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Abstract. Evolutionary singularities are central to the adaptive dynamics of evolving traits.
The evolutionary singularities are strongly affected by the shape of any trade-off functions a
model assumes, yet the trade-off functions are often chosen in an ad hoc manner, which may
unjustifiably constrain the evolutionary dynamics exhibited by the model. To avoid this prob-
lem, critical function analysis has been used to find a trade-off function that yields a certain
evolutionary singularity such as an evolutionary branching point. Here I extend this method to
multiple trade-offs parameterized with a scalar strategy. I show that the trade-off functions can
be chosen such that an arbitrary point in the viability domain of the trait space is a singularity
of an arbitrary type, provided (next to certain non-degeneracy conditions) that the model has at
least two environmental feedback variables and at least as many trade-offs as feedback variables.
The proof is constructive, i.e., it provides an algorithm to find trade-off functions that yield
the desired singularity. I illustrate the construction of trade-offs with an example where the
virulence of a pathogen evolves in a small ecosystem of a host, its pathogen, a predator that
attacks the host and an alternative prey of the predator.
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1 Introduction

Trade-off functions linking various traits subject to selection are ubiquitous in models of evo-
lutionary ecology. The precise shapes of these trade-off functions are, however, often the least
substantiated assumptions of the models. Analytical tractability may require that simple formu-
las represent the trade-offs, but this still leaves considerable freedom for choice, and the choices
made are usually not backed up by empirical evidence. Indeed, in many cases the empirical data
are too noisy to establish the shape of a trade-off function in sufficient detail; yet the details
matter for the predictions of the models (see e.g. de Mazancourt and Dieckmann 2004 and
Geritz et al. 2007 for examples).

Critical function analysis is an increasingly popular technique used in adaptive dynamics to
circumvent the necessity of assuming trade-off functions in an ad hoc manner (de Mazancourt
and Dieckmann 2004; Kisdi 2006; see Bowers et al. 2005 for a closely related approach, and
Geritz et al. 2007; Svennungsen and Kisdi 2009; Boldin et al. 2009; Zu et al. 2011; Morozov
and Best 2012 for some applications). Instead of starting with a certain trade-off function and
deriving the location and properties of evolutionary singularities based on this particular trade-
off, critical function analysis finds the slope (first derivative) of the trade-off at a given point
such that this point is singular, and establishes whether the convexity (second derivative) of
the trade-off can be chosen such that the singularity is of a desired type, for example such that
evolutionary branching occurs. This analysis is carried out at each point of the trait space that
corresponds to a viable population. The procedure thus either yields concrete examples for the
trade-off function that lead to a certain singularity (such as a branching point), or else proves
that this type of singularity cannot occur in the model with any choice of the trade-off function.

The existing technique of critical function analysis considers only a single trade-off, and as
a consequence, it has only limited control over the properties of the evolutionary singularities
it delivers (see the Discussion for details). In this paper, I extend critical function analysis to
multiple trade-offs between traits determined by an underlying scalar strategy. First I consider
a general model of adaptive dynamics and give sufficient conditions under which a monomorphic
singularity of any desired type can be obtained at any given point in (the viability domain of)
the trait space by choosing appropriate trade-off functions. Note that the conditions found in
the first part of the paper are sufficient but not necessary, i.e., failing these conditions does not
imply that some type of singularity may not occur in the model. The proof is constructive, i.e.,
when the sufficient conditions are satisfied, it gives a method to construct trade-off functions
that make an arbitrary point of the trait space a singularity of an arbitrary type.

In the second part of the paper I describe a worked example, where I investigate evolutionary
branching of pathogens when their host is subject to predation. Next to illustrating the general
results, I also show how a direct method of analysis can be applied to concrete models; the
general results of the first part ensure that the direct method of constructing trade-offs delivers
the desired singularity. The direct method can also be used to confirm or disprove that a certain
singularity occurs under biologically plausible trade-offs (see Discussion). Readers who wish to
study the construction method but wish to avoid some technicalities can read the direct analysis
of the worked example in sections 4.1 and 4.3 without the rest of the main text.
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2 Preliminaries

Let rx(y) denote the invasion fitness of the mutant strategy y in the resident population of
strategy x (x, y ∈ X ⊆ R; Metz et al. 1992). x is singular if ∂r

∂y |y=x = 0. Coexistence by mutual

invasibility occurs in the neighbourhood of the singularity if M = ∂2rx(y)
∂x∂y |y=x < 0, whereas if

M > 0, then there are pairs of strategies in the neighbourhood of the singularity that mutu-
ally exclude each other (Geritz et al. 1998; note that as long as M 6= 0, coexistence near a
singularity is possible only by mutual invasibility, Geritz 2005). The singularity is evolution-

arily stable (sensu Maynard Smith 1982) if E = ∂2rx(y)
∂y2

|y=x < 0 and it is convergence stable if

E +M < 0 (Eshel 1983). The full classification of generic monomorphic evolutionary singulari-
ties of scalar strategies, given by Geritz et al. (1998), is rewritten in Table 1 in terms ofM and E .

Table 1. Generic types of monomorphic evolutionary singularities of scalar strategies (based
on Geritz et al. 1998).

Singularity1
Conv.
stab.3

Evol.
stab.

Inv.
cap.

Mut.
inv. Condition

(b) Branching point yes no yes yes M < −E < 0

(c) CSS2 yes yes yes yes M < 0 and E < 0

(d) CSS yes yes yes no 0 <M < −E2
(e) CSS yes yes no no 0 < −E2 <M < −E
(f) Garden of Eden no yes no no 0 < −E <M
(g) Non-ESS repellor2 no no no no M > 0 and E > 0

(h) Non-ESS repellor no no no yes −E2 <M < 0

(a) Non-ESS repellor no no yes yes −E <M < −E2 < 0

1The letters (a)-(h) correspond to the pairwise invasibility plots shown in Figure 2 of Geritz et al. (1998), who

classified the singularities in terms of the second derivatives ∂2r
∂x2 |y=x and E = ∂2r

∂y2 |y=x; to switch to M and E ,

note that rx(x) = 0 for all x ∈ X and this implies ∂2r
∂x2 |y=x + 2M + E = 0.

2The three types of CSSs and three types of non-ESS repellors are distinguished by their invading capability and

whether mutual invasibility exists in their neighbourhoods.
3 ”Conv. stab.”, convergence stability; ”Evol. stab.”, evolutionary stability; ”Inv. cap.”, invading capability

(whether the singular strategy can invade when itself is rare in the resident population of a strategy in its

neighbourhood); ”Mut. inv.”, mutual invasibility near the singularity (”no” means mutual exclusion). Note that

the four properties are pairwise independent but not fully independent.

Suppose that the scalar strategy determines m observable trait values, f1, ..., fm. The para-
metric curve x 7→ (f1(x), ..., fm(x)) corresponds, at least locally (away from critical points), to
m − 1 trade-off functions connecting the observable traits (figure 1). I assume that the trait
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vector f(x) = [f1(x), ..., fm(x)]T is a twice continuously differentiable function of the strategy
x (T denotes the transpose). The trade-off structure is characterized locally by the derivative
vectors f ′(x) = df(x)/dx and f ′′(x) = d2f(x)/dx2 (throughout, I shall refer to x 7→ f(x) as the
trade-off structure, in order to distinguish it from the individual trade-offs as the one in figure
1). Instead of assuming a certain trade-off structure a priori and differentiating it to obtain
f ′(x) and f ′′(x), I seek vectors f ′(x) and f ′′(x) such that the trade-off structure yields the desired
singularity. More precisely, given a strategy x with an arbitrary trait vector f(x), the goal is to
find vectors f ′(x) and f ′′(x) such that if

f(y) = f(x) + f ′(x)(y − x) + f ′′(x)(y − x)2 +O((y − x)3) (1)

then x is a singularity of a given type (for example, x is an evolutionary branching point). I
consider trade-off structures only with f ′(x) 6= 0, i.e., I require that at least some trait(s) change
with x in first order. Because we are free to scale x, the vector f ′(x) is defined only up to a
multiplicative constant.

