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Adaptive Dynamics of Speciation: Ecological

Underpinnings
Stefan A.H. Geritz, Éva Kisdi, Géza Meszéna, and Johan A.J. Metz

4.1 Introduction
Speciation occurs when a population splits into ecologically differentiated and re-
productively isolated lineages. In this chapter, we focus on the ecological side of
nonallopatric speciation: Under what ecological conditions is speciation promoted
by natural selection? What are the appropriate tools to identify speciation-prone
ecological systems?

For speciation to occur, a population must have the potential to become poly-
morphic (i.e., it must harbor heritable variation). Moreover, this variation must be
under disruptive selection that favors extreme phenotypes at the cost of intermedi-
ate ones. With disruptive selection, a genetic polymorphism can be stable only if
selection is frequency dependent (Pimm 1979; see Chapter 3). Some appropriate
form of frequency dependence is thus an ecological prerequisite for nonallopatric
speciation.

Frequency-dependent selection is ubiquitous in nature. It occurs, among
many other examples, in the context of resource competition (Christiansen and
Loeschcke 1980; see Box 4.1), predator–prey systems (Marrow et al. 1992), mul-
tiple habitats (Levene 1953), stochastic environments (Kisdi and Meszéna 1993;
Chesson 1994), asymmetric competition (Maynard Smith and Brown 1986), mutu-
alistic interactions (Law and Dieckmann 1998), and behavioral conflicts (Maynard
Smith and Price 1973; Hofbauer and Sigmund 1990).

The theory of adaptive dynamics is a framework devised to model the evolution
of continuous traits driven by frequency-dependent selection. It can be applied to
various ecological settings and is particularly suitable for incorporating ecological
complexity. The adaptive dynamic analysis reveals the course of long-term evo-
lution expected in a given ecological scenario and, in particular, shows whether,
and under which conditions, a population is expected to evolve toward a state in
which disruptive selection arises and promotes speciation. To achieve analytical
tractability in ecologically complex models, many adaptive dynamic models (and
much of this chapter) suppress genetic complexity with the assumption of clonally
reproducing phenotypes (also referred to as strategies or traits). This enables the
efficient identification of interesting features of the engendered selective pressures
that deserve further analysis from a genetic perspective.
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Figure 4.1 Simulated evolutionary tree for the model described in Box 4.1 with r = 1,
K (x) = (1 − x2)+, a(x, x ′) = exp(− 1

2 (x − x ′)2/σ 2
a ) with σa = 0.35. The strategy axis

(horizontal) is in arbitrary units; the evolutionary time axis is in units of r−1. For details of
the simulation, see Geritz et al. (1999) or Kisdi and Geritz (1999).

The analysis begins with the definition of admissible values of the evolving
traits (including all trade-offs between traits and other constraints upon them), and
the construction of a population dynamic model that incorporates the specific eco-
logical conditions to be investigated, along with a specification of how the model
parameters depend on the trait values. From the population dynamic model, one
can derive the fitness of any possible rare mutant in a given resident population. It
is thus possible to deduce which mutants can invade the population, and in which
direction evolution will proceed via a sequence of successive invasion and fixation
events.

Eventually, directional evolution may arrive at a particular trait value for which
a successful invading mutant does not oust and replace the former resident; instead,
the mutant and the resident coexist. If the two strategies coexist, and if selection in
the newly formed dimorphic population is disruptive (i.e., if it favors new mutants
that are more extreme and suppresses strategies between those of the two resi-
dents), then the clonal population undergoes evolutionary branching, whereby the
single initial strategy is replaced by two strategies separated by a gradually widen-
ing gap. Figure 4.1 shows a simulated evolutionary tree with two such branching
events. With small mutations, such a split can occur when directional evolution
approaches a particular trait value called a branching point.

Evolutionary branching of clonal strategies cannot be equated with speciation,
since clonal models of adaptive dynamics are unable to address the question of
reproductive isolation. Chapter 5 discusses adaptive dynamics with multilocus ge-
netics and the emergence of reproductive isolation during evolutionary branching.
Yet, evolutionary branching itself signals that adaptive speciation is promoted by
selection in the ecological system considered.

In this chapter we outline one particular framework of adaptive dynamics that
has been developed by Metz et al. (1996), Geritz et al. (1997, 1998), and, for direc-
tional evolution, Dieckmann and Law (1996). This framework integrates concepts
from the modern theory of evolutionarily stable strategies (Maynard Smith 1982;
Eshel 1983; Taylor 1989; Nowak 1990; Christiansen 1991) and accommodates
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evolutionary branching. We constrain this summary mainly to a simple graphic
approach; the corresponding analytical treatment (which is indispensable if the
theory is to be applied to multidimensional traits or to polymorphic populations
that cannot be depicted in simple one- or two-dimensional plots; see Box 4.5) can
be found in Metz et al. (1996) and Geritz et al. (1998).

4.2 Invasion Fitness
Invasion fitness is the exponential growth rate of a rare mutant strategy in the en-
vironment set by a given resident population (Metz et al. 1992). The calculation
of invasion fitness depends on the particular ecological setting to be investigated.
Here we sketch the basics of fitness calculations common to all models.

Consider a large and well-mixed population in which a rare mutant strategy
appears. The change in the density of mutants can be described by

n(t + 1) = A(E(t))n(t) . (4.1a)

Here n is the density of mutants or, in structured populations, the vector that con-
tains the density of mutants in various age or stage classes. The matrix A describes
population growth as well as transitions between different age or stage classes
(Caswell 1989); in an unstructured population, A is simply the annual growth rate.
In continuous time, the population growth of the mutant can be described by

dn(t)

dt
= B(E(t))n(t) . (4.1b)

The dynamics of the mutant population as specified by A(E) (in discrete time)
or B(E) (in continuous time) depends on the properties of the mutant and on the
environment E . The environment contains all factors that influence population
growth, including the abundance of limiting resources, the density of predators
or parasites, and abiotic factors. Most importantly, E contains all the effects the
resident population has directly or indirectly on the mutant; generally, E depends
on the population density of the residents. As long as the mutant is rare, its effect
on the environment is negligible.

The exponential growth rate, or invasion fitness, of the mutant strategy is de-
fined by comparing the total density N (t) of mutants, after a sufficiently long
time, with the initial density N (0), while keeping the mutant’s environment fixed.
In structured populations N is the sum of the vector components of n, whereas
in unstructured populations there is no difference between the two. Formally, the
invasion fitness is given by (Metz et al. 1992)

f = lim
t→∞

1

t
ln

N (t)

N (0)
. (4.2)

The long time interval is taken to ensure that the population experiences a rep-
resentative time series of the possibly fluctuating environment E(t), and that a
structured mutant population attains its stationary distribution. For a nonstructured
population in a stable environment (which requires a stable resident population),
there is no need to consider a long time interval: the invasion fitness of the mutant
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Box 4.1 Invasion fitness in a model of competition for a continuous resource

Consider the Lotka–Volterra competition model

1

ni

dni

dt
= r

[
1 −

∑
j a(xi , xj )nj

K (xi )

]
, (a)

where the trait value xi determines which part of a resource continuum the i th
strategy can utilize efficiently (e.g., beak size determines which seeds of a con-
tinuous distribution of seed sizes are consumed). The more similar two strate-
gies are, the more their resources overlap, and the more intense the competi-
tion. This can be expressed by the commonly used Gaussian competition function
a(xi , xj ) = exp(− 1

2 (xi − xj )
2/σ 2

a ) (see Christiansen and Fenchel 1977). We as-
sume that the intrinsic growth rate r is constant and that the carrying capacity K
is unimodal with a maximum at x0; K is given by K (x) = (K0 − λ(x − x0)

2)+,
where (...)+ indicates that negative values are set to zero. This model (or a very
similar model) has been investigated, for example, by Christiansen and Loeschcke
(1980), Slatkin (1980), Taper and Case (1985), Vincent et al. (1993), Metz et al.
(1996), Doebeli (1996b), Dieckmann and Doebeli (1999), Drossel and McKane
(1999), Day (2000), and Doebeli and Dieckmann (2000).

