
2. Overview of important
computational physics methods

Before we go on to discuss Monte Carlo simulations, I give an overview of important computational

physics methods. This is in part because of general interest, but in part also because MC methods

are (at least sometimes) used in connection to almost all main methods in computational physics.

Hence knowing the basic methods helps understanding the subsequent examples of MC.
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2.1. What is computational physics?

This is a non-trivial question. The simple definition would of course be any physics which utilizes

computers in any form.

But this is not a very good definition. Most present-day measurements use computers, so by this

definition even experiments would be computational physics.

The most common understanding of the term is that computational physics is attempting to

theoretically solve or understand problems in physics with methods where computers play an

essential and irreplaceable role.

Thus experiments are not computational physics, even though sometimes (think LHC) extreme

amounts of number crunching may be necessary to get the experimental result.

Computational physics does with this wide definition include topics ranging from numerical integra-

tion, numerical solution of differential equations to simulation which attempt to follow the progress

of a physical system as it happens in reality (example: star motion in a galaxy)
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Since numerical methods of solving mathematical problems are very commonplace nowadays, many

people tend to exclude at least the simplest numerical methods from the definition of computational

physics.

What is clear, however, is that all aspects of computer simulation clearly are counted as

computational physics. By computer simulations people mean using computers to mimic a real

physical process. This can be either in the form of trying to simulate something as it happens in

reality, but also using artificial dynamics in a manner which tries to give an answer corresponding to

that in a real system.

Another topic of frequent debate is whether computational physics should be counted equal to

experimental and theoretical, or as a part of theoretical physics.

In practice, in many cases doing simulation work is more similar to doing experiments than theory.

Typical aspects of experiments are rare, irrelevant events, equipment error, having to wait long for

results, having to collect statistics, unexplained glitches and not understanding what is going on

inside the systems that produces a given result. These can all be part of complex simulations as

well, while they would never appear while doing analytical theory!

This in my personal opinion justifies placing computational methods on equal standing to theory an

experiment as an approach to solve problems in physics.

But on the other hand, this is primarily a semantic and hence not all that important question.
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One way to present the role of simulations in physics is as follows:

2.4 Monte Carlo simulations, Kai Nordlund 2002, 2004



2.5 Monte Carlo simulations, Kai Nordlund 2002, 2004



- Note that not only can simulations be used to compare to experiments, but also to test theories.

- In case the basic assumptions behind a theory and simulation are the same, but the theory uses

more approximations, the simulation can sometimes provide a perfect test of the validity of the

approximations in the theory.

Thus defining computational physics is somewhat arbitrary, but for working purposes we will

understand it as non-experimental physics carried out with methods which require so high compu-

tational capacity that they can not be solved in reasonable time without computers. This rules out

some of the simplest numerical techniques for e.g. solving the roots of an equation, since in most

cases there exist clever analytical schemes (exact or approximative) to do such things using just pen

and paper.

In the remainder of this section, we will review some common computational physics methods,

attempting to give some flavour of what they do without going into almost any details. Since a

huge number of these methods exist, the list is by no means exhaustive, and since many methods

have heavy overlap, it is not even perfectly well-defined.

2.6 Monte Carlo simulations, Kai Nordlund 2002, 2004



2.2. Numerical methods

[Numerical recipes, own knowledge]

The use of numerical methods is extremely wide-spread in the sciences today. A few examples of

the most common methods in use are:
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2.2.1. Interpolation

Since physics data often is in numerical form, and it is not known what function it exactly corresponds

to, numerical interpolation is important for handling the data. One main reason is that using an

interpolation scheme it is possible to treat a discrete set of data as if it were a continuous function,

and then use the ordinary ways to handle continuous functions on it (derivation, integration etc.)

There are two dominating ways of doing this. One is direct linear interpolation, which is trivial, but

not very accurate unless the data exist on a very dense grid. The other is various forms of spline

interpolation. The most common is probably cubic spline interpolation. In this method a group

of third-order polynomials is fit to the data, ensuring that at least the function and its derivative

are continuous everywhere. It is almost as fast as linear interpolation, but much more accurate,

and not hard to code (especially since subroutines are easily available in numerous text books, e.g.

