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ABSTRACT

Background: Superinfections are known to facilitate the co-existence of several pathogen
strains in a host population. Previous models have demonstrated that pathogen virulence may
undergo evolutionary branching, whereby an ancestral strain splits into two strains of different
virulence. Evolutionary branching depends on the superinfection function as well as the
trade-off between virulence and transmission, but reliable empirical data for these functions are
scarce.

Aim: To find necessary and sufficient conditions for evolutionary branching in an SI model
(where S stands for susceptible and I for infected/infectious) with superinfections under any
conceivable transmission–virulence trade-off.

Methods: Adaptive dynamics and critical function analysis.
Assumptions: The superinfection function is assumed to be differentiable, but otherwise

arbitrary. We consider three different modes of host population dynamics: constant population
size, constant population birth rate, and logistic population growth in the absence of pathogens.

Results: In the constant population birth rate model, evolutionary branching can always
occur if the convexity of the trade-off falls in a certain range; this range can however be narrow,
especially if the singularity is at high virulence and relatively low transmission. With constant
population size and with logistic growth, mutual exclusion of strains occurs near some
singularities, which excludes evolutionary branching in part of the parameter space.

Comparison of methods: We show how critical function analysis relates to a more traditional
analysis of the model via pairwise invasibility plots and bifurcation plots of evolutionary
singularities.

Keywords: adaptive dynamics, co-existence of pathogen strains, critical function analysis,
evolutionary branching, superinfection model, trade-off, virulence evolution.

INTRODUCTION

In superinfection models, it is generally assumed that a more virulent strain can infect a host
individual previously infected with a less virulent strain, whereupon the less virulent strain
is cleared from the host and the individual is taken over by the more virulent infection.
Superinfections explain the co-existence of different pathogen strains in a homogeneous
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host population (Levin and Pimentel, 1981; Nowak and May, 1994; Castillo-Chavez and Velasco-Hernandez, 1998;

Mosquera and Adler, 1998). More virulent strains enjoy an advantage by being able to infect more
host individuals (i.e. susceptible hosts and hosts infected with less virulent strains); however,
they also suffer a disadvantage, as they kill their hosts faster and hence have less time
to infect new hosts. As noted by May and Nowak (1994), co-existence of pathogen strains
by superinfections is similar in many aspects to co-existence of competing species by the
competition–colonization trade-off (Levins and Culver, 1971; Nee and May, 1992; Tilman, 1994; Geritz, 1995),
where one species competitively displaces the other within a habitat patch (such as a host)
but produces less colonizers or has a higher rate of local extinction (host death).

Superinfection models can also explain the evolutionary origin of co-existing pathogen
strains. Adler and Mosquera-Losada (2002) and Boldin and Diekmann (2008) reported
evolutionary branching under superinfection, whereby the pathogen population gradually
splits into two co-existing strains with increasingly different virulence. This is again broadly
paralleled by evolutionary branching under the competition–colonization trade-off, such
as evolutionary branching of seed size when size amounts to competitive advantage
but size is traded off against the number of colonizing offspring (Geritz et al., 1999). Both
the co-existence of pathogen strains under superinfections and co-existence by the
competition–colonization trade-off may be viewed as instances of asymmetric competition,
where relative competitive advantage (i.e. virulence higher than that of the existing
infection, or seed size larger than that of the competitors) can be bought at an absolute
cost (death of the host, low number of seeds) incurred also in the absence of competition
(when infecting a host free of any pathogen or a single seed colonizing a patch of habitat).
In addition to driving evolutionary arms races (Parker, 1983; Maynard Smith and Brown, 1986; Matsuda and

Abrams, 1994), asymmetric competition in general facilitates evolutionarily stable co-existence
(Abrams and Matsuda, 1994) and evolutionary branching (Kisdi, 1999; Kisdi and Geritz, 2001).

In this paper, we specifically search for conditions leading to evolutionary branching
of a pathogen in the simplest superinfection model. The model has two important functions
that determine its behaviour: the superinfection function and the transmission–virulence
trade-off.