As long as a mutant strategy is rare, its self-competition and impact on the resi-
dent strategies are negligible. The density of a rare mutant strategy x ′ thus increases
exponentially according to

1

n′
dn′

dt
= r

[
1 −

∑
j a(x ′, xj )n̂ j

K (x ′)

]
, (b)

where n̂ j is the equilibrium density of the j th resident. These equilibrium densities
can be obtained by setting Equation (a) equal to zero and solving for ni . The right-
hand side of Equation (b) is the exponential growth rate, or invasion fitness, of
the mutant x ′ in a resident population with strategies x1, ..., xn . Specifically, in a
monomorphic resident population with strategy x , the equilibrium density is K (x)

and the mutant’s fitness simplifies to

f (x ′, x) = r

[
1 − a(x ′, x)

K (x)

K (x ′)

]
. (c)

Figures 4.1 and 4.2, and the figure in Box 4.5, are based on this model.

is then simply f = ln A(Ê) in discrete time and f = B(Ê) in continuous time,
with Ê being the environment as set by the equilibrium resident population. A
positive value of f indicates that the mutant strategy can spread in the population,
whereas a mutant with negative f will die out. Box 4.1 contains an example of
how to calculate f for a concrete model.

At the very beginning of the invasion process, typically only a few mutant indi-
viduals are present. As a consequence, demographic stochasticity plays an impor-
tant role so that the mutant may die out despite having a positive invasion fitness
f . However, the mutant has a positive probability of escaping random extinction
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whenever its growth rate f is positive (Crow and Kimura 1970; Goel and Richter-
Dyn 1974; Dieckmann and Law 1996). Once the mutant has grown sufficiently
in number so that demographic stochasticity can be neglected, its further inva-
sion dynamics is given by Equation (4.1) as long as it is still rare in frequency.
Equation (4.1) ceases to hold once the mutant becomes sufficiently common that
it appreciably influences the environment E .

Henceforth the fitness of a rare mutant strategy with trait value x ′ in a resident
population of strategy x is denoted by f (x ′, x) to emphasize that the fitness of a
rare mutant depends on its own strategy as well as on the resident strategy, since
the latter influences the environment E . This notation suppresses the associated
ecological variables, such as the equilibrium density of the residents. It is essential
to realize, however, that the fitness function f (x ′, x) is derived from a popula-
tion dynamic model that appropriately incorporates the ecological features of the
system under study.

4.3 Phenotypic Evolution by Trait Substitution
A single evolutionary step is made when a new strategy invades the population and
ousts the former resident. The phenotypes that prevail in the population evolve by
a sequence of invasions and substitutions. We assume that mutations occur in-
frequently, so that the previously invading mutant becomes established and the
population reaches its population dynamic equilibrium (in a deterministic or sta-
tistical sense) by the time the next mutant arrives, and also that mutations are of
small phenotypic effect (i.e., that a mutant strategy is near the resident strategy
from which it originated).

Consider a monomorphic resident population with a single strategy x . A mutant
strategy x ′ can invade this population if its fitness f (x ′, x) is positive. If strategy x
has a negative fitness when strategy x ′ is already widespread, then the mutant strat-
egy x ′ can eliminate the original resident. We assume that there is no unprotected
polymorphism and thus infer that strategy x ′ can replace strategy x if and only if
f (x ′, x) is positive and f (x, x ′) is negative. On the other hand, if both strategies
spread when rare, that is, if both f (x ′, x) and f (x, x ′) are positive, then the two
strategies form a protected dimorphism.

In the remainder of this section, as well as in Section 4.4, we focus on the evo-
lution of strategies specified by a single quantitative trait in monomorphic resident
populations. To visualize the course of phenotypic evolution it is useful to depict
graphically those mutant strategies that can invade in various resident populations
and those strategy pairs that can form protected dimorphisms. Figure 4.2a shows
a so-called pairwise invasibility plot (Matsuda 1985; Van Tienderen and de Jong
1986): each point inside the gray area represents a resident–mutant strategy com-
bination such that the mutant can invade the population of the resident. Points
inside the white area correspond to mutant–resident strategy pairs such that the
mutant cannot invade. A pairwise invasibility plot is constructed by evaluating
the mutant’s fitness f (x ′, x) for all values of x and x ′ and “coloring” the corre-
sponding point of the plot according to whether f (x ′, x) is positive or negative. In
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Figure 4.2 Course of phenotypic evolution for the model described in Box 4.1 with r =
1, K (x) = (1 − x2)+, a(x, x ′) = exp(− 1

2 (x − x ′)2/σ 2
a ) with σa = 0.5. (a) Pairwise

invasibility plot. Gray areas indicate combinations of mutant strategies x ′ and resident
strategies x for which the mutant’s fitness f (x ′, x) is positive; white areas correspond to
strategy combinations such that f (x ′, x) is negative. (b) The set of potentially coexisting
strategies. Gray areas indicate strategy combinations for which both f (x ′, x) and f (x, x ′)
are positive; protected coexistence outside the gray areas is not possible. In both (a) and (b),
the dotted lines schematically illustrate the narrow band of mutants near the resident that
can arise by mutations of small phenotypic effect. The singular strategy is denoted by x∗.

Figure 4.2b the gray area indicates that both f (x ′, x) and f (x, x ′) are positive, and
hence the two strategies are able to coexist. This plot is obtained by first mirroring
the pairwise invasibility plot along its main diagonal x ′ = x [which amounts to re-
versing the roles of the mutant and the resident and gives the sign plot of f (x, x ′)]
and then superimposing the mirror image on the original. The overlapping gray
areas correspond to strategy pairs that form protected dimorphisms.

With small mutations, x and x ′ are never far apart, so that only a narrow band
along the main diagonal x ′ = x is of immediate interest. The main diagonal it-
self is always a borderline between “invasion” (gray) and “noninvasion” (white)
areas, because residents are selectively neutral among themselves, and therefore
f (x) = 0 for all x . In Figure 4.2a, resident populations with a trait value less than
x∗ can always be invaded by mutants with slightly larger trait values. Coexistence
is not possible, because away from x∗ any combination of mutant and resident
strategies near the main diagonal lies within the white area of Figure 4.2b. Thus,
starting with a trait value left of x∗, the population evolves to the right through a
series of successive substitutions. By the same argument, it follows that a pop-
ulation starting on the right of x∗ evolves to the left. Eventually, the population
approaches x∗, where directional selection ceases. Trait values for which there is
no directional selection are called evolutionarily singular strategies (Metz et al.
1996; Geritz et al. 1998).

