
7. Random walks

[G+T 7.3, G+T 12]

Now, for the first time on this course, we start to deal with actual simulation of physical processes,

as opposed to using MC for integration or data analysis. Let us start with a typical problem in

physics, a couple of drunken sailors.

7.1 Monte Carlo simulations, Kai Nordlund 2002, 2004



7.1. Introduction
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7.1.1. The two drunken sailors

Consider a sailor who gets out of a corner pub completely drunk, in a city where all blocks are in

perfect squares. The drunken sailor walks from one corner of a block to the next, but then in this

corner forgets where he was coming from, and where he is going. He keeps going, picking the next

direction where to go randomly among the four possible ways. Then in the following corner he again

forgets where he was going, but keeps on walking, forming a random walking pattern.

Consider another drunken sailor, who has drunk even more, and fallen asleep in the middle of a

huge square. He also starts walking, but after a few steps he stops, changes direction randomly,

takes another few steps, again changes direction, and so on.

We obviously could use Monte Carlo methods to simulate the walk of the two drunken sailors, and

answer questions like how far they on average have come after N steps. But why on earth would

we want to, being physicists?
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7.1.2. ...and what this has to do with physics

The answer is that exactly the same kind of random walk processes are surprisingly prevalent in

physics. The random walk performed by the sailor walking among the square blocks is migration

on a lattice, and can correspond exactly to the motion of an atom migrating on a (square) lattice.

The second case, the movements of the sailor on the square, is migration in a continuum, and

can correspond e.g. to atom movement in a two-dimensional liquid. The extension to non-square

lattices, 3D lattices or 3D liquids is obvious.

Because of such relations to the natural sciences, the basic “drunken sailor” random walk problem is

widely used in many branches of science. Answering e.g. the question of average expected distance

for a given N has a direct correspondence to the definition of the diffusion constant!
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7.2. Simple random walks and diffusion

[G+T 7.3]
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7.2.1. One-dimensional walk

Let us first consider the simplest possible case, a random walker in a one-dimensional lattice:

0

Say that a walker begins at x = 0, and that all steps are of equal length l. After each time

interval τ the walker has an equal probability of moving left or right. The direction of each step is

independent of the previous one. Let us denote the displacement at each step by si, for which

si =


+l with 50% probability

−l with 50% probability

Then after N steps (time Nτ) in the random walk, the position (and displacement) x of the walker

is

x(N) =

NX
i=1

si
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and the displacement squared is

x
2
(N) =

 
NX

i=1

si

!2

(1)

Let us now think about what the average distance the walker has moved is. It is immediately obvious

that with the equal probabilities to go left and right,

〈x(N)〉 = 0

that is, the average position will always be at the origin. But this does of course not mean that the

particle always is at zero. It means that the probability of finding the particle somewhere is centered
at x = 0, but naturally the probability distribution gets wider with increasing numbers of steps N .

To get a handle on the broadening, let us consider the squared displacement, Eq. 1. We can rewrite

this as

x
2
(N) =

 
NX

i=1

si

!2

=

NX
i=1

si

NX
j=1

sj =

NX
i=1

s
2
i +

NX
i=1

NX
j=1
j 6=i

sisj
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Then consider the pair sisj for a given pair i, j, j 6= i. This quantity will be

sisj =


+l2 with 50% probability

−l2 with 50% probability

so on average the sum over sisj will be zero! But on the other hand

s
2
i = l

2

independently of whether si is +l or −l!

Hence the average after N steps will be

〈x2
(N)〉 = l

2
N (2)

7.2.1.1. Coding the random walk

Before we proceed to look at deeper into the physical significance of this, let us see how we can

do a Monte Carlo simulation of this. There is nothing hard here: we simply generate N uniform

random numbers between 0 and 1, and if the uniform number is below 0.5 we walk downwards,

otherwise we walk upwards. We then collect the result, and repeat for a large number ntimes times

to get a representative average. Here is an implementation in Fortran90:
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program randomwalk1d
implicit none

integer :: N,nwalks,iwalk,istep
integer :: x,seed
double precision :: xsum,xsqsum,dir

character :: buf*80
integer, external :: iargc
double precision, external :: uniformrand