The superinfection function gives the probability that a host individual already infected
by a strain of the pathogen can be taken over by a new infection. Superinfections by more
virulent strains are mechanistically explained by the within-host dynamics of competing
pathogen strains assuming fast dynamics within a host and the absence of cross-immunity
(Boldin and Diekmann, 2008). If the only interaction between pathogens within a single host
individual is competition for host resources, and the more virulent strain equilibrates
host resources at a lower level than the less virulent strain, then within-host competitive
exclusion leads to the establishment of the more virulent strain and loss of the less virulent
infection. However, given that only a limited number of bacteria or viruses of the super-
infecting strain enter the host body, the within-host dynamics of the superinfection is
initially subject to demographic stochasticity, and hence a more virulent strain takes the
host over only with a certain (positive) probability (Jagers, 1975; Boldin and Diekmann, 2008). This
probability, ρ(α2 − α1), is an increasing function of the difference between the virulence of
the superinfecting strain (α2) and that of the existing infection (α1). We refer to ρ(α2 − α1) as
the superinfection function. Because we assume mutations of small effect and concentrate
on evolution in essentially monomorphic populations (including incipient evolutionary
branching), it is sufficient to know the behaviour of ρ in the vicinity of zero; more precisely,
it is sufficient to know the value ρ(0) and the derivative ρ�(0), which we can treat as
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two parameter values of the model. The global shape of ρ(α2 − α1) plays a role in the co-
evolution of two or more strains with significantly different virulences.

Virulence affects not only the probability of superinfection but also the transmission rate
of the pathogen. More virulent strains maintain higher pathogen concentration within
the host, and may produce more severe symptoms (such as coughing, bleeding, etc.) that
enhance the transmission of the pathogen to a new host individual. Indeed, the shape of the
trade-off between increased transmission (benefit) and increased virulence (cost due to host
death) is critical to the outcome of pathogen evolution (Pugliese, 2002; Svennungsen and Kisdi, in press; see

also Ganusov and Antia, 2003). Measuring the shape of this trade-off is difficult, so we have no reliable
empirical data that can be used to support a particular choice of the trade-off function.

The unknown transmission–virulence trade-off may be derived from an underlying
model of the within-host infection process (e.g. Gilchrist and Sasaki, 2002; Alizon and van Baalen, 2005;

Boldin and Diekmann, 2008; for a review, see Mideo et al., 2008). Alternatively, one can turn the question
around and ask what the trade-off function should look like to obtain a certain evolution-
ary outcome [e.g. an evolutionarily stable strategy (ESS) or evolutionary branching of the
pathogen at a given point]; or, indeed, whether a certain outcome is possible at all under
any conceivable trade-off. In this paper, we take this second route and use the technique
called ‘critical function analysis’ to explore the possible evolutionary scenarios under any
trade-off (de Mazancourt and Dieckmann, 2004; Kisdi, 2006; Geritz et al., 2007; Svennungsen and Kisdi, in press; for a

related approach, see Bowers et al., 2005).
In the superinfection model we revisit, Adler and Mosquera Losada (2002) found

evolutionary branching using one simple function for the transmission–virulence trade-off.
Pugliese (2002), on the other hand, proved that evolutionary branching cannot occur and
evolution leads to an ESS for a class of concave trade-off functions. Our critical function
analysis reveals necessary and sufficient conditions for evolutionary branching as well as
for convergence stable (attracting) ESSs and evolutionary repellors. Since previous studies
made different assumptions about the population dynamics of the host, we perform critical
function analysis under three different modes of host density regulation (constant
population size, constant population birth rate, and logistic population growth). In the
second part of the paper, we illustrate the results with examples of adaptive dynamics of
virulence given a certain trade-off function, and a traditional bifurcation analysis of the
evolutionary dynamics given a parameterized family of trade-off functions.

