Basics of Monte Carlo simulations 2006. Exercise 1
To be handed in Tue 31.1, exercise session Thu 2.2. 10:15.

Exercise 1 can be handed in on paper during next weeks lecture, the others
by email to the assistant eero.kesala@helsinki.fi. Return also the source codes
used to solve the exercises; if the solutions involve more than about 5 files,
pack them into a single .tar.gz or .zip package.

1. (4 p) Derive the probability

21

Poir = —
hit d

for the Buffon’s needle problem (see lecture notes).

If you want to have some fun, you can try the Buffon’s needle java applet
below http://stud2.tuwien.ac.at/~e9527412/.

In exercises 2-5, we consider the following random number generators,
given in Numerical Recipes second edition (whole book available in the web,
www.nr.com): a) the second (ia = 211,ic = 1663,im = 7875) quick-and-
dirty generator. b) The Park-Miller generator using the Schrage trick, but
without the shuffle.

To make the results comparable, use 7 as the initial seed.

2. (6 p) Write a piece of code which calculates the repeat interval of the
generators (by brute force i.e. going through the numbers before you get the
original one back).

Hint: you can use a “double” (C) or “double precision” (Fortran) variable
to calculate the repeat interval; this data type almost always nowadays has
a 15-digit mantissa, so it is enough to calculate the interval of any 32-bit
integer (which only has up to 10 numbers).

3. (6 p) Generate a 2D distribution between (0-1 , 0-1) with the random-
number generators, and plot them. Use 10000 points. Does the 2D distribu-
tion seem at least superficially OK?

4. (6 p) Generate again random points in 2D between 0 and 1, but print
out only the ones lying below x=0.0001. Keep on doing this until you have
obtained 10000 points, plot the result, and comment on it.

5. (6 p) Test of whether it is a good idea to attempt to improve on generators
without much thought. Modify generator a) by changing the numbers a and
¢ randomly to something which “feels” good to you. Then repeat the 2D test
for the generator. Repeat this 5 times. Comment on the result.

6. (4 p) Look at the source code of the Mersenne twister (available on the
course home page and the web). Find out what kind of algorithm is used to
initialize it.