_
if (iargc() < 3) then | PRELIMINARIES

print *,’Usage: randomwalk N nwalks seed’ |
STOP |

endif |
|

call getarg(1,buf); read (unit=buf,fmt=*) N |
call getarg(2,buf); read (unit=buf,fmt=*) nwalks |
call getarg(3,buf); read (unit=buf,fmt=*) seed |

|
print *,’Doing random walk to’,N,’steps’,nwalks,’ times’ _|

_
xsum=0.0; xsqsum=0.0; | RANDOM WALK
do iwalk=1,nwalks ! LOOP OVER WALKS |

7.9 Monte Carlo simulations, Kai Nordlund 2002, 2004



|
! New walk |
x=0; |
do istep=1,N ! LOOP OVER STEPS IN WALK iwalk |

dir=uniformrand(seed) |
if (dir<0.5) then |

x=x-1 |
else |

x=x+1 |
endif |

enddo |
xsum=xsum+x |
xsqsum=xsqsum+x*x |

enddo _|

print *,’<x(N)>’,xsum/nwalks,’ <x2(N)>’,xsqsum/nwalks

end program randomwalk1d

When ran, this gave e.g. the following result:

beam.helsinki.fi randomwalk> nice randomwalk1d 100 100000 12313
Doing random walk to 100 steps 100000 times
<x(N)> -2.648000000000000E-002 <x2(N)> 100.260080000000
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beam.helsinki.fi randomwalk> nice randomwalk1d 100 100000 7142
Doing random walk to 100 steps 100000 times
<x(N)> 2.734000000000000E-002 <x2(N)> 100.126840000000

and with a hundred times better statistics:

Doing random walk to 100 steps 10000000 times
<x(N)> -1.932800000000000E-003 <x2(N)> 99.9611160000000
Doing random walk to 100 steps 10000000 times
<x(N)> 1.772000000000000E-004 <x2(N)> 99.9962144000000

So we see that indeed 〈x(N)〉 is on average 0 and 〈x2(N)〉 ≈ N , as predicted by our analytical

derivation!
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7.2.2. Continuum limit: the diffusion equation

[G+T 12.5; G+T 7A]

This basic random walk can be rewritten as a continuum diffusion equation by taking the limit in

which the lattice spacing l and the time step τ go to zero.

Let us begin by writing the random walk behaviour in terms of a so called master equation. Let

P (i, N) denote the probability that a walker is at site i after N steps. Since walkers have an equal

probability to walk left and right, it is clear that

P (i, N) = 1
2P (i + 1, N − 1) + 1

2P (i− 1, N − 1)

To get a continuum limit with familiar names for the variables, we can identify

t = Nτ and x = il

Now we can rewrite the previous equation as

P (x/l, t/τ) = 1
2P (x/l + 1, t/τ − 1) + 1

2P (x/l− 1, t/τ − 1)
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but since the probability is independent of the length or time scales, we have

aP (x, t) = P (ax, t) or bP (x, t) = P (x, bt)

for any constants a, b. So we can multiply the equation with l and τ to obtain

P (x, t) = 1
2P (x + l, t− τ) + 1

2P (x− l, t− τ)

We rewrite this by subtracting P (x, t− τ) and dividing by τ

P (x, t)− P (x, t− τ)

τ
=

P (x + l, t− τ) + P (x− l, t− τ)− 2P (x, t− τ)

2τ
(3)

The left hand side already clearly resembles the definition of a derivative, if we take the limit

τ −→ 0. To see what happens on the right hand side, we expand the P functions as Taylor series

about x and t with l and τ as the deviation. We only write out the terms needed:

P (x, t− τ) ≈ P (x, t)−
∂P (x, t)

∂t
τ

P (x± l, t− τ) ≈ P (x, t)±
∂P (x, t)

∂l
l + 1

2

∂2P (x, t)

∂x2
l
2 −

∂P (x, t)

∂t
τ
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and we can rewrite eq. 3 as

P (x, t)− P (x, t− τ)

τ
≈

1

2τ
[P (x + l, t− τ) + P (x− l, t− τ)− 2P (x, t− τ)]

P (x, t)− P (x, t) + ∂P (x,t)
∂t τ

τ
≈

1

2τ

"
P (x, t) +

∂P (x, t)

∂l
l + 1

2

∂2P (x, t)

∂x2
l
2 −

∂P (x, t)

∂t
τ

+P (x, t)−
∂P (x, t)

∂l
l + 1

2

∂2P (x, t)

∂x2
l
2 −

∂P (x, t)

∂t
τ

−2P (x, t) + 2
∂P (x, t)

∂t
τ

–

and after we do all the obvious cancellations we get

∂P (x, t)

∂t
≈

l2

2τ

∂2P (x, t)

∂x2

In the limit τ → 0, l → 0 but where the ratio l2/τ is finite, this becomes an exact relation. If we
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further define D ≡ l2/2τ we get the equation

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
(4)

But this is just the well-known macroscopic diffusion equation in 1 dimension, with D being exactly

the diffusion constant. So we have from a very simple microscopic model derived a well-known

macroscopic equation!

