in equation 13.

• Remember that, as usual in MCMC, it takes a while for the system to equilibrate and

reach the correct distribution of states. Hence one needs to follow the equilibration before

beginning to collect statistics.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 8



It is perfectly possible to combine steps 1. and 2, i.e. both use MC methods for optimizing the

wave function, and then MC integration to determine the E[ψ] for each candidate wave function.

11.2.1. The finite and infinite square well potentials

To give some concrete idea of how quantum MC may work, I’ll use a very simple quantum

mechanical model with a known analytical solution.

11.2.1.1. Analytical solution [Eisberg-Resnick sec. 6-7]

Consider the finite square well potential:

x

V(x)

a/2-a/2

V0

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 9



This potential is the simplest possible potential which gives bound state solutions to the Schrödinger

equation.

• The surprising thing is it is not entirely preposterous physically.

– E.g. a neutron bound inside a nucleus, or an free electron in a thin conducting film

surrounded by insulator, will experience a potential energy function V (r) which is

actually quite close to a sphere/square well, respectively.

This potential can mathematically be written as

V (x) =


V0 when |x| > a/2

0 when |x| ≤ a/2
(14)

If the energy of the particle E < V0 this gives bound state solutions with quantized energy levels.

In the well region the solutions are of the form for standing waves and can in general be written as

ψ(x) = A sin(kx) + B cos(kx) when |x| < a/2 (15)

Outside the well region the solutions must vanish with increasing |x| and are hence of the form

ψ(x) =


Cekx when x < −a/2
Ge−kx when x > a/2

(16)

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 10



The values of the 4 constants A, B, C and G can be determined by requiring that both ψ(x) and

its first derivative are continuous at ±a/2. One then obtains solutions of the type

x

ψ3(x)

a/2-a/2

x

ψ2(x)

a/2-a/2

x

ψ1(x)

a/2-a/2

with a few quantized energy levels like

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 11



x

V(x)

a/2-a/2

V0

Unfortunately the solution leads to a transcendental equation which is not analytically solvable.

Here I will quote a sample numerical solution which will be used later. If m, V0 and a are related

such that s
mV0a2

2~2
= 4 (17)

then the ground state solution will be approximately

E0 = 0.0980V0. (18)

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 12



Now consider the infinite square well potential, i.e. the limit V0 → ∞. Then states outside the

box will be completely forbidden, and we are left with the solution inside the box

ψ(x) = A sin(kx) + B cos(kx) (19)

By requiring the physically reasonable boundary condition

ψ(x) = 0 when x = ±a/2 (20)

one can easily show that the exact solutions of the Schrödinger equation are simple sine and cosine

functions, and the lowest of these gives

ψ0(x) =

r
2

a
cos

πx

a
(21)

which has the ground state energy

E0 =
π2~2

2ma2
(22)

This solution is illustrated here:

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 13



x

V(x)

a/2-a/2

V0

11.2.1.2. MC simulation solution

To get a concrete idea of how variational MC may work, I will use the simplest possible bound state

solution of the Schrödinger equation, the infinite square well, and show how simulated annealing

can be used to carry out the optimization of

E[ψ] =

R
ψ∗(x)Hopψ(x)dxR
ψ∗(x)ψ(x)dx

≥ E0 (23)

For bound states this can be simplified using ψ∗ = ψ.

For simplicity, I will just use direct numerical integration to carry out the integrals, and focus on

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 14



testing whether the variational optimization can be used to find the correct ground state energy.

The optimization scheme is ordinary simulated annealing.

The basic idea of the code is (u is always a new random number in the interval [0, 1[):

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 15



0 a◦ Select a trial wave function ψ with nparam parameters to be varied ψ(x, (vi, i =

1 . . . nparam)).

0 b◦ Select a variation interval ∆v

0 c◦ Select an initial temperature T

1◦ Select one of the parameters vi using i = int(u ∗ nparam)

2◦ Calculate Eb =

R
ψ(x, v̄)Hopψ(x, v̄)dxR
ψ(x, v̄)ψ(x, v̄)dx

3◦ Get a trial vtrial
i = vi(1−∆v/2 + u∆v)

4◦ Calculate Ea =

R
ψ(x, v̄)Hopψ(x, v̄)dxR
ψ(x, v̄)ψ(x, v̄)dx

5◦ Obtain ∆E = Ea − Eb

6◦ If ∆E ≤ 0 accept the state

7◦ If ∆E > 0 accept the state only if u < e
−∆E/T

8◦ If the state is rejected, return to the previous state: vi = vbefore
i

9◦ Lower the temperature T a bit

10◦ Return to step 1

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 16



A code implementation of this looks like follows (main routine). Since a computer can not handle

infinities directly, this is actually for a finite square well, and the idea is that the user keeps increasing

V0 towards infinity.