Numerical Recipes).
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2.2.2. Parameter fitting

Often the motivation for doing this derives directly from the previous point. Although using

interpolation on a discrete set of data enables doing continuous operations on the data, all of these

still have to be also carried out numerically. If one wants to get from the numerical data to an

analytical form, one can first derive or guess a functional form which should fit the data, leaving

free parameters in it, and then fit these parameters to the data.

A one-dimensional example: given a discrete set of data

xi, yi, δyi

where δyi is the uncertainty of the data point yi, one first has to select a function

y(x, a, b, c, d)

then fit the parameters a, b, c, d to the data so that (ideally) the function y(x) will reproduce all

the points yi within the uncertainty δyi.
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2.2.3. Optimization

Parameter fitting is one variety of optimization. In there, one wants to optimize the function

parameters a, b, c, ... to reproduce the data as well as possible. This can also be stated as

minimizing a function which describes the difference between the fitted function and the data. In

general, there is a very wide range of methods which deal with minimizing and maximizing functions.

The simplest are straightforward iteration routines, but even many of the most advanced simulation

schemes in existence (e.g. molecular dynamics, Monte Carlo, genetic algorithms) are often used for

minimization.

Some Monte Carlo minimization schemes are presented later during this course.
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2.2.4. Numerical integration.

Here the problem is simply that we want to know the value of a definite integral

I(a) =

∫ a

0

y(x)dx

Used pretty much anytime analytical integration can not be carried out (and unfortunately to an

increasing extent also when people are too lazy to even try to do the integral analytically).

This is also done very commonly when the function y(x) does not exist in analytical form, but only

as data points xi, yi.
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2.2.5. Solving equations

The simple problem of finding the roots of an equation

f(x) = 0

is often carried out numerically. Most of you are probably familiar with Newton’s method of doing

this, and despite its simplicity it still sometimes is a good choice, even in multidimensions. But of

course much better methods exist for many kinds of equation solving.
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2.2.6. Solving differential equations

Another very important group of numerical methods are those used for solving differential equations,

partial differential equations and sets of differential equations, because of the central role these play

in many parts of physics.

An example could be solving the heat conduction equation

∂T

∂t
= κ∇2

T

where κ is the heat conduction coefficient. That is, we have an object of known shape, a heat

source and heat sinks somewhere on it, and we want to know the time-dependent or steady-state

temperature distribution on the object.

There is a spectacularly easy way of solving this problem for the steady-state case, ∂T/∂t = 0.

EXPLAINED DURING THE LECTURE.

This kind of finite-differencing methods are quite common for solving partial differential equations

on computers. But often they are also very inefficient compared to more advanced methods (often

related to FEM, see below).
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2.2.7. Fourier transforms

Doing Fourier transformation of functions or data sets is very important in many branches of physics.

In many cases the basic problem can be stated as: The real data has the form of a function in the

time domain h(t), and it can be sampled on discrete time intervals ∆t in an experiment. We want

to know the Fourier transform

H(f) =

∫ ∞

−∞
h(t)e

2πift
dt

of this function. This can obtained numerically directly, using the direct equation for the discrete

Fourier transform. But this is very inefficient, it requires a number of operations O(N2), where

N is the number of sampled points. Fortunately there is a smarter method called the Fast Fourier

Transform (FFT) which reduces the computational complexity to O(N log2 N).
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2.2.8. Where to find out more about numerical methods?

Purely numerical methods are taught at the physics department on at least 2 courses, “Tieteellisen

laskennan peruskurssi” and “- jatkokurssi”. Hence this course will not delve deeper into them.

The by far most used books on the subject are those in the “Numerical Recipes” series. They are

well written, and have a pragmatic viewpoint, emphasizing well-tested, easy-to-implement solutions.

It is also available free online, http://www.ulib.org/webRoot/Books/Numerical Recipes

But it has received some criticism on being unreliable (http://math.jpl.nasa.gov/nr/) and someti-

mes giving inefficient solutions, although most of the criticism is probably unwarranted or relevant

only to the first edition (http://www.nr.com/bug-rebutt.html or http://www.ifir.edu.ar/ hnavo-

ne/docencia/apuntes/biblios/wnotnr.htm).