For those of you who do not know diffusion, what the equation does is describes the time dependence

of e.g. particle or heat diffusion in a system with a concentration or temperature gradient.

If we furthermore compare with the previous equation 2, 〈x2(N)〉 = l2N and use the identities

D ≡ l2/2τ and t = Nτ we can rewrite eq. 2 as

〈x2
(t)〉 = 2Dt (5)

This equation is called the Einstein relation after a certain physicist who first derived it back in

1905 [A. Einstein, Ann. Phys. 17 (1905) 549].
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The 3-dimensional generalizations, which are straightforward to derive in a similar manner, are:

∂P (x, y, z, t)

∂t
= D∇2

P (x, y, z, t) (6)

and for the Einstein relation:

〈R2
(t)〉 = 6Dt (7)

where

〈R2
(t)〉 = 〈x2

(t) + y
2
(t) + z

2
(t)〉

and the factor of 2 has been replaced by a 6.

Furthermore, it even turns out that these results are not specific to being on a lattice, as you will

find yourself in one of the exercises.
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7.2.3. Microscopic and macroscopic diffusion

What is the relation between using MC simulations to deal with a random walk and the macroscopic

equation? This depends on the outlook. If we are interested in macroscopic diffusion, we can use

MC simulations of random walk essentially as an advanced numerical means to solve the diffusion

equation 6.

Of course ordinary numerical solution of partial differential equations is in many cases likely to be

perfectly adequate for dealing with diffusion, and much more efficient than random walk simulations.

But the more complicated the diffusion problem gets, the harder it becomes to set up and solve the

diffusion equation, and at some point it may actually become both easier and more efficient to use

a microscopic random walk model. By utilizing the kinetic Monte Carlo approach (dealt with in the

next section of this course) to random walks the microscopic simulations actually can become quite

efficient.

On the other hand, if we are primarily interested in understanding the microscopic processes

themselves, we can do random-walk like simulations on the microscopic level to see what is really

going on. The relation with the diffusion equation can then just be used check that the microscopic
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mechanisms will lead to the expected macroscopic limit if we expand our number of walkers towards

infinity and look at larger length scales.

For instance, if we look at atom migration, the l can naturally be the known interatomic distance,

and τ the average jump frequency of the atoms. In this case taking the limit l → 0 and τ → 0

has no physical meaning since the real l and τ are finite; instead we can think of obtaining the

macroscopic, continuum diffusion equation by looking at time scales t >> τ and length scales

L >> l.

The Einstein relation is extremely useful for this kind of problems in that they allow determining

the macroscopic diffusion constant in a simple way from microscopic data of ∆x and τ . In the

pure random walk as the ones here, there is actually not much information to gain as one has to

know τ in advance. But if for instance MD simulations are used to predict the defect motion, it is

sometimes truly possible to predict the diffusion coefficient.

It is also interesting to note that present-day physics very often deals with truly atomistic length

scales — in commercial Si microprocessors the smallest parts are already today only a few ten atom

layers thick. In this kind of system, the assumption that the system length scale L >> l may no

longer be true, and the continuum approximation starts to become increasingly inaccurate. In such
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cases a random walk look on migration may be the most appropriate way to deal with diffusion,

and MC simulations of random walk the best tool to work with theoretically. This has now lead to

the semiconductor industry being directly involved in atom-level diffusion simulations.
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7.3. Modified random walks

In addition to the completely isotropic random walk described above, there are numerous variation

where the walk directions are non-isotropic or constrained somehow.
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7.3.1. Scaling law

In considering other types of random walks, one often uses the concept of a scaling law to describe

the basic properties of the generator. For the basic random walk, we considered the dispersion

〈∆x
2
(N)〉 = 〈x2

(N)〉 − 〈x(N)〉2

and found that

〈∆x
2
(N)〉 = 〈x2

(N)〉 ∝ N
1

where N is the number of steps.

In other, more complicated walks it need not be true that 〈x(N)〉 = 0, nor does the exponent on

N need to be 1. Hence one can write for a general random walk that

〈∆x
2
(N)〉 ∝ N

2ν

and use the exponent ν to characterize the walk. A similar scaling law dependence can also be valid

for other quantities f of interest. It is customary to have 2ν in the exponent, because
√

f then

gives ν directly.
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To determine the exponent in practice, it is often useful to make statistics of 〈∆x2(N)〉 as a

function of N while N is growing in the simulation. The one can output f(N) and use a fitting

routine to determine the exponent.

