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Abstract. In fragmented but temporally stable landscapes, kin competition selects for dis-
persal when habitat patches are small, whereas the loss of dispersal is favoured when dispersal
is costly and local populations are large enough for kin interactions to be negligible. In het-
erogeneous landscapes with both small and large patches, contrasting levels of kin competition
facilitate the coexistence of low-dispersal and high-dispersal strategies. In this paper, I use both
adaptive dynamics and inclusive fitness to analyse the evolution of dispersal in a simple model
assuming that each patch supports either a single individual or a large population. With this
assumption, many results can be obtained analytically. If the fraction of individuals living in
small patches is below a threshold, then evolutionary branching yields two coexisting dispersal
strategies. An attracting and evolutionarily stable dimorphism always exists (also when the
monomorphic population does not have a branching point), and contains a strategy with zero
dispersal and a strategy with dispersal probability between one half and the ESS of the classic
Hamilton-May model. The present model features surprisingly rich population dynamics with
multiple equilibria and unprotected dimorphisms, but the evolutionarily stable dimorphism is
always protected.

1



1 Introduction

In a landmark paper, Hamilton and May (1977) showed that kin competition can maintain dis-
persal in stable habitats. The simplest version of their model assumes that the habitat consists
of many small sites, each supporting just one adult individual. All offspring born in a site are
therefore siblings, and the offspring who remain in their natal site kill their own siblings when
they compete for establishment. Dispersal can be seen as an altruistic act; the dispersed off-
spring accept the cost of dispersal, such as the associated mortality risk, in order to save their
siblings (Taylor 1988; Ronce 2007). If the habitat consists of larger patches that can support
more than one adult, then the offspring are not all relatives and therefore kin competition weak-
ens, resulting in less dispersal (Comins et al. 1980; Taylor 1988; Ajar 2003).

In natural habitats, the size of habitat patches is likely variable. Since differently sized
patches select for different levels of dispersal, variable patch size offers an attractively econom-
ical explanation for the evolution of dispersal polymorphisms. The expectation that variable
patch size can select for the diversification of dispersal strategies was shown to be correct by
Massol et al. (2011), who found evolutionary branching of dispersal when patch size is dis-
tributed with positive skew. The model of Massol et al. (2011) excels at combining analytical
results with biological realism (and indeed they demonstrate that their condition for evolution-
ary branching is satisfied in several natural systems), but is relatively technical.

In this paper, I propose a simpler model to demonstrate evolutionary branching and to
explore the joint evolution of coexisting dispersal strategies under contrasting levels of kin com-
petition. The advantage of the present model is threefold. First, it is a direct extension of the
Hamilton-May model, and hence easier comparable to the classic results than the continuous-
time model of Massol et al. (2011; see section 6 for details). Second, the analysis is carried
beyond evolutionary branching, i.e., I investigate how two dispersal strategies coevolve. For
some dimorphisms, I find multiple population dynamic equilibria such that the dimorphism is
not protected and can be lost without warning, through a catastrophic bifurcation, when an
environmental change induces changes in the model parameters. Third, the simplicity of the
present model makes it analytically highly tractable.

In the first part of the paper, I obtain simple formulas for the invasion boundaries of pairwise
invasibility plots (Geritz et al. 1998), for the evolutionarily singular strategies and their bifurca-
tions, and also for the evolutionarily stable dimorphisms. The adaptive dynamics of this model
can be analysed with simple mathematics to an almost unprecedented degree. In the second
part, I use the inclusive fitness approach to obtain the monomorphic and dimorphic singularities
and their convergence stability in a highly intuitive way (section 7 can be read directly after
the model description). I also extend the inclusive fitness approach to derive the condition for
evolutionary stability (section 8). Although the latter is technically more cumbersome, it shows
explicitly how contrasting habitat sizes facilitate evolutionary branching via spatial sorting of
dispersal strategies.
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2 The model

I consider a population of an annual organism where juveniles compete for breeding sites. A
fraction p of the breeding sites are solitary sites, whereas the remaining fraction 1−p of the sites
form one large, well mixed patch, where all juveniles compete equally for all sites. The life cycle
consists of reproduction, dispersal, and competition. At reproduction, each breeding site is oc-
cupied by one adult, who produces C offspring and dies. I assume C →∞ so that the dynamics
is deterministic within each site. A fraction d of the offspring is dispersed and the remaining
fraction 1− d remains in the natal site. Dispersed offspring survive dispersal with probability s
and land either in a solitary site with probability p or in the large patch with probability 1− p.
Hence I assume that immigration is simply proportional to the area covered by the breeding
sites, so that the model has no inherent source-sink structure (this is different from the model of
Massol et al. (2011), who assumed that each location receives the same number of immigrants
irrespectively of its carrying capacity). After dispersal, juveniles compete for a breeding site
according to a fair lottery. Kin competition within solitary sites selects for dispersal (Hamilton
and May 1977), whereas kin competition vanishes in the large patch and dispersal is selected
against due to the survival cost associated with it.

Suppose that L dispersal strategies coexist in the population (later I shall focus on L = 1
and L = 2). Let dk denote the fraction of offspring dispersed by strategy k (k = 1, ..., L), let
n1k(t) be the fraction of all breeding sites that is solitary and is occupied by an adult of strategy
k in generation t (

∑L
k=1 n1k(t) = p), and let n2k(t) be the fraction of all sites that is in the large

patch and is occupied by strategy k (
∑L

k=1 n2k(t) = 1− p).

In order to describe the population dynamics concisely, I start with defining three quantities
that will play the role of the environmental feedback variables (Metz et al. 1992; Diekmann et
al. 2001; see below). The first environmental feedback variable is

E1 = s
∑
k

(n1k + n2k)dk (1a)

so that E1C is the number of immigrants per site. If a solitary site was occupied by an adult of
strategy i, then the site is won by one of the adult’s non-dispersed offspring with probability

1− di
1− di + E1

.

The second environmental feedback variable is

E2 =
1− p∑

k n2k(1− dk) + (1− p)E1
(1b)

so that E2/C is the probability that a specific juvenile secures a breeding site if it is competing
in the large patch. To interpret this quantity, note that all juveniles in the large patch compete
for (1 − p)N sites (where N is the total number of breeding sites),

∑
k n2kNC(1 − dk) is the

number of non-dispersed offspring produced in the large patch and (1− p)NE1C is the number
of immigrants into the large patch (this is (1− p)N times what a solitary site receives because
the large patch covers (1 − p)N times the area of a single site). The probability of success is
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the number of sites divided with the number of competitors. Finally, the third environmental
feedback variable is defined as

E3 =
∑
k

n1k
p
· 1

1− dk + E1
(1c)

so that E3/C is the probability that a specific immigrant offspring who landed in a solitary site
wins the site. Here n1k

p is the probability of landing in a site occupied by an adult of strategy
k conditioned on landing in a solitary site, and (1 − dk + E1)C is the number of competitors
within the site.

Let D denote an arbitrary dispersal strategy (either one of the coexisting L strategies or a
new mutant) and let the vector m(t) = (m1(t),m2(t))

T be the population vector of this strategy,
containing the fraction of all sites that are occupied with an adult of this strategy and are solitary
(m1) or in the large patch (m2). Hence if D stands for the kth strategy present in the resident
population, then D = dk and m = (n1k, n2k)

T . The projection matrix A, which determines the
population vector in the next generation according to m(t+ 1) = Am(t), is given by

A =

 1−D
1−D+E1

+DspE3 DspE3

Ds(1− p)E2 (1−D +Ds(1− p))E2

 (2)

Here the element A11 is the number of solitary sites won by the offspring of a parent currently in
a solitary site, given by the sum of the probability that a solitary site is won by a non-dispersed
offspring (first term of A11) and the number of offspring dispersed from a solitary site who sur-
vive dispersal, land in a solitary site, and win that site (second term of A11). A12 is the number
of offspring dispersed from a site in the large patch who survive dispersal, land in a solitary site,
and win that site. Similarly, A21 is the number of offspring dispersed from a solitary site who
survive dispersal, land in the large patch, and secure a site in the large patch. Finally, A22 is
the number of offspring born in a site of the large patch who either did not disperse or survived
dispersal and landed back in the large patch, times the probability of securing a site in the large
patch.

Notice that the elements of A are not constants because the the environmental feedback
variables E1, E2, E3 depend on the variables nik(t). However, all nonlinearities in the popula-
tion dynamics act through the environmental feedback variables, i.e., the three environmental
feedback variables fully describe all biotic interactions between an individual and the resident
population (Metz et al. 1992; Diekmann et al. 2001). When the resident population has equili-
brated so that the densities nik are constants, then the dynamics of a mutant is linear as long
as its own density is negligible.

A is irreducible if its off-diagonal elements are positive, which also immediately implies
that all elements are positive and therefore A is primitive. To ensure irreducibility, I assume
0 < s ≤ 1 and 0 < p < 1 throughout. D > 0 is also necessary for irreducibility, and therefore
zero dispersal requires special attention (see below).
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3 Adaptive dynamics in monomorphic resident populations

With a single resident strategy (L = 1), the environmental feedback variables in equations (1)
simplify to

E1 = sd and E2 = E3 = 1/(1− d+ sd) (3)

where d = d1 denotes the dispersal strategy of the only resident. E2 and E3 are equal because
with a single resident, competition is equally strong in solitary sites and in the large patch (there
is no source-sink structure), and therefore a focal individual has equal chance of success when
competing in a solitary site occupied by the resident or in the large patch. (This will not be
the case in polymorphic populations, where different resident strategies are present at different
frequencies in the solitary sites versus in the large patch.)