In my personal experience, Numerical Recipes is excellent to use when you need to quickly implement

something which works, and do not care if it is top efficient or state-of-the-art. Of course, even

then you have to test that the method actually works right in your problem. When, however, you

need to find a routine as efficient as possible, or deal with a mission-critical part of your project, it

is certainly better to delve deeper into the literature to see if something better than the Numerical

Recipes solutions exist.
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2.3. Finite element modeling

[http://care.seas.ucla.edu/niki/feminstr/introfem/introfem.html, private communication with P. Sofronis]

Finite element modeling (FEM) deals primarily with the analysis of elastic deformations of solids,

but is also used in the modeling of e.g. fluid dynamics, electromagnetics and heat transfer. Elastic

deformation means deformations which do not cause permanent change in a material. Imagine

taking a long metal bar and bending it in one end, then watching how it vibrates and slowly returns

to the starting point. FEM can model all of this.

As long as everything occurs within the elastic limit, and the characteristic lengths scales are much

longer than interatomic distances, FEM works excellently at least in materials with well-known

elastic properties. FEM can also be extended to handle plastic (permanent) deformation to some

extent, but has great trouble in handling fracture.

The basic idea in FEM is divide an object into a 2D or 3D mesh of geometrical shapes (in 2D

usually triangles):
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The points where the triangles intersect define completely the shape of the object. The FEM

equations then allow applying a stress on one or more of the triangles, and calculating how the

applied stress affects the shape of the entire object (the triangles are handled in a way such that

the points where they meet always intersect,
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Usually the applied stress takes the form of an external boundary condition, since this of course is

what usually happens in reality as well. A simple boundary condition for the figure above could e.g.

be pressing the side U6 down while fixing the side U1, leaving all other sides open, and see how the

object deforms.

An illustration of how the result of a deformation calculation can be: vibration modes in a tuning

fork.

Original object:

One of the vibration modes:
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Of course the vibrations are very strongly exaggerated in the figure, which is quite typical in

illustrating FEM results.

FEM is widely used in the mechanical manufacturing industry, since it is quite possible to build

up a FEM model of e.g. an entire car or airplane. There are several commercial FEM programs,

one of the better known is Abaqus. But FEM is also used in the engineering and physics research

communities in a wide range of problems. In Finland CSC is developing a multipurpose FEM code

called ELMER.

FEM is not taught in the University of Helsinki, but certainly at the Helsinki University of Technology.
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Their courses can almost certainly be accepted as part of your degree here, if it otherwise fits in

your study line.
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2.4. Molecular dynamics simulations

[see e.g. Allen-Tildesley]

Although the name “molecular dynamics” sounds very much like a topic specific to molecules, it is

actually a very general method. Conceptually what MD does is something very simple: it describes

the motion of a group of particles in space under the influence of forces acting between the particles,

and possibly external forces as well.

The particles in question can be atoms, either as part of molecules or in a solid or liquid, molecules,

microparticles in a fluid suspension, asteroids and planets or even parts of a galaxy. For the last two

examples, the method is not usually called MD, but the basic algorithm is the same.

The simulation of the particle motion is achieved by solving the N-body equations of motion

numerically. As you probably know, in classical mechanics only the 2-body problem can be easily

handled analytically. The 3-body problem can in principle be handles analytically, but the solution is

so impractical that virtually no-one uses it. For N > 3 an analytical solution is impossible, but MD

gives a numerical solution. If the forces are known accurately, then the MD solution can be made

arbitrarily accurate.
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The basic MD algorithm can be illustrated as follows, in a slightly simplified manner (some tricks

which speed up the solution have been left out):
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The forces acting between atoms can either be derived classically or quantum mechanically. In the

classical formalism, the algorithm can be (when cleverly written) virtually always made into an

O(N) form. The quantum mechanical formalisms are usually O(N3) or worse, although O(N)

methods are now starting to become common in a few applications. As a rule of thumb, classical

methods can hence treat millions of atoms, while the quantum mechanical ones are limited to a few

hundred.