(Hint for novices in data analysis: a useful trick to do an extremely quick test of whether something

follows a scaling law: if f(N) is plotted in a log-log graph, it will appear linear if it follows a power

law. The slope gives the exponent. For xgraph the options -lnx -lny give a log-log plot).
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7.3.2. Examples

[G+T 12.2 –]

In here we will first list a few common types of modified random walks, very briefly describing what

they are. In the next two subsections we will look at two examples in greater detail, also describing

what real-life cases they correspond to.

7.3.2.1. Nonequal probabilities

It is of course possible to forgo the requirement that a step in all directions is taken with equal

probability. Say for instance that in the 1-dimensional example the probability to move right is p

and to the left is q = 1− p. This will introduce a drift in the system, and we will have

〈x(N)〉 = (p− q)lN

instead of 0. This is called a biased random walk, and corresponds to the macroscopic diffusion

equation with an extra term which can be interpreted as a velocity:

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
− v

∂P (x, t)

∂x
(8)
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The physical interpretation can e.g. be a raindrop falling in a swirling breeze.

7.3.2.2. Persistent random walks

In the simple random walk, the probability that a step is taken into a certain direction is independent

of the previous steps, and in fact constant all the time. In case the jump probability depends on the

previous transition, one can talk about a persistent random walk.

A simple example is again given in a 1D system: if a jump has just been made at step N − 1, let us

say that the probability that the next jump occurs in the same direction is α, and the probability

it occurs in the opposite direction is 1 − α. In case α = 0.5 we have just the ordinary random

walk. But if α 6= 0.5 the two jumps will be correlated. If α > 0.5 there is a simple physical

interpretation of the correlation: once an object starts moving, it is more likely it will keep moving

in the same direction on successive steps.

This has e.g. been observed in the study of molecules in a chromatographic column. These molecules

can either be in an immobile, trapped phase with zero velocity, or in a mobile phase with velocity v.

For steps of unit length the position will then change at each step by v or 0. But once the molecule

is in a mobile state, it tends to stay there, so one could describe the motion using an α > 0.5 to

determine how it behaves.

7.3.2.3. Restricted random walks
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Another important modification of the walk is to consider a system with certain points or regions

which somehow restrict the motion of the atom. Such a restriction could e.g. be a line which reflects

particles, a region which absorbs them or that two particles can not occupy the same site.

The simplest possible restriction is probably a trap in a lattice. It is simply a site which absorbs

every random walker it encounters.

Traps are important in condensed matter physics. For instance, we can consider a simple model for

light energy transport in a solid. A lattice has “hosts” and traps. When an incoming photon reaches

a host, the light energy will be transferred into an electron excitation, which can travel in the lattice

somewhat like a particle, an “exciton”. When the exciton reaches a trap site it is absorbed there,

and a chemical reaction can occur there due to the added energy from the exciton.

For defects in solids, a surface often acts as a “trap line” which absorbs all defects which reach it.

In the exercises, you get to code this problem (although just for fun I mask it as a drunken sailor

problem).

In subsection below I describe in detail how to model a system where particles can not occupy the

same site.

7.3.2.4. Continuum walks
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There is no reason why a random walk should only be on a lattice with a constant step size. If you

e.g. think about atom motion in a gas, it is quite clear that the distance between collisions is not

very likely to de constant, and the atoms can of course move in any direction.

There are continuum walks, where the steps can be in any direction. The step length may be fixed,

or of variable length with some distribution.

As a simple example, if you do a 2D random walk in a random direction with steps of unit length,

it turns out that for large N the distribution of displacements will become a Gaussian.

Finally, it is of course also possible to have a walk on a lattice where the displacement may be

longer than to the nearest neighbour sites. Certain interstitial atom diffusion mechanisms can have

such a character 1.

1For those of you who know about diffusion in metals, I am thinking of crowdion motion in BCC metals
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7.4. Lattice gas

Consider a finite lattice with some density ρ of Np particles. The particles can move on the lattice

by jumps to the nearest sites, but two particles can not occupy the same site. This is a simple

example of a restricted random walk (see above). The physical interpretation is e.g. vacancies

moving in a lattice.