!
! Program to solve ground state energy E of Schrödinger equation in
! 1D using variational principle
!
! Potential is the square well potential, of height V0 and interval -a/2 to a/2
! Working interval is -5a/2 to 5a/2.
! See any quantum physics textbook on this, e.g. Eisberg-Resnick ch. 6.7
!
!

module constants

double precision, parameter :: hbar = 1.055d-34
double precision, parameter :: eV = 1.602d-19
double precision, parameter :: me = 9.109d-31
double precision, parameter :: pi = 3.141592653589793238

end module constants

program boxvariational

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 17



use constants
implicit none

integer, external :: iargc
character*80 :: buf
double precision, external :: sgrnd,grnd

double precision :: V0
integer :: nparams,nsteps
integer :: seed

integer :: i,j,nrand
double precision :: x,psi,d2psi,a,Eb,Ea,Emin,dE,Te,Te0,vb,Eref
double precision, allocatable :: v(:)

logical :: accept

if (iargc() < 4) then
print *,’Usage: boxvariational V0[eV] nparams nsteps seed ’
STOP ’ ’

endif

call getarg(1,buf)
read(unit=buf,fmt=*) V0; V0=V0*eV
call getarg(2,buf)
read(unit=buf,fmt=*) nparams

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 18



call getarg(3,buf)
read(unit=buf,fmt=*) nsteps
call getarg(4,buf)
read(unit=buf,fmt=*) seed

print *,’Program started with V0’,V0/eV,’ nparams’,nparams,’ seed’,seed

allocate(v(nparams))

x=sgrnd(seed)

a=1.0d-10

Eref=pi**2*hbar**2/(2*me*a**2)
print *,’Infinite square well E0’,Eref/eV

! Generate random parameters as starting point
! NOTE: depends on choice of getpsi !
v(1)=-a/2+grnd()*a
v(2)=grnd()*2.0/sqrt(a)

do i=1,nparams
print *,’rand param’,i,v(i)

enddo

call output(nparams,v,a)

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 19



! Evaluate E(psi) at beginning
call calcpsiEpsi(nparams,v,a,V0,Eb)
print *,’E0’,Eb/eV

Te0=Eb*2;
Emin=Eb

! Then for variational optimization with simulated annealing
do i=1,nsteps

! Metropolis optimization temperature
Te=Te0*(1.0-1.1*i/nsteps); if (Te < 0.0d0) Te=0.0
! Get Ebefore
call calcpsiEpsi(nparams,v,a,V0,Eb)
! Do trial: change one v by random amount
nrand=int(grnd()*nparams)+1; if (nrand > nparams) nrand=nparams
vb=v(nrand);
v(nrand)=v(nrand)*(0.8+0.4*grnd())
! Get Eafter
call calcpsiEpsi(nparams,v,a,V0,Ea)
! Metropolis selection step
dE=Ea-Eb
accept=.false.
if (dE < 0) then

accept=.true.
else

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 20



if (Te > 0.0d0) then
if (grnd() < exp(-dE/Te)) accept=.true.

endif
endif
if (Ea < Emin) Emin=Ea
if (.not. accept) then

v(nrand)=vb
Ea=Eb

else
print ’(A,I6,10(G12.4))’,’i T Ea Emin’,i,Te/eV,Ea/eV,Emin/eV,(v(j),j=1,nparams)

endif
enddo

call output(nparams,v,a)

end program boxvariational

The subroutine actually carrying out the integration is as follows:

subroutine calcpsiEpsi(n,v,a,V0,E)
use constants
implicit none

double precision, intent(IN) :: a,V0
double precision, intent(INOUT) :: v(*)
integer, intent(IN) :: n

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 21



double precision, intent(OUT) :: E

integer :: i,nint
double precision :: x,dx,sum1,sum2,psi,d2psi,sumnorm

nint=500
dx=5*a/2/nint

sum1=0.0d0
sum2=0.0d0
sumnorm=0.0d0
do i=-nint,nint-1

x=(i+0.5)*dx
call getpsi(x,n,v,a,psi,d2psi)
! Nabla squared i.e. kinetic energy term
sum1=sum1+ psi*(-hbar**2/(2*me)*d2psi*dx)
! Potential energy term
if (abs(x) > a/2) sum2=sum2+psi*V0*psi*dx ! Else it is zero
!print *,’sum2’,x,V0,psi,dx
sumnorm=sumnorm+psi*psi*dx

enddo

E=(sum1+sum2)/sumnorm

!print *,’psiEpsi Integral terms’,sum1/eV,sum2/eV

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 22



end subroutine calcpsiEpsi

As is evident from the code, this is just an ordinary direct summation numerical integration with no

finesse. As explained above, for a multidimensional wavefunction ψ(x) it would be worthwhile to

use MC integration to carry out the integral.