The graphic analysis of Figure 4.2 is sufficient to establish the direction of evo-
lution in the case of monomorphic populations in which a single trait is evolving,
but gives no explicit information on the speed of evolution. In Box 4.2, we outline
a quantitative approach that assesses the speed of mutation-limited evolution.
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Box 4.2 The speed of directional evolution

The speed of mutation-limited evolution is influenced by three factors: how often
a new mutation occurs; how large a phenotypic change this causes; and how likely
it is that an initially rare mutant invades. If the individual mutational steps are
sufficiently small, and thus long-term evolution proceeds by a large number of sub-
sequent invasions and substitutions, the evolutionary process can be approximated
by the canonical equation of adaptive dynamics (Dieckmann and Law 1996),

dx

dt
= 1

2
α(x)µ(x)N̂(x)σ 2

M(x)
∂ f (x ′, x)

∂x ′

∣∣∣∣
x ′=x

. (a)

Here µ is the probability of a mutation per birth event, and N̂ is the equilibrium
population size: the product µN̂ is thus proportional to the number of mutations
that occur per unit of time. The variance of the phenotypic effect of a mutation is
σ 2

M (with symmetric unbiased mutations, the expected phenotypic effect is zero and
the variance measures the size of “typical” mutations). The probability of invasion
consists of three factors. First, during directional evolution, either only mutants
with a trait value larger than the resident, or only mutants with a trait value smaller
than the resident, can invade (see Figure 4.2a); in other words, half of the mutants
are at a selective disadvantage and doomed to extinction. This leads to the factor
1
2 . Second, even mutants at selective advantage may be lost through demographic
stochasticity (genetic drift) in the initial phase of invasion, when they are present in
only small numbers. For mutants of small effect, the probability of not being lost is
proportional to the selective advantage of the mutant as measured by the fitness gra-
dient ∂ f (x ′, x)/∂x ′|x ′=x . Finally, the constant of proportionality α is proportional
to the inverse of the variance in offspring number: with the same expected num-
ber of offspring, an advantageous mutant is more easily lost through demographic
stochasticity if its offspring number is highly variable. The constant α equals 1
for a constant birth–death process in an unstructured population, as considered by
Dieckmann and Law (1996).

Other models of adaptive dynamics agree that the change in phenotype is pro-
portional to the fitness gradient, that is

dx

dt
= β

∂ f (x ′, x)

∂x ′

∣∣∣∣
x ′=x

(b)

(e.g., Abrams et al. 1993a; Vincent et al. 1993; Marrow et al. 1996). This equa-
tion leads to results similar to those from quantitative genetic models (Taper and
Case 1992) and, indeed, can be derived as an approximation to the quantitative ge-
netic iteration (Abrams et al. 1993b). Equations (a) and (b) have a similar form,
though the interpretation of their terms is different: in quantitative genetics, β is
the additive genetic variance and thus measures the standing variation upon which
selection operates; it is often assumed to be constant. In the canonical equation,
β depends on the probability and distribution of new mutations; also, β generally
depends on the prevalent phenotype x , if only through the population size N̂ (x).
In quantitative genetics, evolutionary change is proportional to the fitness gradient,
because stronger selection means faster change in the frequencies of alleles that are
present from the onset. In mutation-limited evolution, a higher fitness gradient in-
creases the probability that a favorable mutant escapes extinction by demographic
stochasticity.
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Figure 4.3 Evolutionary branching and a mutant’s fitness as a function of its strategy.
(a) Mutant fitness in a monomorphic resident population at a branching point x∗. (b) Mutant
fitness in a dimorphic resident population with strategies x1 and x2, both similar to the
branching point x∗. Notice that only those mutants outside the interval spanned by x1 and
x2 have a positive fitness and hence can invade. (c) Mutant fitness in a dimorphic resident
population with strategies x1 and x3. The former resident x2 now has a negative fitness, and
hence is expelled from the population.

4.4 The Emergence of Diversity: Evolutionary Branching
Although the evolutionarily singular strategy x∗ in Figure 4.2a is an attractor of
monomorphic directional evolution, it is not evolutionarily stable in the classic
sense (Maynard Smith 1982), that is, it is not stable against invading mutants. In
fact, mutants both smaller and larger than x∗ can invade the resident population of
x∗. Unlike in directional evolution, in the neighborhood of x∗ the invasion of a mu-
tant results in coexistence of the resident and mutant strategies (Figure 4.2b). As
the singularity is approached by small but finite mutational steps, the population
actually becomes dimorphic as soon as the next mutant enters the area of coexis-
tence (i.e., a little before exactly reaching the singular strategy, Figure 4.2b).

To see how evolution proceeds in the now dimorphic population, it is useful to
plot the mutant’s fitness as a function of the mutant trait value (Figure 4.3). In
the resident population of the singular strategy x∗, all nearby mutants are able to
invade (i.e., they have positive fitness), except for the singular strategy itself, which
has zero fitness. The fitness function thus attains a minimum at x∗ (Figure 4.3a). In
a dimorphic population with two strategies x1 and x2, both similar to x∗, the fitness
function is also similar, but with zeros at x1 and x2, because residents themselves
are selectively neutral (Figure 4.3b).

According to Figure 4.3b, a new mutant that arises in the dimorphic popula-
tion with strategies x1 and x2 similar to x∗ has a positive fitness, and therefore
can invade, if and only if it is outside the interval spanned by the two resident
trait values. By contrast, mutants between these values have a negative fitness
and therefore must die out. A mutant cannot coexist with both former resi-
dents, because the parabolically shaped fitness function cannot have three zeros
to accommodate three established resident strategies. It follows that the success-
fully invading mutant will oust the resident that has become the middle strategy
(Figure 4.3c).

Since the initial dimorphic population is formed of the most recent monomor-
phic resident and its mutant, with small mutations these two strategies are very
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Box 4.3 How to recognize evolutionary branching points

One can easily search for evolutionary branching points in a model once the mutant
fitness function f (x ′, x) has been determined. If f (x ′, x) is known analytically,
then the following criteria must be satisfied by an evolutionary branching point x∗

(Geritz et al. 1998):

1. x∗ must be an evolutionary singularity, i.e., the fitness gradient vanishes at x∗,

∂ f (x ′, x)

∂x ′

∣∣∣∣
x ′=x=x∗

= 0 . (a)

2. x∗ must be an attractor of directional evolution (Eshel 1983),

∂2 f (x ′, x)

∂x∂x ′ + ∂2 f (x ′, x)

∂x ′2

∣∣∣∣
x ′=x=x∗

< 0 . (b)

3. In the neighborhood of x∗, similar strategies must be able to form protected
dimorphisms (Geritz et al. 1998),

∂2 f (x ′, x)

∂x2
+ ∂2 f (x ′, x)

∂x ′2

∣∣∣∣
x ′=x=x∗

> 0 . (c)

4. x∗ must lack evolutionary stability (Maynard Smith 1982), which ensures dis-
ruptive selection at x∗ (Geritz et al. 1998),

∂2 f (x ′, x)

∂x ′2

∣∣∣∣
x ′=x=x∗

> 0 . (d)

As can be verified by inspection of all the generic singularities (see Box 4.4), the
second-order criteria (2)–(4) are not independent for the case of a single trait and an
initially monomorphic resident population; instead, criteria (2) and (4) are sufficient
to ensure (3) as well. This is, however, not true for multidimensional strategies
or for coevolving populations (Geritz et al. 1998). These criteria are thus best
remembered separately.