To simulate this kind of system, we need a bit more of an advanced approach than before. First of

all, we need to simulate the motion of all the particles at the same time, not taking the average

over many independent single-particle motions as was done before.

To be able to meet the criterion that two particles should not occupy the same site, we can do

two things. One is to make an array which contains all possible lattice sites. The other is to, at

each move, find the distance to all other particles and check that no one occupies the site to be

moved to. In case the lattice is small enough to fit the available computer memory using the former

solution is much easier and faster.

In case a particle jumps on average after every time ∆t, then if we have Np particles we should
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make a move of one of the particles at time intervals of

∆tp = ∆t/Np

But it is possible that a particle can not move at all, if all neighbouring sites are occupied. Should

the time in this case be advanced by ∆tp or not? This depends on the physical situation we are

involved with. In this case, we will choose to advance the time.

Another choice to make is whether we should always just try a jump in one direction, or for a given

particle choice choose one of the available jumps if any is available. This time, we choose the latter

one, because it is harder to code.

Finally, we have to choose how to treat the borders. Now we will choose to use periodic
boundaries. This simply means that if a particle exits the boundary on one side, it comes out on

the other side. This mimics a section of an infinite system.

There is one non-trivial practical thing to consider when coding this. That is that we can not now

simply evaluate

∆x = x(t = 0)− x(t)
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because the particles may move several times over the periodic boundaries around the cell. In this

case the above equation could give a much too small answer. What we have to do is introduce

another array dx which sums up the displacement of the particle, before consideration of the

periodic boundaries.

(Note that if you read Gould-Tobochnik about this, their code does not take account of this!)

So to summarize, here is a sketch of an algorithm on how to simulate this kind of a walk.
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1◦ Choose number of particles Np, number of steps Nsteps, side length L. Set ∆t and

lattice size a.
2◦ Set all positions in the L× L grid to be empty

3 a◦ Generate Np particle coordinates randomly on the grid, checking that no two particles

end up on the same points.

3 b◦ Mark the points with the particles in the L× L grid as filled.

4◦ Loop over MC steps of time ∆t

5◦ Loop from 1 to Np

6◦ Pick one particle i at random

7◦ Find which positions it can jump to. If none, return to step 6◦

8◦ Let the particle jump to one of the allowed directions j by a displacement

xi = xi + δxj, yi = yi + δyj, enforce periodic boundaries on x and y

9◦ Set dxi = dxi + δx, dyi = dyi + δx (where periodic boundaries do not play

a role!)

10◦ End loop from 1 to Np

11◦ Update time t = t + ∆t

12◦ End loop over MC steps

13◦ Output 〈∆R
2〉 = 〈dx

2
i + dy

2
i 〉 and calculate diffusion coefficient.
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The crucial difference here to the previous random walk algorithms is that the outer loop goes

over MC steps, the inner one over particles. When the walkers are independent of each other

(“non-interacting”) we can deal with one walker at a time, saving memory since storage of all

particles is not needed.

How to do this in practice is illustrated in the Fortran90 code below. It gives out the diffusion

constant D as the final answer, having reasonable values of 1 ns for the average jump time and 2

Å for the jump distance.

Note that this program fails for large numbers of particles using the Park-Miller “minimal
standard” random number generator. In that case, the diffusion coefficient will keep growing

instead of stabilizing at large times. The code below used the Mersenne twister, the Fortran version

available from the course home page. (Yes, I did find this out the hard way, spending almost an

entire Sunday debugging my code before I realized the random number generator was the culprit!)

! To compile use e.g.
! for Linux/Absoft Fortran:
! f90 -O -o randomwalk_latticegas randomwalk_latticegas.f90 -lU77 -lfio
! For Alphas with Compaq Fortran:
! f90 -O -o randomwalk_latticegas randomwalk_latticegas.f90
!
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program randomwalk_latticegas
implicit none

logical, allocatable :: lattice(:,:)
integer, allocatable :: x(:),y(:)
double precision, allocatable :: dx(:),dy(:)

integer :: Nsteps,Np,L,narg
integer :: istep,isubstep
integer :: dir,i,j,seed,nfail,njumps

integer, parameter :: MAXINT=1000000000

! Variables for counting allowed directions
integer :: free(4),nfree
integer :: dxtrial(4),dytrial(4)
integer :: xnew(4),ynew(4)

double precision :: dxsum,dysum,dxsqsum,dysqsum
double precision :: t,deltat,drsqave,D,a,help

character :: buf*80
integer, external :: iargc
double precision, external :: uniformrand,grnd