The invasion fitness of a rare mutant strategy y in the resident population of strategy x is
rewritten in terms of the observable traits as

rx(y) = s(f1(y), ..., fm(y), E1, ..., En) (2)

where Ei = Ei(f1(x), ..., fm(x)) denotes the ith environmental feedback variable, such as the
abundance of a resource, the density of a predator, etc., as determined by the resident popu-
lation of strategy x at equilibrium. I assume that the feedbacks Ei(f1, ..., fm) are continuously
differentiable and the invasion fitness s(f1, ..., fm, E1, ..., En) is twice continuously differentiable
in all their arguments. E1, ..., En contain all ecological variables that are affected by the resident
population, and that in turn affect the invasion fitness of a mutant, such that the strategies
influence each other’s population growth exclusively through the n environmental feedback vari-
ables (Mylius and Diekmann 1995; Diekmann et al. 2001, 2003; Meszéna et al. 2006; Metz et al.
2008). I assume that the population dynamics of the resident attains a hyperbolic fixed point
attractor (multiple attractors of population dynamics can be accommodated using the results
of Geritz et al. 2002).

Let si denote the partial derivative of s(f1, ..., fm, E1, ..., En) with respect to its ith argu-
ment evaluated at the resident traits (f = f(x)), and let the column vectors z = [s1, ..., sm]T

Figure 1: The scalar strategy x generates a trade-off between two observable traits, f1(x) and
f2(x).
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and w = [sm+1, ..., sm+n]T collect respectively the partial derivatives of the invasion fitness with
respect to traits and with respect to feedbacks. Because the resident population size is regulated
through the environmental feedbacks, w 6= 0 must hold at the hyperbolic point attractor of the
resident population dynamics.

Further, let Ei,j be the partial derivative of the ith feedback, Ei(f1, ..., fm), with respect
to the jth trait evaluated at the resident’s trait values, and let the n×m matrix E collect the
numbers Ei,j . Because

s(f1, ..., fm, E1(f1, ..., fm), ..., En(f1, ..., fm)) = 0 (3)

for all viable trait vectors f , from implicit differentiation with respect to fi, we have si +∑n
j=1 sm+jEj,i = 0 for i = 1, ...,m, i.e.,

zT + wTE = 0T . (4)

Lastly, let S be the m × n matrix of Si,j = si,m+j = ∂si
∂Ej

= ∂2s
∂fi∂Ej

evaluated at the resident.

The vectors and matrices z, w, E and S depend on the resident trait vector f(x), but this is
suppressed in the notation; similarly, f(x), f ′(x) and f ′′(x) will often be abbreviated as f , f ′ and
f ′′, respectively, and these shorthand notations will always mean vectors consisting of numbers,
not functions.

I make the following assumptions about the traits and environmental feedback variables to
hold at least locally in the neighbourhood of the trait vector f(x) of the resident strategy x:

(A1) The traits may depend arbitrarily on the strategy in the sense that f ′(x) and f ′′(x) may
be any vector in Rm.

(A2) Each trait impacts at least some environmental feedback variables in first order, i.e., E
has no zero column.

(A1) excludes that traits are listed repeatedly or some traits are fixed combinations of others;
including such traits would inflate the number of traits without any change to the biological
system. Importantly, (A1) implies that we are free to postulate any trade-off structure. Traits
that violate (A2) have no impact on the invasion fitness, because by (4), E1,i = ... = En,i = 0
implies si = 0 as well. (A2) can thus be replaced with the slightly stronger assumption

(A2’) Each trait impacts the invasion fitness in first order, i.e., si 6= 0 for i = 1, ...,m,

which is easier to check. If (A2) or (A2’) is violated only at an isolated point, then the corre-
sponding trait vector f(x) is a critical point of the model, but one can easily avoid this degeneracy
by choosing a different trait vector to work with. If however (A2) is violated in an open set
of trait vectors and environments, then the violating trait is a selectively neutral trait, which
inflates the number of traits without affecting fitness. Many selectively neutral traits exist in
reality, but these are not counted among the m traits in the invasion fitness (2) even if they
depend on strategy x. (A2) also implies that the resident strategy is viable. If the resident
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population goes extinct, then the environmental feedback variables return to the state of the
”virgin environment”, where they are independent of the traits of the (absent) resident.

Finally, I rewrite the singularity condition and the second derivatives M and E in terms
of the observable traits, using the invasion fitness function in (2). The strategy x is singular if
∂r
∂y |y=x =

∑m
i=1 sif

′
i(x) = 0, i.e., if zT f ′ = 0; with equation (4), this can be rewritten as

wTEf ′ = 0. (5)

M evaluates to

M =
∂2r

∂x∂y

∣∣∣
y=x

=
m∑
i=1

f ′i

n∑
j=1

m∑
k=1

∂si
∂Ej

Ej,kf
′
k = f ′

T
SEf ′ (6)

whereas E is given by

E =
∂2r

∂y2

∣∣∣
y=x

=

m∑
i=1

m∑
j=1

si,jf
′
if
′
j +

m∑
i=1

sif
′′
i (7)

(note that si,j is different from Si,j = si,m+j).

3 Results

In this section, I explore conditions under which trade-offs can be found locally in the neigh-
bourhood of a given strategy x, i.e., the vectors f ′(x) and f ′′(x) in (1) can be chosen to a given
trait vector f(x), such that x is an evolutionarily singular strategy of a desired type. In the
first two propositions, I give sufficient conditions under which f ′(x) can be chosen such that x
is singular with M = 0, and sufficient conditions under which this degenerate singularity can
be unfolded into a singularity at the same strategy x but with M < 0 (an analogous procedure
yields M > 0). The third proposition is based on existing results and shows that once x is
singular with the appropriate sign of M, f ′′(x) can be chosen such that also E satisfies the
inequality conditions of the desired singularity (see Table 1).

First I seek a vector f ′ 6= 0 that givesM = 0 in (6) and also satisfies the singularity condition
(5). Without specific model assumptions, the matrices E and S are unknown. For example if
SE (or its symmetric part) happens to be positive definite or negative definite, then there is no
nonzero vector f ′ that satisfies M = 0; and even if SE has a nontrivial nullspace, it might be
outside of the m − 1 dimensional subspace defined by the singularity condition (5). The first
proposition below ensures the existence of the required trade-off structure, provided that there
are at least as many trade-offs as environmental feedbacks (m− 1 ≥ n). The idea of the proof is
that any vector f ′ that satisfies Ef ′ = 0 immediately satisfies the singularity condition (5) and
gives M = 0 in (6). With m > n, the system Ef ′ = 0 is underdetermined such that a nonzero
solution can be found.

Proposition 1. At any given x and f(x) where (A1)-(A2) are satisfied, f ′(x) 6= 0 can be chosen
such that x is singular with M = 0 with the trade-off structure in (1), provided that m > n.
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Proof. Let k denote the rank of E (k ≤ n). Assume, without loss of generality, that the first k
columns of E are linearly independent and partition E as E = [E1|E2] with an n× k block E1

and an n × (m − k) block E2. Correspondingly, let f ′T = [f ′1
T |f ′2

T ] where f ′1 is a k-vector and
f ′2 is an (m− k)-vector. m > n implies that E2 has at least one column and f ′2 has at least one
element. To find a vector f ′ that satisfies the singularity condition (5) with M = 0, we seek a
vector that satisfies Ef ′ = 0, or, equivalently,

E1f ′1 = −E2f ′2. (8)

f ′2 6= 0 can be chosen arbitrarily. If the right hand side r = −E2f ′2 is the zero vector, then
f ′1 = 0 is the trivial solution of (8). If r is not the zero vector, then the inhomogeneous system
E1f ′1 = r contains n equations for the k ≤ n elements of f ′1, yet it always has a solution: By the
assumption that all k linearly independent columns of E are in the block E1, one can write the
columns of E2 as linear combinations of the columns of E1, i.e., E2 = E1A with some k×(m−k)
matrix A. The solution to (8) is then given by f ′1 = −Af ′2, and any trade-off structure in (1)

with f ′T (x) = [−Af ′2
T |f ′2

T ] makes x singular with M = 0.