Alternatively, a graphic analysis can be performed using a pairwise invasibility
plot (Figure 4.2a). Although drawing the pairwise invasibility plot is practical only
for the case of single traits and monomorphic populations, it is often used when the
invasion fitness cannot be determined analytically. In a pairwise invasibility plot,
the evolutionary branching point is recognized by the following pattern:

� The branching point is at a point of intersection between the main diagonal and
another border line between positive and negative mutant fitness.

� The fitness of mutants is positive immediately above the main diagonal to the
left of the branching point and below the main diagonal to its right.

� Potentially coexisting strategies lie in the neighborhood of the branching point
(this can be checked on a plot similar to Figure 4.2b, but, as highlighted above,
in the simple case for which pairwise invasibility plots are useful, this criterion
does not have to be checked separately).

� Looking along a vertical line through the branching point, the mutants immedi-
ately above and below are able to invade.
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Box 4.4 Types of evolutionary singularities

Eight types of evolutionary singularities occur generically in single-trait evolution
of monomorphic populations, as in the figure below (Geritz et al. 1998). As in Fig-
ure 4.2a, gray areas indicate combinations of mutant strategies and resident strate-
gies for which the mutant’s fitness is positive.

(a)

(b)

(c)

Resident strategy, x
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, x
′

These types can be classified into three major groups:

� Evolutionary repellors, (a) in the figure above. Directional evolution leads away
from this type of singularity, and therefore these types do not play a role as
evolutionary outcomes. If the population has several singular strategies, then a
repellor separates the basins of attraction of adjacent singularities.

� Evolutionary branching points, (b) in the figure above. This type of singular-
ity is an attractor of directional evolution, but it lacks evolutionary stability and
therefore evolution cannot stop here. Invading mutants give rise to a protected
dimorphism in which the constituent strategies are under disruptive selection
and diverge away from each other. Evolution can enter a higher level of poly-
morphism by small mutational steps only via evolutionary branching.

� Evolutionarily stable attractors, (c) in the figure above. Singularities of this type
are attractors of directional evolution and, moreover, once established the popu-
lation cannot be invaded by any nearby strategy. Such strategies are also called
continuously stable strategies (Eshel 1983). Coexistence of strategies may be
possible, but coexisting strategies undergo convergent rather than divergent co-
evolution such that eventually the dimorphism disappears. Evolutionarily stable
attractors act as final stops of evolution.

similar. After the first substitution in the dimorphic population, however, the new
resident population consists of two strategies with a wider gap between. Through a
series of such invasions and replacements, the two strategies of the dimorphic pop-
ulation undergo divergent coevolution and become phenotypically clearly distinct
(see Figure 4.1).

The process of convergence to a particular trait value in the monomorphic pop-
ulation followed by gradual divergence once the population has become dimorphic
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Box 4.5 Polymorphic and multidimensional evolution

If the theory of adaptive dynamics were only applicable to the caricature of one-
dimensional trait spaces or monomorphic populations, it would be of very limited
utility. Below we therefore describe how this framework can be extended.

We start by considering polymorphic populations. By assuming mutation-
limited evolution we can ignore the possibility of simultaneous mutations that occur
in different resident strategies. Two strategies x1 and x2 can coexist as a protected
dimorphism if both f (x2, x1) and f (x1, x2) are positive (i.e., when both can invade
into a population of the other). For each pair of resident strategies x1 and x2 we can
construct a pairwise invasibility plot for x1 while keeping x2 fixed, and a pairwise
invasibility plot for x2 while keeping x1 fixed. From this we can see which mutants
of x1 or of x2 could invade the present resident population and which could not (i.e.,
in what direction x1 and x2 will evolve by small mutational steps).

In the example shown in the figure below, the arrows indicate the directions of
evolutionary change in x1 and in x2. On the lines that separate regions with different
evolutionary directions, selection in one of the two resident strategies is no longer
directional: each point on such a line is a singular strategy for the corresponding
resident, if the other resident is kept fixed. The points of these lines, therefore,
can be classified similarly to the monomorphic singularities in Box 4.4. Within the
regions of coexistence in the figure below continuous lines indicate evolutionary
stability and dashed lines the lack thereof. At the intersection point of two such
lines, directional evolution ceases for both residents. Such a strategy combination
is called an evolutionarily singular dimorphism. This dimorphism is evolutionarily
stable if neither mutants of x1 nor mutants of x2 can invade (i.e., if both x1 and x2

are evolutionarily stable); in the figure this is the case.
continued
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Adaptive dynamics in a dimorphic population for the model described in Box 4.1 with
r = 1, K (x) = (1 − x2)+, and σa = 0.5. Gray areas indicate strategy pairs (x1, x2) that
can coexist as a protected dimorphism. Lines inside the gray areas separate regions with
different evolutionary directions for the two resident strategies, as illustrated by arrows.
On the steeper line, which separates strategy pairs evolving either toward the left or
toward the right, directional evolution in x1 ceases. Likewise, on the shallower line,
which separates strategy pairs evolving upward from those evolving downward, direc-
tional evolution in x2 ceases. Continuous lines indicate that the corresponding strategy
is evolutionarily stable if evolution in the other strategy is arrested. After branching at
the branching point x∗ (open circle), the population evolves into the gray area toward
the evolutionarily stable dimorphism (x∗

1 , x∗
2 ) (filled circles), where directional evolution

ceases in both strategies and both strategies also possess evolutionary stability.
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Box 4.5 continued

For a singular dimorphism to be evolutionarily attracting it is neither necessary nor
sufficient that both strategies are attracting if the other resident is kept fixed at its
present value (Matessi and Di Pasquale 1996; Marrow et al. 1996). With small
evolutionary steps, we can approximate the evolutionary trajectories by utilizing
the canonical equation (see Box 4.2) simultaneously for both coevolving strate-
gies. Stable equilibria of the canonical equation then correspond to evolutionarily
attracting singular dimorphisms. If such a dimorphism is evolutionarily stable, it
represents a final stop of dimorphic evolution. However, if one of the resident
strategies at the singularity is not evolutionarily stable and, moreover, if this resi-
dent can coexist with nearby mutants of itself, the population undergoes a secondary
branching event, which leads to a trimorphic resident population (Metz et al. 1996;
Geritz et al. 1998). An example of such a process is shown in Figure 4.1.

Next we consider the adaptive dynamics framework in the context of multidi-
mensional strategies. In natural environments, strategies are typically characterized
by several traits that jointly influence fitness and that may be genetically correlated.

Though much of the basic framework can be generalized to multidimensional
strategies, these also pose special difficulties. For example, unlike in the case of
scalar strategies, a mutant that invades a monomorphic resident population may
coexist with the former resident also away from any evolutionary singularity. This
coexistence, however, is confined to a restricted set of mutants, such that its volume
vanishes for small mutational steps proportionally to the square of the average size
of mutations. With this caveat, directional evolution of two traits in a monomorphic
population can be depicted graphically in a similar way to coevolving strategies.
There are two important differences, however. First, the axes of the figure on the
previous page no longer represent different residents, but instead describe different
phenotypic components of the same resident phenotype. Second, if the traits are
genetically correlated such that a single mutation can affect both traits at the same
time, then the evolutionary steps are not constrained to being either horizontal or
vertical. Instead, evolutionary steps are possible in any direction within an angle of
plus or minus 90 degrees from the selection gradient vector ∂ f (x ′, x)/∂x ′|x ′=x .