! Set average time between jumps and jump length Units is s and cm
! although actually this is not needed for the simulation
deltat=1d-9; ! 1 ns
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a=2e-8; ! 2 Å

if (iargc() <2) then
print *,’Usage: randomwalk_latticegas Nsteps Np L seed’
STOP

endif

call getarg(1,buf); read (unit=buf,fmt=*) Nsteps
call getarg(2,buf); read (unit=buf,fmt=*) Np
call getarg(3,buf); read (unit=buf,fmt=*) L
call getarg(4,buf); read (unit=buf,fmt=*) seed

call sgrnd(seed)

print *,’Doing lattice gas walk to’,Nsteps,’MC steps, initial seed’,seed
print *,’using’,Np,’ particles on a’,L,’^2 square lattice’

if (Np >= L*L) then
print *,’Are you crazy? Number of particles >= number of sites’
STOP ’Too small lattice’

endif

print *,’Allocating arrays’
allocate(lattice(0:L-1,0:L-1))
allocate(x(Np),y(Np))
allocate(dx(Np),dy(Np))

! Mark all positions as empty
do i=0,L-1
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do j=0,L-1
lattice(i,j) = .false.

enddo
enddo

! enumeration of directions: 1 left 2 right 3 up 4 down
dxtrial(1)=+1; dytrial(1)= 0;
dxtrial(2)=-1; dytrial(2)= 0;
dxtrial(3)= 0; dytrial(3)=+1;
dxtrial(4)= 0; dytrial(4)=-1;

nfail=0; njumps=0;
! Generate particles on lattice
do i=1,Np

do ! Loop until empty position found
! To be on safe side, check that upper limit not reached
x(i)=int(grnd()*L); if (x(i)>=L) x(i)=L-1;
y(i)=int(grnd()*L); if (y(i)>=L) y(i)=L-1;
if (lattice(x(i),y(i))) then

! Position already filled, loop to find new trial
cycle

else
lattice(x(i),y(i))=.true.
! Success, go to next particle
exit

endif
enddo
dx(i)=0.0d0; dy(i)=0.0d0;

enddo
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t=0.0;
do istep=0,Nsteps-1 ! Loop over MC steps

do isubstep=1,Np ! Do all particles on average once every MC step

! Pick one particle at random
i=int(grnd()*Np)+1; if (i>Np) i=Np;

! Find possible directions, store it in free()
nfree=0
do j=1,4

xnew(j)=x(i)+dxtrial(j);
if (xnew(j) >= L) xnew(j)=0; if (xnew(j)<0) xnew(j)=L-1;
ynew(j)=y(i)+dytrial(j);
if (ynew(j) >= L) ynew(j)=0; if (ynew(j)<0) ynew(j)=L-1;
if (.not. lattice(xnew(j),ynew(j))) then

! Success: position free
nfree=nfree+1
free(nfree)=j

endif
enddo
! If no possible directions, get new particle
if (nfree == 0) then

nfail=nfail+1
cycle

endif
njumps=njumps+1

! Pick one of the possible directions randomly
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! Note that the dir>nfree check here really is needed!
dir=int(grnd()*nfree)+1; if (dir>nfree) dir=nfree
j=free(dir)

! Now x(i),y(j) is old position and xnew(j),ynew(j) new
! Double check that new site really is free
if (lattice(xnew(j),ynew(j))) then

print *,’HORROR ERROR: THIS SHOULD BE IMPOSSIBLE’
print *,i,j,dir,nfree
print *,free
print *,x(i),y(i),xnew(j),ynew(j)
STOP ’HORROR new site bug’

endif
!Empty old position and fill new
lattice(x(i),y(i))=.false.
lattice(xnew(j),ynew(j))=.true.

x(i)=xnew(j); y(i)=ynew(j);
dx(i)=dx(i)+dxtrial(j); dy(i)=dy(i)+dytrial(j);

enddo

if (mod(istep*Np,1000000) == 0) then
! Calculate and print intermediate results every now and then
! Get total displacement from dx,dy
dxsum=0.0d0; dysum=0.0d0;
dxsqsum=0.0d0; dysqsum=0.0d0;
do i=1,Np

dxsum=dxsum+dx(i); dysum=dysum+dy(i);
dxsqsum=dxsqsum+dx(i)*dx(i); dysqsum=dysqsum+dy(i)*dy(i);
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enddo
drsqave=(dxsqsum+dysqsum)/(1.0*Np)

