
Trade-off geometries and the adaptive dynamics
of two co-evolving species

Éva Kisdi*

Department of Mathematics and Statistics, University of Helsinki, FIN-00014 Helsinki, Finland

ABSTRACT

Background: A recently developed geometric method makes it possible to explore how the
shape of a trade-off determines the outcome of adaptive evolution in any complex model and
without committing to a particular functional form of the trade-off function.

Aim: Extend the method to the co-evolution of two species. (The two species may be distantly
related such as a predator and its prey, or may be closely related like two strategies produced by
evolutionary branching.)

Results: Thresholds of the local convexity of the trade-off functions are obtained that guar-
antee evolutionary and convergence stability when a given species pair is singular. In contrast
to the single-species case, the condition for convergence is sufficient but not necessary. Criteria
for evolutionary branching generalize from the single-species case. A cross-derivative of
the invasion fitness determines whether evolutionary branching is possible; this quantity is
independent of the trade-offs and if it is negative at a certain species pair, then the trade-offs
can be chosen such that evolutionary branching occurs at this point.

Worked example: A simple predator–prey model shows how these results can be used to
identify trade-off functions such that evolution leads to an evolutionarily stable species pair or
to evolutionary branching in either species.

Keywords: adaptive dynamics, co-evolution, critical function analysis, evolutionary branching,
evolutionarily stable strategy, geometric analysis, predator–prey system, trade-off.

INTRODUCTION

‘Darwinian demons’, organisms that produce huge numbers of offspring, mature instant-
aneously, live extremely long, and do this in any environment they encounter, have not taken
over the Earth because improvements in certain traits can often be bought only at some
costs in others. Trade-offs are thus central to our understanding of evolutionary ecology,
and part of most models of phenotypic adaptation. Classic life-history theory pioneered
the study of trade-offs between growth and reproduction, between the number and size of
offspring, between reproductive effort and parental survival, and between early and late
reproduction (Roff, 1992). Other examples include trade-offs between fitness in two contrasting
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environments, between the ability to exploit different resources, between foraging activity
and predation risk, between guarding mates and steeling fertilization, and many others.

The existence of many trade-offs is empirically well documented. The shape of these
trade-offs is, however, uncertain and ostensibly hard to obtain empirically; modellers can
thus hardly rely on empirical data when assuming specific shapes for the trade-off functions.
In a few cases, the trade-off reflects a simple stoichiometric relationship between the traits
(e.g. the fractions of dispersed and of philopatric offspring must add up to one; the sum
of investments into male and female offspring equals the total investment available for
reproduction), and this relationship determines the shape of the trade-off. But even the
apparently straightforward trade-off between the number and size of offspring may
be considerably more complex than just allocating a fixed total investment R among n
offspring of size R/n (Fischer et al., 2006).

Postulating a particular shape for a trade-off function is often the least justified
assumption of the model. This is of serious concern because by restricting attention to a
specific functional form of the trade-off (and varying only the parameters of the chosen
trade-off function), some possible evolutionary outcomes may be missed (see examples in

de Mazancourt and Dieckmann, 2004; Geritz et al., submitted).
Based on Levins’ (1962, 1968) fitness set approach, recently there has been interest in

developing a geometrical method of analysis where the shape of the trade-off does not have
to be specified beforehand (de Mazancourt and Dieckmann, 2004; Rueffler et al., 2004; Bowers et al., 2005;

see Geritz et al., submitted, for an application). This new method is applicable to a wide class of models
with frequency-dependent selection, and has been explicitly linked to adaptive dynamics
(sensu Geritz et al., 1998). Instead of supposing a particular trade-off function and then working
out the expected dynamics of evolution, the new method derives a family of curves that can
be quickly compared with any trade-off function in the last step of the analysis, in order
to see how evolution proceeds under various trade-offs. The analytic properties of these
curves, here called critical functions, constrain the properties of trade-offs that result in one
or another evolutionary outcome. Critical functions can be obtained numerically also in
complex models.

To date, this new method has been available only for analysing evolution in monomorphic
populations of a single species. In many instances, however, we are concerned with the
co-evolution of two unrelated species such as a predator and its prey, or a host and its
parasite. Even in a single species, frequency-dependent selection may lead to evolutionary
branching (Geritz et al., 1998), whereby two distinct types, henceforth called ‘strategies’, evolve
in the population. The two strategies could represent closely related species (if reproductive
isolation evolves), or within-species diversity such as genetic polymorphism (Kisdi and Geritz,

1999) or sexual dimorphism (Bolnick and Doebeli, 2003; Van Dooren et al., 2004). When a model predicts
the possibility of branching, one would naturally like to follow the co-evolution of the two
emerging strategies and determine whether they attain an evolutionarily stable co-existence
or, for example, further diversification takes place.