For small mutational steps, the evolutionary trajectory can be approximated by a
multidimensional equivalent of the canonical equation (Dieckmann and Law 1996;
see Box 4.2), where dx/dt and ∂ f (x ′, x)/∂x ′|x ′=x are vectors, and the mutational
variance is replaced by the mutation variance–covariance matrix C(x) (the diago-
nal elements of this matrix contain the trait-wise mutational variances and the off-
diagonal elements represent the covariances between mutational changes in two
different traits that may result from pleiotropy). With large covariances, it is pos-
sible that a trait changes “maladaptively”, that is, the direction of the net change is
opposite to the direct selection on the trait given by the corresponding component
of the fitness gradient (see also Lande 1979b).

An evolutionarily singular strategy x∗, in which all components of the fitness
gradient are zero, is evolutionarily stable if it is, as a function of the traits of the
mutant strategy x ′, a multidimensional maximum of the invasion fitness f (x ′, x∗).
If such a singularity lacks evolutionary stability, evolutionary branching may occur.
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Box 4.6 The geography of speciation

Evolutionary branching in a spatially subdivided population based on a simple
model by Meszéna et al. (1997) is illustrated here. Two habitats coupled by mi-
gration are considered. Within each habitat, the population follows logistic growth,
in which the intrinsic growth rate is a Gaussian function of strategy, with different
optima in the two habitats. The model is symmetric, so that the “generalist” strat-
egy, which is exactly halfway between the two habitat-specific optima, is always
an evolutionarily singular strategy. Depending on the magnitude of the difference
� between the local optima relative to the width of the Gaussian curve and on
the migration rate m, this central singularity may either be an evolutionarily stable
strategy, a branching point, or a repellor [(a) in the figure below; see also Box 4.4].
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Evolutionary properties of singularities in a two-patch model with local adaptation and
migration. (a) A generalist strategy that exploits both patches is an evolutionary repellor,
a branching point, or an evolutionarily stable attractor, depending on the difference � be-
tween the patch-specific optimal strategies and the migration rate m, as indicated by the
three different parameter regions. (b) Evolutionary singularities as a function of inverse
migration rate. The difference between the patch-specific optimal strategies was fixed
at � = 1.5. For comparison, the two thin dotted horizontal lines at x1 and x2 denote
the local within-patch optimal strategies (x = ±�/2). Monomorphic singular strategies
are drawn with lines of intermediate thickness, of which the continuous lines correspond
to evolutionarily stable attractors, the dashed lines to branching points, and the dotted
line to an evolutionary repellor. The monomorphic generalist strategy is indicated by x∗.
Along a cross-section at � = 1.5 in (a), indicated by an arrow head, the generalist strat-
egy changes with increasing 1/m from an evolutionarily stable attractor into a branching
point and then into an evolutionary repellor. The two branches of the bold line indicate
the strategies of the evolutionarily stable dimorphism. Source: Meszéna et al. (1997).

There are four possible evolutionary scenarios [(b) in the figure above]: at high
levels of migration (inverse migration rate smaller than 1/m1), the population ef-
fectively experiences a homogeneous environment in which the generalist strategy
is evolutionarily stable and branching is not possible. With a somewhat lower mi-
gration rate (inverse migration rate between 1/m1 and 1/m2), the generalist is at
an evolutionary branching point, and the population evolves to a dimorphism that
consists of two habitat specialists. Decreasing migration further (inverse migration
rate between 1/m2 and 1/m3), the generalist becomes an evolutionary repellor, but

continued
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Box 4.6 continued

there are two additional monomorphic singularities, one on each side of the gener-
alist, both of which are branching points. Finally, in case of a very low migration
rate (inverse migration rate greater than 1/m3), these two monomorphic attractors
are evolutionarily stable and branching does not occur, even though there also ex-
ists an evolutionarily stable dimorphism of habitat specialists. (A similar sequence
of transitions can be observed if, instead of decreasing the migration rate, the dif-
ference between the habitats is increased.) Evolutionary branching is also possible
if the environment forms a gradient instead of discrete habitats, provided there are
sufficiently different environments along the gradient and mobility is not too high
(Mizera and Meszéna 2003; Chapter 7).

is called evolutionary branching. The singularity at which this happens (x∗ in Fig-
ure 4.2a) is an evolutionary branching point. In Box 4.3 we summarize how to
recognize branching points by investigating the fitness function f (x ′, x).

The evolutionary branching point, though perhaps the most interesting with re-
gard to speciation, is not the only type of singular strategy. In Box 4.4 we briefly
summarize the basic properties of all singularities that occur generically. Through-
out this section, we constrain our discussion to single-trait evolution in an initially
monomorphic population. A brief summary on how to extend these results to poly-
morphic populations (including further branching events as in Figure 4.1) and to
multiple-trait evolution is given in Box 4.5; more details can be found in Metz
et al. (1996) and Geritz et al. (1998, 1999), and, concerning directional evolution,
in Dieckmann and Law (1996), Matessi and Di Pasquale (1996), Champagnat et al.
(2001), and Leimar (2001 and in press).

For the adaptive dynamics framework to be applicable to spatially subdivided
populations, sufficient dispersal must occur between subpopulations for the sta-
tionary population distribution to be attained on an ecological time scale. Full
sympatry is, however, by no means a necessary condition, and the framework has
been used to analyze evolution in spatially structured populations as well (e.g.,
Meszéna et al. 1997; Day 2000; see Box 4.6).

So far we have considered clonally inherited phenotypes. The very same model
can be applied, however, to the evolution of alleles at a single diploid locus in a
Mendelian population [Box 4.7; Kisdi and Geritz 1999; see also Christiansen and
Loeschcke (1980) for a related approach] when assuming that a continuum of allele
types is possible, and that the mutant allele codes for a phenotype similar to that of
the parent allele. Evolutionary branching in alleles then occurs similarly to clonal
phenotypes and produces two distinct allele types that may continue to segregate
within the species. Since intermediate heterozygotes are at a disadvantage under
disruptive selection, selection occurs for dominance and for assortative mating
(Udovic 1980; Wilson and Turelli 1986; Van Dooren 1999; Geritz and Kisdi 2000).
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Box 4.7 Adaptive dynamics of alleles and stable genetic polymorphisms

As an example for the adaptive dynamics of alleles, consider the classic soft-
selection model of Levene (1953; see Box 3.1). We assume that not just two al-
leles may segregate (A and a, with fixed selection coefficients s1 and s2), as in the
classic models, but instead that many different alleles may arise by mutations and
that they determine a continuous phenotype in an additive way (i.e., if the pheno-
types of AA and aa are, respectively, xA and xa, then the heterozygote phenotype is
(xA +xa)/2). Within each habitat, local fitness is a function of the phenotype: ϕi (x)

in habitat i . For example, in the first habitat local fitness values are WAA = ϕ1(xA),
WAa = ϕ1((xA + xa)/2), and Waa = ϕ1(xa). For any two alleles A and a, drawn
from the assumed continuum, the dynamics and equilibrium of allele frequencies
can be obtained as described in Box 3.1. In particular, the frequency of a rare mu-
tant allele a increases in a population monomorphic for allele A at a per-generation
rate of k1ϕ1((xA + xa)/2)/ϕ1(xA) + k2ϕ2((xA + xa)/2)/ϕ2(xA), where ki is the rel-
ative size of habitat i , with k1 + k2 = 1. If this expression is greater than 1 [or,
equivalently, if its logarithm, f (xa, xA) in the notation of the main text, is positive],
then the mutant allele can invade.