3.1 Invasion boundaries

Substituting the environmental feedbacks in (3) into (2), the projection matrix of a rare mutant
strategy dmut simplifies to

Amut =

 1−dmut
1−dmut+sd

+ dmutsp
1−d+sd

dmutsp
1−d+sd

dmuts(1−p)
1−d+sd

1−dmut+dmuts(1−p)
1−d+sd

 (4)

The invasion fitness, λmut, is the leading eigenvalue of this primitive matrix, and the mutant
invades (subject to demographic stochasticity while present in small numbers) when λmut > 1.
Instead of using the invasion fitness directly, I use the fitness proxy

F (dmut, d) = tr(Amut)− det(Amut) (5)

where tr and det denote the trace and the determinant, respectively. For 2 × 2 non-negative
projection matrices, this fitness proxy has the following property:

if tr(Amut) ≤ 2 then F (dmut, d) T 1 ⇐⇒ λmut T 1

if tr(Amut) > 2 then λmut > 1 irrespectively of F (dmut, d) (6)

(Metz and Leimar 2011; Appendix A). The invasion boundary, which is the λmut = 1 contour
line of the invasion fitness, therefore consists of the points (d, dmut) such that F (dmut, d) = 1
and tr(Amut) ≤ 2.

After some algebra (see Appendix B), F (dmut, d) = 1 can be rearranged into

(dmut − d)
[
pdmut(1− dmut)− (1− s)d

(
1− (1− s)d

)]
= 0 (7)

This equation is satisfied on the line dmut = d and on the East-West opening hyperbola(
d−A
α

)2

−
(
dmut −B

β

)2

= 1 (8a)
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with center point

(A,B) =

(
1

2(1− s)
,
1

2

)
(8b)

and

α =

√
1− p

2(1− s)
, β =

1

2

√
1− p
p

. (8c)

Since 0 ≤ d, dmut ≤ 1 by definition, the intersection of this hyperbola with the unit square is
of interest. The left branch of the hyperbola always goes through the points (d, dmut) = (0, 0)
and (0, 1). Depending on whether the left vertex (i.e., the rightmost point of the left branch),
(d, dmut) = (A−α,B), is or is not in the unit square, the left branch of the hyperbola gives one
or two line segments in the unit square that satisfy F (dmut, d) = 1. A part of the right branch
of the hyperbola is in the unit square whenever the right vertex (A+ α,B) is in there.

In order to see which parts of the F (dmut, d) = 1 line segments satisfy the requirement
tr(Amut) ≤ 2, note first that tr(Amut) is a continuous function of dmut and of d in (0, 1]2.
Hence by varying dmut and d continuously, tr(Amut)−2 can switch sign only by passing through
a point where tr(Amut) = 2. Suppose that such a point is encountered while dmut and d
vary along a line where F (dmut, d) = tr(Amut) − det(Amut) = 1. tr(Amut) = 2 then imme-
diately implies det(Amut) = 1. Recall that the characteristic equation of a 2 × 2 matrix is
λ2 − tr(A)λ+ det(A) = 0, which then simplifies to λ2 − 2λ+ 1 = 0, so that the only eigenvalue
is a double root at λ = 1. However, by the Perron-Frobenius theorem, this contradicts the fact
that Amut is primitive for all (d, dmut) ∈ (0, 1]2. It therefore follows that tr(Amut) − 2 cannot
switch sign along a continuous line in (0, 1]2 with F (dmut, d) = 1. If tr(Amut) < 2 holds at
one point of the line, then it holds at all points; and the same is true for the converse. In
Appendix B, I use this fact to show that tr(Amut) < 2 holds on the left branch of the hyperbola
in the interior of the unit square, but not on the right branch (should it appear in the unit
square). It is straightforward to see that tr(Amut) < 2 holds also on the line dmut = d. Hence
the invasion boundaries are given by the left branch of the hyperbola in (8) and the line dmut = d.

3.2 Evolutionary singularities

With the invasion boundaries derived above, pairwise invasibility plots can readily be drawn
(Figure 1). Invasion (”+”) and non-invasion (”−”) areas are separated by the main diagonal
dmut = d and by the left branch of the hyperbola in (8). Since F (12 , 0) = 1 + sp

4 > 1, the left
edge of the pairwise invasibility plot is always in the ”+” area, which implies the signs shown
in Figure 1.

The pairwise invasibility plot can have only three qualitatively different shapes: either there
is no interior singularity (Figure 1a), or there is an evolutionary branching point (Figure 1b), or
there is an attracting ESS (Figure 1c). The vertex of the hyperbola may also lay beyond d = 1,
but this means no qualitative change from Figure 1c.
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Figure 1: Pairwise invasibility plots. The invasion boundaries separate the ”+” (invasion) and
”−” (non-invasion) areas. The evolutionary singularity is marked with a dot. s = 0.5 and (a)
p = 0.3, dispersal evolves towards zero and undergoes braching in its vicinity; (b) p = 0.65, the
singularity is an evolutionary branching point; (c) p = 0.85, the singularity is a convergence
stable ESS.

The evolutionarily singular dispersal strategy d∗ is at the interior intersection of the left
branch of the hyperbola and the main diagonal. Since it is easily shown that only the left branch
of the hyperbola can intersect the diagonal in the unit square, d∗ is obtained straightforwardly
from (7) as the nonzero root of

pd(1− d) = (1− s)d (1− (1− s)d)

i.e.,

d∗ =
p− (1− s)
p− (1− s)2

(9)

0 < d∗ ≤ 1 holds and hence an interior singularity exists if and only if p > 1 − s. When it
exists, the interior singularity is always convergence stable (cf. the sign structure of the pairwise
invasibility plots in Figure 1). The hyperbola intersects the main diagonal with a positive slope
and therefore the interior singularity is an evolutionary branching point when the intersection
is below the vertex, i.e., when d∗ < 1

2 ; from (9), this is equivalent to p < 1− s2.

When p < 1 − s, there is no interior singularity and dispersal evolves towards zero in
monomorphic populations. As Figure 1a illustrates, d = 0 is not evolutionarily stable but re-
sembles an evolutionary branching point. With zero dispersal, however, the projection matrix
A is not irreducible, and hence the invasion fitness of the mutant is not well defined; moreover,
the leading eigenvalue of the mutant projection matrix is not differentiable at dmut = d = 0
so that the selection gradient is not defined. Therefore d = 0 is not a regular evolutionarily
singular strategy. Yet evolutionary branching happens in the vicinity of d = 0. This is because
the population becomes dimorphic as soon as d is small enough for a small mutation to produce
dmut above the hyperbola. Once the population is dimorphic, evolutionary branching takes off
as it does at an interior branching point (Geritz et al. 1998).

In summary, dispersal evolves to an ESS when p > 1− s2, i.e., when the fraction of solitary
sites is high so that the model is sufficiently close to the Hamilton-May (1977) model. When
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p < 1−s, selection in the large patch dominates and dispersal evolves towards zero and undergoes
evolutionary branching near d = 0. Inbetween these thresholds, there is an interior evolutionary
branching point (Figure 2).

Figure 2: Bifurcations of the monomorphic singularity. Dark grey: no interior singularity,
dispersal evolves towards zero and undergoes branching in its vicinity; white: the singularity is
an evolutionary branching point (BP); light grey: the singularity is a convergence stable ESS.
M (defined in section 4.2) is negative below the dashed line and positive above.

4 Dimorphic resident populations: Analytical results

Due to the relative simplicity of the model, important results can be obtained analytically also
in dimorphic resident populations. In particular, here I prove that (i) there is a convergence sta-
ble and evolutionarily stable dimorphism where one of the two residents has zero dispersal, and
(ii) the model exhibits unprotected dimorphisms with multiple population dynamical attractors.

4.1 Evolutionarily stable dimorphism

Consider a resident population with two dispersal strategies (d1, d2) = (0, d2), i.e., where one of
the residents does not disperse but the other resident’s strategy d2 > 0 is arbitrary. From (2),
the population projection matrix of the nondispersing resident D = d1 = 0 is

A =

 1
1+E1

0

0 E2

 (10)

When the resident population is at equilibrium, the leading eigenvalue of this matrix must be 1.
The two eigenvalues are 1

1+Ê1
and Ê2 (where the hat denotes the equilibrium values), and since

Ê1 > 0 (cf. (1a)), the former is necessarily less than 1. It thus follows that Ê2 = 1 must hold.

The corresponding eigenvector

(
n̂11
n̂21

)
=

(
0
n̂21

)
indicates that in equilibrium, the nondispersing
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resident is absent from the solitary sites. As expected, the nondispersing resident is confined
to the large patch, within which it is favoured by natural selection due to the mortality cost of
dispersal. Note that the matrix in (10) is reducible, so that this equilibrium is reached only if
the nondispersing resident is initially present in the large patch; in the opposite case, it would
go extinct.