The extension of critical function analysis to polymorphic populations or to systems
with multiple species is not straightforward (de Mazancourt and Dieckmann, 2004). Of the two
central concepts of adaptive dynamics, evolutionary stability (i.e. whether a strategy or a
co-existence of strategies is immune against invasion by new mutants) generalizes directly
from monomorphic to polymorphic populations (Geritz et al., 1998; Rueffler et al., 2004).
Convergence stability (i.e. whether a singular strategy is attainable by small evolutionary
steps), however, does not extend easily to higher dimensions. In particular, convergence
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stability may depend on the relative speed of evolution in the co-evolving species or
strategies, as determined by the frequency and size of mutations (Dieckmann and Law, 1996;

Marrow et al., 1996; Matessi and Di Pasquale, 1996; Leimar, in press).
In this paper, I partially extend the method of de Mazancourt and Dieckmann (2004)

to populations that contain two co-evolving species or strategies. Building on the results
of Matessi and Di Pasquale (1996), I derive a sufficient (but not necessary) condition for
convergence stability in terms of the convexity of the trade-off functions. Combining this
result with the (necessary and sufficient) condition for evolutionary stability, I show that
co-evolution leads to an evolutionarily stable co-existence whenever the trade-offs are
sufficiently concave. I also investigate the conditions under which a species or strategy may
undergo further evolutionary branching.

EVOLUTION SUBJECT TO A TRADE-OFF IN MONOMORPHIC POPULATIONS

Before turning to co-evolution of two species or strategies, I briefly review the connection
between trade-off geometries and adaptive dynamics in monomorphic populations of a
single species based on the results of de Mazancourt and Dieckmann (2004; see also Rueffler et al.,

2004; Bowers et al., 2005). The necessary background of adaptive dynamics can be found in Geritz
et al. (1998).

Assume that fitness is a strictly monotonic function of a trait y and of another trait z that
is traded off with y such that z = f (y), where f is a twice continuously differentiable function.
In a resident population with strategy x, the invasion fitness of mutant y can be written in
the form

sx(y) = s̃(y, f (y),x, f (x)) (1)

I shall denote the derivatives of s̃ by subscripts (e.g. s̃1 = ∂ s̃/∂y, s̃13 = ∂ 2s̃/∂y∂x). Without loss
of generality, I assume that s̃ is increasing in its second argument (s̃2 > 0). Note that the
invasion fitness in equation (1) can encompass a complex ecological system with frequency-
dependent selection (Metz et al., 1992). I assume, however, that traits y and z are heritable
individual traits such that the trade-off between them is due to the physiology of the
individual, i.e. the shape of z = f (y) is not affected by the population or by the environment.
As usual in adaptive dynamics, I assume that mutations have small phenotypic effects.

By repeated mutations and substitutions, the population evolves in the direction of the
fitness gradient [∂s/∂y]y = x = s̃1 + s̃2 f �(x). A certain strategy (x*, f (x*)) is singular if the
fitness gradient at x* is zero, i.e. if

f �(x*) = −s̃1/s̃2 (2)

where the derivatives of s̃ are evaluated at (x*, f (x*),x*, f (x*)).
A curve that has the slope given by equation (2) at every point (x, f (x)) is called an

A-boundary by de Mazancourt and Dieckmann (2004); I refer to such a curve as a critical
function. A critical function φ(x) is thus a solution of the differential equation

φ�(x) = −s̃1 (x, f (x),x, f (x))/s̃2 (x, f (x),x, f (x)) (3)

and the solutions with different initial values form a family of critical functions.

Trade-off geometries and adaptive evolution 961



Critical functions belonging to various initial points can be plotted by solving equation
(3); numerical solutions can easily be obtained even in complex models. From the definition,
it is clear that singular strategies are those points where the trade-off function f (x) is
tangential to a critical function, because at the points of tangent the trade-off function has
the slope required by equation (2). For a singular strategy to be convergence stable, the
trade-off function must be more concave (in the sense of a smaller positive or larger
negative second derivative) than the critical function at the point of tangent (de Mazancourt

and Dieckmann, 2004). The critical functions thus provide a quick and visual way to judge
which trade-off functions imply evolution to a convergence stable singularity. Evolutionary
stability of the singular strategy has to be evaluated separately.

Both evolutionary stability and convergence stability of a singular strategy (x*, f (x*))
depend on the second derivatives

E =
∂ 2s

∂y2

|
|
| y = x = x*

= [s̃11 + 2s̃12 f �(x*) + s̃22 f �(x*)2] + s̃2 f ″(x*) (4)

and

M =
∂ 2s

∂y∂x

|
|
| y = x = x*

= s̃13 + (s̃14 + s̃23) f �(x*) + s̃24 f �(x*)2 (5)

where all derivatives of s̃ are evaluated at (x*, f (x*),x*, f (x*)). Note that M does not
depend on the convexity of the trade-off, f ″(x*). Therefore, by changing only the convexity
of the trade-off at the singular strategy (and leaving x*, f (x*), and f �(x*) unchanged), one
can change the value of E independently of M.

(x*, f (x*)) is evolutionarily stable if E is negative, which can be achieved for any
x*, f (x*), and f �(x*) if the last term of E, s̃2 f ″(x*), is sufficiently small (or large negative).
Because s̃2 > 0, this means that the singular strategy is evolutionarily stable if the trade-off
function is locally sufficiently concave. For convergence stability, E + M must be negative.
This condition, too, is satisfied if the trade-off is concave enough.