Remark 1. Assumption (A2) is technically not necessary for Proposition 1 to hold. However,
if only one element of f ′ is nonzero, then the resulting trade-off curve is degenerate as all
dfi/dfj = f ′i/f

′
j are zero or infinite or undefined (in the latter case, dfi/dfj depends on higher

derivatives of fi and fj). If (A2) holds, then f ′2 6= 0 can be chosen such that r = −E2f ′2 is not
the zero vector; with E2 = E1A, this implies that f ′2 is not in the nullspace of A, i.e., f ′1 = −Af ′2
is not the zero vector. Because both f ′1 and f ′2 contain at least one nonzero element, at least
two elements of f ′ are different from zero, such that the corresponding traits exhibit a trade-off
with nonzero and finite slope (whereas traits corresponding to any zero elements of f ′ may be
assumed constant). While (A2) is sufficient to achieve this, it is not necessary; if for example E2

contains two zero columns, then the two corresponding elements of f ′2 can be chosen nonzero.
A trade-off between two selectively neutral traits is however biologically uninteresting, and the
resulting singularity with M = 0 cannot be unfolded (see Remark 11).

Remark 2. E is not full rank (k < n) if some environmental feedbacks can be expressed with
others. As seen from the proof above, increasing rank deficiency increases the number of elements
in f ′ that can be chosen arbitrarily. This increasing freedom is however not necessary for finding
a suitable trade-off structure. The sufficient condition m > n is the sharpest if (E1, ..., En) is a
minimal representation of the environmental feedback, such that E is full rank.

Remark 3. The singularity is isolated if E +M 6= 0. As Proposition 3 shows below, f ′′(x) can
be chosen such that E 6= 0, which makes the singularity obtained in Proposition 1 isolated.

Remark 4. Notice that Ef ′ = 0 implies that each feedback variable has a critical point as a
function of the strategy x, i.e., dEi/dx =

∑
j Ei,jf

′
j = 0 for i = 1, ..., n.

Next I show that the singularity with M = 0, constructed as in Proposition 1, can generi-
cally be unfolded by changing f ′(x) into f ′(x) + ∆f ′(x) such that x remains singular but with
M < 0, provided that m ≥ n and there are at least two environmental feedback variables.
This unfolding yields a trade-off structure under which there are strategy pairs near x that can
coexist by mutual invasibility. M > 0 and mutual exclusion can be obtained analogously.
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Proposition 2. Let Ef ′(x) = 0 such that x is singular with M = 0. Suppose m ≥ n ≥ 2. Then
a vector ∆f ′(x) can be found such that when f ′(x) is replaced with f ′(x) + ∆f ′(x) in (1), x is
singular with M < 0, provided that two non-degeneracy conditions are satisfied:

(i) rank(E) ≥ 2 and

(ii) ST f ′(x) 6= kw (where k ∈ R is arbitrary).

Proof. Let u denote the n-vector E∆f ′. Differentiating (6) with respect to f ′ and using Ef ′ = 0
yields dM

df ′ = f ′TSE, i.e., an infinitesimal change ∆f ′ changes M by

∆M = f ′
T
SE∆f ′ = f ′

T
Su. (9)

It suffices to show that ∆f ′ can be chosen such that ∆M is nonzero while the singularity
condition wTE(f ′ + ∆f ′) = wTE∆f ′ = wTu = 0 holds (cf (5)); if ∆M is positive, replace ∆f ′

with −∆f ′. First one needs to find a vector u that is orthogonal to w and is not orthogonal
to ST f ′; this is always possible if ST f ′ 6= kw. The unfolding vector ∆f ′ is the solution of the n
equations E∆f ′ = u for the m elements of ∆f ′. If E is full rank, then with m ≥ n a solution
exists. If n = 2, then E is full rank by condition (i). If n > 2 and E is not full rank, then
the system E∆f ′ = u may contain contradicting equations for some choices of u. However,
(n− 2) elements of u can be chosen arbitrarily (because u is constrained only by wTu = 0 and
f ′TSu 6= 0). Since rank(E) ≥ 2, u can be chosen such that the equations do not contradict (in
other words, since at least 2 rows of E are linearly independent, there are no more than n − 2
potentially contradicting equations, such that all contradictions can be avoided by choosing n−2
elements of u appropriately). Thus with m ≥ n, a solution for ∆f ′ exists.

Remark 5. Condition (i) is a non-degeneracy condition (i.e., it excludes only exceptional cases)
under the main assumption of Proposition 2 that m ≥ n ≥ 2, i.e., E is at least a 2× 2 matrix.
(ii) is a non-degeneracy condition when the main assumption n ≥ 2 holds, so that ST f ′(x) and
w are not scalars.

Remark 6. Note that Proposition 2 assumes m ≥ n, whereas Proposition 1 assumes the strict
inequality m > n. If m = n, then one cannot guarantee by Proposition (1) that a singularity
with Ef ′ = 0 (and hence M = 0) exists, but if it does, then one can unfold it when the other
conditions of Proposition 2 are satisfied. For the entire construction method to work, one has
to assume m > n such that Proposition 1 can be used to obtain the degenerate singularity to
be unfolded using Proposition 2.

Remark 7. When the construction method is applied to a concrete model, we may wish to
identify the strategy with one of the observable traits, i.e., we may wish to assume fi(x) = x for
some i. To maintain this identity through the construction, we need f ′i = 1 and ∆f ′i = 0. Since
f ′ constructed according to Proposition 1 is determined only up to a multiplicative constant, it
is easy to scale f ′ such that f ′i = 1 holds, provided that f ′i is nonzero (which is true for at least
some i). If m > n as required by Proposition 1, then there is an extra degree of freedom for
choosing ∆f ′ in Proposition 2, which can be used to set ∆f ′i = 0 (see the next section for an
example).
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The next four remarks discuss the role of environmental feedback variables. As it is well
known, both mutual invasibility and mutual exclusion are impossible if the model has only a
single environmental feedback variable (Metz et al. 2008). In this case M = 0, and none of the
generic evolutionary singularities can occur (cf. Table 1).

Remark 8. If there is a single environmental feedback variable (n = 1), then w and ST f ′ are
scalars, and because ST f ′ = kw holds for some k (recall that w 6= 0),M = 0 cannot be unfolded.
With n = 1, the singularity condition implies E∆f ′ = 0, and therefore ∆M = 0.

Remark 9. Suppose that there are n > 1 environmental feedback variables but the invasion
fitness depends only on a single scalar-valued function of these, i.e., the invasion fitness can be
written in the form s(f1(y), ..., fm(y), h(E1, ..., En)) with some function h : Rn → R. In this

case, Si,j = ∂2s
∂fi∂Ej

= hj
∂2s
∂fi∂h

where hj = ∂h
∂Ej

is a constant, which implies that Si,l =
(
hl
hj

)
Si,j

for all i, j, l and therefore rank(S) = 1. It is easy to see that the 1-dimensional range of ST

contains w =
(
∂s
∂h

)
[h1, ..., hn]T such that ST f ′ = kw for some k, andM = 0 cannot be unfolded.

The reason is that the effective number of environmental feedbacks is only 1 (see Metz et al.
2008).

Remark 10. The matrix E is the derivative of the function (f1, ..., fm) 7→ (E1, ..., En) at the
point f(x), and therefore the rank of E shows the dimension of the image of the function when
its arguments are varied in an infinitesimal open neighbourhood of f(x). If rank(E) = k < n,
then the environments (E1, ..., En) that are generated by some resident trait vectors are in a
k-dimensional hyperplane, and the remaining n−k transformed variables are constants that can
be subsumed into the fitness function s. Since the feedback environment can (locally) be given
in terms of only k variables (Metz et al. 2008), the effective number of environmental feedbacks
is at most the rank of E (it may be less, see Remark 9). If rank(E) = 1, thenM = 0 cannot be
unfolded because the effective number of environmental feedbacks is only 1.

Remark 11. Suppose that rank(E) = k and m− k traits are selectively neutral such that m− k
columns of E are zero and (A2’) is violated for i = k+ 1, ...,m in an open neighbourhood of the
point (f1(x), ...fm(x), E1, ...En) (with Ei = Ei(f1(x), ..., fm(x))). The latter implies Si,j = 0 for
all j when i = k+ 1, ...,m, i.e., the last m− k columns of ST are zero. By Proposition 1, f ′ 6= 0
can be found, but its first k elements are zero. It follows that ST f ′ = 0 = kw with k = 0, which
implies that M = 0 cannot be unfolded.