THE MODEL

We consider a simple SI model (where S stands for susceptible and I for infected/infectious),
thereby focusing on chronic pathogens with no recovery. Let the population density
of susceptibles be S, and let the density of hosts infected with pathogen strain 1, . . . , k

be I1, . . . , Ik; we denote the total population density by N, N = S + �
k

i = 1

 Ii. The population
dynamics are given by

dS

dt
= b(N)N − �

i

β(αi)IiS − µS (1a)

dIi

dt
= �β(αi)S + �

j

β(αi) ρ(αi − αj)Ij − �
j

β(αj) ρ(αj − αi)Ij − αi − µ�Ii (1b)
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for i = 1, . . . , k. All newborns are susceptible, and the host population is regulated by a
density-dependent per capita birth rate, b(N). The natural death rate is µ. Hosts infected
with strain i suffer disease-related death at rate αi, the virulence of the pathogen. Infections
follow mass action, where the transmission rate of strain i, β(αi), depends on its virulence
according to the transmission–virulence trade-off. For the critical function analysis we do
not assume any particular trade-off function, but for simplicity of the presentation we do
assume that β(α) is increasing. The superinfection function ρ(αi − αj) gives the probability
that, upon transmission, strain i will take over a host individual already infected with strain
j. Following Pugliese (2002), we assume here that the superinfection function is increasing
and differentiable everywhere, in particular at zero, with ρ(0) > 0 and ρ�(0) ≥ 0. We describe
alternative options and the biological mechanisms underlying different choices of the
superinfection function in the Discussion.

We consider three modes of host density regulation:

1. Constant population size: At the equilibrium population size N̄̄, the number of births
exactly balances the number of deaths (both natural and disease-induced) such that
b = µ + �

i

αiIi / N̄̄. When population size is greater (smaller) than N̄̄, then the per capita

birth rate b is zero (infinity) so that N̄̄ is stable. This mode of regulation occurs if
individuals occupy non-compressible territories or living sites, offspring are produced
continuously at a high rate, and newborns who cannot settle into one of the N̄̄ sites die
instantaneously after birth and are not counted in the effective birth rate b. With this
mode of density regulation, we recover the model of Adler and Mosquera-Losada (2002).
We scale density such that N̄̄ = 1 without loss of generality.

2. Constant population birth rate: b(N) = B /N and the population-wide number of births
per unit of time is constant B (this is analogous to a chemostat with constant influx).
This mode of density regulation was assumed also by Boldin and Diekmann (2008). The
pathogen-free host population equilibrates at N̄̄ = B /µ; we scale density such that B = µ

and N̄̄ = 1 without loss of generality. Note that the equilibrium density of the host in
the presence of the pathogen depends on the virulence and transmission rate of the
pathogen, and is in general less than the pathogen-free equilibrium N̄̄ = 1.

3. Logistic growth: b(N) = r − cN when positive and zero otherwise, such that the host
population follows logistic growth in the absence of the pathogen with equilibrium
population size N̄̄ = (r − µ) /c. With logistic growth, we recover a model of Pugliese (2002).
We scale the density of hosts such that c = r − µ and N̄̄ = 1 without loss of generality. For
the host to be viable, r must exceed µ.

In all three cases, the pathogen is viable if β > α + µ. With a single resident pathogen strain
(k = 1), all three modes of population regulation yield a single, stable endemic equilibrium
of susceptible and infected densities whenever the pathogen is viable. With two or
more resident strains, however, the logistic model may yield multiple equilibria or stable
population cycles (Brian Reade, cited by Pugliese, 2002).

With a single resident strain of virulence α, the equilibrium density of susceptibles is

Ŝ(α) =
α + µ

β(α)
, (2)

irrespective of superinfections and the mode of host population regulation. In the absence
of superinfections (ρ ≡ 0), strains with different Ŝ(α) cannot co-exist and the evolution of
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virulence minimizes Ŝ(α) and, equivalently, maximizes the basic reproduction number
R0(α) = β(α)/(α + µ) (Bremermann and Thieme, 1989; Dieckmann and Metz, 2006).