Note the emerging bifurcation pattern (Bowers et al., 2005): If M is negative, then increasing
f ″(x*) first causes the loss of evolutionary stability (when E becomes positive) and then the
loss of convergence stability (when E + M becomes positive). In the middle range of f ″(x*),
where the singular strategy is convergence stable but not evolutionarily stable, the model
exhibits evolutionary branching. If M is positive, then the loss of convergence stability
precedes the loss of evolutionary stability, and evolutionary branching is not possible.

The sign of M determines whether there are pairs of similar strategies in the vicinity of
the singular strategy such that the two strategies can mutually invade and co-exist with one
another: Mutual invasibility is possible if M is negative (Geritz et al., 1998). Assume now that a
certain point (x, f (x)) is singular. This sets the value of f �(x) according to equation (2) and,
because M is independent of f ″(x) and higher derivatives, fully determines the value of M
in equation (5). Each point (x, f (x)) can thus be characterized by whether or not mutual
invasibility of similar strategies in its neighbourhood is possible when (x, f (x)) is singular,
and this characterization does not depend on the shape of the trade-off function. As
Bowers et al. (2005) point out, if a singular strategy admits mutual invasibility in its
neighbourhood, then making the trade-off function increasingly convex at the singularity
(while keeping its value and slope constant) will turn a convergence stable ESS first into an
evolutionary branching point and then into an evolutionary repellor. If mutual invasibility
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is not admitted, then increasing the convexity of the trade-off function turns a convergence
stable ESS into a repellor ESS (‘garden of Eden’) and then into an invasible repellor. With a
suitably chosen trade-off function, evolutionary branching is therefore possible if and only
if there is mutual invasibility (M < 0).

CO-EVOLUTION OF TWO SPECIES

For the sake of generality, first I consider the co-evolution of two unrelated species (such as
a predator and its prey). The resulting formulas can easily be simplified for dimorphisms of
closely related strategies arising via evolutionary branching, where the two strategies differ
only in their trait values but share the same trade-off and fitness functions (see below).

Let (x1, f (x1)) and (x2,g(x2)) denote the resident strategy of species 1 and of species 2
respectively, where f (x1) and g(x2) are the species-specific trade-off functions. The invasion
fitness of a mutant y1 of species 1 can be written as

s(y1;x1,x2) = s̃(y1, f (y1),x1, f (x1),x2,g(x2)) (6a)

and, analogously, the invasion fitness of a mutant of species 2 is

r(y2;x1,x2) = r̃(y2,g(y2),x1, f (x1),x2,g(x2)) (6b)

assuming again, without loss of generality, that s̃2 > 0 and r̃2 > 0.
At an evolutionarily singular species pair, both fitness gradients [∂s/∂y1]y1 = x1

 and
[∂r/∂y2]y2 = x2

 vanish, and therefore the slopes of the trade-off functions are, similarly to
equation (2),

f �(x1*) = − s̃1/s̃2

g�(x2*) = − r̃1/r̃2

(7)

Here and below, the derivatives of s̃ are evaluated at (x1*, f (x1*),x1*, f (x1*),x2*,g(x2*)) and the
derivatives of r̃ are evaluated at (x2*,g(x2*),x1*, f (x1*),x2*,g(x2*)).

Because the slope f �(x1) required by equations (7) depends not only on x1 but also on x2

(and vice versa), these equations cannot be used to construct a critical function that
captures all potential singularities analogously to the monomorphic case. One can, however,
use equations (7) to obtain pieces of f (x1) and g(x2) near x1* and x2*, respectively, that make
a given species pair (x1*, f (x1*)) and (x2*,g(x2*)) singular.

The singular species pair is locally evolutionarily stable if it cannot be invaded by mutants
in either species, i.e. if

E1 =
∂2s(y1,x1*,x2*)

∂y2
1

|
|
| y1 = x1*

= [s̃11 + 2s̃12 f �(x1*) + s̃22 f �(x1*)2] + s̃2 f ″(x1*)

=: C1 + s̃2 f ″(x1*)
(8a)

and

E2 =
∂2r(y2,x1*,x2*)

∂y2
2

|
|
| y2 = x2*

= [r̃11 + 2r̃12g�(x2*) + r̃22g�(x2*)2] + r̃2g″(x2*)

=: C2 + r̃2g″(x2*)
(8b)
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are negative (Geritz et al., 1998). This condition is a direct generalization of the monomorphic
case (cf. equation 4), and will be satisfied if the trade-off functions f and g are sufficiently
concave at (x1*, f (x1*)) and at (x2*,g(x2*)), respectively (Rueffler et al., 2004). Hereafter C1 and C2

will represent the bracketed terms in equations (8a) and (8b), respectively, which do not
contain the second derivatives of the trade-off functions.