Since n̂11 + n̂12 = p and n̂21 + n̂22 = 1 − p, n̂11 = 0 implies n̂12 = p and Ê2 reduces to
Ê2 = 1−p

1−p−n̂22d2+(1−p)Ê1
with Ê1 = s(p+ n̂22)d2. The equilibrium condition Ê2 = 1 is therefore a

linear equation for the unknown n̂22, which is readily solved to obtain the equilibrium densities

n̂11 = 0, n̂12 = p, n̂21 =
(1− s)(1− p)
1− s(1− p)

, n̂22 =
sp(1− p)

1− s(1− p)
. (11)

Interestingly, the equilibrium densities do not depend on d2 even in the large patch. The higher
d2 is, the more strongly this strategy is selected against in the large patch, but at the same
time the more influx it gets from the solitary sites, and these two effects cancel each other.
The population dynamic equilibrium is linearly stable provided s < 1. At the equilibrium, the
environmental feedback variables reduce to

Ê1 =
spd2

1− s(1− p)
, Ê2 = 1, Ê3 =

1

1− d2 + Ê1

. (12)

The projection matrix Amut of a mutant strategy dmut in the resident population of strate-
gies (0, d2) is the matrix in (2) with D = dmut and with the environmental feedback variables as
given in (12). Let F2(dmut, 0, d2) = tr(Amut)− det(Amut) denote the fitness proxy of a mutant
in a resident population of strategies d1 = 0 and d2. F2 relates to the invasion fitness of the
mutant as shown in (6). However, below I shall consider only mutants that have similar disper-
sal strategies to one of the residents, and this simplifies the use of F2. Since for the residents
0 < tr(A) < 2 always holds at equilibrium, by continuity the same is true for tr(Amut) when the
mutant strategy is sufficiently close to a resident; hence F2 can be used in place of the invasion fit-
ness for mutations of small effect without separately checking tr(Amut) (Metz and Leimar 2011).

Straightforward calculations (Appendix C) show that the selection gradients of the two
residents are given by

∂1F2(0, 0, d2) = −(1− s(1− p)) Ê1

1 + Ê1

(13a)

∂1F2(d2, 0, d2) =
spd2

(1− d2 + Ê1)2
h(d2) (13b)

where the notation ∂if(x1, x2, x3) is used for the partial derivative of f with respect to xi
evaluated at (x1, x2, x3) and

h(d2) = 1− d2
2(1− s) + sp

1− s(1− p)
.

Since ∂1F2(0, 0, d2) in (13a) is always negative, a mutant of the nondispersing resident can never
invade the dimorphism (0, d2) and the boundary d1 = 0 is attracting for any d2. A resident
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strategy with low dispersal is favoured in the large patch (when s < 1), but is present also in the
solitary sites, where kin competition selects against it. A mutant with even lower dispersal is
increasingly confined to the large patch, where it is even more favoured. Hence the low dispersal
resident of the dimorphism evolves towards full loss of dispersal.

The selection gradient of the second strategy vanishes when h(d2) = 0, i.e., at

d∗2 =
1− s+ sp

2(1− s) + sp
(14)

Since h(d2) is a strictly decreasing function of d2, d
∗
2 is attracting on the boundary (d1, d2) =

(0, d2) and therefore the dimorphism (0, d∗2) is absolutely convergence stable (Matessi and di
Pascuale 1996, Leimar 2009). Finally, the dimorphism (0, d∗2) is also evolutionarily stable because
the second derivative

∂11F2(d
∗
2, 0, d

∗
2) = −2sp

d∗2
(15)

is always negative (see Appendix C).

The present model thus always has an evolutionarily stable dimorphism where one of the
residents is not dispersing at all and is confined to the large patch, whereas the other resident
disperses with probability d∗2 given in (14) and thereby partly specializes on the solitary sites. It
is straightforward to show that d∗2 > d∗ (unless s = 1, in which case both d∗2 and d∗ equal 1), i.e.,
the dispersing resident of the dimorphism has a higher dispersal probability than the generalist
monomorphic singularity. On the other hand, d∗2 is less than 1

2−s , the ESS of the Hamilton-May
model (again unless s = 1, in which case both equal 1). The presence of the large patch and of
the nondispersing resident has two consequences for the dispersing resident: first, a solitary site
receives less immigrants, which implies stronger kin competition and selects for more dispersal;
second, dispersal into the large patch, where the dispersing resident is at a disadvantage, selects
against dispersal. As evidenced by d∗2 <

1
2−s , the second mechanism is stronger. Note that as

p → 1 (almost all sites are solitary), d∗2 → 1
2−s . If p → 0 while s < 1, then d∗2 → 1

2 , which
is the ESS of the Hamilton-May model in the limit when all dispersed offspring perish. In the
present model, p → 0 implies that an offspring dispersed away from a solitary site will almost
surely land in the large patch, and its descendants have a vanishing chance of returning to a
solitary site. Since with s < 1 the dispersing resident is selected against in the large patch, an
offspring dispersed away from a solitary site will have no descendants in the distant future. At
the same time, Ê1 goes to 0, meaning that a solitary site receives no immigrants. The situation
of no descendants from dispersed offspring and no immigrants in a solitary site is analogous to
the limit s→ 0 in the Hamilton-May model.

The evolutionarily stable dimorphism (0, d∗2) exists and is locally attracting whether or not
the monomorphic population has an evolutionary branching point. This implies an evolutionary
bistability: when the monomorphic singularity is an ESS, some initially dimorphic populations
evolve to the dimorphic ESS whereas others lose the dimorphism and eventually evolve to the
monomorphic ESS (Geritz et al. 1999; see an example in Section 5).
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4.2 Unprotected dimorphisms

Despite its simplicity, the present model exhibits alternative stable equilibria of population
dynamics in dimorphic populations where neither resident has zero dispersal. These alternative
stable equilibria correspond to unprotected dimorphisms: at one stable equilibrium all four
population densities n̂11, n̂12, n̂21, n̂22 are positive, whereas at the other stable equilibrium one
of the two resident strategies is extinct. The next section will illustrate this with examples. To
prove analytically that alternative stable equilibria of nij exist, I use a result of Priklopil (2012).
Let

M =
∂2F (dmut, d)

∂dmut∂d

∣∣∣∣
dmut=d=d∗

(16)

where F is the monomorphic fitness proxy and d∗ is the monomorphic singularity (see Section 3).
M characterises the existence of protected dimorphisms in the neighbourhood of a monomorphic
singularity: if M < 0, then the neighbourhood of (d∗, d∗) contains strategy pairs that mutu-
ally invade each other’s monomorphic population, whereas if M > 0, the neighbourhood of the
monomorphic singularity contains pairs that mutually exclude each other (Geritz et al. 1998).
Priklopil (2012) showed that if M changes sign in the interior of the parameter space, then there
are parameter values in the neighbourhood of this sign change for which the model exhibits
unprotected dimorphisms.

In the present model, M simplifies to

M =
1

p

(
p− (1− s)2

sp

)2 [
p2 − 3s(1− s)p− (1− s)3

]
Since p > 1− s is necessary for an interior singularity to exist (see Section 3), the factor in front
of the brackets is positive. M vanishes when

p =
1− s

2

(
3s+

√
9s2 − 4s+ 4

)
(the other root of the brackets is negative for s < 1). This curve is shown by the dotted line
in Figure 2. The non-degeneracy condition of Priklopil (2012) is satisfied by the hyperbolic
invasion boundary derived in Section 3. Since singularities with M = 0 exist in the interior
of the parameter space and M changes sign there, the theorems of Priklopil (2012) ensure the
existence of unprotected dimorphisms.

5 Numerical results

In dimorphic resident populations of arbitrary dispersal strategies (d1, d2), the equilibrium den-
sities are hard to obtain analytically (equation (11) is valid only for the special case when
d1 = 0). I have determined the resident densities by numerical continuation of equilibria (see
e.g. Kuznetsov 1995). Once the resident densities n̂ij (i, j = 1, 2) are known, the selection gradi-
ents G1(d1, d2) = ∂1F2(d1, d1, d2) and G2(d1, d2) = ∂1F2(d2, d1, d2) are easily obtained from the
fitness proxy F2(dmut, d1, d2) = tr(Amut) − det(Amut), where Amut is the projection matrix in
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(2) with D = dmut and the environmental feedbacks assuming their equilibrium values obtained
by substituting n̂ij into (1).

Figure 3 shows the isoclines of the selection gradients, i.e., the lines along which G1(d1, d2) =
0 and G2(d1, d2) = 0 (green and blue dashed lines, respectively). Since the isoclines do not in-
tersect, there is no interior dimorphic singularity in these examples. The filled dots at the points
where the isoclines connect to the boundary mark the boundary singularity (0, d∗2) found analyt-
ically in section 4.1 and its symmetric pair (d∗2, 0) (since the labelling of the resident strategies is
arbitrary, the plots of Figure 3 are symmetric about the main diagonal). An exhaustive numeri-
cal search (Appendix D) found no interior singularity for any parameter combination, hence the
boundary singularity appears to be the only dimorphic singularity in this model.

Figure 3: Examples for evolution in dimorphic populations. Black lines: invasion boundaries
and their mirror images along the diagonal d2 = d1; thick grey lines: saddle-node bifurcation
of population dynamic equilibria. Area marked with ”A”: protected dimorphisms; ”B”: unpro-
tected dimorphisms; ”C”: mutual exclusion (panel (b) only). The monomorphic and dimorphic
singularities are marked with empty and filled dots, respectively. The green dashed line is the
d1-isocline (G1(d1, d2) = 0), the blue dashed line is the d2-isocline (G2(d1, d2) = 0). The arrows
show the direction of evolution as determined by the sign of the selection gradients. The sym-
metry on the diagonal is due to the arbitrary labelling of the two resident strategies as d1 and
d2. Parameter values: (a) s = 0.4, p = 0.8; (b) s = 0.6, p = 0.85.

Figure 3 also illustrates the unprotected dimorphisms the existence of which was proven in
section 4.2. The black lines in Figure 3 are the invasion boundaries with their mirror images
along the diagonal d2 = d1, so that in the area marked with ”A”, the two resident strategies
can mutually invade each other (protected dimorphisms; cf. Geritz et al. 1998). The inva-
sion boundary between areas ”A” and ”B” is a line of backward transcritical bifurcation of
equilibrium densities (Boldin 2006), whereby an unstable interior equilibrium appears and an
extinction equilibrium becomes stable. In area ”B”, the two residents coexist at a locally stable
interior equilibrium but this dimorphism is unprotected. The thick grey line is a saddle-node
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bifurcation line, where the two interior equilibria of population dynamics collide and disappear.