The crucial remaining part is of course the subroutine getpsi which returns both ψ and d2ψ

dx2
. In

the following I will describe three different choices of the functional form.

1. Test function to check that method works at all.

As a first case, I constructed a function which should definitely eventually return the exact correct

solution.

• I thus chose a cosine function which is cutoff to zero at a/2, but made its midpoint

random (parameter v(1)).

• I also added a quadratic term of strength v(2).

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 23



– This was just to confuse the solver

The subroutine calculating the function is

subroutine getpsi(x,n,v,a,psi,d2psi)
use constants
implicit none
!
! Subroutine returns value of wave function psi(x) and the second
! x derivative of it d2 psi(x)/dx2

!
! The wave function itself is parametrized by the n elements in array v
!

double precision, intent(IN) :: x,v(*),a
integer, intent(IN) :: n
double precision, intent(OUT) :: psi,d2psi

integer :: i
double precision :: AA,BB

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 24



! Cosine term plus disturbance
if (n /= 2) then

print *,’Number of varied parameters wrong’
STOP

endif

! Correct solution but modified midpoint
psi=sqrt(1/(a/2))*cos(pi*(x-v(1))/a)
d2psi=-sqrt(1/(a/2))*pi**2/a**2*cos(pi*(x-v(1))/a)
if (abs(x) > a/2) then

psi=0.0d0; d2psi=0.0d0;
endif
! Modify it a bit with a quadratic v(2)
psi=psi+v(2)*(x/a)**2
d2psi=d2psi+2*v(2)/a**2

end subroutine getpsi

Since we know from the analytical solution that the correct solution is a cosine function centered

at x = 0, both v(1) and v(2) should go to zero, and the code should return the exact energy

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 25



solution. The code has a = 1 Å and m is the electron mass, hence the ground state is

E0 =
π2~2

2ma2
= 37.64 eV. (24)

This is actually obtained, below is parts of the code output when ran:

a.out 150 2 1000 1367
Program started with V0 150.000000000000 nparams 2 seed

1367
Infinite square well E0 37.6392928209403
rand param 1 4.881833728841002E-011
rand param 2 75290.3363842727
E0 143.131860975966

i T Ea Emin 1 285.9 141.9 141.9 0.4882E-10 0.6695E+05
i T Ea Emin 100 254.8 146.8 140.4 0.1874E-10 0.1795E+06
i T Ea Emin 200 223.3 143.2 129.5 0.8428E-10 0.7185E+05
i T Ea Emin 498 129.4 48.20 45.17 0.5853E-11 5325.
i T Ea Emin 750 50.10 38.13 37.64 0.1842E-11 1176.
i T Ea Emin 998 0.000 37.64 37.64 0.5950E-13 231.8

Note that the parameters v(1) and v(2) both have decreased by about three orders of magnitude,

and that the optimized energy is 37.64 eV. So everything behaves as it should.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 26



Here is a plot of the correct wave function, the initial very bad guess and the final optimized wave

function:

-2.e-10 -1.e-10 0.0 1.e-10 2.e-10

x (m)

-200000

-100000

0

100000

200000

300000

400000

500000

VMC optimized (x)
Bad guess of (x)
Correct (x)

Mon Apr 12 2004

2. Gaussian wavefunction

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 27



In real-life solution of the Schrödinger equation, the correct solution is seldom known. Hence one

typically starts from some common functional form and forms the total wavefunction as a sum or

product of these. If there are enough terms in the sum, one can then by the variational principle

argue that the sum of the individual functions should then eventually approach the correct solution.

One of the more common functions used is the ordinary Gaussian function. For the infinite square

well, we know that a Gaussian will never give the correct answer, since it has infinite range whereas

the correct solution goes to zero at ±a/2. Nevertheless, I tested it out. The code is almost

identical to the one given above, except that the function part itself is now:

! Series of Gaussians
if (mod(n,2) == 1) then

print *,’Number of varied parameters must be even’
STOP

endif
psi=0.0d0
d2psi=0.0d0
do i=1,n,2

AA=v(i)
BB=v(i+1)
psi=psi+AA*exp(-x*x/(BB**2))
d2psi=d2psi+2*AA/BB**2*exp(-x*x/BB**2)*(2*x**2/BB**2-1)

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 28



enddo

which gives a sum of any number of Gaussian functions. When ran, this gave e.g.

a.out 10000 2 1000 1367
i T Ea Emin 984 0.000 50.83 50.81 0.1003E+05 0.2970E-10

i.e. 50.81 eV as the final answer. But this answer is now a function of V0, since the Gaussian can

not go to zero outside the box. Increasing the number of Gaussian wave functions did not help...