The cross-derivatives that characterize mutual invasibility of similar strategies within a
species are also straightforward generalizations of the monomorphic case. Two strategies in
the vicinity of x1* can co-exist within species 1 if

M1 =
∂ 2s(y1,x1,x2*)

∂y1∂x1

|
|
| y1 = x1 = x1*

= s̃13 + (s̃14 + s̃23) f �(x1*) + s̃24 f �(x1*)2 (9a)

is negative, whereas mutual invasibility within species 2 is possible if

M2 =
∂2r(y2,x1*,x2)

∂y2∂x2

|
|
| y2 = x2 = x2*

= r̃15 + (r̃16 + r̃25)g�(x2*) + r̃26g�(x2*)2 (9b)

is negative. As in the monomorphic case, M1 and M2 do not depend on the second
derivatives of the trade-off functions.

Convergence stability in two dimensions is a more difficult problem. If one could prevent
evolution in species 2 and thus keep x2 = x2* constant, then, by the direct generalization of
the monomorphic case, x1 would evolve to x1* from its neighbourhood if

E1 + M1 = s̃2 f ″(x1*) + C1 + M1 < 0 (10a)

whereas in the reverse case, x2 would evolve to x2* if

E2 + M2 = r̃2g″(x2*) + C2 + M2 < 0 (10b)

These conditions are referred to as ‘isoclinic stability’. Isoclinic stability of both x1* and
x2* is, however, neither necessary nor sufficient to ensure convergence stability when both
species evolve (Marrow et al., 1996; Matessi and Di Pasquale, 1996). Moreover, convergence stability
may be affected by the relative speed of evolution in the two species (Dieckmann and Law, 1996;

Marrow et al., 1996; Leimar, in press).
It can nevertheless be shown that by choosing the trade-off functions f and g sufficiently

concave at x1* and at x2*, respectively, the singularity can be made convergence stable. To
do this, I use the results of Matessi and Di Pasquale (1996). They considered two traits
that mutate independently such that each individual mutation affects only one or the other
trait. Although they had two different traits of the same organism in mind, their results
apply equally to the case where two traits evolve in two separate species or the same
trait evolves in two co-existing strategies. Matessi and Di Pasquale (1996) envisage the
evolutionary trajectory as consisting of many small (but finite) steps that correspond to
successive substitutions by invading mutants, and they construct the most extreme path in
the neighbourhood of (x1*, x2*), i.e. the trajectory that brings the system as far away
from (x1*, x2*) as possible. If the most extreme path is forced to converge to (x1*, x2*), then no
trajectory can diverge and the singularity is necessarily convergence stable. Note that the
most extreme path may be such that many consecutive steps are taken such that only species
1 mutates, and then many other steps are taken such that only species 2 mutates. Obviously,
such trajectories are highly improbable; real trajectories may converge even if the most
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extreme path does not. Convergence of the most extreme path has therefore been termed
absolute convergence (Leimar, 2001).

Two conditions must be met for absolute convergence stability of (x1*, x2*) (Matessi and Di

Pasquale, 1996). First, both x1* and x2* must have isoclinic stability (inequalities 10a, b); second,
the inequality

�∂ 2s

∂y2
1

+
∂ 2s

∂x1∂y1
� �∂ 2r

∂y2
2

+
∂ 2r

∂x2∂y2
� >

|
|
|

∂ 2s

∂x2∂y1

∂ 2r

∂x1∂y2

|
|
|

(11)

must hold at the singularity.
Since isoclinic stability is the direct formal generalization of monomorphic convergence

stability, isoclinic stability must hold if the trade-offs are sufficiently concave respectively at
x1* and at x2*. Indeed, it is obvious from (10a, b) that isoclinic stability holds for x1 whenever
f ″(x1*) < − (C1 + M1)/s̃2 and for x2 whenever g″(x2*) < − (C2 + M2)/r̃2 (recall that s̃2 and r̃2 are
positive and Ci and Mi contain only the first derivatives of the trade-off functions). For
fitness functions in the form of equations (6), the second condition for absolute convergence
stability in (11) can be written as

(s̃2 f ″(x1*) + C1 + M1) (r̃2g″(x2*) + C2 + M2) > |A1A2 | (12)

where the left-hand side is positive by (10a, b) and

A1 =
∂ 2s

∂x2∂y1

|
|
| x1*,x2*

= s̃15 + s̃25 f �(x1*) + s̃16g�(x2*) + s̃26 f �(x1*)g�(x2*) (13a)

and

A2 =
∂ 2r

∂x1∂y2

|
|
| x1*,x2*

= r̃13 + r̃14 f �(x1*) + r̃23g�(x2*) + r̃24 f �(x1*)g�(x2*) (13b)

do not contain the second derivatives f ″ and g″.
The second condition for absolute convergence stability given by (12) holds if the

trade-off functions are sufficiently concave, but this implies a stricter condition than only
isoclinic stability. The values of f ″(x1*) and g″(x2*) that satisfy (12) lie below an equilateral
hyperbola, the asymptotes of which correspond to the isoclinic stability conditions in
(10a, b) (Fig. 1). Absolute convergence stability can be ensured for any value of f ″(x1*)
below the bound imposed by isoclinic stability, provided that g is chosen sufficiently concave
at x2* (and vice versa). In other words, convexity of one trade-off, within the limits of
isoclinic stability, can be ‘bought’ at the cost of convexity of the other trade-off.