if (t>0.0) then
! Get diffusion coefficient by proper scaling
D=drsqave*a*a/(4*t)
print *,’At’,t,’ drsqave’,drsqave*a*a,’ D’,D,’ cm^2/s’

endif

endif

t=t+deltat

enddo

! Get total displacement from dx,dy
dxsum=0.0d0; dysum=0.0d0;
dxsqsum=0.0d0; dysqsum=0.0d0;
do i=1,Np

dxsum=dxsum+dx(i); dysum=dysum+dy(i);
dxsqsum=dxsqsum+dx(i)*dx(i); dysqsum=dysqsum+dy(i)*dy(i);

enddo
print *,’dxsum’,dxsum,’ dysum’,dysum
print *,’dxsqsum’,dxsqsum,’ dysqsum’,dysqsum
drsqave=(dxsqsum+dysqsum)/(1.0*Np)
print *,’drsqave’,drsqave
print *,’Number of failed jumps’,nfail,’ number of successes’,njumps
! Get diffusion coefficient by proper scaling
D=drsqave*a*a/(4*t)
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print *,’At’,t,’ drsqave’,drsqave*a*a,’ D’,D,’ cm^2/s’

end program randomwalk_latticegas

((After this the Mersenne twister source code should follow.
In that code, you have to change the comment character from
‘‘*’’ to the Fortran90 ‘‘!’’.))

This will be animated during the lecture.

[[Lecturers own reminder on animation, reader can ignore:

cd opetus/mc/tests/randomwalk
f90 randomwalk_latticegas_output.f90 -lU77
a.out 100 2 20 12278 | grep "^ P" | dpc msleep 100 x -1 21 y -1 21 m 1 d 21 sd 440 440 erase 2 3 4 5 _

and then increase second argument.]]

And here is a series of results:

Np L Np/L^2 D (cm^2/s) nfail njumps
--- ---- ------ ------------- -------- --------
10 100 0.001 9.769973881166823E-008 0 10000000
10 100 0.001 1.127346430730184E-007 0 10000000
100 100 0.01 1.028685543050629E-007 0 10000000
100 100 0.01 9.469519884885580E-008 0 10000000
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10000 1000 0.01 9.899003879678247E-008 0 10000000
1000 100 0.1 9.111043889255736E-008 292 9999708
1000 100 0.1 9.427090885414200E-008 279 9999721
100000 1000 0.1 9.403952985695557E-008 3127 99996873
3000 100 0.3 8.284148565973272E-008 109626 29890374
3000 100 0.3 7.915751903784448E-008 110196 29889804
6000 100 0.6 5.895798261670045E-008 1152902 10847098
6000 100 0.6 5.913229928124830E-008 1154808 10845192
9000 100 0.9 1.771291645136659E-008 11574471 6425529
9000 100 0.9 1.786338311620434E-008 11571431 6428569
900000 100 0.9 1.824779088931029E-008 57886778 32113222
9900 100 0.99 1.831247452488705E-009 19013835 786165
9900 100 0.99 1.860272704661156E-009 19015892 784108

What does this mean? At small concentrations, the system behaves essentially as an unconstrained

random walk. For that one, we know that 〈∆R2〉 should be equal to a2N , where N is the number

of steps, and a is the jump distance, and the result for the diffusion coefficient should be

D =
〈∆R2〉

4t
=

(2 Å)2N

4N∆t
=

(2 Å)2

4× 1 ns
= 10

−7 cm2

s

which is exactly what we get, within the uncertainty. But for larger concentrations, the number

of failed jumps starts to grow, which reduces the diffusion coefficient. It is interesting to note,
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however, that the diffusion coefficient and number of failed jumps do not follow an obvious linear

dependence, so doing the MC simulation really is worthwhile.

Here is still a plot of D(ρ), where ρ is the particle concentration.
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7.5. Length of polymers in a good solvent

[Gould-Tobochnik 12.3]

As a final example of where random walks can be useful, we consider the length of polymers lying

in a good solvent. A polymer is a molecule which consists of a long chain of basic building blocks.

For instance, polyethylene can be represented as

· · ·–CH2–CH2–CH2–CH2–· · ·

When a polymer is placed in a good solution, where it basically can float around freely, it will after

some time adopt a twisted form which is neither straight nor completely curled up. Imagine a single

noodle (spaghetti strain) in warm water.

Experiments on polymers have shown that when the length of the “noodle” is measured, the

average mean square end-to-end length has been found to have the following dependence:

〈∆R
2
(N)〉 ∝ N

2ν
with ν ≈ 0.592
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for a wide range of polymers, regardless of their other properties. Here N is the number of

monomers. The fact that such very general behaviour is observed indicates that there is some very

simple general reason for the behaviour.

