
More competitors than resources: Apparent competition and nonequilibrium
coexistence

1. APPARENT COMPETITION

Consider a single resource (R), a consumer (N), and a top predator (P) in the model
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Here, the resource is growing according to the logistic model in absence of the
consumer. The consumer has a linear functional response, i.e., the amount of resource
eaten is proportional both to the density of the resource and to the density of the
consumer. The consumer's reproduction is proportional to the amount of resource
consumed, whereas the consumers die at a constant rate. Finally, the top predator eats
the consumer with a linear functional response, and the top predator's dynamics is
analogous to that of the consumer.

Our focal species is the consumer. The consumer population has zero growth if
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or, after dividing by N (and hence assuming that the population is at the nontrivial
equilibrium), if
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The consumer population will grow if there is more resource and less top predators, as
shown below. It is also possible to calculate the joint equilibrium of all three
populations (by setting all three equations equal to zero, and solving for R, N, and P).
The resulting equilibrium is denoted by the dot in the figure.



You should recognise this figure as pretty similar to the one we drew for two
resources and one consumer. Following the same lines of reasoning, you can convince
yourself that a second consumer with the dashed zero-growth line can grow when
rare:

and if the second consumer species, in absence of the first one, has its equilibrium
point as shown below, then the two consumers coexist with one resource and the top
predator.

In fact, the top predator behaves essentially analogously to a second resource (except
for the obvious difference that less rather than more predator is better for population
growth). In this way, it is possible that there are more consumer species coexisting
than the number of resources; the predators also count as if they were "resources"
when we count the resources in order to determine the maximum number of
coexisting species under the principle of competitive exclusion. This has been termed
"apparent competition" (the consumers behave as if they were competing for a second
resource) and can be visualised as "competition for predator-free space".
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2. NONEQUILIBRIUM COEXISTENCE

It is possible to have more consumer species than resources also if the species coexist
not in equilibrium, but e.g. they have a limit cycle. Here, I only sketch the principle;
the detailed model analysis is given by Armstrong and McGehee (Am. Nat. 115:151-
170, 1980).

Assume that we have one resource and two consumers. One of the consumer species
has a linear functional response as in all competition models we have studied so far,
but the other consumer eats the resource with a Holling II type functional response.
From the predator-prey models we know that the first consumer (with linear
functional response) will attain a stable equilibrium if the second consumer is not
present; the second consumer alone (with Holling II functional response), however,
can have limit cycles.

I demonstrate coexistence by showing that the second consumer can grow if
introduced at a low density at the equilibrium of the first consumer, and that also the
first consumer can invade the stable limit cycle of the second consumer (with
appropriate model parameters). The first part is easy: We can choose the parameters
of the second consumer such that it can grow at the stable resource level R1 set by the
first consumer. The second part contains the novel point. If the second consumer is
the common one, the resulting limit cycles harm the second consumer itself: The
consumer suffers when resource density is low in the cycle, and cannot make full use
of the resource when resource density is high, since this consumer cannot eat more
than a certain amount of resource per unit of time (cf. Holling II functional response).
The lows of resource density are thus not compensated by the highs. The broader the
limit cycles are, the higher average resource density is necessary for the second
consumer to counter the harmful effect of the cycles. With linear functional response,
however, the lows of resource density are exactly compensated by the highs, and so
the first consumer is not sensitive to cycles, only the average resource density matters
for this species. If the average resource density is above R1 (which is perfectly
possible if the cycles of the second species are broad), then the first consumer can
invade when the second consumer is common, and the two species will coexist while
still exhibiting cycles (coexistence would not be possible at equilibrium).

To summarise graphically, the growth of the first consumer depends only on the
average resource density R , but the growth of the second consumer also depends on
the variation of R:



Again, this figure is similar in logic to the case of two resources: Here, the variation
of R behaves essentially analogously to a second "resource". Similar effects may be
present when fluctuation is due to stochastic environmental effects. In fact, the
average density, the variance of density, and all the higher moments of the density
distribution might act as independent "resources" (better say independent
dimensions). The maximum number of coexisting species in nonequilibrium
populations is a pretty difficult, and largely unsolved question. 
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