In Figure 3a, the parameters are chosen such that the monomorphic evolutionary singularity
is a branching point. After evolutionary branching, the two residents evolve to the boundary
singularity (0, d∗2) with d∗2 given in (14). The same happens also when the model has no inte-
rior monomorphic singularity and branching occurs near d = 0 (not shown). In Figure 3b, the
monomorphic singularity is an ESS. The parameters are chosen such that in the area adjacent
to the ESS, marked with ”C”, M is positive, which means that neither strategy can invade the
monomorphic population of the other (mutual exclusion; Geritz et al. 1998). Note that even
though there is a monomorphic ESS, the dimorphic singularity on the boundary still exists and
is locally attracting and evolutionarily stable.

When the model parameters s and p are varied, the invasion boundaries and the saddle-
node bifurcation line in Figure 3 shift, such that a given dimorphism (d1, d2) exhibits different
population dynamics. Two examples are shown in Figure 4, which plots the bifurcation diagram
of population dynamics varying s but keeping (d1, d2) fixed. In both cases, decreasing s leads
to a saddle-node bifurcation (i.e., in Figure 3, decreasing s causes the saddle-node bifurcation
line shift past the point (d1, d2)). This means a catastrophic collapse of the dimorphism, where
strategy d1 goes extinct abruptly, without warning from its equilibrium population density
declining towards zero. In Figure 4a, increasing survival first turns the unprotected dimorphism
into a protected one (in Figure 3, the invasion boundary shifts such that the point (d1, d2) gets
from area B into area A), and eventually leads to the loss of dimorphism via a transcritical
(non-catastrophic) bifurcation. In Figure 4b, increasing survival leads to mutual exclusion (in
Figure 3, the invasion boundary shifts such that the point (d1, d2) gets from area B into area
C).

6 Limit to the Hamilton-May model

If there are only solitary sites and no large patch, as in the model of Hamilton and May (1977),
then the projection matrix in (2) reduces to the element A11 with p = 1. The invasion fitness of
the mutant strategy D = dmut is thus given by

λmut =
1− dmut

1− dmut + E1
+ dmutsE3 (17)

and in the monomorphic resident population of strategy d, the environmental feedbacks in (1)
take the values

E1 = sd and E3 =
1

1− d+ E1

(note that E2 does not appear when there is no large patch). The invasion boundary λmut = 1
is given by two straight lines, dmut = d and

dmut = 1− (1− s)d, (18)

the intersection of which yields the well-known ESS of the Hamilton-May model, d∗HM = 1
2−s .

In the present model, the monomorphic singularity d∗ given in (9) goes to d∗HM as p → 1, and
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Figure 4: Bifurcations of population dynamic equilibria in dimorphic resident populations for
(a) p = 0.8 and (d1, d2) = (0.2, 0.9); (b) p = 0.85 and (d1, d2) = (0.5, 0.8). The equilibrium
densities n̂11 and n̂21 are shown with black and grey lines, respectively; the remaining densities
are n̂12 = p− n̂11 and n̂22 = 1−p− n̂21. Continuous and dashed lines denote stable and unstable
equilibria, respectively. In the leftmost part of both panels there is one stable equilibrium (one
pair of continuous black and grey lines) with equilibrium densities n̂11 = p and n̂21 = 1 − p;
this represents a stable boundary equilibrium where strategy d2 is extinct (n̂12 = n̂22 = 0). The
boundary equilibrium where strategy d1 is extinct (both densities shown are zero) is unstable.
In part B, a new pair of equilibria appears via a saddle-node bifurcation; the pair of black and
grey dashed lines shows the saddle and the new pair of black and grey continuous lines shows
the node born in the bifurcation. In panel (a), the right edge of part B marks a transcritical
bifurcation where the saddle collides with the boundary equilibrium where d2 is extinct, and
the right edge of part A corresponds to another transcritical bifurcation where the interior node
collides with the boundary equilibrium where d1 is extinct. In panel (b), the two transcritical
bifurcations occur in the opposite order. In the rightmost part of both panels, the boundary
equilibrium with d2 extinct is unstable and the boundary equilibrium with d1 extinct is stable.
The letters A, B, C mark protected dimorphism, unprotected dimorphism, and mutual exclusion,
respectively (cf. Figure 3).

it is indeed an ESS in the limit for any s > 0 (cf. section 3.2).

The hyperbola-shaped invasion boundary in (7), however, does not converge to the straight
line in (18), and therefore the pairwise invasibility plot of the present model remains different
from the pairwise invasibility plot of the Hamilton-May model as p→ 1 (Figure 5). The reason
for this is that the present model assumes infinitely many sites in the large patch even as the
relative size of the large patch, 1 − p, goes to zero. A mutant with sufficiently small dispersal
can invade because it is largely confined to the large patch, where low dispersal is advantageous.
Even though the relative frequency of the invading mutant remains infinitesimal (since the large
patch itself contains only an infinitesimal fraction of the sites when p→ 1), the absolute number
of mutants increases exponentially. In other words, the present model assumes that N , the
total number of sites, goes to infinity faster than p goes to 1, so that (1− p)N remains infinite;
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the Hamilton-May model however assumes that (1− p)N is zero. Since the limits N →∞ and
p→ 1 do not commute, the present model is different from the Hamilton-May model when p→ 1.

Figure 5: (a) Pairwise invasibility plot of the present model with p→ 1; (b) pairwise invasibility
plot of the Hamilton-May model (s = 0.4 in both panels). Notations as in Figure 1.

In the present model, the evolutionarily stable dimorphism found in section 4.1 exists also in
the limit p→ 1, and the dispersing strategy of this dimorphism, d∗2 given in (14), goes to d∗HM as
p→ 1. When almost all sites are solitary, the dispersing strategy evolves as in the Hamilton-May
model, but the nondispersing strategy is still present at an infinitesimal frequency (yet in a large
number). The evolutionarily stable dimorphism is in the area of protected dimorphisms. Using
Theorem 1 of Priklopil (2012), it is straightforward to show that also unprotected dimorphisms
exist in the limit p→ 1. To the contrary, in the Hamilton-May model there is neither protected
nor unprotected dimorphism, only an area of mutual exclusion (Motro 1982; Appendix E).

7 Inclusive fitness approach: Singularities and convergence sta-
bility

In the remainder of this paper, I use an alternative approach based on inclusive fitness to derive
the monomorphic and dimorphic singularities and their stability properties (see also Ajar (2003)
and Parvinen et al. (in prep.) on the comparison of adaptive dynamics and inclusive fitness).
In this section, I follow the classical inclusive fitness argument (most closely I follow Taylor
1988), which is suitable to determine evolutionary singularities (”candidate ESSs”) and their
convergence stability. I consider evolutionary stability using inclusive fitness in the next section.

By Hamilton’s (1963) rule, kin selection favours dispersal if

rb > c (19)

where b is the benefit others receive from the focal individual leaving her natal site, c is the
cost suffered by the focal individual, and r is the relatedness between the focal individual and
others competing for her natal site. Focus attention first on a solitary site in a monomorphic
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population with dispersal d. If a focal individual stays in this site rather than disperses, she
wins the site, and thereby kills all others in the site, with probability

P =
1

[1− d+ sd]C

If the focal individual leaves the site, then she surrenders her chance to win this site, and the
benefit to all others competing for the site is the chance forfeited by the focal individual, b = P .
The cost to the focal individual is P minus the chance that she survives dispersal and wins
another site. If she arrives at a solitary site, then the chance of winning is P ; if she arrives at a
site in the large patch, then the chance of winning, from (1b), is (1−p)

[(1−p)(1−d)+(1−p)sd]C = P . The
probabilities of winning a solitary site and winning a site in the large patch are the same as long
as the population is monomorphic because in the present model, immigration is proportional to
the number of sites so that there is no source-sink structure. The cost to the focal dispersing
individual is therefore c = (1 − s)P . Finally, in the present clonal model, the focal individual
is an identical twin to all non-dispersing offspring born in her natal site, but no relative to the
immigrants, and hence r = (1−d)/(1−d+ sd). In a solitary site, therefore, the inclusive fitness
increment from dispersal is

∆w1 = rb− c =

[
1− d

1− d+ sd
− (1− s)

]
P

Next, consider a site in the large patch. Since all individuals of the large patch compete
for this site, the relatedness of the focal individual to the competitors is zero, and the inclusive
fitness increment contains only the cost term,

∆w2 = −c = −(1− s)P

The expected inclusive fitness increment from dispersal is the average of ∆w1 and ∆w2

weighted by the probabilities that the focal individual is in a solitary site or in the large patch,

∆w = p∆w1 + (1− p)∆w2 =

[
p · 1− d

1− d+ sd
− (1− s)

]
P (20)

Dispersal is favoured and therefore d increases by long-term evolution if the inclusive fitness
increment ∆w is positive, i.e., if

d < d∗ =
p− (1− s)
p− (1− s)2

(21)

This result recovers the singular dispersal strategy given in (9) and also proves its convergence
stability. d∗ is outside the interval [0, 1] if p < 1− s, and in this case, dispersal evolves towards
zero since the expression in the brackets of (20) is negative for all 0 ≤ d ≤ 1.