The other main limitation of MD is the time scale. The time step ∆t in the algorithm has an

inherent limitation in that if it is too large, the numerical solution becomes completely unstable.

For atoms this limit typically is of the order of 1 fs. This severely limits the time scales which can

be handled by MD - to simulate one second one would need 1015 iterations of the basic MD loop,

which is easily understood to be completely impossible for any system of real interest.

MD is taught in detail on the course “Introduction to atomistic simulations”.
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2.5. Genetic algorithms

[Deaven, Ho, Phys. Rev. Lett. 75 (1995) 288; Xiao and Williams, Chem. Phys. Lett. 215 (1993) 19]

Genetic algorithms is a group of algorithms which can be used for minimization in a wide range of

problems, some of which are also used in physics.

The name derives from the idea in the algorithm to mimic Darwinian evolution. One forms a gene

set which describes the real system of interest, then applies a process of natural selection of this to

find the best adapted states. In algorithm form this can look e.g. as follows:

2.24 Monte Carlo simulations, Kai Nordlund 2002, 2004



The “DNA” gene sequence codes the state of a system in binary form. If we, say, are looking at
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minimizing the energy in a a molecules, and the system has 6 degrees of freedom: three distances

and 3 angles, we could code the system state something like follows:

(4.5 Å,5.0 Å,9.0 Å, 120◦ , 100◦ ,60◦ )=(1001:1010:1110:0110:0101:0011)

where we have used crude 0.5 Å resolution in distances and 20◦ resolution in angles.

It is further necessary to have a criterion describing how well an individual is “adapted to the

environment”. For the molecular system example, this would probably simply be the system

potential energy. In a fitting problem, it could be the χ2 measure of the quality of the fit.

Note that despite its elegance, the genetic algorithm method by no means is good for minimization

of all kinds of systems. For instance since the differences between the states tend to be big, it is

extremely inefficient for finding the nearest local minimum efficiently. But in some systems with

many deep local minima it can be absolutely the best for finding the global minimum [an example

is: Morris, Phys. Rev. B 53 (1996) R1740].

GA for atoms is described on the course “Introduction to atomistic simulations”.
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2.6. Electronic structure calculations

The calculation of the electronic structure of atomic and molecular system is an extremely widespread

and important part of modern physics, chemistry and biochemistry. Calculating the electron structure

(i.e. solving the Schrödinger or Dirac equation) can be performed exactly analytically only for

extremely small systems, more or less only for one-electron systems. Hence for any many-electron

system numerical methods have to be used.

But even using numerical methods becomes difficult and very timeconsuming if no approximations

are made. The main reason can be explained as follows. Given a set of nuclei at positions, one want

to calculate the electronic ground state. The Schrödinger equation for a set of N nuclei Mn and I

electrons mi can be written as

−
Tn︷ ︸︸ ︷

N∑
n=1

~2

2Mn

∂2

∂r2
n

−

Te︷ ︸︸ ︷
I∑

n=1

~2

2me

∂2

∂r2
i

+

Vee︷ ︸︸ ︷
I∑

i=1

I∑
j=1

e2

r2
ij

+

Ven︷ ︸︸ ︷
N∑

n=1

I∑
i=1

Zne2

r2
ni
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+

Vnn︷ ︸︸ ︷
N∑

n=1

N∑
l=1

ZnZle
2

r2
nl

 Ψ = EΨ (1)

Here Tn is the kinetic energy of nuclei, Te the kinetic energy of electrons, Vee the potential energies

between electrons and electrons, Vne the potential energies between nuclei and electrons, Vnn the

potential energies between nuclei and nuclei. We will not here delve into the deeper meaning of

these.

Even with modern computers it is practically impossible to handle the electron-electron term in

almost any system of practical interest. So most electron-structure calculations approximate this

term in a simpler form. The two main approaches are Hartree-Fock (HF) and density-functional

theory (DFT).