This lead Rosenbluth and Rosenbluth [Ref. J. Chem. Phys 23 (1955) 356 according to G+T] to think that a very

simple random walk approximation could explain this behaviour. The main idea here is as follows.

Let us think of making a random walk whose path would give the shape of the particular polymer.

The figure below illustrates a polymer and a random walk which would approximate the shape of

this polymer.
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A simple random walk clearly can not explain the behaviour, since it gives an exponent of ν = 0.5.

But it is also clear that the ordinary random walk does not describe the physical situation sensibly

either, because it can return to the same positions many times. But in a polymer the monomers

certainly can not occupy the same space – atoms can just not be squeezed on top of each other

without extreme kinetic energies or pressures. So let us modify the basic random walk as follows:

we add the simple requirement that the walker should never return to a position it has already

occupied. This kind of random walk is called the self-avoiding walk (SAW).
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If we know what the minimum-energy angles between the monomers are (and today this usually is

known quite well), we could take these angles to construct the walk. But since the same scaling

behaviour is observed for many kinds of polymers, this suggests that the result will be fairly

independent of the angles. So we can start with using a square lattice (2D) or simple cubic lattice

(3D) with all angles of 90◦ to simulate the walk. And it turns out that this gives almost exactly

the right answer! You get to find this out yourself in the exercises.

This is a really beautiful example of how a very simple physical model can lead to understanding of

nature!.
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7.5.1. Coding self-avoiding random walks

Coding the SAW efficiently is not quite trivial. It could seem easy. Just do random walks one at a

time as usual for non-interacting walkers, store all the positions visited to an 2D or 3D array, and if

a new step enters a previously visited site, disregard it.

But herein lies the problem. We can not just disregard the last step, and look for a new direction.

This would skew the statistics; we have to disregard the whole walk. If we want to make a walk of

any sensible length (say, N > 30), the probability of the walker entering a previously visited site

becomes enormously large. Hence we end up disregarding almost all walks.

In my tests, in 3D walks for N = 20 only roughly 2 % of the walks were successful, for N = 30

only 0.1%, and for N = 40 only 0.04%. So the efficiency is terrible even for small N , and quickly

becomes truly horrendous for increasing N .

Hence it is very important to have some way to make the simulation of the SAW’s more efficient.

We will here present the simplest one, the optimization scheme of Rosenbluth and Rosenbluth.

The idea is that once a walk attempts to do a step N that is impossible, we do not disregard the
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whole walk, but only this step. We then pick some other, possible step. A weight factor W (N) is

used to ensure that the statistics remains correct.

The way the weighting is done can be written as follows. Consider a situation where we have just

done step N − 1, and look at step N . Three outcomes are possible:

1◦ No step is possible. Set W (N) = 0 and restart

2◦ All steps other than the step right backward are possible, set W(N)=W(N-1)

3◦ Only m steps are possible with 1 ≤ m < 3 (2D) or 1 ≤ m < 5 (3D). In this case we

choose randomly one of the possible steps, and set W (N) = m
3 W (N − 1) (2D) or

W (N) = m
5 W (N − 1)(3D).

The correct value of the final average 〈∆R2(N)〉 is obtained by weighting R2
i (N) for each step

N in a given walk i with the weight Wi(N) obtained in the same walk. To get the average, we
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have to divide by the sum of Wi(N) instead of N , i.e.

〈∆R
2
(N)〉 =

NwalksX
i=1

Wi(N)R
2
i (N)

NwalksX
i=1

Wi(N)

W (0) is initialized to 1.0.

This is tremendously much more efficient than the direct approach because it is actually quite rare

to end up in a situation where no step at all is possible. Hence the number of failures is vastly

smaller than before: in my tests I obtained only 8 failures for 3D walks of length 30 simulating

10000 walks.

Note that in handling step 1 there are actually two choices. One is disregarding the whole walk, the

other just disregarding the steps after the N we have managed to reach. If the goal is to deal with

walks (polymers) always reaching the full length, one should do the former. But which one to do
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may actually depend on how the experiments are exactly carried out. But as long as there are very

few failed walks, this does not in any case make much of a difference.

There are other, more advanced ways of speeding up the SAW (see e.g. Gould-Tobochnik). But

already the Rosenbluth-Rosenbluth scheme is easily good enough to test the basic result of whether

ν = 0.592.
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