Assuming that mutations only result in small phenotypic change (xa is near xA),
we can apply the adaptive dynamics framework to the evolution of alleles (Geritz
et al. 1998). Invasion by a mutant allele usually leads to substitution (i.e., the
new allele replaces the former allele, just as in clonal adaptive dynamics). The en-
suing directional evolution, however, leads to singular alleles in which protected
polymorphisms become possible. Evolutionary branching of alleles means that the
homozygote phenotypes diverge from each other, and results in a genetic polymor-
phism of distinctly different alleles that segregate in a randomly mating population
(Kisdi and Geritz 1999).

Assuming a more flexible genetic variation sheds new light on the old question
of whether stable genetic polymorphisms are sufficiently robust to serve as a basis
for sympatric speciation. Recall from Box 3.1 that if selection coefficients si are
small, then polymorphism is possible only in a very narrow range of parameters (the
parameter region that allows for polymorphism actually has a cusp at s1 = s2 = 0).
Given two arbitrary alleles A and a, and therefore given selection coefficients s1

and s2, polymorphism results only if the environmental parameters, in this case
the relative habitat sizes k1 and k2 = 1 − k1, are fine-tuned. This means that a
polymorphism of two particular alleles is not robust under weak selection (Maynard
Smith 1966; Hoekstra et al. 1985), and this property appeared a significant obstacle
to sympatric speciation.

By contrast, the assumption of more flexible genetic variation (a potential con-
tinuum of alleles rather than only two alleles) considerably facilitates the evolution
of stable genetic polymorphisms. Here we focus on polymorphisms of similar alle-
les (which may arise by a single mutation at the onset of evolutionary branching);
this immediately implies that the selection coefficients are small and that the two
alleles cannot form a polymorphism without fine-tuning of the environmental pa-
rameters. With many potential alleles, however, the requirement of fine-tuning may
be turned around: given a certain environment (k1 and k2), polymorphism will re-
sult if the alleles are chosen from a narrow range. This narrow range turns out to

continued
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Box 4.7 continued

coincide with the neighborhood of an evolutionarily singular allele. Thus, starting
with an arbitrary allele A, population genetics and adaptive dynamics agree in that
the invasion of a mutant allele a usually results in substitution rather than poly-
morphism. Repeated substitutions, however, lead toward a singular allele, in the
neighborhood of which stable polymorphisms are possible. In other words, evo-
lution by small mutational steps proceeds exactly toward those exceptional alleles
that can form polymorphisms: long-term evolution itself takes care of the neces-
sary fine-tuning (Kisdi and Geritz 1999; see figure below). If the singularity is a
branching point, then the population not only becomes genetically polymorphic,
but also is subject to disruptive selection, as is necessary for sympatric speciation.
Of course, it remains to be seen whether reproductive isolation can evolve [see
Chapters 3 and 5 and references therein; see also Geritz and Kisdi (2000) for an
analysis of the evolution of reproductive isolation through the adaptive dynamics of
alleles]. Fine-tuning is necessary not only in multiple-niche polymorphisms [such
as Levene’s (1953) model and its variants, see Hoekstra et al. (1985)], but also in
any generic model in which frequency dependence can maintain protected poly-
morphisms; long-term evolution then provides the necessary fine-tuning whenever
many small mutations incrementally change an evolving trait.

(a) (b) (c)
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Allele pairs that can form a stable polymorphism in Levene’s soft selection model with
stabilizing selection within each habitat (ϕi is Gaussian with unit width and the two
peaks are located at a distance of � = 3). (a) An arbitrary allele xA = 0.3 can form
a polymorphism with allele xa within the shaded area. Notice that if xa − xA is small
(i.e., if the two alleles produce similar phenotypes and hence selection is weak), then
polymorphism is possible only in a narrow range of the environmental parameter k1
(fine-tuning). In one particular environment k1 = 0.5 (indicated by arrowheads in the left
and right panels), the allele xA = 0.3 cannot form a polymorphism under weak selection.
(b) The set of allele pairs that can form polymorphisms in the particular environment
k1 = 0.5. The thick line corresponds to identical alleles xa = xA; similar alleles with
small difference xa − xA thus lie in the neighborhood of the thick line. Again, the allele
xA = 0.3 (denoted by an asterisk) cannot form a polymorphism with alleles similar to
itself in this particular environment. Allele substitutions in the monomorphic population,
however, lead to the evolutionary singular allele x∗ = 0, where similar alleles are able
to form polymorphisms in this particular environment. (c) With xA = x∗, the narrow
range of k1 that permits polymorphism with small xa − xA shifts to the actual value of
the environmental parameter, k1 = 0.5. Note that x∗ depends on the actual value of
the environmental parameter; it happens to be the central strategy only for the particular
choice k1 = 0.5.
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4.5 Evolutionary Branching and Speciation
The phenomenon of evolutionary branching in clonal models may appear very
suggestive of speciation. First, there is directional evolution toward a well-defined
trait value, the evolutionary branching point. As evolution reaches the branching
point, selection turns disruptive. The population necessarily becomes dimorphic in
the neighborhood of the branching point, and disruptive selection causes divergent
coevolution in the two coexisting lineages. The resultant evolutionary pattern is of
a branching evolutionary tree, with phenotypically distinct lineages that develop
gradually by small evolutionary steps (Figure 4.1).

Naturally, clonal models of adaptive dynamics are unable to account for the ge-
netic details of speciation, in particular how reproductive isolation might develop
between the emerging branches (see Dieckmann and Doebeli 1999; Drossel and
McKane 2000; Geritz and Kisdi 2000; Matessi et al. 2001; Meszéna and Chris-
tiansen, unpublished; see Chapter 5). What evolutionary branching does imply is
that there is evolution toward disruptive selection and, at the same time, toward
polymorphism in the ecological model in which branching is found. These are the
ecological prerequisites for speciation and set the selective environment for the
evolution of reproductive isolation. Evolutionary branching thus indicates that the
ecological system under study is prone to speciation.

Speciation by disruptive selection has previously been considered problematic,
because disruptive selection does not appear to be likely to occur for a long time
and does not appear to be compatible with the coexistence of different types (either
different alleles or different clonal types or species). For disruptive selection to oc-
cur, the population must be at the bottom of a fitness valley (similar to Figure 4.3).
In simple, frequency-independent models of selection, the population “climbs” to-
ward the nearest peak of the adaptive landscape (Wright 1931; Lande 1976). The
fitness valleys are thus evolutionary repellors: the population is unlikely to expe-
rience disruptive selection, except possibly for a brief exposure before it evolves
away from the bottom of the valley.