If either A1 = 0 or A2 = 0, then isoclinic stability is sufficient to ensure absolute
convergence stability. For a geometric interpretation of this case, recall that the co-evolution
of two species (or strategies) is often depicted with the help of the x1- and x2-isoclines, lines
in the phase plane (x1, x2) on which the fitness gradient vanishes in the first and in the
second species, respectively (Matessi and Di Pasquale, 1996; for a simple example, see Figure 6 of Geritz et al.,

1998). The slope of the x1-isocline at the singularity is −(E1 + M1)/A1, whereas the slope of
the x2-isocline is −A2 /(E2 + M2). Thus A1 = 0 means that the x1-isocline is locally parallel to
the x2-axis; similarly, A2 = 0 implies that the x2-isocline is locally parallel to the x1-axis. If, at
the singularity, the fitness gradient of at least one species is only weakly dependent on the
other species’ trait value such that Ai is close to zero and, at the same time, isoclinic stability
is not too weak, then the xi-isocline is approximately parallel to the axis. In this case,
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isoclinic stability of both species guarantees convergence to the singularity. Evolutionary
singularities with weak interspecific dependence and nearly horizontal/vertical isoclines
appear in several applications (e.g. Geritz et al., 1999; Geritz and Kisdi, 2000).

As in the monomorphic case, M1 and M2 play a decisive role in the bifurcation pattern of
singular species pairs. Once the singular species pair (x1*, f (x1*)) and (x2*, g(x2*)) is specified,
the slopes f �(x1*) and g�(x2*) are given by equations (7) and Ci, Mi, and Ai are simply
numbers. As seen from equations (8), (10), and (12), the singular species pair is both
evolutionarily stable and absolutely convergence stable provided that both f and g are
locally sufficiently concave. If M1 is negative, then making f locally more convex leads first
to the loss of evolutionary stability and then to the loss of isoclinic stability of x1*. As long
as x1* is isoclinically stable, the singularity has absolute convergence stability provided that
g″(x2*) is sufficiently negative. It follows that there exist trade-off functions such that species
1 has an evolutionary branching point. If, however, M1 is positive, then loss of evolutionary
and isoclinic stability occurs in the reverse order and absolute convergence stability is
necessarily lost before selection turns from stabilizing to disruptive in species 1.

In many simple models, Mi has the same sign for every strategy pair. If Mi is always
positive, then evolutionary branching in species i is impossible regardless of the choice of
the trade-off functions. If, however, a species pair exists for which Mi is negative, then one
can use equations (7)–(10) and (12) to construct trade-off functions such that species i
undergoes evolutionary branching. To do this, first choose the trade-off function of species
i such that the condition for its isoclinic stability is satisfied but evolutionary stability is not;
then choose the trade-off function of the other species concave enough to ensure absolute
convergence stability (see an example below).

When following the above recipe, it is sometimes possible to choose the trade-off function
of the second species in such a way that not only the first but also the second species has an
evolutionary branching point. Note, however, that simultaneous branching points do not

Fig. 1. Absolute convergence stability holds if, at the singular trait values x1* and x2*, the second
derivatives of the trade-off functions are below an equilateral hyperbola with asymptotes
f ″ = − (C1 + M1)/s̃2 and g″ = − (C2 + M2)/r̃2 (dashed lines). For smaller values of |A1A2 |, the hyperbola
is more pressed against its asymptotes.
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guarantee that both species will indeed split into two distinct strategies: It means only that
either of the two species would branch provided that the other species stays at the singular-
ity. If, however, one species branches faster than the other, then this may change the selective
environment for the second species such that disruptive selection is lost and the incipient
branches of the second species collapse back to monomorphism. An example of such
‘missed branching’ is given in Kisdi (1999).

It must be noted that absolute convergence stability or isoclinic stability is not necessary
for actual convergence given certain frequencies and distributions of mutations (Dieckmann and

Law, 1996; Matessi and Di Pasquale, 1996). Evolutionary branching may thus occur also outside the
parameter range of absolute convergence stability. Convergence to a singularity that lacks
evolutionary stability does not guarantee evolutionary branching when two or more
strategies (species) co-evolve: In more than one dimension, mutual invasibility near the
singularity (i.e. Mi < 0) is a separate requirement for branching (Geritz et al., 1998). If, however,
the singularity has absolute convergence stability, which implies isoclinic stability
(Ei + Mi < 0), then lack of evolutionary stability (Ei > 0) may occur only with mutual
invasibility (Mi < 0). In short, absolute convergence stability of a species pair and lack of
evolutionary stability in species i guarantee that this species has an evolutionary branching
point at the singularity.