A note on the terminology. Very frequently the terms “first principles” and ab initio are used to

describe both HF and DFT methods, to signify that these methods are only based on the Schrödinger

equation (which is assumed to be correct in the non-relativistic case) and use no empirical input

anywhere. This is done so widely that many people tend to forget that “first principles” is a very

general term which does not necessarily have anything to do with electron structure. Moreover, it
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is debatable whether DFT should be called ab initio at all, since most modern DFT methods use

approximations which are used “because they seem to work well”, i.e. are empirically motivated.

The third very common method for electron structure calculation is the tight-binding methods.

These are similar to DFT, but only deal with the outermost electrons, and correct for the error in

this with a pair potential. They contain fitted parameters so they are not ab initio.

Eletronic structure calculations are taught on “Introduction to electronic structure calculations”.
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2.7. Monte Carlo simulations/stochastic simulations

Monte Carlo (MC) or stochastic simulations is a common name which can be used for almost

any simulation method which uses random numbers. In fact, most of the other simulation groups

mentioned in this overview also often use random numbers, and hence could be considered MC, so

there is considerable overlap in terminology.

But some simulation methods are conventionally considered genuine MC simulations, usually those

where the basic algorithm itself relies on randomness. Since the remainder of this course deals with

such methods, we will not say anything more here to avoid repetition.
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2.8. Lattice QCD

[http://www.npac.syr.edu/copywrite/pcw/node34.html; http://members.tripod.com/ IgorIvanov/physics/hep-qcd.html]

Quantum chromodynamics (QCD) is the theory which describes how gluons glue together quarks

to form any heavier particles. The problem is that QCD is a nonlinear theory that is not analytically

solvable. Moreover, perturbative approaches also do not work well because the QCD interaction is

so strong. This has led to the introduction of non-perturbative approximations based on discretizing

four-dimensional space-time onto a lattice of points, giving a theory called lattice QCD, which can

be simulated on a computer.

Most of the work on lattice QCD has been directed towards deriving the masses (and other

properties) of the large number of hadrons which have been observed experimentally. Also e.g.

calculations of the conditions of matter in the early stages of the evolution of the universe and of

hypothetical 4-quark systems have been performed (some of these in Helsinki in the group of Tony

Green).

Lattice QCD requires enormous computing power. Already in 1995 (see web address below) QCD

calculations were performed on lattices of size 243 × 48, which involves the numerical solution

of a 21,233,664 dimensional integral. The only way of solving such an integral is by Monte Carlo

methods.
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Despite the difficulties, good progress has been made. Lattice QCD has been able to predict the

masses of several basic hadrons to an accuracy of 10 % or so, a good feat considering that the QCD

interaction parameters are not well known at all [http://www.physics.gla.ac.uk/ppt/ResInter/ProtonMass/]
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Lattice QCD has been taught at our department by Tony Green. Since he is retired, the continuation

of this teaching is now not entirely clear.
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2.9. Cellular automata

[http://lslwww.epfl.ch/ moshes/ca main.html; http://www.artificial-life.com/demos/automata/default.asp; http://www.brunel.ac.uk/depts/AI/alife/al-

ca.htm]

“Cellular automata are discrete dynamical systems whose behaviour is completely specified in terms

of a local relation. A cellular automaton can be thought of as a stylized universe. Space is represented

by a uniform grid, with each cell containing a few bits of data; time advances in discrete steps and

the laws of the universe are expressed in, say, a small look-up table, through which at each step

each cell computes its new state from that of its close neighbours. Thus, the system’s laws are local

and uniform.”

They are important in pure computer science and mathematics for the basic theory of computation,

but also in many applications in different fields of science. CAs have been applied to the study of

general phenomenological aspects of the world, including communication, computation, construction,

growth, reproduction, competition and evolution.

In physics they have been used to study a wide range of phenomena. They have a relation with

partial differential equations; for instance the Dirac equation in 1+1 dimensions can be represented

with a cellular automaton [Int. J. Theor. Phys. 20 (1981) 491]. They can also be used to e.g. model forest
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fires [http://www.maths.usyd.edu.au:8000/u/magma/Examples/node8.html]; see the animation on the web page of this

course.

At the end of this MC course we will discuss cellular automatons in greater detail.
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