As pointed out by Christiansen (1991) and Abrams et al. (1993a), evolution by
frequency-dependent selection often leads to fitness minima. Even though in each
generation the population evolves “upward” on the fitness landscape, the land-
scape itself changes such that the population eventually reaches the bottom of a
valley. This is what happens during directional evolution toward an evolutionary
branching point.

Disruptive selection has also been thought incompatible with the maintenance
of genetic variability (e.g., Ridley 1993). In simple one-locus models disruptive
selection amounts to heterozygote inferiority, which, in the absence of frequency
dependence, leads to the loss of one allele. This is not so under frequency depen-
dence (Pimm 1979): at the branching point, the heterozygote is inferior only when
both alleles are sufficiently common. Should one of the alleles become rare, the
frequency-dependent fitness of the heterozygote increases such that it is no longer
at a disadvantage, and therefore the frequency of the rare allele increases again.
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Except for asexual species, evolutionary branching corresponds to speciation
only if reproductive isolation emerges between the nascent branches. There are
many ways by which reproductive isolation could, in principle, evolve during evo-
lutionary branching (see Chapter 3). Assortative mating based on the same eco-
logical trait that is under disruptive selection automatically leads to reproductive
isolation as the ecological trait diverges (Drossel and McKane 2000), and this pos-
sibility appears to be widespread in nature (e.g., Chown and Smith 1993; Wood
and Foote 1996; Macnair and Gardner 1998; Nagel and Schluter 1998; Grant et al.
2000). For example, in the apple maggot fly Rhagoletis pomonella, there is disrup-
tive selection on eclosion time; different timing of reproduction helps to prevent
hybridization between the host races (Feder 1998; see Chapter 11). If differences
in the ecological trait are associated with different habitats, as is the case for the ap-
ple maggot fly, then reduced migration, habitat fidelity, or habitat choice ensures
assortative mating (Balkau and Feldman 1973; Diehl and Bush 1989; Kawecki
1996, 1997). Assortative mating based on a neutral “marker” trait (e.g., different
flower colors that attract different pollinators) can lead to reproductive isolation
between the emerging branches only if an association (linkage disequilibrium) is
established between the ecological trait and the marker. This is considered to be
difficult because of recombination (Felsenstein 1981; but see Dieckmann and Doe-
beli 1999; Chapter 5), and possible only if there is strong assortativeness, strong
selection on the ecological trait, or low recombination (Udovic 1980; Kondrashov
and Kondrashov 1999; Geritz and Kisdi 2000).

The degree of assortativeness in any mate choice system may be sufficiently
high at the onset, or else it may increase evolutionarily while the population is
at a branching point. Since disruptive selection acts against intermediate pheno-
types, assortative mating between phenotypically similar individuals is selectively
favored at the branching point. Adaptive increase of assortativeness may be sus-
pected if mating is more discriminative in sympatry (Coyne and Orr 1989, 1997;
Noor 1995; Sætre et al. 1997) or if some unusual preference appears as a de-
rived character (Rundle and Schluter 1998). In models, increased assortativeness
readily evolves if it amounts to the substitution of the same allele in the entire pop-
ulation [a “one-allele mechanism” in the sense of Felsenstein (1981)], such as an
allele for increased “choosiness” when selecting mates based on the ecological trait
(Dieckmann and Doebeli 1999; Chapter 5; but see Matessi et al. 2001; Meszéna
and Christiansen, unpublished) or on an allele for reduced migration (Balkau and
Feldman 1973). By contrast, two-allele mechanisms depend on the replacement
of different alleles in the two branches and thus involve the emergence of linkage
disequilibria, a process counteracted by recombination (Felsenstein 1981). Yet
such mechanisms have been shown to evolve under certain conditions: when dif-
ferent alleles in the two branches code for different habitat preferences, the pro-
cess is aided by spatial segregation (Diehl and Bush 1989; Kawecki 1996, 1997),
and when the different alleles code for ecologically neutral marker traits, linkage
disequilibria can arise from the deterministic amplification of genetic drift in finite
populations (Dieckmann and Doebeli 1999; see Chapter 5). Partial reproductive
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isolation by one mechanism facilitates the evolution of other isolating mechanisms
(Johnson et al. 1996b), whereby the remaining gene flow is further reduced and
the divergent subpopulations attain species rank.

Alternatively, reproductive isolation may arise for reasons independent of dis-
ruptive natural selection on the ecological trait. Such mechanisms include sex-
ual selection (Turner and Burrows 1995; Payne and Krakauer 1997; Seehausen
et al. 1997; Higashi et al. 1999) and the evolution of gamete-recognition systems
(Palumbi 1992). If the emergent species experience directional or stabilizing natu-
ral selection, they remain ecologically undifferentiated and hence they are unlikely
to coexist for a long time. Evolutionary branching, however, can latch on such that
the two species evolve into two branches, which ensures the ecological differenti-
ation necessary for long-term coexistence (Galis and Metz 1998; Van Doorn and
Weissing 2001). Once reproductive isolation has been established between the
branches in any way, further coevolution of the species proceeds as in the clonal
model of adaptive dynamics.

4.6 Adaptive Dynamics: Alternative Approaches
In this chapter, we concentrate on the adaptive dynamics framework developed
by Metz et al. (1996) and Geritz et al. (1997, 1998). This is by no means the
only approach to adaptive dynamics [see Abrams (2001a) for a review]. We focus
on this particular approach because the concept of evolutionary branching may
help in the study of nonallopatric speciation. Alternative approaches consider the
number of species fixed [and hence do not consider speciation at all; see Abrams
(2001a) for references to many examples], or assume invasions of new species
from outside the system [the invading species in such cases may be considerably
different from the members of the present community and its phenotype is more
or less arbitrary; e.g., Taper and Case (1992)], or establish that polymorphism will
occur at fitness minima, but do not investigate the subsequent coevolution of the
constituent strategies (e.g., Brown and Pavlovic 1992). An important exception
is the work of Eshel et al. (1997), which paralleled some results of Metz et al.
(1996) and Geritz et al. (1997, 1998). A recent paper by Cohen et al. (1999) gives
similar results to those presented in this chapter. This approach uses differential
equations to describe the convergence to the branching point in a monomorphic
population and divergence in a dimorphic population; to incorporate the transition
from monomorphism to dimorphism, the model has to be modified by adding a
new equation at the branching point (see, however, Abrams 2001b). Most models
of adaptive dynamics agree on the basic form of the equation that describes within-
species phenotypic change over time [see Box 4.2, Equation (b)].

In the present framework, analytical tractability comes at the cost of assuming
mutation-limited evolution, that is, assuming mutations that occur infrequently
and, if successful, sweep through the population before the next mutant comes
along. Simulations of the evolutionary process (similar to that shown in Figure 4.1,
but with variable size and frequency of mutations) demonstrate that the qualitative
patterns of monomorphic evolution and evolutionary branching are robust with
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respect to relaxing this assumption. With a higher frequency of mutations, the
next mutant arises before the previous successful mutant has become fixed, and
therefore there is always some variation in the population. The results are robust
with respect to this variation because the environment, E in Equations (4.1a) and
(4.1b), generated by a cluster of similar strategies is virtually the same if the cluster
is replaced by a single resident. Therefore, there is no qualitative difference in
terms of which strategies can invade.