In fact, we can now also compare the results to the solution of the finite square well. As explained

above, for that it is known that if s
mV0a2

2~2
= 4 (25)

then the ground state solution will be approximately

E0 = 0.0980V0. (26)

Now using our a = 1 Å we can solve the above equation to obtain V0 = 243.84 eV, which implies

the correct solution E0 = 23.89 eV. Running the code using this value of V0 gives E0 = 25.23

eV, which is pretty close to the correct solution, but still above it, as it should be by the variational

principle.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 29



3. We saw above that the Gaussian only does not give a very good solution. In an attempt to

obtain a better solution, I still subtracted another peaked function

A

1 + (x/a)2
(27)

from the Gaussian one, to enable partial compensation of the long tail:

! Gaussian
psi=psi+AA*exp(-x*x/(BB**2))
d2psi=d2psi+2*AA/BB**2*exp(-x*x/BB**2)*(2*x**2/BB**2-1)
! Inverse polynomial
help1=1+x**2/w**2
psi=psi-AAA/help1;
d2psi=d2psi-AAA*(-2/w**2)*help1*( help1 - 4*x**2/w**2 )/help1**4

This gave after a few tests with different seeds and running times a minimum of 46.57 eV, clearly less

than that of the Gaussian only. Here is a comparing the best Gaussian and best Gaussian+Inverse

polynomial with the exact answer:

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 30



-2.e-10 -1.e-10 0.0 1.e-10 2.e-10

x (m)

0

5.e+09

1.e+10

1.5e+10

2.e+10

Best analytical (x)
Best Gaussian (x)
Correct (x)

Mon Apr 12 2004

By increasing the number of parts of the trial wave function one could almost certainly decrease the

energy further, and eventually reach something very close to the exact solution 37.64.

The above example was clearly a toy example, in that the method used is not the most efficient

possible one here, and may not be so in any other case either. Nevertheless, it did illustrate a few

basic principles which are valid in modern electronic structure calculations:

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 31



1. The variational principle plus an optimization scheme can be used to solve the Schrödinger

equation

2. By increasing the number and type of trial wave functions (called “basis” functions in molecular

and condensed matter physics) one can obtain increasingly accurate solutions of the Schrödinger

equation

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 32



11.3. Random walk Quantum MC

[Gould-Tobochnik 18.6]

The time-dependent Schrödinger equation was

−
~2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) = i~

∂Ψ(x, t)

∂t
(28)

This can be rewritten in imaginary time τ = it/~ as

~2

2m

∂2Ψ(x, τ)

∂x2
− V (x, t)Ψ(x, t) =

∂Ψ(x, τ)

∂τ
(29)

Now if we rewrite this with the identity D = ~2/2m we get

∂Ψ(x, τ)

∂τ
= D

∂2Ψ(x, τ)

∂x2
− V (x, t)Ψ(x, t) (30)

Now we see that the first 2 terms are just the diffusion equation. The last term adds a growth or

decay term to this equation.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 33



Earlier on the course we saw that a random walk directly simulates diffusion, and can be used to

solve the diffusion equation numerically. Since the Schrödinger equation can be written in the form

of a diffusion equation for imaginary time, this means that a random walk in imaginary time can be

used to solve the Schrödinger equation!.

The ground state energy E0 can be obtained as

E0 =< V >=

P
niV (xi)P
ni

(31)

where ni is the number of walkers at xi at time τ . The time average of E0 calculated as above

gives the final answer.

The walkers move quite randomly, but the number of walkers is varied according to the potential

energy V (x) in a manner which leads to the average energy E0 obtaining a value which corresponds

to the solution of the Schrödinger equation.

For additional details and an algorithm see Gould-Tobochnik.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 34



11.4. Diffusion Quantum MC (DMC)

Diffusion quantum MC is an improvement of the random walk QMC. It also involves random

walkers, but also a function which gives the weight of each walker depending on what the potential

energy V (x) is at the position of the walker.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 35



11.5. Path integral quantum MC (PIMC)

All of the methods describe above are essentially limited to determining the ground state or

lowest-lying excited states of the system. Path integral MC can actually also simulate the state of

the system at finite temperatures. It relies on the Feynman path integral formulation of quantum

mechanics, and uses a Metropolis MC method to sample the system. The kinetic energy (i.e.

temperature) of the system is obtained from the virial theorem.

Basics of Monte Carlo simulations, Kai Nordlund 2006 JJ J � I II × 36