The last remark highlights a connection with short-term population dynamics (this is not
essential for the rest of the paper).

Remark 12. Two theorems by Priklopil (2012) connect the unfolding of M = 0 with the short-
term population dynamics of two coexisting resident strategies as follows (see Priklopil (2012)
for details). (i) For ε > 0 sufficiently small, the invasion boundaries of the pairwise invasibility
plot generically intersect in the neighbourhood of the singularity either when M = ε or when
M = −ε. (ii) The intersection of invasion boundaries implies the existence of multiple population
dynamic attractors (unprotected coexistence) for some pairs of strategies near the intersection.
Since the unfolding of M = 0 described in this paper yields singularities both with M = ε and
with M = −ε, it produces trade-offs under which populations with two resident strategies have
multiple population dynamic attractors.

Of the singularity condition, M, and E , only E depends on the vector of second derivatives
f ′′(x) (cf. (5), (6) and (7)). This means that one can tune the value of E by changing only
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f ′′(x) such that the singularity condition and M are not affected. Since E is linear in f ′′, we
immediately have

Proposition 3. Suppose that f ′(x) is given. The vector of second derivatives f ′′(x) can be
chosen to obtain an arbitrary value of E when z 6= 0. In particular, once f ′(x) is such that x is
singular and the sign of M is as required by the desired type of singularity, f ′′(x) can be chosen
such that E satisfies the remaining inequality conditions of the singularity (cf Table 1).

Proposition 3 corresponds to the existing technique of critical function analysis. For a sin-
gle trade-off, this result was shown by Kisdi (2006), based on the work of de Mazancourt and
Dieckmann (2004) and Bowers et al. (2005). With multiple trade-offs, one may fix all but one
element of f ′′(x) and choose the remaining f ′′i (x) to achieve the same, provided that si 6= 0.
Under assumption (A2’), any one element can be used.

In summary, one can find trade-offs that make x an evolutionarily singular strategy of an
arbitrarily chosen type under mild non-degeneracy conditions, provided that there are at least
two environmental feedback variables and more traits than feedbacks. It is well known that
at least two environmental feedbacks are necessary for either mutual invasibility or mutual ex-
clusion near the singularity, and hence for all generic types of singularities in Table 1, when
the resident system attains a population dynamic equilibrium (Levin 1970; McGehee and Arm-
strong 1977; Meszéna et al. 2006; Metz et al. 2008). The new result is that given this (and
the non-degeneracy conditions), there are always trade-off structures that make an arbitrary
point in trait space a singularity of an arbitrary type, if the number of traits involved in the
trade-offs exceeds the number of environmental feedbacks. Here the traits may obviously not
include selectively neutral traits, repeated traits or combinations of other traits (see assumptions
(A1) and (A2)). The number of environmental feedbacks needs two important qualifications:
the effective number of feedbacks is less than the number of listed variables if some variables act
only through a fixed function of them (Remark 9), and also if the environments generated by
the possible resident trait vectors do not span the whole space (Remark 10). Derivatives of third
and higher order do not influence the properties of generic evolutionary singularities, therefore
every trade-off structure with the same (f(x), f ′(x), f ′′(x)) has the same type of singularity at x.
The local trade-off structure given up to second order in (1) can therefore be extended over an
arbitrary interval of resident strategies in any biologically plausible way.

4 Example: Evolutionary branching of pathogens under preda-
tion of their hosts

In this section, I illustrate the above general results with a model for the evolution of pathogen
virulence, where I seek evolutionary branching of the pathogen. This example is a generalized
version of the models studied by Morozov and Best (2012) and Kisdi et al. (2013).
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4.1 The model

I assume that the host of the pathogen is embedded in a small ecosystem of three species:
the host, a predator that may preferentially attack hosts weakened by the infection, and an
alternative prey of the predator. The pathogen can infect only the host species, and the host
has no acquired immunity (SIS model). The ecological dynamics are given by the equations

dS

dt
= b(N)N − (µ+ cP )S − βSI + νI (10a)

dI

dt
= [βS − (kα+ µ+ ν)− (c+ φ)P ] I (10b)

dZ

dt
= [ρ(1− Z/K)− ζP ]Z (10c)

dP

dt
= [γcS + γ(c+ φ)I + θζZ − δ]P (10d)

where S, I, Z and P are respectively the population densities of susceptible hosts, infected hosts,
the alternative prey and the predator, and N = S + I is total host density. Hosts are born at
a density-dependent per capita birth rate b and all newborns are susceptible. Susceptible hosts
have a background mortality rate µ, are captured by a predator at a rate c per predator, and
are infected at a rate β per infected (mass action). Infected hosts recover at a rate ν and die due
to the disease at a rate kα, where α is the virulence of the disease. I introduce the factor k in
order to be able to change the importance of direct mortality relative to the elevated predation
risk of the infected (k = 0 corresponds to a disease that does not kill the host but may make
it more vulnerable to predation). φ is the extra predation rate (per predator) towards infected
hosts. The alternative prey of the predator follows logistic population growth with intrinsic
growth rate ρ and carrying capacity K, and the predator attacks the alternative prey at a rate
ζ. The predator converts the consumed hosts and alternative prey into predator offspring with
conversion factors γ and θ, respectively (for simplicity, I assume that healthy and infected hosts
are equally nutritious for the predator). The predator dies at a constant rate δ.

The population dynamical equilibrium and its stability depend on the yet unspecified per
capita birth rate function b. Unfortunately, even the simplest choices of b yield very large for-
mulas for the equilibrium value of N . For this reason, in the analytical part I leave b unspecified
and therefore the equilibrium host density implicit, assuming throughout that the equilibrium
densities are positive and the equilibrium is stable. Appendix A shows that the equilibrium is
always asymptotically stable if b′(N) is sufficiently large at the equilibrium value of N . In the
numerical example presented below, I assume a logistic host with linear density dependence in
its per capita birth rate (b(N) = b0 − qN), and check the positivity of the equilibrium and the
eigenvalues of the Jacobian numerically.

The pathogen is characterized by three traits (m = 3), the virulence (α), the transmission
rate (β) and how much an infected host is weakened, measured by the extra capture rate of
predators towards infected hosts (φ). For simplicity, I assume the recovery rate to be fixed.
Assuming complete cross-immunity, a mutant strain of the pathogen spreads according to

dImut
dt

= [βmutS − (kαmut + µ+ ν)− (c+ φmut)P ] Imut. (11)
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The three observable traits of the pathogen depend on an underlying scalar strategy. The model
can be formulated such that virulence itself is the strategy (x = α) and the other two traits
depend on virulence (see Remark 7); with a slight abuse of notation, I write βmut = β(αmut)
and φmut = φ(αmut), where β and φ are the two trade-off functions. The invasion fitness of the
mutant is the expression in the brackets in (11). The invasion fitness depends on two environ-
mental feedback variables set by the resident system (n = 2), the density of susceptibles (S) and
the density of predators (P ).

The next section will apply the general results obtained in Section 3 to this example. How-
ever, when working with a concrete model, one can obtain the same (and slightly more) results
from direct calculations, bypassing the matrix formulation of Section 3. This direct analysis is
presented in section 4.3. Readers who wish to study the construction method through a worked
example rather than the general results can thus skip section 4.2 and proceed to 4.3.

4.2 Application of the general results

The basic ingredients of the general model are the three-dimensional trait vector f = [α, β, φ]T

and the two environmental feedback variables E1 = S and E2 = P . Applying the definitions of
w and S to the invasion fitness

s(α, β, φ, S, P ) = βS − (kα+ µ+ ν)− (c+ φ)P (12)

one obtains

w =

[
β

−(c+ φ)

]
, S =

 0 0
1 0
0 −1

 . (13)

To determine matrix E, one needs to evaluate how changing the resident traits changes the
equilibrium densities S and P . Using implicit differentiation of the equilibrium of system (10),
a straightforward but tedious calculation leads to

E =

[
ke11 e12 e13
kγe21 γe22 γe23

]
(14)

where the quantities eij are given in Appendix B.