Next, we calculate the basic quantities necessary for an adaptive dynamic analysis of the
model (see Geritz et al., 1998). Assume that the resident population of a single strain α is at its
population dynamical equilibrium (Ŝ(α), Î(α)). The invasion fitness of a new mutant strain
with virulence αmut is the per capita growth rate of hosts infected with the mutant strain;
from equation (1b), this is given by

s�(αmut) = β(αmut) [Ŝ(α) + ρ(αmut − α)Î(α)] − β(α)ρ(α − αmut)Î(α) − αmut − µ. (3)

If the invasion fitness s�(αmut) is negative, then the mutant strain dies out; if s�(αmut) is
positive, then the mutant has a positive probability of invasion [a selectively favoured
mutant may also go extinct due to demographic stochasticity in the initial phase of
invasion, when the mutant is present in only a few host individuals (cf. Jagers, 1975)].

For simplicity, we assume throughout that the environment is constant such that the
resident population attains a stable fixed point (Ŝ, Î ). Note, however, that the invasion
fitness is linear in S and I. This implies that in a periodic or stochastic environment, we
recover the same invasion fitness as in equation (3), with Ŝ and Î being the time average of
the fluctuating population densities (Metz et al., 1992).

As a result of repeated invasions and substitutions of mutations of small effect, virulence
evolves in the direction of the fitness gradient,

D(α) =
∂ s�(αmut)

∂αmut �mut = α

= β�(α) [Ŝ + ρ(0)Î ] + 2β(α)ρ�(0)Î − 1. (4)

At an evolutionarily singular virulence α* the fitness gradient is zero, i.e.

β�(α) [Ŝ + ρ(0)Î ] + 2β(α)ρ�(0)Î = 1 (5a)

is satisfied at α = α*. Using the basic reproduction number, R0(α) = β(α)/(α + µ), this
equation can be rewritten as

R�0(α)
(α + µ)2

β(α)
+ Î [β�(α)ρ(0) + 2β(α) ρ�(0)] = 0, (5b)

and since the second term in the left-hand side is positive, we find that singular strategies can
only be found in the region where R�0(α) < 0 [compare with Proposition 3 of Pugliese (2002)].
Superinfections drive the evolution of virulence beyond the point that maximizes R0 for two
reasons. First, when ρ(0) > 0, superinfection events shorten the average lifetime of an
infection and therefore select for high transmission and high virulence. This is analogous
to the effect of the natural death rate in the absence of superinfections: for high values of µ,
a high level of virulence maximizes R0 (Van Baalen and Sabelis, 1995). Second, ρ�(0) > 0 means
that virulence higher than that of the resident strains provides competitive advantage
in superinfections. This drives an evolutionary arms race in virulence analogous to arms
races in size, weaponry, and other traits conferring advantage in asymmetric competition
(Parker, 1983; Maynard Smith and Brown, 1986; Matsuda and Abrams, 1994).

The singular strain α* is evolutionarily stable if the second derivative

E =
∂ 2s� (αmut)

∂α
2
mut �mut = α

= β″(α) [Ŝ + ρ(0)Î ] + 2β�(α)ρ�(0)Î (6a)
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is negative at α = α*, and it lacks evolutionary stability if

β″(α) > −
2β�(α)ρ�(0)Î

Ŝ + ρ(0)Î
. (6b)

Note that with β�(α) > 0 and ρ�(0) > 0, the singular point lacks evolutionary stability also
with some concave trade-offs.

There are pairs of strains in the neighbourhood of the singular point that can mutually
invade each other’s population and hence co-exist if the cross-derivative

M =
∂ 2s�(αmut)

∂αmut∂α �mut = α

= β�(α)
d [Ŝ + ρ(0)Î ]

dα
+ 2β(α)ρ�(0)

dÎ

dα
(7)

is negative at α = α*. If M is positive, then there are pairs with mutual exclusion, i.e. such
that neither can spread in the population of the other.

CRITICAL FUNCTION ANALYSIS

The value and stability properties of α* can only be determined if one specifies the trade-off
function between transmission and virulence, β(α). With critical function analysis, we turn
the question around and ask which properties the trade-off function should exhibit if a
strain with given virulence and transmission (α, β) is to be a convergence stable ESS, an
evolutionary branching point or a repellor. Below we give a short summary of the method;
see de Mazancourt and Dieckmann (2004) and Kisdi (2006) for a full account. Svennungsen
and Kisdi (in press) explain critical function analysis specifically in the context of virulence
evolution in a single-infection model, and the examples in the next section illustrate the
predictions of the critical function analysis.