The inclusive fitness approach can be extended to dimorphic resident populations and can
be used to obtain the dimorphic singularity (0, d∗2) as well as to prove its convergence stability
(see Appendix F).
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8 Inclusive fitness approach: Evolutionary stability

In order to establish the evolutionary stability of the singular strategy d∗, a second-order ex-
pansion of the inclusive fitness increment ∆w is needed. Instead of a single focal individ-
ual, suppose now that m additional siblings leave the site (in the adaptive dynamics notation,
dmut = d+m/C). Assume that m is such that ε = m/C is small, yet 1/m = O(ε); this implies
1/C = O(ε2), i.e., C goes fast to infinity (at the end of this section, I consider an alternative
limit). Assume also 1/N = O(ε) where N is the total number of sites.

In a solitary site, the benefit from the dispersal of the m focal offspring,

b =
m

(1− d+ sd)C
=

ε

1− d+ sd
(22)

is linear in ε. To calculate the cost, assume that each offspring disperses independently, such
that a solitary site receives at most one of the m offspring whereas the large patch receives
(1 − p)m (see Gandon and Michalakis (1999) on siblings dispersing together as a group). The
number of solitary sites won by the m focal dispersers is

spm
1

(1− d+ sd)C + 1
=

spε

1− d+ sd+ ε/m
=

spε

1− d+ sd
+O(ε3) (23a)

whereas the number of sites won in the large patch is

s(1− p)m (1− p)N
[(1− p)(1− d) + (1− p)sd]CN + s(1− p)m

=

=
s(1− p)ε

1− d+ sd+ sε/N
=

s(1− p)ε
1− d+ sd

+O(ε3) (23b)

The cost incurred by the m focal dispersers is the forfeited chance to win the natal site (in (22))
minus the number of sites won elsewhere (the sum of (23a) and (23b), i.e.,

c =
(1− s)ε

1− d+ sd
+O(ε3) (24)

Analogously to the previous section, dispersal from the large patch incurs the same cost but the
benefit is received by nonrelated individuals.

The inclusive fitness increment is given by ∆w = π(rb− c) + (1− π)(−c) = πrb− c, where
π is the probability that the focal family is in a solitary site and r is relatedness in a solitary
site. Since b is of order ε, r and π have to be expanded to first order in ε to approximate ∆w
to second order.

To expand r, note that when a fraction ε of the offspring leaves a solitary site, their relat-
edness to those who compete for their natal site is

r =
1− d− ε

1− d− ε+ sd
= r0 + r1ε+O(ε2) with r0 =

1− d
1− d+ sd

, r1 =
−sd

(1− d+ sd)2
(25)
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If all sites are solitary as in the Hamilton-May (1977) model, then ∆w = rb−c and the coefficient
of the ε2 term is the negative because r1 is negative. This implies that at the singular strat-
egy, where the linear term of ∆w vanishes, both increasing and decreasing dispersal (positive
and negative ε) cause a loss in inclusive fitness, i.e., the singular strategy is evolutionarily stable.

To expand π, consider an infinitesimally rare mutant subpopulation with the dispersal strat-
egy dmut = d + ε. The population dynamics of this subpopulation are determined by the pro-
jection matrix Amut in equation (4), and its eigenvector (π, (1 − π))T gives the distribution of
focal dispersers over the states of being in a solitary site or in the large patch. Taking d = d∗,
after some cumbersome algebra (Wolfram Mathematica R© notebook available upon request) one
obtains

π = p+ π1ε+O(ε2) with π1 =
(1− s)(1− p)

sd∗
(26)

Substituting the expansions (25) and (26) and d∗ from (21) into ∆w = πrb−c, the inclusive
fitness increment in the population of the singular dispersal strategy d∗ is

∆w =
p− (1− s)2

sp
[pr1 + π1r0]ε

2 +O(ε3) (27)

(at d = d∗, the terms linear in ε vanish). Recall that the model has an interior singularity if
p > 1−s, and this implies that the factor in front of the brackets in (27) is positive. In the brack-
ets, the first term pr1 is negative because r1 is negative; this term describes the same nonlinearity
effect what makes the singularity of the Hamilton-May model evolutionarily stable. The second
term in the brackets, π1r0, is however positive. This term comes from the spatial sorting of
dispersers. According to (26), the focal dispersers are more often in solitary sites relative to the
distribution of a neutral mutant (with ε > 0, π > p). This spatial sorting implies that mutants
with higher dispersal accumulate in the solitary sites, where high dispersal is favourable; and
mutants with lower dispersal accumulate in the large patch, where low dispersal is favourable.
Spatial sorting thus gives an advantage to mutants with dispersal either higher or lower than
the singularity, and thereby leads to disruptive selection. Evolutionary branching occurs if the
effect of spatial sorting is stronger than the effect of nonlinearity in the Hamilton-May model,
i.e., if π1r0 > −pr1 in (27). Substituting the definitions of π1, r0 and r1, one readily recovers
p < 1 − s2, the condition for evolutionary branching (given an interior singularity exists; cf.
section 3.2).

Note that the above derivation of the evolutionary stability condition assumes a relatively
large mutation (m rather than one extra individual dispersing) and takes limits such that
1/C = O(ε2), which implies that the probability of winning a site after dispersal and hence
c is proportional to ε at least up to second order (as in (24)). This is the limit considered by
adaptive dynamics. An alternative is to assume only one extra disperser and ε = 1/C. In the
latter case, c has a term quadratic in ε, which contributes a negative term in the brackets of
(27) and thereby hinders evolutionary branching (see Appendix G for details).
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9 Discussion

In this paper, I analysed a minimal model for the coexistence and evolutionary branching of
dispersal strategies due to contrasting levels of kin competition. Kin competition is well known
to drive the evolution of dispersal despite of the costs associated with dispersal (Hamilton and
May 1977; Comins et al. 1980; Motro 1982; Frank 1986; Taylor 1988; Gandon and Michalakis
1999; Ajar 2003; Berdahl et al. 2015). Most models predicting polymorphism or evolutionary
branching of dispersal, however, assume large populations with negligible competition among
kin. Instead, in these models environmental stochasticity, catastrophes, or non-equilibrium pop-
ulation dynamics select for dispersal (Doebeli and Ruxton 1997; Johst et al. 1999; Parvinen
1999; Mathias et al. 2001; Kisdi 2002; Parvinen 2002; Nurmi and Parvinen 2011; see also Cohen
and Levin 1991, whose ”evolutionarily compatible strategy” is an evolutionary branching point;
and Holt and McPeek 1996, whose Fig. 2 exhibits an evolutionary branching point).

Kin competition is likely to be an important factor also in the diversification of dispersal
strategies. This is because the strength of kin competition, and therefore the level of dispersal
selected for, differ in differently sized habitat patches. Variable patch size therefore facilitates
the evolution of diverse dispersal strategies (cf. Massol et al. 2011). The present model is the
direct extension of the Hamilton-May (1977) model to variable patch size, with the simplifying
assumption that patches are either small (solitary sites supporting a single adult) or large (with
negligible kin competition). For simplicity, I assumed a single large patch, but the model could
easily be extended to include several large patches. The only difference is that the frequencies of
dispersal strategies need to equilibrate in the large patches before one can pool them and define
n2k, the fraction of sites that are in a large patch and is occupied by strategy k.

Since competition is different in solitary sites and in the large patch, the population is struc-
tured and the population dynamics of a mutant strategy is described by the 2 × 2 projection
matrix A given in (2). The invasion fitness of the mutant is the leading eigenvalue of this matrix,
which is cumbersome to use. The adaptive dynamic analysis of the present model was greatly
facilitated by the fitness proxy introduced by Metz and Leimar (2011; see Appendix A): For
non-negative 2× 2 matrices, one can use tr(A)− det(A) instead of the invasion fitness, as long
as tr(A) ≤ 2 (which holds for mutants similar to a resident strategy). An alternative possibility,
particularly for models with many patch types, is to calculate the basic reproduction number
(R0) over dispersal generations, i.e., the number of dispersers produced by the descendants of
an offspring entering the dispersal pool (Gyllenberg and Metz 2001; Metz and Gyllenberg 2001;
Massol et al. 2011).

I could obtain the pairwise invasibility plots analytically (see equation (8)), from which
the full characterisation of monomorphic evolution follows. For the monomorphic evolutionary
singularity (equation (9)), I recover the formula of Frank (1986) with FST = p (offspring taken
from one patch are identical by descent if and only if the patch is a solitary site); note that Frank
(1986) assumed patches of equal size, yet his result generalizes to the present model. Contrary
to the case of equal patches, in the present model the singularity can be an evolutionary branch-
ing point (Figure 2), and its bifurcation lines are given by very simple formulas (transcritical
bifurcation at p = 1 − s; bifurcation between an ESS and an evolutionary branching point at

19



p = 1− s2, see section 3.2).

The population dynamics of dimorphic populations exhibit multiple attractors and unpro-
tected dimorphisms (Figures 3 and 4; analytic proof in section 4.2). If model parameters change
due to a change in the environment (e.g. if the probability of survival during dispersal, s,
decreases), then an unprotected dimorphism can collapse through a catastrophic saddle-node
bifurcation (Figure 4). The possibility of such catastrophic extinctions is an important concern
for management and conservation. The same catastrophic extinction may happen also due to
evolution: If the initial dimorphic population is above the isocline in area B of Figure 4b, then
the adaptive dynamics can push the system through the saddle-node bifurcation line, causing
the collapse of the dimorphism. Starting from the evolutionary branching point of Figure 4a,
however, the evolving dimorphism stays in the area of protected dimorphisms.

