From disruptive selection to the origin of species

evolution to a fitness minimum: disruptive selection

AD: evolutionary branching

(non-allopatric) speciation???

Evolutionary branching is common in clonal models

Resource competition	 Christiansen & Loeschcke 1980 ● Abrams et al. 1993 ● Metz et al. 1996 ● Meszéna & Metz 1996 ● Dieckmann & Doebeli 1999 ● Day 2000 ● Day 2001 ● Drossel & McKane 2000
Asymmetric competition	● Abrams et al. 1993 ● Geritz et al. 1999 ● Kisdi 1999 ● Jansen & Mulder 1999 ● Kisdi & Geritz 2001
Predation	● Abrams et al. 1993 ● Doebeli & Dieckmann 2000
Host-parasite systems	Boots & Haraguci 1999
Mutualism	● Doebeli & Dieckmann 2000 ● Law et al. 2001
Spatial heterogeneity	 Brown & Pavlovic 1992 Meszéna et al. 1997 Geritz et al. 1998 Kisdi & Geritz 1999 Geritz & Kisdi 2000 Kisdi 2001 Mathias & Kisdi 2002
Temporal fluctuations	Kisdi in prep.
Metapopulations	 Cohen & Levin 1991 Doebeli & Ruxton 1997 Parvinen 1999 Mathias et al. 2001 Kisdi 2002 Parvinen in press
Mating systems	 Hoekstra 1980 Metz et al. 1992 Cheptou & Mathias 2001 De Jong & Geritz 2001 Maire et al. 2001
Sexual selection	Ovan Doorn & Weissing 2001
Prebiotic replicators	Meszéna & Szathmáry 2001

One locus, many alleles: Genetic polymorphism

resident allele (x)

Invasion fitness of a rare mutant allele y = invasion fitness of a rare phenotype (x+y)/2

Evolutionary branching with clonal inheritance

- = evolutionary branching of alleles
- = genetic polymorphism

Evolution in a polymorphic population: clonal and diploid sexual cases are different

Two-patch soft selection model (Levene-model)

- random dispersal to two patches
- within-patch selection
- within-patch competition: fixed number of emerging adults

Two-patch soft selection model (Levene-model)

Clonal version

Two-patch soft selection model (Levene-model)

Diploid version

symmetric + asymmetric

Selection against hybrids (Levene-model)

Selection against intermediate phenotypes = selection against heterozygotes

- → Evolution of dominancefull dominance ≡ clonal dynamics
- → Evolution of assortative mating

- heterozygote disadvantage
- evolutionary trajectory
- branching point
- evolutionarily stable polymorphism

The evolution of assortative mating

- Mate choice depends on the ecological trait

 Branching = speciation e.g. body size (benthic-limnetic sticklebacks)
- "One-allele" mechanisms

 Branching = speciation | less dispersal: local mating with similar individuals
 - "Two-allele" mechanisms
 mating is based on an independently segregating trait
 e.g. flowering time in plants
 - ??? may be under disruptive selection (*Mimulus guttatus* metal-tolerant race)
 - recombination between the ecological and the mating locus
 -- strong selection / tight linkage needed

Speciation

Biological species concept: Reproductive isolation

Ecological stability: Niche differentiation

Speciation by sexual selection yields ecologically identical sister species. If it happens at a branching point, subsequent divergence ensures differentiation

Multilocus genetics: Directional evolution

Quantitative Genetics (with separate species):

$$\Delta \overline{z}_i = V_{Ai} \frac{\partial W(z; \overline{z}_1, ..., \overline{z}_n)}{\partial z} \bigg|_{z=\overline{z}_i}$$

Canonical Equation of Mutation-Limited Evolution:

$$\frac{dx_i}{dt} = \frac{1}{2} \mu_i \sigma_i^2 \hat{N}_i(x_1, ..., x_n) \frac{\partial s_{x_1, ..., x_n}(y)}{\partial y} \bigg|_{y=x_i}$$

Multilocus genetics: Branching?

clonal model multilocus model

recombination between the ecological loci prevents branching

assortative mating needed for evolutionary branching itself (and then it is speciation)

Lotka-Volterra resource competition model

Multilocus genetics & assortative mating

I. Mate choice based on the ecological trait

Multilocus genetics & assortative mating

II. Mate choice based on a neutral marker character

Multilocus genetics & assortative mating

Mate choice based on a neutral marker character

- grim expectation from classic models:

Weak selection at the branching point - no linkage No linkage - mating is not assortative by the ecological trait No assortative mating - no branching

Finite population size: initial linkage by genetic drift - it works

Adaptive Dynamics

Evolution of diversity

within-species genetic polymorphismspeciation

References

Abrams P.A., Y. Harada & H. Matsuda. 1993. On the relationship between quantitative genetic and ESS models. Evolution 47:982-985.

Dieckmann U. & M. Doebeli. 1999. On the origin of species by sympatric speciation. Nature 400:354-357.

Geritz S. A. H. & E. Kisdi. 2000. Adaptive dynamics in diploid, sexual populations and the evolution of reproductive isolation. Proc. R. Soc. Lond. B 267:1671-1678.

Kisdi E. & S. A. H. Geritz. 1999. Adaptive dynamics in allele space: Evolution of genetic polymorphism by small mutations in a heterogeneous environment. Evolution 53:993-1008.

Van Dooren T. J. M. 1999. The evolutionary ecology of dominance-recessivity. J. theor. Biol. 198:519-532.