To start constructing an example for evolutionary branching in this model, I choose the
trait vector f = [α, β, φ]T such that the resident population has a stable positive equilibrium of
its population dynamics and seek a vector f ′ 6= 0 that satisfies Ef ′ = 0. This linear system is
underdetermined (n = 2 equations with m = 3 unknowns) and is easily solved to obtain

f ′2 =f ′1k
A1

A2
(15a)

f ′3 =f ′1k
−(c+ φ)

(bN)′ − kα− µ
(15b)

12



where

A1 =(bN)′ ((c+ φ)φγ + βσ) +

+ (c+ φ) (βδ + φγν − βγN(c+ φ)− βKθζ)− βσ(kα+ µ)

A2 =
[
(bN)′ − kα− µ

][
(c+ φ)(γN(c+ φ)− δ +Kθζ) + σ(kα+ µ+ ν)

]
,

(bN)′ abbreviates d
dN b(N)N = b′(N)N + b(N) and σ = Kθζ2/ρ. Because f ′1 6= 0 is undeter-

mined, we can set f ′1 = 1, which is consistent with parameterizing the pathogen strategy with
its virulence (x = α).

For a numerical example, I take b(N) = b0−qN , fix the parameter values at b0 = 3, q = 0.3,
µ = 0.1, ν = 0.2, c = 0.2, k = 1, γ = 0.01, δ = 0.05, θ = 0.01, ζ = 0.1, ρ = 1, K = 15, and choose
the trait values α = 0.1, β = 1 and φ = 1. This trait vector corresponds to positive equilibrium
population densities (S = 2.530, I = 2.717, Z = 12.337, P = 1.775), and the equilibrium is
locally asymptotically stable (all eigenvalues of the Jacobian have negative real parts). In this
example,

f ′ =

 1
2.813
3.447

 (16)

satisfies Ef ′ = 0. Hence choosing the trade-off functions β(α) and φ(α) according to

β(α) = 1 + 2.813(α− 0.1) + h.o.t. (17a)

φ(α) = 1 + 3.447(α− 0.1) + h.o.t. (17b)

results in a model that exhibits a singular strategy at the chosen trait vector (α = 0.1, β = 1
and φ = 1) and with M = 0 (cf. Proposition 1; see figure 2a).

Figure 2: Pairwise invasibility plots of the model in section 4, with parameters as given in the
main text and with the trade-off functions in (24) where the higher order terms (h.o.t.) are
set to zero. ”+” and ”−” show the sign of the invasion fitness. (a) ε = 0, the singularity is
degenerate with M = 0. The −45◦ secondary diagonal (dashed line) is tangent to the invasion
boundary at the singularity, which implies that there is only a cusp (but not a cone) of mutual
invasibility attached to the singularity (cf. Geritz et al. 1998). (b) ε = 0.2, the singularity is an
evolutionary branching point. The cone of mutual invasibility is between the invasion boundary
and the dashed line.
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The second step of the construction is to change f ′ into f ′ + ∆f ′ such that the trait vector
remains singular but the degeneracy M = 0 is unfolded. This requires that E∆f ′ is orthogonal
to w but not orthogonal to f ′S (cf. Proposition 2). From (13), E∆f ′ is orthogonal to w if

E∆f ′ = ε

(
c+ φ
β

)
. (18)

This inhomogeneous system is underdetermined with n = 2 equations and m = 3 unknowns.
However, since we wish to have ∆f ′1 = 0 in order to maintain the parameterization x = α, we
can obtain the remaining unknowns unequivocally as

∆f ′ = ε

 0
D1D2/(γD3)
D2/(γD3)

 (19)

where D1, D2 and D3 are shown in Appendix C. In the numerical example, (19) evaluates to

∆f ′ = ε

 0
3.831
5.460

 . (20)

According to (9) and using (13) and (18), the change in M is given by

∆M = f ′
T
SE∆f ′ = εf ′

T
S

(
c+ φ
β

)
= εf ′

T

 0
c+ φ
−β

 (21)

which numerically evaluates to a number with sign opposite to that of ε (∆M = −0.071ε). This
means that for sufficiently small positive values of ε, the trade-off functions

β(α) = 1 + (2.813 + 3.831ε)(α− 0.1) + h.o.t. (22a)

φ(α) = 1 + (3.447 + 5.460ε)(α− 0.1) + h.o.t. (22b)

yield a singularity at the same trait vector as above but withM < 0, i.e., with a cone of mutual
invasibility attached to the singularity (see figure 2b).

The last step of the construction is to find convexities (second derivatives) of the trade-off
functions that yield an evolutionary branching point. Given that we already have a singularity
with mutual invasibility (M < 0), finding an open set of convexities that yield evolutionary
branching is an established procedure (see Proposition 3). Since the invasion fitness in (12) is
linear in all three traits, (7) simplifies to E =

∑m
i=1 sif

′′
i ; and since the choice x = α requires

f ′′1 = 0, this further simplifies to
E = Sf ′′2 − Pf ′′3 (23)

In order to get evolutionary branching, f ′′2 and f ′′3 must be chosen such that 0 < E < −M
(Table 1), i.e., such that 0 < f ′′2 − (P/S)f ′′3 < −M/S is satisfied. In the numerical example,
let us fix ε = 0.2, which yields M = −0.049 (this value differs from ∆M = −0.071ε because
∆M in (9) is only up to linear terms in ε, but for the clarity of figure 2b, I chose ε to be fairly
large). With S = 2.530 and P = 1.775 (see above), the condition for branching evaluates to
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0 < f ′′2 − 0.702f ′′3 < 0.019, which is satisfied for example by f ′′2 = −0.01 and f ′′3 = −0.02. This
means that with ε = 0.2 in the trade-off functions

β(α) = 1 + (2.813 + 3.831ε)(α− 0.1)− 1
2 × 0.01(α− 0.1)2 + h.o.t. (24a)

φ(α) = 1 + (3.447 + 5.460ε)(α− 0.1)− 1
2 × 0.02(α− 0.1)2 + h.o.t. (24b)

the model has an evolutionary branching point at α = 0.1. The higher order terms of these
trade-off functions are arbitrary and may be chosen such that the entire function is biologically
plausible. Figure 2b shows the resulting branching point with the higher order terms set to zero.
Appendix D explains how the pairwise invasibility plot in figure 2a transforms into figure 2b as
ε increases from 0 to 0.2.

In the remainder of this section, I consider three special cases of this model that violate the
assumptions of Propositions 1 and 2, respectively.

The case of k = 0: not enough traits. If k is zero, then the virulence does not affect the
invasion fitness per se, and therefore it is not an observable trait (even though it still mediates
a trade-off between β and φ). Accordingly, the first column of matrix E in (14) is zero, and
to satisfy assumption (A2), α has to be removed from the trait vector f . This means that the
condition m > n in Proposition 1 is no longer satisfied. E becomes a 2× 2 matrix generically of
full rank, and therefore the equation Ef ′ = 0 has only the trivial solution f ′ = 0. This is also
seen in (15a,b), where both elements of f ′ are zero when k = 0, i.e., the construction method
fails to produce a trade-off structure with f ′ 6= 0 that would yield a singularity withM = 0. As
we shall see in the next section, with k = 0 no such trade-off structure exists.

The case of γ = 0: not enough feedbacks. If γ is zero, then even though the predator
kills the host, the captured hosts do not contribute to the predator’s population growth (the
predator feedback loop is not closed). P is then fully determined by the alternative prey, the
term (c+ φ)P in the invasion fitness (12) is an externally determined death rate, and P is not
a feedback variable. Accordingly, the second row of E is zero such that rank(E) = 1, violating
the non-degeneracy condition (i) of Proposition 2. In this case a singularity withM = 0 can be
constructed, but the degeneracy ofM = 0 cannot be unfolded. The same is seen in (19), where
the denominators vanish when γ = 0, i.e., the unfolding vector does not exist. In fact, the model
with γ = 0 is an optimization model (Metz et al. 2008), where evolution minimizes the only
remaining feedback variable S or, equivalently, maximizes β/[kα+ µ+ ν + (c+ φ)P ] (the latter
is the basic reproduction number R0 of the disease divided with the size of the disease-free host
population). In optimization models mutual invasibility and mutual exclusion are impossible,
and therefore every singularity is necessarily characterized with M = 0.