4.7 Concluding Comments
Recent empirical research has highlighted the significance of adaptive speciation
(e.g., Schluter and Nagel 1995; Schluter 1996a; Losos et al. 1998; Schneider et al.
1999; Schilthuizen 2000); in many instances, natural selection plays a decisive
role in species diversification. It is a challenge for evolutionary theory to construct
an appropriate theoretical framework for adaptive speciation. Adaptive dynamics
provides one facet as it identifies speciation-prone ecological conditions, in which
selection favors diversification with ecological contact.

Classic speciation models (e.g., Udovic 1980; Felsenstein 1981; Kondrashov
and Kondrashov 1999) emphasize the population genetics of reproductive isola-
tion, and merely assume some disruptive selection, either as an arbitrary exter-
nal force or by incorporating only the simplest ecology [very often a version of
Levene’s (1953) model with two habitats; see Chapter 3]. By contrast, adaptive
dynamics focuses on the ecological side of speciation. It offers a theoretical frame-
work for the investigation in complex ecological scenarios as to whether, and under
which conditions, speciation can be expected. Beyond the prediction of a certain
speciation event, adaptive dynamics can analyze various patterns in the develop-
ment of species diversity (see Box 4.8).

On a paleontological time scale, evolution driven by directional selection and,
presumably, adaptive speciation is very fast (McCune and Lovejoy 1998; Hendry
and Kinnison 1999). It is thus tempting to think of the paleontological record as
a series of evolutionarily stable communities, the changes being brought about by
some physical change in the environment (Rand and Wilson 1993). The emerging
bifurcation theory of adaptive dynamics (Geritz et al. 1999; Jacobs, et al. un-
published; see Box 4.6 for an example) is capable of studying the properties of
evolutionarily stable communities as a function of environmental parameters.

Evolutionary branching has been found in many diverse ecological models in-
cluding, for example, resource competition (Doebeli 1996a; Metz et al. 1996;
Day 2000), interference competition (Geritz et al. 1999; Jansen and Mulder 1999;
Kisdi 1999), predator–prey systems (Van der Laan and Hogeweg 1995; Doebeli
and Dieckmann 2000), spatially structured populations and metapopulations (Doe-
beli and Ruxton 1997; Meszéna et al. 1997; Kisdi and Geritz 1999; Parvinen
1999; Mathias et al. 2001; Mathias and Kisdi 2002; Mizera and Meszéna 2003),
host–parasite systems (Boots and Haraguchi 1999; Koella and Doebeli 1999),
mutualistic interactions (Doebeli and Dieckmann 2000; Law et al. 2001), mating
systems (Metz et al. 1992; Cheptou and Mathias 2001; de Jong and Geritz 2001;
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Box 4.8 Pattern predictions

In this box, we collect predictions about macroevolutionary patterns derived from
adaptive dynamics. No claim is intended that those predictions are all equally hard,
or that they cannot be derived through different arguments.

First assume that the external environment exhibits no changes on the evolu-
tionary time scale. [Note that fluctuations on the ecological time scale, like weather
changes, are incorporated in the invasion fitness; see Metz et al. (1992) and Sec-
tion 4.2 of this chapter.] Adaptive dynamics theory then predicts that

� Speciation only occurs at specific, and in principle predictable, trait values; here
these are called evolutionary branching points.

� The ensuing gradual phenotypic differentiation is initially slow compared to the
preceding and ensuing periods of directional evolution. Populations sitting near
a branching point experience a locally flat fitness landscape, i.e., far weaker
selective pressure than during directional selection. Weak selection slows diver-
gence even when assortative mating is readily established. This prediction rests
on the assumption that phenotypic variation is narrow compared to the curvature
of the fitness function (see Abrams et al. 1993b).

� Speciation typically is splitting into two (i.e., not three or more). As argued
in the main text, for one-dimensional phenotypes the geometry of the fitness
landscape near branching points precludes the coexistence of more than two
types. With multi-dimensional traits, three or more coexisting types can arise
in but a few mutational steps (Metz et al. 1996). However, we recently showed
that the coevolving incipient species generically align in one dominant direction,
making the process effectively one-dimensional.

� Starting with low diversity, many models for adaptive speciation show a quick
decrease of the rate of speciation over evolutionary time as the community
moves toward a joint ESS (see Box 18.2 for a heuristic explanation). Note, how-
ever, that other evolutionary attractors, e.g., evolutionary limit cycles (Dieck-
mann et al. 1995; van der Laan and Hogeweg 1995; Khibnik and Kondrashov
1997; Kisdi et al. 2001; Dercole et al. 2002; Mathias and Kisdi, in press) are
also possible.

If the external environment does change on a time scale comparable to the initial
divergence of new species, it generally precludes speciation from taking off (Metz
et al. 1996), which can be understood as follows. Speciation only occurs at special
trait values. On these points abut cones within which incipient species can, and out-
side of which they cannot, coexist (see Figure 4.2 and Box 4.7). Externally caused
environmental changes move those cones around, away from the current pairs of in-
cipient species, and by snuffing out one branch abort the speciation process before
its completion.

If the environment changes sufficiently slowly, species keep tracking their adap-
tive equilibria till the equilibrium structure undergoes a qualitative change. This
brings us in the domain of the bifurcation theory of adaptive dynamics (Box 4.6).
Many phenomena seen in the fossil record may be of this type. Two special bifurca-
tions deserve attention. First, if an ESS disappears in a merger with an evolutionary
repellor, a punctuation event occurs: the species goes through a fast evolutionary
transient toward another evolutionary attractor (Rand and Wilson 1993). Second, if
an ESS changes into a branching point, a punctuation event starting with speciation
is seen in the fossil record (Metz et al. 1996; Geritz et al. 1999).
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Maire et al. 2001), prebiotic replicators (Meszéna and Szathmáry 2001), and many
more. The evolutionary attractors that correspond to fitness minima found, for ex-
ample, by Christiansen and Loeschcke (1980), Christiansen (1991), Cohen and
Levin (1991), Ludwig and Levin (1991), Brown and Pavlovic (1992), Brown and
Vincent (1992), Abrams et al. (1993a), Vincent et al. (1993), Doebeli (1996b), and
Law et al. (1997) are all evolutionary branching points.

An important insight that emerges from adaptive dynamics is that evolution to
a fitness minimum occurs frequently in eco-evolutionary models, suggesting that
diversification by evolutionary branching may be common in nature. However,
there are a number of caveats. Obviously, the accuracy of the prediction hinges
on the assumptions made about the (physiological and other) trade-offs and other
constraints on the evolving traits, as well as about the ecological interactions and
population dynamics as determined by these traits. Most models predict evolution
to a fitness minimum only in some parameter regions but not in others; it is usually
difficult to make quantitative estimations of critical model parameters. In view of
the often ingenious adaptations in nature, it seems unlikely that many species are
persistently trapped at fitness minima, but empirical difficulties hinder measuring
the actual shape of the fitness function. Divergence from the fitness minimum by
evolutionary branching in diploid multilocus systems requires reproductive isola-
tion, i.e., speciation (Doebeli 1996a; Dieckmann and Doebeli 1999; Chapter 5).
If evolution to fitness minima are indeed common, and persistently maladapted
species are indeed rare, then adaptive speciation may be prevalent.
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