For arbitrary dimorphic resident populations, obtaining the population dynamic equilibrium
was not possible analytically; as so often, the hard step of the analysis is finding the attractor
of the ecological dynamics. However, if one of the resident strategies has zero dispersal, then
in equilibrium it is confined to the large patch, and in this simpler case one can obtain the
dimorphic equilibrium population densities in equation (11). It is therefore possible to find the
evolutionarily stable dimorphism (0, d∗2) analytically (see (14)).

The model has three environmental feedback variables, and therefore no more than three
strategies can coexist at equilibrium (Levin 1970; Geritz et al. 1997; Meszéna et al. 2006). I
have not explored the trimorphic equilibria, but an analogy suggests that these are unstable.
The Hamilton-May model has two environmental feedbacks (E1 and E3 in the present notation)
and all its dimorphic equilibria are unstable (Motro 1982; Appendix E). The presence of the
large patch adds one more environmental feedback (E2) so that the trimorphic equilibra may
now be unstable in the same way as the dimorphic equilibra of the Hamilton-May model. In any
case, trimorphisms are not reachable by small mutational steps from initially monomorphic or
dimorphic populations, because dimorphic populations have no singularities where evolutionary
branching could happen.

In the second part of the paper, I re-derived some of the results using an inclusive fitness
approach. This intuitive approach provides an easy way to find the singular strategy and its
convergence stability (section 7), but establishing evolutionary stability using inclusive fitness
in a structured population involves cumbersome algebra (section 8). The reason is that for the
singularity and its convergence stability one needs only the selection gradient, and the selection
gradient is essentially an eigenvalue sensitivity problem. The leading eigenvalue of the mutant
projection matrix Amut in (4) is 1 when dmut = d, and the selection gradient is the eigenvalue
sensitivity [∂λ/∂dmut]dmut=d = vTBu/vTu, where Bij = [∂Aij/∂dmut]dmut=d and u and v are
respectively the right and left eigenvectors of Amut with dmut = d. In the present model, it is
easy to see that u = [p, (1 − p)]T and v = [1, 1]T (the latter is because there is no source-sink
structure). For the eigenvalue sensitivity, therefore, one only needs to combine the elements
of [1, 1]TB, i.e., the derivatives of A11 + A21 = 1−dmut

1−dmut+sd
+ sdmut

1−d+sd (which is fitness in the

Hamilton-May model) and A12 + A22 = 1−dmut+sdmut
1−d+sd (which is fitness in a large patch with no
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kin competition). These derivatives are easy to intuit (see section 7).

To obtain the condition for evolutionary stability with the inclusive fitness approach, one
needs also the eigenvector sensitivity (cf. equation (26)), which is technically more cumbersome.
Yet it is the eigenvector sensitivity that explains how the spatial structure can turn selection
to be disruptive at the singular strategy. As equation (26) shows, a mutant with higher dis-
persal accumulates in the solitary sites, where it is at an advantage, whereas a mutant with
lower dispersal accumulates in the large patch, where it has an advantage. This spatial sorting
makes it possible that at the singularity, mutants with both higher and lower dispersal are at
an advantage, i.e., selection is disruptive.

A somewhat surprising conclusion of the inclusive fitness analysis is that to recover the con-
dition for evolutionary stability as obtained from adaptive dynamics, one has to make specific
assumptions about the order of limits (see section 8). Specifically, in this model the adaptive
dynamics approach assumes that fecundity (C) goes to infinity faster than the inverse of the
mutation stepsize |dmut − d|. If instead |dmut − d| = 1/C such that one individual changes her
dispersal behaviour as commonly assumed when using the inclusive fitness approach, then the
condition for evolutionary branching becomes somewhat more restrictive (Figure 6; derivation
in Appendix G).

Since the inclusive fitness approach is based on local expansions, this method is not suitable
to obtain the full pairwise invasibility plot or the sets of protected and unprotected dimorphisms.
I have also refrained from using the inclusive fitness approach near d = 0, the point where the
selection gradient is not defined (see section 3.2).

Figure 6: Bifurcations of the monomorphic singularity with the alternative assumption about
limits used in Appendix G. Notation as in Figure 2. The thin line shows the boundary between
BP and ESS from Figure 2 for comparison.

The main simplifying assumption of the present model is the specific distribution of patch
sizes (solitary sites plus a large patch). This is of course not realistic, but makes the model highly
tractable and the results simple (”proof-of-concept” model, Servedio et al. 2014). Massol et al.
(2011) investigated a more realistic model with arbitrary distribution of patch sizes, and found
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evolutionary branching of dispersal when the patch size distribution is positively skewed. The
positive skew means that the habitat consists of many small and few large patches, such that
the numbers of individuals experiencing selection in small and in large patches are comparable,
a situation similar to the present model.

In Appendix H, I evaluate the results of Massol et al. (2011) for the extreme patch size
distribution used in this paper, and show that their model predicts evolution to d = 0 for all
combinations of my parameters and predicts evolutionary branching at d = 0 when p > 1/2. The
discrepancy between this prediction and Figure 2 is likely to be the consequence of the source-
sink structure inherent in the model of Massol et al. (2011) but absent in my model. Massol
et al. (2011) assumed that immigration is independent of patch size. This creates a source-sink
structure with a net flow of individuals from patches of high carrying capacity to patches of low
carrying capacity. Such a source-sink structure becomes stronger when the variance of patch
size increases, and it selects against dispersal (Hastings 1983). The source-sink structure thus
explains why, in the model of Massol et al. (2011), the singular dispersal strategy decreases with
the variance of the patch size distribution, and why dispersal evolves to d = 0 with the extreme
patch size distribution used in my model, which has infinite variance (Appendix H). Since my
model assumes that immigration is proportional to patch size, there is no source-sink structure
and there can be an interior singularity (Figure 2).

Further, my model predicts that when dispersal evolves to zero, it always undergoes evolu-
tionary branching, whereas the model of Massol et al. (2011) predicts branching for the extreme
patch size distribution of my model only if p > 1/2. When the resident dispersal is close zero,
a second strategy with higher dispersal is favoured in the solitary sites. In the model of Massol
et al. (2011), such a strategy can invade only if solitary sites are sufficiently common, otherwise
the net flow from the large patch is strong enough to swamp the solitary sites even if the large
patch is dominated by a near-zero dispersal strategy. Since there is no source-sink structure in
my model, such swamping does not occur and therefore evolutionary branchig always happens
when dispersal evolves to d = 0.

Whether immigration is independent of patch size (as in Massol et al. 2011) or is propor-
tional to patch size (as in the present model) or relates to patch size in some other way depends
on exactly how the patches differ from each other. If all patches have the same area but large
patches have high resource density so that they can support many individuals, then, assuming
that immigration depends on area as in case of passive dispersal, immigration is independent
of patch size and the population has a source-sink structure. If however patches differ in area
rather than in resource density, then immigration is proportional to patch size and there is no
source-sink structure. With the extreme patch size distribution of solitary sites and a very large
patch, the former scenario would assume a very big difference in resource densities and therefore
the latter possibility seems somewhat more realistic, especially if one considers an organism
with limited active movement and passive long-distance dispersal, such that individuals are well
mixed within the large patch but can move to solitary sites only via costly dispersal. With the
general patch size distribution of Massol et al. (2011), both scenarios are possible.
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Massol et al. (2011) considered a continuous-time model similar to the Moran process,
which hinders a quantitative comparison with the discrete-time Hamilton-May model (see the
Appendix of Massol et al. 2011). In the present model, p → 1 (almost all sites are solitary)
represents the limit to the simplest model version of Hamilton and May (1977). I recover the
Hamilton-May ESS in this limit, but, interestingly, the pairwise invasibility plots and the dy-
namics of dimorphic populations do not converge to those of the Hamilton-May model (Figure
5). This is because the limit p→ 1 does not commute with the system size going to infinity (see
section 6).

A common assumption of Massol et al. (2011) and the present model is that the individuals
have no knowledge of the strength of local kin competition. In both models, disruptive selection
emerges because of the contrasting levels of kin competition in small versus large patches. If the
individuals can assess how strong kin competition they experience, then a conditional dispersal
strategy can replace the dispersal polymorphism (Ezoe and Iwasa 1997; Kisdi 2004; Parvinen et
al. 2012).

I followed the traditional assumption that the probability of survival during dispersal (s) is
constant, which yields a linear trade-off between the number of nondispersed and successfully
dispersed offspring (i.e., between (1 − d)C and sdC). An alternative mechanism leading to
evolutionary branching of dispersal in stable environments operates when dispersal is part of
a nonlinear trade-off, for example dispersal is traded off against fecundity (Weigang and Kisdi
2015). A nonlinear trade-off may exist also if the probability of survival during dispersal depends
on the amount of extra resources invested into dispersers (e.g. in the form of specific dispersal
structures or an energy reserve that help survival during dispersal), so that if a higher fraction of
the offspring disperse, then each offspring is less well equipped and hence has a lower probability
to survive. While a nonlinear trade-off may either facilitate or hinder evolutionary branching
depending on its convexity, the contrasting levels of kin competition explored in this paper arise
from the very natural assumption of variable patch sizes and always facilitate diversity relative
to the case of equally sized patches.
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Appendix A

Let A be a non-negative 2×2 projection matrix, let λ be its leading eigenvalue (i.e., the eigenvalue
with the largest absolute value), and F = tr(A)− det(A). tr(A) ≥ 0 by A being non-negative
and λ is real and non-negative by the Perron-Frobenius theorem. In this Appendix, I show that
assuming tr(A) ≤ 2, F T 1 is equivalent to λ T 1. This result was first obtained by Metz and
Leimar (2011), who also discuss the general case of n× n matrices.