Violation of ST f ′ 6= κw. Given S and w in (13) and f ′ in (15), a straightforward calculation
(performed in Mathematica 9.0) shows that ST f ′ = κw for some κ ∈ R and therefore the non-
degeneracy condition (ii) in Proposition 2 is violated if and only if (bN)′ = −ν. In this case, the
vector ∆f ′ in (19) does not unfold M = 0 because (9) evaluates to zero.
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4.3 Direct analysis

Given a concrete and relatively simple model as the one in equations (10), it is possible to
calculate M directly in terms of the slopes of the trade-off functions. This direct analysis gives
necessary and sufficient conditions for obtaining a singularity at a given point and with a given
sign of M, which can then be used to construct a singularity of a desired type (cf. Table 1).
As above, I parameterize the pathogen strains by their virulence and construct the trade-off
functions α 7→ β(α) and α 7→ φ(α) locally near the given trait values [α, β, φ] to obtain an
evolutionary branching point.

From (11), the invasion fitness of a mutant pathogen αmut in the resident system with strain
α is given by

rα(αmut) = β(αmut)S(α)− (kαmut + µ+ ν)− (c+ φ(αmut))P (α) (25)

where S(α) and P (α) denote respectively the equilibrium densities of susceptibles and of preda-
tors in the equilibrium system with the resident strain α, obtained from equations (10). In this
section, I use the traditional formulation of invasion fitness rα(αmut) given as a function of only
the resident and mutant strategies (as in Geritz et al. 1998).

The condition for α to be singular is

∂rα(αmut)

∂αmut

∣∣∣∣
αmut=α

= β′(α)S(α)− k − φ′(α)P (α) = 0 (26)

Let us therefore fix

β′(α) =
k + φ′(α)P (α)

S(α)
(27)

such that the singularity condition is satisfied. This leaves φ′(α) free to tune the value of M.

The mixed derivative M is, from its definition,

M =
∂2rα(αmut)

∂α∂αmut

∣∣∣∣
αmut=α

= β′(α)S′(α)− φ′(α)P ′(α) (28)

where S′(α) and P ′(α) denote the derivatives of equilibrium population densities with respect
to the resident trait value. These have to be determined from equations (10). First I use the
linear equation 1

I
dI
dt = 0 to express S(α) = (kα+ µ+ ν + (c+ φ(α))P (α))/β(α); hence

S′(α) =
k + φ′(α)P (α) + (c+ φ(α))P ′(α)

β(α)
− β′(α)S(α)

β(α)
=
c+ φ(α)

β(α)
P ′(α) (29)

where in the last step I used the singularity condition (27). A more tedious task is to determine
P ′(α). A lengthy calculation using implicit differentiation and the singularity condition leads to

P ′(α) =
γI [k(c+ φ)− φ′ · (kα+ µ− (bN)′)]

Ψ
(30)
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where (bN)′ = b′(N)N + b(N) and

Ψ =
Kθζ2

ρ

[
(bN)′ − (kα+ µ+ (c+ φ)P )

]
+

+γ
c+ φ

β

[
φ · (bN)′ − (c+ φ)(βI + µ+ cP )− cν

]
(here the arguments of functions have been suppressed for brevity, i.e., φ = φ(α), φ′ = φ′(α),
etc.). Substituting (27), (29) and (30) into (28) yields

M =
1

Ψ

γI(α)

β(α)S(α)

[
k(c+ φ(α))− φ′(α)(kα+ µ+ ν)

]
×

×
[
k(c+ φ(α))− φ′(α)(kα+ µ− (bN)′)

]
. (31)

M is quadratic in φ′(α) with roots φ′1 = k(c+φ(α))
kα+µ+ν and φ′2 = k(c+φ(α))

kα+µ−(bN)′ . If Ψ and kα +

µ− (bN)′ have the same sign (opposite sign), then M is a parabola that opens up (down) and
therefore it is negative when φ′(α) is inbetween (outside of) φ′1 and φ′2. (Note that the signs of
Ψ and kα+ µ− (bN)′ can be determined only when the function b is specified.) Hence one can
choose φ′(α) such thatM is negative, and choose β′(α) according to (27) such that α is singular.
To complete the construction of an evolutionary branching point, the second derivatives of the
trade-off functions must be chosen such that

E =
∂2rα(αmut)

∂α2
mut

∣∣∣∣
αmut=α

= S(α)β′′(α)− P (α)φ′′(α) (32)

satisfies 0 < E < −M (see Table 1); since both β′′(α) and φ′′(α) are free to choose, this can be
done with considerable freedom.

In summary, the construction of a branching point consists of the following steps (other
types of singularities can be constructed analogously):

1. Choose trait values α, β(α) and φ(α) that correspond to a viable resident system with
a stable population dynamical equilibrium; this gives the zero order terms of the Taylor-
expansion of the trade-off functions β and φ about α, and specifies the densities S(α),
I(α) and P (α).

2. Choose the slope φ′(α) of the function φ at the point α such that M in (31) is negative
and choose β′(α) according to (27) to satisfy the singularity condition; this gives the first
order terms of the trade-off functions.

3. Choose the convexities β′′(α) and φ′′(α) such that E in (32) is positive but less than −M;
this gives the second order terms of the trade-off functions.

4. The previous steps ensure that α is an evolutionary branching point. The higher order
terms of the trade-off functions can be chosen arbitrarily.

The construction method fails if eitherM is identically zero or if the roots φ′1 and φ′2 coincide
(in the latter case,M is either nonpositive or nonnegative depending on Ψ and kα+ µ− (bN)′,
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and if nonnegative, then a branching point cannot be obtained). As (31) reveals, M ≡ 0 if

γ = 0; and φ′1 = k(c+φ(α))
kα+µ+ν and φ′2 = k(c+φ(α))

kα+µ−(bN)′ coincide if either k = 0 or (bN)′ = −ν (note

that c+φ(α) = 0 is irrelevant as it means that the predator attacks neither healthy nor infected
hosts). The last three paragraphs of the previous section discussed how these three special cases
violate the conditions under which Propositions 1 and 2 hold.

5 Discussion

In this paper, I have given sufficient conditions under which one can choose the trade-off func-
tions of a model such that an arbitrarily given point in trait space is an evolutionary singularity
of an arbitrary type (for example, a given point is an evolutionary branching point). Under
some mild technical conditions, varying the trade-off structure will yield all generic types of
evolutionary singularities (listed in Table 1), provided that the model has at least two environ-
mental feedback variables (n ≥ 2) and more traits than feedbacks (m > n). Since the traits are
determined by an underlying scalar strategy that generates m − 1 trade-offs between m traits,
the second condition can be phrased as having at least as many trade-offs as environmental
feedbacks.

The present results significantly extend the scope of critical function analysis. The existing
technique (de Mazancourt and Dieckmann 2004; Bowers et al. 2005; Kisdi 2006) considered
only a single trade-off linking two traits. With m = 2, the singularity condition (5) determines
f ′ up to a multiplicative constant, which fixes the sign of M (cf. (6)); in other words, no flexi-
bility remains to controlM. The existing technique was thus restricted to controlling E via the
convexity of the single trade-off, and could construct a given type of singularity only if the sign
of M happened to be appropriate at least at some points in the trait space.

The key to construct an evolutionary singularity of an arbitrary type is to have the mixed
derivativeM change its sign. This is more difficult to achieve than controlling E for two reasons.
Firstly, M does not depend on the second and higher derivatives of the trade-offs, hence only
the slopes (first derivatives) of the trade-offs can be used to control M; but the slopes must
also satisfy the singularity condition. This explains why at least two trade-offs are (generically)
necessary to satisfy the singularity condition and M = 0 at a given point. Secondly, M is
quadratic in the slopes of the trade-offs (cf. (6)), and thereforeM = 0 need not have real roots.
The existence of real roots can be ensured when m > n (Proposition 1).

Unfolding the degeneracy ofM = 0 into an arbitrary sign ofM is straightforward, provided
that there are at least two environmental feedbacks (n ≥ 2), m ≥ n, and some non-degeneracy
conditions are satisfied (Proposition 2). It is well known that two environmental feedback vari-
ables are necessary for the coexistence of two strategies at a population dynamical equilibrium;
this is the straightforward extension of the fact that in resource competition, the number of
resources limits the number of coexisting competitors (Levin 1970; McGehee and Armstrong
1977; Meszéna et al. 2006). In agreement with this, M = 0 can be unfolded only if n ≥ 2
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(see Remarks 8-10). Once the sign ofM corresponds to the desired singularity, one can use the
existing technique of critical function analysis to find trade-offs yielding the desired singularity
(this step is given in Proposition 3 for completeness).