EVOLUTION IN DIMORPHIC POPULATIONS

The above results are easily modified to examine the co-evolution of two co-existing
strategies that differ in their trait values but share the same trade-off function (g(x) = f (x))
and the same fitness function (r̃ = s̃). Such closely related strategies may emerge, for
example, as a result of evolutionary branching of a single species.

When substituting s̃ in place of r̃ in the above formulas, care should be taken that the
derivatives of s̃ will be evaluated at two different points. To simplify notation, below I shall
use superscripts as in s̃2

(i) to denote the value of s̃2 at the point (x i*, f (x i*),x1*, f (x1*),
x2*, f (x2*)), where i can be 1 or 2.

If the dimorphism of (x1*, f (x1*)) and (x2*, f (x2*)) is to be singular, the slope of the
trade-off function at x1* and x2* must be

f �(x1*) = −s̃1
(1)/s̃ 2

(1)

f �(x2*) = −s̃1
(2)/s̃2

(2) (14)

Because one evolutionarily singular dimorphism requires specific slopes of the same trade-
off function at two distinct points, a full critical function analogous to the monomorphic
case cannot be constructed. One can nevertheless obtain two pieces of f (x) in the vicinity of
x1* and x2*, respectively, that make the dimorphism singular. For different evolutionary
scenarios, these pieces must be sufficiently concave or convex. To construct concrete
examples for these scenarios, one can incorporate the two pieces determined by the local
conditions at x1* and x2* into a full, biologically reasonable trade-off function (see Geritz et al.,

submitted, for an example).
The expressions for Ei, Ci, Mi, and Ai are easily obtained from the two-species formulas

and are listed for convenience in the Appendix. The conclusions of the previous section
remain valid. Specifically, the dimorphism is evolutionarily stable as well as absolutely
convergence stable if the trade-off function is sufficiently concave at both x1* and x2*.
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Evolutionary branching of strategy i is possible with some trade-off functions if and only
if Mi is negative.

AN EXAMPLE

To illustrate the results in a two-species system, consider a predator–prey model where
both the prey and the predator evolve the fraction of time they are active (x1 and x2,
respectively). More active prey have a higher birth rate, but while active, prey suffer from
predation. More active predators can catch more prey and hence produce more offspring,
but they, too, are vulnerable when active and therefore have a higher death rate. Both prey
and predator have intraspecific density dependence in their death rates. The population
dynamics of prey (N) and predator (P) follow

dN

dt
= N( f (x1) − hN − cx1x2P)

(15)
dP

dt
= P (ecx1x2N − kP −1/g(x2))

where x1N and x2P are the numbers of active prey and predator, respectively, c is the
capture rate, e is the conversion efficiency of the predator, h and k are positive constants
characterizing the strength of intraspecific density dependence, and f (x1) is the birth rate of
a prey that is active for fraction x1 of its time. To keep the convention that r̃2 is positive,
I define g(x2) to be the expected life span of a predator individual with activity x2; the death
rate is then 1/g(x2). For the predator to be viable, ecx1x2 f (x1)g(x2) − h must be positive.
There is a single non-trivial equilibrium of the population dynamics, which is stable
whenever the predator is viable. A similar model, but with only the prey evolving, has been
investigated by Bowers et al. (2003).

In this model, the invasion fitness of a rare mutant prey with strategy y1 is
s̃ = f (y1) − hN̂ − cy1x2P̂, whereas the invasion fitness of a mutant predator y2 is
r̃ = ecx1y2N̂ − kP̂ − 1/g(y2), where N̂ and P̂ are the equilibrium densities of prey and
predator, respectively, from equations (15); note that both N̂ and P̂ depend on x1, f (x1), x2,
and g(x2).

The species pair (x1, f (x1)) and (x2,g(x2)) is singular if the slopes of the trade-off
functions are

f �(x1) = −
cx2(h − ecx1x2 f (x1)g(x2))

g(x2)(hk + ec2x2
1x

2
2)

and

g�(x2) = −
ecx1g(x2)(cx1x2 + kf (x1)g(x2))

hk + ec2x2
1x

2
2

respectively (as only singular trait values need to be considered, I omit the stars for
readability). Using these slopes, the quantities M1 and M2 evaluate to

M1 = −
ec2hx2

2(cx1x2 + kf (x1)g(x2))

g(x2)(hk + ec2x2
1x

2
2)2 (16a)
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and

M2 = −
ec2kx2

1(ecx1x2 f (x1)g(x2) − h)

g(x2)(hk + ec2x2
1x

2
2)2 (16b)

Both M1 and M2 are negative whenever the predator is viable. This means that mutual
invasibility is possible in both species near any singularity, and trade-off functions exist
such that evolutionary branching occurs in the prey or in the predator.

The prey strategy is evolutionarily stable if and only if its trade-off is concave, since

E1 = f ″ (x1) (17a)

For the predator to be evolutionarily stable, its trade-off may also be somewhat convex as
long as

E2 = −
2

g(x2) �
ecx1(cx1x2 + kf (x1)g(x2)

hk + ec2x2
1x

2
2

�
2

+
g″(x2)

g(x2)2 (17b)

is negative. Absolute convergence stability also depends on the cross-derivatives A1 and A2;
in this model, they evaluate to A1 = hM2 /ecx2

1 and A2 = − kM1/cx2
2.