The characteristic equation of A, λ2 − tr(A)λ+ det(A) = 0, yields the eigenvalues
(tr(A)±

√
tr(A)2 − 4 det(A))/2. Since tr(A) ≥ 0, the leading eigenvalue is the ”+” root. Hence

we have

λ =
tr(A) +

√
tr(A)2 − 4 det(A)

2
T 1

⇐⇒
√

tr(A)2 − 4 det(A) T 2− tr(A)

∗⇐⇒ tr(A)2 − 4 det(A) T 4− 4 tr(A) + tr(A)2

⇐⇒ tr(A)− det(A) T 1

where the step marked with ∗ used that tr(A) ≤ 2 and λ is real (the expression under the square
root is non-negative). Note that if tr(A) > 2, then λ > 1 follows immediately.

Appendix B

In this Appendix, I first outline the proof that F (dmut, d) = 1 is equivalent to equation (7) of the
main text. Substituting the elements of Amut from (4) into F (dmut, d) = tr(Amut)−det(Amut) =
1 gives

1− dmut
1− dmut + sd

+
dmutsp

1− d+ sd
+

1− dmut + dmuts(1− p)
1− d+ sd

−

−
[

1− dmut
1− dmut + sd

+
dmutsp

1− d+ sd

]
1− dmut + dmuts(1− p)

1− d+ sd
+

dmutsp

1− d+ sd

dmuts(1− p)
1− d+ sd

− 1 = 0

Multiplying with the denominators yields a cubic polynomial in dmut and d. This cubic polyno-
mial can be divided with (dmut − d), and the result readily simplifies into (7).

Next, I prove that the left branch of the hyperbola in (8) is an invasion boundary. As
shown in the main text, it suffices to demonstrate that tr(Amut) < 2 holds at one point of each

segment of the left branch in (0, 1]2. Assume first that 1−
√
1−p

2(1−s) ≤ 1, so that the left vertex of the
hyperbola is in the unit square and the left branch gives one continuous line in the unit square.
Substituting the coordinates of the vertex into

tr(Amut) =
1− dmut

1− dmut + sd
+

1− dmut + sdmut
1− d+ sd

(28)
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yields

tr(Amut) =
2 +
√

1− p(1− s(2 + s))

(1 +
√

1− p)(1− s
√

1− p)
.

The claim tr(Amut) < 2 is equivalent to

2 +
√

1− p(1− s(2 + s)) < 2 + 2
√

1− p− 2s
√

1− p(1 +
√

1− p)
−s(2 + s)

√
1− p <

√
1− p− 2s

√
1− p(1 +

√
1− p)

−s(2 + s) < 1− 2s(1 +
√

1− p)
1− 2s

√
1− p+ s2 > 0

where I have used that p < 1 by assumption. The last inequality holds since 1− 2s+ s2 ≥ 0 and
p > 0 is assumed with strict inequality. Because tr(Amut) < 2 holds at the left vertex, it must
hold on the entire left branch in the interior of the unit square (see main text).

Assume now that 1−
√
1−p

2(1−s) > 1, so that the left vertex of the hyperbola is outside the unit
square. The left branch of the hyperbola has then two separate segments in the unit square,

which intersect the d = 1 edge at the points (1, d
(1)
mut) and (1, d

(2)
mut), where, from equation (7)

with d = 1, d
(1)
mut and d

(2)
mut are the roots of the quadratic equation pdmut(1 − dmut) = s(1 − s).

To see that tr(Amut) < 2 holds at both of these points, evaluate tr(Amut) in (28) at d = 1 to
arrive at the claim

1− dmut
1− dmut + s

+
1− dmut + sdmut

s
< 2

to hold at d
(1)
mut and d

(2)
mut. This inequality simplifies to

(1− s)(1− dmut)(1− dmut + s) < s2 (29)

where the left hand side is an upward opening parabola with roots dmut = 1 and dmut = 1 + s.
Hence the left hand side of (29) is a decreasing function of dmut for the biologically relevant

values 0 ≤ dmut ≤ 1, and the inequality holds at both d
(1)
mut and d

(2)
mut if it holds at the smaller

one. The explicit expressions for d
(1)
mut and d

(2)
mut are somewhat unruly and depend on p (whereas

(29) does not). However, it is easily seen from the equation pdmut(1−dmut) = s(1−s) that d
(1)
mut

and d
(2)
mut are symmetric about 1

2 and are the farthest apart, such that the smaller root assumes

its minimal value, when p = 1. In this case, d
(1)
mut = s and d

(2)
mut = 1− s, and since the condition

1−
√
1−p

2(1−s) > 1 implies s > 1
2 , 1 − s is the smaller root. Substituting dmut = 1 − s into (29) we

arrive at the claim 2s2(1− s) < s2, which holds due to s > 1
2 . Therefore tr(Amut) < 2 holds at

one point of each segment, which implies the same on the entire left branch of the hyperbola in
the interior of the unit square (see main text).

The right branch of the hyperbola intersects the unit square if and only if the right ver-

tex is in the unit square, i.e., if 1+
√
1−p

2(1−s) < 1. A derivation analogous to the above shows

that at the right vertex tr(Amut) > 2, and therefore, as shown in the main text, the same holds
on the entire right branch in the unit square. The right branch is thus not an invasion boundary.
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Appendix C

Here I derive the selection gradients of dimorphic populations with strategies d1 = 0 and arbi-
trary d2 given in equations (13) and (15) of the main text.

Assume small mutations, i.e., dmut = di + δ, where di is a resident (i = 1, 2) and |δ| � 1.
Substituting D = dmut and Ê2 = 1 from (12) into (2), the projection matrix of a mutant of
strategy i is

A
(i)
mut =

 A
(i)
11 spÊ3(di + δ)

s(1− p)(di + δ) 1− (di + δ)(1− s(1− p))

 (30)

where, by Taylor expanding the nonlinear element A11,

A
(i)
11 =

1− di
1− di + Ê1

− Ê1

(1− di + Ê1)2
δ − Ê1

(1− di + Ê1)3
δ2 + spÊ3(di + δ) +O(δ3)

F2(di, 0, d2) = 1 for both residents (i = 1, 2). Collecting terms linear in δ in the trace and the

determinant of A
(i)
mut, one obtains

F2(di + δ, 0, d2) = 1 +

[
2spÊ3di − (1− s(1− p)) Ê1(1 + Ê1)

(1− di + Ê1)2

]
δ +O(δ2) (31)

Taking i = 1 and substituting d1 = 0, (31) simplifies to

F2(δ, 0, d2) = 1− (1− s(1− p)) Ê1

(1 + Ê1)
δ +O(δ2)

which immediately yields the selection gradient in (13a).

For i = 2, substitute Ê3 = 1/(1− d2 + Ê1) from (12) into (31) to arrive at

F2(d2 + δ, 0, d2) = 1 +
1

1− d2 + Ê1

[
2spd2 − (1− s(1− p)) Ê1(1 + Ê1)

1− d2 + Ê1

]
δ +O(δ2)

Since Ê1(1− s(1− p)) = spd2 by (12), this expression simplifies to

F2(d2 + δ, 0, d2) = 1 +
spd2

1− d2 + Ê1

[
2− 1 + Ê1

1− d2 + Ê1

]
δ +O(δ2)

= 1 +
spd2

(1− d2 + Ê1)2

[
1− 2d2 + Ê1

]
δ +O(δ2)

which yields (13b), where h(d2) is [1− 2d2 + Ê1] with Ê1 substituted from (12).
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At the singular dimorphism (0, d∗2), the linear terms of the fitness proxy F2(d
∗
2 + δ, 0, d∗2)

vanish. Collecting terms quadratic in δ in the trace and the determinant of A
(2)
mut, one arrives

at

F2(d
∗
2 + δ, 0, d∗2) = 1 +

[
spÊ3 − (1− s(1− p))

(
Ê1

(1− d∗2 + Ê1)2
+

Ê1d
∗
2

(1− d∗2 + Ê1)3

)]
δ2 +O(δ3)

h(d∗2) = 0 implies [1− 2d∗2 + Ê1] = 0 and therefore 1− d∗2 + Ê1 = d∗2, so that Ê3 = 1/d∗2 and

F2(d
∗
2 + δ, 0, d∗2) = 1 +

[
sp

d∗2
− (1− s(1− p)) 2Ê1

(d∗2)
2

]
δ2 +O(δ3)

Using Ê1(1− s(1− p)) = spd∗2 from (12), this simplifies to

F2(d
∗
2 + δ, 0, d∗2) = 1− sp

d∗2
δ2 +O(δ3)

which readily yields (15).

Appendix D

To search for interior evolutionary singularities of dimorphic resident populations, I obtained
the equilibrium densities of the resident strategies and the selection gradients as described in
the main text. Assume, without loss of generality, that d2 > d1, i.e., consider the upper left
halves (above the diagonal) of the symmetric isocline plots in Figure 3. A d2-isocline (where
G2(d1, d2) = 0) must connect to the boundary singularity (0, d∗2) with d∗2 given in (14). First,
I used numerical continuation to follow this isocline in the interior, and verified that G1(d1, d2)
does not change sign along this isocline; this means that there is no dimorphic singularity on
the d2-isocline that connects to the boundary singularity. Second, I searched the interior for
any other d2-isocline checking for other zeros of G2(d1, d2) on a 100 × 100 mesh. The entire
procedure was repeated with every combination of parameter values s ∈ {0.1, 0.2, ..., 0.9} and
p ∈ {0.1, 0.2, ..., 0.9}. This search did not find any d2-isocline other than the one connecting to
the boundary singularity, and found no interior dimorphic singularity.