The condition m > n is not necessary for a model to exhibit all generic types of evolu-
tionary singularities. Many simple models have only a single trade-off function connecting two
traits. These models do not satisfy m > n with n ≥ 2, and hence one cannot guarantee thatM
changes sign. Indeed, in some of these models M is always positive (this excludes evolutionary
branching; see Kisdi and Meszéna 1995 for an example), in others M is always negative (in
which case critical function analysis can produce examples for evolutionary branching at any
point), and yet in others M changes sign when the position of the singularity is varied, so that
all singularities can be achieved at some points in the trait space. Boldin et al. (2009) shows an
example with only one trade-off, where seemingly minor details of the model determine whether
M changes sign or not. The direct analysis described in section 4.3 is independent of whether
or not the condition m > n is satisfied, and can be used to explore whether M changes sign
in a concrete model (in which case the model can produce all generic types of singularities) or not.

This paper focused on the role of the trade-off functions in generating arbitrary types of
evolutionary singularities. Many models have also other functions the shape of which can be
chosen with some freedom, so that they could also be used to control M. Kisdi and Boldin
(2013) investigated a model for pathogen evolution where the incidence function was used in
this way. Models frequently include density-dependent demographic rates, and the function
describing density-dependence is also an ideal candidate for this type of analysis. In both of
these examples, the argument of the function is an environmental feedback variable, i.e., the
invasion fitness can be written in the form s(f1(y), ..., fm(y), g(E1, ..., En), E1, ..., En) where g
is the incidence function, a density-dependent rate of birth or death, etc. Because M is linear
in the first derivatives of g, controlling M via g is actually easier than controlling M via the
trade-offs. To obtain a singularity of arbitrary type, the model needs to have also at least one
trade-off, such that the second derivative of this trade-off can be used to control E .

The sufficient conditions described in this paper guarantee the existence of trade-off struc-
tures that yield a certain singularity, but it remains to be seen whether these trade-offs are
biologically plausible. Obviously, this question can be addressed only in the context of a specific
model, where one can define the criteria of biological plausibility. For instance, in the example
of section 4, biological considerations suggest that the transmission rate β and the predation
rate φ should increase with the virulence of the disease, α (and the trade-off functions in (24)
indeed satisfy these criteria when the third and higher order terms are chosen appropriately).
With criteria of biological plausibility in hand, one can use the direct analysis shown in section
4.3 to explore the model systematically and see if any plausible trade-off structure yields the
desired singularity. To do this, determine locally (i.e., up to second order) all trade-off struc-
tures that yield the desired singularity at a given point in trait space; and vary the position of
the singularity in trait space as well as the values of scalar parameters to explore all possible
trade-offs that yield the desired singularity, checking whether any of them satisfies the plau-
sibility criteria. A negative result proves that the desired singularity cannot occur in systems
considered biologically plausible. Note that it would not be possible to prove the same by trying
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to substitute an infinite variety of plausible functions for the trade-offs.

An obvious and important extension of the current work would be to have multi-dimensional
trade-offs between the traits, i.e., to allow the traits f(x) to depend on a vector-valued strategy
x or to consider each trait itself as an element of a vector-valued strategy (f(x) = x). Obvi-
ously, the present model subsumes vector-valued strategies in the sense that with the choice
f(x1, x2, ..., xk) = f(x1, ·, ..., ·) (i.e., f depends on x only via the scalar x1), the present model
applies directly and the sufficient conditions described in this paper guarantee that the overall
evolutionary outcome is as required (for example, that evolutionary branching occurs). The
present results are however insufficient to obtain important details of the multivariate evolu-
tionary dynamics. For example, one may wish to have evolutionary branching such that the
lineages diverge in both x1 and x2, or diverge in x1 but not in x2. This would require the true
generalization of the present results to vector-valued strategies, which I must leave to future
research because the classification of singularities of vector-valued strategies is still lacking.
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[18] Meszéna G., Gyllenberg M., Pásztor L. and Metz J. A. J. 2006. Competitive exclusion and
limiting similarity: A unified theory. Theor. Pop. Biol. 69: 68-87.

[19] Metz J. A. J., Nisbet R. M. and Geritz S. A. H. 1992. How should we define ’fitness’ for
general ecological scenarios? Trends Ecol. Evol. 7:198-202.

[20] Metz J. A. J., Mylius S. and Diekmann O. 2008. When does evolution optimize? Evol.
Ecol. Res. 10: 629-654.

[21] Morozov A. & A. Best. 2012. Predation on infected host promotes evolutionary branching
of virulence and pathogens’ biodiversity. J. theor. Biol. 307: 29-36.

[22] Mylius S. D. and Diekmann O. 1995. On evolutionarily stable life histories, optimization
and the need to be specific about density dependence. Oikos 74: 218-224.

[23] Priklopil T. 2012. On invasion boundaries and the unprotected coexistence of two strategies.
J. Math. Biol. 64: 1137-1156.

[24] Svennungsen T. and Kisdi E. 2009. Evolutionary branching of virulence in a single-infection
model. J. theor. Biol. 257: 408-418.

[25] Zu J., Wang K. and Mimura M. 2011. Evolutionary branching and evolutionarily stable
coexistence of predator species: Critical function analysis. Math. Biosci. 231: 210-224.

21



Appendix A

In this Appendix, I show that the population dynamical equilibrium of the model in (10) is
asymptotically stable if b′(N)→ −∞; the same holds when b′(N) is sufficiently large negative.
b′(N)→ −∞ implies that the total host density N is constant, and therefore (10) can be replaced
with the 3-dimensional system

dI

dt
= [β(N − I)− (kα+ µ+ ν)− (c+ φ)P ] I (33a)

dZ

dt
= [ρ(1− Z/K)− ζP ]Z (33b)

dP

dt
= [γcN + γφI + θζZ − δ]P (33c)

The characteristic equation of this system is

− det

 −βI − λ 0 −(c+ φ)I
0 −ρZ/K − λ −ζZ

γφP θζP −λ

 = λ3 + a1λ
2 + a2λ+ a3 = 0 (34)

where

a1 = βI +
ρZ

K

a2 = βI
ρZ

K
+ θζ2PZ + γφ(c+ φ)PI

a3 = βIθζ2PZ + γφ(c+ φ)PI
ρZ

K

By the Routh-Hurwitz criteria, all eigenvalues of the Jacobian have negative real parts if a1 > 0,
a3 > 0, and a1a2 > a3. The first two of these conditions obviously hold. For the last, it is easy
to verify that

a1a2 − a3 =

(
βI +

ρZ

K

)
βI
ρZ

K
+ βI · γφ(c+ φ)PI +

ρZ

K
θζ2PZ

which is always positive.

Appendix B

Here I give the elements of matrix E for the application in section 4. To find the interior
equilibria of the feedback variables, it is convenient to rewrite equations (10) using N = S + I
into the form

dN

dt
= b(N)N − (µ+ cP )N − (kα+ φP )I = 0 (35a)

1

I

dI

dt
= β(N − I)− (µ+ ν + kα)− (c+ φ)P = 0 (35b)

1

Z

dZ

dt
= ρ(1− Z/K)− ζP = 0 (35c)

1

P

dP

dt
= γcS + γ(c+ φ)I + θζZ − δ = 0 (35d)
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Equations (35b)-(35d) are linear and thus easily solved for I, Z and P in terms of the still
unknown N . Substituting the solution into (35a) yields a single nonlinear equation (35a*) for
N (not shown), which can be solved only when the density-dependent birth rate function b is
specified. Assuming b(N) = b0 − qN (i.e., a logistic host), (35a*) is only quadratic, but its
solution is an unruly formula.

The elements of E are the derivatives of the feedback variables S = N − I and P with
respect to the traits α, β and φ. To obtain these, I differentiate (35a*) implicitly with respect to
a trait (e.g. with respect to α to obtain dN/dα) and obtain the derivatives of the feedbacks (e.g.
dS/dα = dN/dα − dI/dα and dP/dα) by differentiating the explicit solution from (35b)-(35d)
and substituting the derivative of N from the implicit differentiation. The calculations were
done in Mathematica 9.0 and yield eij in the form

eij = Aij/Bi

with Aij and Bi given below (note that k and γ have been factored out in (14)).