I use this model to illustrate how one can construct examples for evolution to an ESS
species pair and for evolutionary branching. I fix the parameter values at h = 1, k = 0.4,
c = 10, and e = 0.05, and choose the species pair (x1*, f (x1*)) = (0.5, 2) and (x2*, g(x2*)) =
(0.8, 4) to be singular. Then the slopes of the trade-off functions must be f �(x1*) = 1 and
g�(x2*) = −6: these derivatives give the first-order terms in a local approximation of the
trade-off functions around (x1*, f (x1*)) and (x2*, g(x2*)), respectively. To ensure absolute
convergence stability, the trade-off functions must be concave enough to satisfy conditions
(10a, b) and (12). The thresholds of f ″(x1*) and g″(x2*) can easily be computed using M1,
M2, E1, and E2 calculated above. The results are shown in Fig. 2 together with the conditions
for evolutionary stability from (17a, b). From Fig. 2, one can choose the second derivatives
of the trade-off functions to obtain various evolutionary outcomes. The second-order local
approximations of the trade-off functions can be extended arbitrarily over the full range of
the trait values.

An evolutionarily stable species pair that has absolute convergence stability is always
possible and will result for small (or large negative) values of f ″(x1*) and g″(x2*) (area 1
in Fig. 2). Because both M1 and M2 are negative in this model, it is also possible to choose
f ″(x1*) and g″(x2*) such that the prey undergoes evolutionary branching (area 2) or such
that the predator undergoes branching (area 3). With the parameters chosen here, the
two species can also have branching points simultaneously within the region of absolute
convergence stability in Fig. 2 (area 4). For some other parameter values, however, this
is not the case. The straight lines delineating evolutionary stability may cross above the
hyperbola, in which case a singularity with absolute convergence stability cannot be a
branching point for both species. Recall the caveats that a simultaneous branching point
does not ensure that both species do branch (Kisdi, 1999), and that absolute convergence
stability is only a sufficient but not a necessary condition, and therefore evolutionary
branching (or, with other parameter values, evolution to an ESS species pair) may occur
also outside the region of absolute convergence stability.
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DISCUSSION

In simple models, the shape of the trade-off may be left unspecified; predictions are then
derived depending on the shape (particularly the convexity) of the trade-off. For example,
Levins’ fitness set approach predicts the evolution of a single generalist when the trade-off
between fitness in two habitats is concave and the evolution of specialists when the trade-off
is convex (Levins, 1962). Results of this type are valuable as they are mathematically complete,
they specify the biological conditions leading to various evolutionary outcomes, and they
offer insight into the underlying selection mechanisms. Moreover, if such a simple model is
adequate for the experimental system at hand, one can even infer the shape of the trade-off
from the observed evolutionary outcome (Mealor and Boots, 2006).

In more complex models and particularly when a model is amenable only to numerical
analysis, the standard practice has been to assume trade-off functions ad hoc, thereby losing
the advantages of general unspecified trade-offs. The method of critical function analysis
(de Mazancourt and Dieckmann, 2004; Bowers et al., 2005) made it possible to analyse the evolution of
monomorphic populations of a single species without a priori assuming a certain trade-off
function. In this study, I have extended the most important results to two co-evolving
species or strategies. Although a full critical function cannot be constructed for
two-dimensional problems, one can always ensure absolute convergence stability and
evolutionary stability of a singular species pair by choosing their trade-off functions locally
sufficiently concave. The critical values of the second derivatives of the trade-off functions
can be obtained numerically in arbitrarily complex models.

Bowers et al. (2005) noted that by changing the shape of the trade-off function in a
single-species model, evolutionary branching can always be achieved whenever mutual
invasibility is possible in the neighbourhood of the singular strategy. Mutual invasibility is

Fig. 2. Stability properties of the singular species pair (x1*, f (x1*)) = (0.5, 2) and (x2*, g(x2*)) = (0.8, 4) in
the predator–prey model with parameters h = 1, k = 0.4, c = 10, and e = 0.05. The conditions for
absolute convergence stability in (10a, b) and (12) evaluate to f ″(x1*) < 4, g″(x2*) < 18.833 (dashed
lines), and ( f ″(x1*) − 4)(g″(x2*) − 18.833) > 1.667 (hyperbola), respectively. The evolutionary stability
conditions (17a, b) are f ″(x1*) < 0 and g″(x2*) < 18 (straight lines). If the convexity of the trade-
off functions are chosen from area 1, both prey and predator are evolutionarily stable; in area 2, the
prey undergoes evolutionary branching; in area 3, the predator undergoes branching. In area 4, both
species have an evolutionary branching point and at least one of them will branch (see text).
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characterized by the negative sign of the cross-derivative M, which is independent of the
convexity of the trade-off. This result also extends to two-species models in the following
way: If Mi is positive, then two similar strategies of species i cannot co-exist and therefore
this species cannot undergo branching even if it is under disruptive selection (Geritz et al., 1998).
If Mi is negative at a certain species pair, then one can find trade-off functions such that this
species pair is singular and species i has an evolutionary branching point. If the trade-off
function of the other species is chosen sufficiently concave, then species i branches; if,
however, both species have branching points, then it may happen that only one of them
branches (Kisdi, 1999).