Appendix E

In this Appendix, I consider the dimorphic equilibria of the Hamilton-May (1977) model. Since
this model has only two environmental feedback variables (E1 and E3, see section 6), at most
two resident strategies can coexist at equilibrium (Levin 1970; Geritz et al. 1997; Meszéna et al.
2006). Motro (1982) has shown that dimorphic equilibria exist, but they are always unstable.
Here I put the proof in the context of the present paper.
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Let n denote the fraction of sites occupied by the resident strategy d1; the remaining fraction
1 − n is occupied by the resident d2 (since all sites are solitary and all sites are occupied, the
population dynamics is one-dimensional). The environmental feedback variables are

E1 = s(nd1 + (1− n)d2) and E3 =
n

1− d1 + E1
+

1− n
1− d2 + E1

(32)

At the population dynamic equilibrium of the two resident strategies, n must be such that λmut
given in equation (17) equals 1 when dmut = d1 (or, equivalently, dmut = d2), i.e., we have

1− d1
1− d1 + E1

+ sd1

[
n

1− d1 + E1
+

1− n
1− d2 + E1

]
= 1 (33)

at equilibrium. Since E1 is linear in n, (33) can be rearranged into a quadratic equation for n.
The two roots of this quadratic equation are n = 1 and the nontrivial root

n̂ =
1− d1 − d2 + sd2

s(d2 − d1)
(34)

n̂ is between 0 and 1 if (d1, d2) is between the lines d2 = 1− (1− s)d1 and d2 = (1− d1)/(1− s),
which correspond to the invasion boundary in (18) and its inverse (i.e., mirror image), re-
spectively. Hence the dimorphic equilibrium exists precisely in the area of mutual exclusion,
delineated by the invasion boundary and its mirror image in the pairwise invasibility plot.

With a slight abuse of notation, let λ(n) denote the annual growth rate of strategy d1, i.e.,
λmut in (17) with dmut = d1 and the environmental feedbacks as in (32). The equilibrium n̂ is

unstable if ∂λ(n)n
∂n

∣∣∣
n=n̂

> 1, which is equivalent to ∂λ(n)
∂n

∣∣∣
n=n̂

> 0. This derivative evaluates to

∂λ(n)

∂n

∣∣∣∣
n=n̂

=
s(d1 − d2)
d1d2

(1− d1 − d2 + sd1) =
s2(d1 − d2)2

d1d2
(1− n̂) (35)

which is indeed positive at every biologically relevant dimorphic equilibrium (0 < n̂ < 1). Hence
the Hamilton-May model has no stable equilibria of dimorphic resident populations.

Appendix F

Here I use the inclusive fitness approach to derive the selection gradients in a dimorphic popula-
tion and thereby obtain the dimorphic singularity (0, d∗2) and establish its convergence stability.
Consider first a solitary site occupied by strategy di (i = 1, 2). A focal offspring could win this

site with probability P
(i)
1 = 1

[1−di+Ê1]C
(where Ê1 is the number of immigrants as in (1a) at

population dynamic equilibrium), hence if the focal individual disperses, she loses this chance

to win the natal site and thereby gives a benefit P
(i)
1 to others in her natal site. To calculate the

cost to the focal individual, I first calculate the probability of winning another site upon suc-
cessful dispersal. A disperser arrives at a solitary site occupied by strategy dj with probability

sn̂1j and wins this site with probability P
(j)
1 ; and she arrives at the large patch with probability

s(1 − p) and wins a site there with probability P2 = Ê2/C with Ê2 given in (1b). The cost
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to the dispersing focal individual is therefore P
(i)
1 − s[n̂11P

(1)
1 + n̂12P

(2)
1 + (1 − p)P2]. Finally,

the relatedness between the focal individual and those benefiting from her dispersal is 1−di
1−di+Ê1

.

Hence the inclusive fitness increment from leaving a solitary site of strategy di is

∆w
(i)
1 =

1− di
1− di + Ê1

P
(i)
1 − [P

(i)
1 − s(n̂11P

(1)
1 + n̂12P

(2)
1 + (1− p)P2)]

If the focal individual disperses from the large patch where almost all others are unrelated
to her, then the inclusive fitness increment contains only the cost term, i.e.,

∆w2 = −[P2 − s(n̂11P (1)
1 + n̂12P

(2)
1 + (1− p)P2)]

An individual with strategy di is born in a solitary site with probability n̂1i/(n̂1i + n̂2i) and in
the large patch with probabilty n̂2i/(n̂1i + n̂2i). The expected inclusive fitness increment from
dispersal for an individual with strategy di is therefore

∆w(i) =
n̂1i

n̂1i + n̂2i
∆w

(i)
1 +

n̂2i
n̂1i + n̂2i

∆w2

Note that the equilibrium densities n̂ij must be determined from the resident population dy-
namics as in the main text (section 5), and they are complicated functions of the strategies d1
and d2. The sign of ∆w(i) gives the direction of the selection gradient of strategy di, and the
nullcline of ∆w(i) is the di-isocline (cf. Figure 3).

Consider now the putative dimorphic singularity (0, d∗2). With d1 = 0, we have n̂11 = 0,
n̂12 = p and P2 = Ê2/C = 1/C (cf. section 4.1) so that ∆w(1) simplifies to

∆w(1) = ∆w2 = − 1

C
+ s

(
pP

(2)
1 +

1− p
C

)
Substituting P

(2)
1 = 1

[1−di+Ê1]C
and Ê1 = spd2

1−s(1−p) (see (12) in section 4.1), the inequality

∆w(1) < 0 simplifies to (1 − d2)(1 − s) > 0. Since the latter is always satisfied, the putative
singularity (0, d∗2) cannot be invaded by mutants of d1 = 0. Moreover, ∆w(1) < 0 implies that
the selection gradient of strategy d1 near d1 = 0 is negative, i.e., (0, d∗2) is transversally stable.

To find the singular value d∗2, substitute n̂ij from (11) in section 4.1 into ∆w(2). After some
algebra, this yields

∆w(2) =
sp(1− d2 + Ê1)− Ê1(1− s(1− p))

(1− d2 + Ê1)2C

where Ê1 = spd2
1−s(1−p) as above. It is straightforward to show that the numerator of ∆w(2) is a

linearly decreasing function of d2 such that ∆w(2) is positive when

d2 < d∗2 =
1− s+ sp

2(1− s) + sp

whereby we have recovered the dimorphic singularity in (14) and have also shown its convergence
stability.
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Appendix G

Here I derive the condition for evolutionary stability of the monomorphic singularity using the
inclusive fitness approach and assuming m = 1 and 1/C = ε, i.e., assuming that fecundity goes
slower to infinity than in section 8. In this case, (23a) becomes

sp
1

(1− d+ sd)C + 1
=

spε

1− d+ sd+ ε
= sp

[
ε

1− d+ sd
− ε2

(1− d+ sd)2

]
+O(ε3) (36)

The benefit in (22) and the probability of winning a site in the large patch in (23b) remain the
same (the latter assuming 1/N = O(ε) as before), and also the first order expansions of r and π
remain the same as in section 8. Using (36) instead of (23a) in the cost term of ∆w = πrb− c,
the inclusive fitness increment at the singularity is

∆w =
p− (1− s)2

sp

[
pr1 + π1r0 −

(
p− (1− s)2

)]
ε2 +O(ε3)

and since p − (1 − s)2 > 0 when there is an interior singularity, this alternative limit yields an
extra negative second order term in ∆w compared to (27). Figure 6 shows the effect on the
bifurcation plot of the monomorphic singularity.

Appendix H

In this Appendix, I investigate the conditions for evolutionary branching given by Massol et al.
(2011) for the specific patch size distribution used in this paper. In the model of Massol et al.
(2011), the singular dispersal strategy is given by

d∗ = min

[
1

(1− s+ γ2)K̄
, 1

]
(37)

and it is evolutionarily stable if

γ3 < 2γ
1/2
2 +

(1− s)K̄ − 1

K̄
γ
−1/2
2 +

(1− s)(K̄ − 1)

K̄
γ
−3/2
2 (38)

where K̄ is the mean patch size (i.e., the mean number of individuals supported by a patch),
γ2 = E[(K − K̄)2]/K̄2 is the squared coefficient of variation of the patch size distribution, and

γ3 = E[(K − K̄)3]/(K̄3γ
3/2
2 ) is its standardized skewness.

In the patch size distribution used in the present paper, there are pN solitary sites with
K = 1 and 1 large patch with K = (1− p)N . Hence the mean patch size is

K̄ =
pN

1 + pN
· 1 +

1

1 + pN
· (1− p)N =

N

1 + pN

and therefore K̄ → 1/p as N →∞. The variance of the patch size distribution is

E[(K−K̄)2] =
pN

1 + pN

(
1− N

1 + pN

)2

+
1

1 + pN

(
(1− p)N − N

1 + pN

)2

=
pN(1− (1− p)N)2

(1 + pN)2
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which yields

γ2 =
p(1− (1− p)N)2

N

and therefore γ2 is asymptotically equivalent to p(1−p)2N as N →∞. Finally, the standardized
skewness is

γ3 =
pN − 1√
pN

and therefore γ3 is asymptotically equivalent to
√
pN as N →∞.

Since γ2 → ∞, the singular dispersal strategy in (37) is zero. In (38), the second and
third terms of the right hand side are negligible for N → ∞, and the inequality simplifies to√
pN < 2(1− p)

√
pN or p < 1/2. Hence the condition for evolutionary stability is violated and

the singularity is an evolutionary branching point if p > 1/2.
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