A11 =−
(
Kρθζ2(c+ φ)(γ(αck + c(µ+ ν)− φν) + βγN(c+ φ)− βδ)+

+ βK2θ2ζ4(αk + µ)−Kθζ2
(
Nb′(N) + b(N)

) (
βKθζ2 + φγρ(c+ φ)

)
+

+ βK2ρθ2ζ3(c+ φ) + cγρ2(c+ φ)2(γN(c+ φ)− δ) + cγKρ2θζ(c+ φ)2
)
×

×
(
βKθζ2 + φγρ(c+ φ)

)
A12 =−

( (
Kθζ2(αk + µ+ ν) + ρ(c+ φ)(γN(c+ φ)− δ) +Kρθζ(c+ φ)

)
×

×
(
−Kρθζ2(c+ φ)(−φγ(αk + µ+ 2ν) + 2βγN(c+ φ)− βδ)−

− βK2θ2ζ4(αk + µ) +Kθζ2
(
Nb′(N) + b(N)

) (
βKθζ2 + φγρ(c+ φ)

)
−

− βK2ρθ2ζ3(c+ φ)− δφγρ2(c+ φ)2 + φγKρ2θζ(c+ φ)2
))

A13 =−
(
ρ
( (
Nb′(N) + b(N)

) (
βKθζ2 + φγρ(c+ φ)

)
×

×
(
Kθζ2(γ(c+ 2φ)(αk + µ+ ν) + β(δ − 2γN(c+ φ)))−

− βK2θ2ζ3 + γρ(c+ φ)2(cγN − δ) + γKρθζ(c+ φ)2
)
+

+ β2Kθζ2(2γN(c+ φ)− δ +Kθζ)×
×
(
Kθζ2(αk + µ) + ρ(c+ φ)(γN(c+ φ)− δ) +Kρθζ(c+ φ)

)
+

+ βγ
(
−Kρθζ2(c+ φ)

(
αk(γN(c+ φ)(c+ 2φ)− δ(c+ 3φ))+

+ c2γµN + c(φ(3γµN + 4γNν +Kρθ)− δµ) + φ(−3δ(µ+ ν)+

+ 2φγN(µ+ 2ν) + φKρθ)
)
−K2ρθ2ζ3(c+ φ)((c+ 3φ)(αk + µ) + 3φν)−

−K2θ2ζ4(c+ 2φ)(αk + µ)(αk + µ+ ν)−
− φKρ2θζ(c+ φ)2(γN(c+ φ)− 2δ) + δφρ2(c+ φ)2(γN(c+ φ)− δ)

)
−
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− φγ2ρ(c+ φ)
(
ρ(c+ φ)(c(αk + µ)(γN(c+ φ)− δ) + δφν)+

+Kρθζ(c+ φ)(αck + cµ− φν) +Kθζ2(αk + µ+ ν)(αck + cµ− 2φν)
)))

A21 =−
(
ρ
(
ρ(c+ φ)(φγ(αck − φµ) + β(c+ φ)(cγN − δ))+

+ βKθζ2(αk(2c+ φ)− c(βN − µ− ν) + φ(ν − βN))+

+ φ
(
Nb′(N) + b(N)

) (
βKθζ2 + φγρ(c+ φ)

)
+ βKρθζ(c+ φ)2

))
A22 =ρ

(
αck + φNb′(N) + φb(N)− φµ

)
×

×
(
Kθζ2(αk + µ+ ν) + ρ(c+ φ)(γN(c+ φ)− δ) +Kρθζ(c+ φ)

)
A23 =ρ

(
ρ
(
α2cφγk2 + αφk(γ(c(µ+ ν)− φµ)− βδ)− µ

(
βδ(c+ 2φ)−

− βγN(c+ φ)2 + φ2γ(µ+ ν)
))

+
(
Nb′(N) + b(N)

)
×

×
(
ρ
(
φ2γ(αk + µ+ ν) + βδ(c+ 2φ)− βγN(c+ φ)2

)
+

+ βKθζ2(βN − αk − µ− ν)− βKρθζ(c+ 2φ)
)
+

+ βKρθζ(αφk + µ(c+ 2φ)) + βKθζ2(αk + µ)(αk − βN + µ+ ν)
)

B1 =
(
βKθζ2 + φγρ(c+ φ)

)
B2

B2 =− β2Kθζ2
(
Kθζ2(αk + µ) + ρ(c+ φ)(2γN(c+ φ)− δ) +Kρθζ(c+ φ)

)
+

+ βγρ(c+ φ)
(
Kθζ2(αk(c+ φ) + 2φν)− δφρ(c+ φ) + φKρθζ(c+ φ)

)
+

+ φγ2ρ2(c+ φ)2(αck − φµ) +
(
Nb′(N) + b(N)

) (
βKθζ2 + φγρ(c+ φ)

)2
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Appendix C

The quantities that appear in (19) are as follows (with (bN)′ = b′(N)N+b(N) and σ = Kθζ2/ρ):

D1 =
β((c+ φ)γN +Kθζ − δ)− γφ(kα+ µ+ ν)

(c+ φ)2γN + φKθζ + σ(kα+ µ+ ν) + c(Kθζ − δ)− φδ

D2 =φγ2(c+ φ)2(φµ− kαc)+
+ β2σ

[
(c+ φ)(2(c+ φ)γN +Kθζ − δ) + σ(kα+ µ)

]
−

− βγ(c+ φ)
[
φ(c+ φ)(Kθζ − δ) + σ(kα(c+ φ) + 2φν)

]
−

− (bN)′(φγ(c+ φ) + βσ)2

D3 =
[
(bN)′ − kα− µ

][
(c+ φ)(cγN +Kθζ − δ)− σ(βN − kα− µ− ν)

]
Appendix D

In this Appendix, I explain how the evolutionary singularity in figure 2a bifurcates into the one
in figure 2b with increasing ε (note in particular that the singularity in figure 2a is an evolution-
ary repellor, whereas the branching point in figure 2b is convergence stable). This bifurcation is
not directly relevant to the construction method, because the construction first fixes the value of
ε and only then chooses the coefficients of the quadratic terms in (24), the choice depending on ε.

The construction method starts with f ′(x) such that x is singular with M = 0, and then
replaces f ′(x) with f ′(x) + ∆f ′(x) such that M becomes negative; in the example of (24), the
latter is done by replacing ε = 0 with ε > 0. By the same replacement, the value of E changes
with

∆E =
m∑
i=1

m∑
j=1

si,j(∆f
′
i · f ′j + f ′i ·∆f ′j) (36)

(cf. (7)). In general, ∆E may have any sign depending on si,j , the second derivatives of the
invasion fitness with respect to traits; this is the reason why f ′′(x) has to be chosen after fixing
∆f ′(x) (or ε), such that the final sign of E is as required by the desired singularity.

In the simple model of section 4, however, the invasion fitness (12) is linear in the traits,
such that si,j = 0 for all i, j and E =

∑m
i=1 sif

′′
i is independent of ∆f ′(x). Increasing ε therefore

decreases M but does not change E . Since the desired singularity is an evolutionary branching
point, f ′′(x) is chosen such that E > 0 (cf. Table 1). At ε = 0, the singularity has M = 0 and
since E+M > 0, the singularity is not convergence stable (figure 2a). When ε = εTR = 0.07524,
thenM = −E and the singularity is not hyperbolic. Because ∆f ′(x)/||∆f ′(x)|| (the direction of
∆f ′(x)) is chosen such that the location of the singularity is fixed, convergence stability changes
through a transcritical bifurcation (see figure 3). When ε > εTR, E +M < 0 and the singularity
is convergence stable; and since the value of E is constant positive for any ε, the singularity is a

25



branching point (figure 2b).

Figure 3: The transcritical bifurcation connecting the two pairwise invasibility plots in figure
2. The outermost panels are identical to figures 2a and 2b, respectively. The transcritical
bifurcation occurs approximately at ε = 0.07524. All parameters are as in figure 2, except ε as
shown in the panels.
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