Critical function analysis and its present extension assume that the shape of the trade-
off is unknown and thus we wish to vary it, just as one varies the values of unknown
parameters of a model to explore all possible outcomes. This is not the case when two traits
are linked via a stoichiometric relationship. For example, the fraction of dormant seeds is
one minus the fraction of germinating seeds, which forces a simple linear trade-off between
the number of dormant and germinating seeds. Stochastic environments with density
dependence impose frequency-dependent selection such that two germination strategies
may mutually invade one another, but evolutionary branching of the germination fraction is
excluded (Ellner, 1985). In this case, M is negative at the singular germination fraction, but for
evolutionary branching the trade-off function should be convex, which is here excluded by
the biological interpretation of the model. The model of Olivieri et al. (1995) for the evolution
of dispersal is a similar case: although mutual invasibility is possible, the authors find that
the singular strategy is always an ESS. Here the crucial assumption seems to be that
dispersal entails a constant mortality cost (for example, a certain fraction of dispersed seeds
land outside the suitable habitat). This leads to a linear trade-off between dispersal and the
number of surviving offspring. Presumably, a non-linear cost function could lead to
evolutionary branching of dispersal strategies. Such a cost function could result from a
trade-off between offspring number and the resources invested in dispersal structures,
if dispersal is a non-linear function of the latter.

In many cases, measured trade-offs depend on the environmental conditions and thus
change in time; in contrast, critical function analysis assumes them to be constant. To
circumvent this problem, it is often possible to reformulate the model such that the trade-off
links two genetically determined traits instead of derived traits that are also influenced by
the environment. To take a simplified example, there may be a trade-off between offspring
number and offspring survival in bad years, when only the large (strong) offspring survive,
but the same trade-off may be weak or non-existent in good years, when virtually all
offspring survive. In this case, one could formulate the trade-off between offspring number
and offspring size instead of offspring number and survival. Then the environment-
dependent relationship between offspring size and survival affects only the formulation of
the fitness function (equation 1), which may be arbitrarily complex in the above analysis, but
not the trade-off function ( f (x)) between the number and size of offspring.

As a worked example, I presented a simple predator–prey model to show how the critical
function analysis can be extended to two species. This example may be misleading: critical
function analysis is something of an overkill to analyse simple models. The example could
have been analysed in the traditional way, assuming that f (x) and g(x) are known (without
substituting any concrete formula), and writing down the conditions for convergence and
evolutionary stability of the singular species pair. If one has to resort to numerical analysis,
however, then usually one would first locate the singular strategies numerically and
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then investigate their stability properties. In the first step of the numerical procedure, it is
necessary to assume some concrete trade-off function to evaluate the fitness gradient and
find its zeros. This is where critical function analysis, and its present extension, becomes
really helpful: every step of the critical function analysis can be carried out numerically and
without specifying the trade-off function. It is beyond the scope of this paper to analyse a
complex model numerically, but such an example can be found in Geritz et al. (submitted).
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APPENDIX

Here I list the expressions for Ei, Ci, Mi, and Ai when the two co-existing strategies differ
only in their trait values, i.e. g(x) = f (x) and r̃ = s̃. As in the main text, the upper index (i)
denotes the derivative to be evaluated at (x i*, f (x i*),x1*, f (x1*),x2*, f (x2*)), where i can be
1 or 2.

A singular dimorphism is evolutionarily stable if

Ei = Ci + s̃ 2
(i) f ″(x i*)

is negative for i = 1, 2, where

Ci = s̃ 11
(i) + 2s̃ 12

(i) f �(x i*) + s̃ 22
(i) f �(x i*)2

Mutual invasibility of resident 1 and its mutant is possible near the singularity if

M1 = s̃ 13
(1) + (s̃ 14

(1) + s̃ 23
(1)) f �(x1*) + s̃ 24

(1) f �(x1*)2

is negative; the analogous expression for resident 2 is

M2 = s̃ 15
(2) + (s̃ 16

(2) + s̃ 25
(2)) f �(x2*) + s̃ 26

(2) f �(x2*)2

The condition for isoclinic stability of xi* remains Ei + Mi < 0, and absolute convergence
stability also requires (E1 + M1)(E2 + M2) > |A1A2 | with

A1 = s̃ 15
(1) + s̃ 25

(1) f �(x1*) + s̃ 16
(1) f �(x2*) + s̃ 26

(1) f �(x1*) f �(x2*)

and

A2 = s̃ 13
(2) + s̃ 14

(2) f �(x1*) + s̃ 23
(2) f �(x2*) + s̃ 24

(2) f �(x1*) f �(x2*)
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