A strain (α, β) is singular if equation (5a) is satisfied, i.e. if

β�(α) =
1 − 2β(α)ρ�(0)Î

Ŝ + ρ(0)Î
(8)

holds at (α, β); recall that Ŝ and Î depend on the chosen value of α and β via equations (1),
k = 1. The critical functions βcrit(α) are the solutions of the ordinary differential equation in
equation (8) (with different initial values) and depend on the form of host density regulation
(choice of b(N)) as well as on model parameters ρ(0), ρ�(0), and µ. Geometrically, the slope
of the critical functions show at every point of the α, β plane which slope the trade-off
function needs to have if (α, β) is to be singular; at the singular point, the trade-off
is tangential to a critical function. Furthermore, the singular point is convergence stable
(attracting) if the trade-off is locally more concave (or less convex) than the critical function
(de Mazancourt and Dieckmann, 2004).

To determine if evolutionary branching is possible at a point (α, β) if the trade-off is
chosen such that this point is singular, we calculate the cross-derivative M, defined in (7), at
this point. M depends on the slope, but not on the convexity, of the trade-off function.
Since the slope is fixed by the singularity condition in equation (8), each point of the α, β
plane can be characterized with a positive or negative value of M. If (α, β) is to be an
evolutionary branching point, then it must be convergence stable and hence the trade-off
must be chosen more concave than the critical function; and at the same time (α, β) must
not be evolutionarily stable, hence the trade-off must be chosen convex enough to satisfy
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inequality (6b) [note that every quantity on the right-hand side of (6b) is fixed by the choice
of (α, β) and the singularity condition]. Using the results of Bowers et al. (2005), Kisdi
(2006) showed that this choice is possible if and only if M is negative at point (α, β). If M is
positive at every point of the α, β plane, then evolutionary branching is not possible under
any trade-off (see such a case below).

Convergence stable ESSs can easily be obtained by choosing a trade-off function that is
tangential to a critical function at (α, β) and which is sufficiently concave at this point to
ensure that it is more concave than the critical function as well as concave enough for E in
(6a) to be negative. If the trade-off is tangential to a critical function but less concave than
the critical function itself, the resulting singular point is a repellor. Note that although the
existence of an evolutionary branching point depends on the sign of M, a convergence
stable ESS or a repellor can be obtained at any point by choosing an appropriate trade-off
function.

In the absence of superinfections (ρ(0) = 0, ρ�(0) = 0), equation (8) simplifies to β�(α) =
1 / Ŝ = β(α)/(α + µ), the solutions of which are straight lines, βcrit(α) = βcrit(0)(α + µ)/µ. A
singularity is therefore convergence stable if and only if the trade-off is locally concave.
According to (6a), this is precisely the condition for evolutionary stability (E < 0) as well.
Without superinfections, all ESSs are thus convergence stable and all singularities that are
not ESSs are repellors. The expression in (7) simplifies to M = β�(α)dŜ /dα; by substituting Ŝ
from equation (2) and the slope β�(α) with the slope of the critical function, M turns out to
be zero, i.e. neither mutual invasibility nor mutual exclusion occurs. These local results are
due to the fact that without superinfections, evolution optimizes R0 (Bremermann and Thieme, 1989).

It is also easy to see that the border of pathogen viability is always a critical function.
When Î = 0, equation (8) again simplifies to β�(α) = 1 / Ŝ = β(α)/(α + µ), which is satisfied
by the function β(α) = (α + µ) / N̄̄, the border of viability. By continuity, critical functions in
the vicinity of the border of viability are also nearly linear. In this region Î is small, hence E
changes sign when the trade-off is nearly linear. Close to the border of viability, therefore,
the model behaves almost as an optimization model, and even if M is negative, evolutionary
branching occurs in only a narrow range of parameters (this range shrinks to zero as the
border of viability is approached).

Next, we present the results of critical function analysis for the three different modes of
host density regulation introduced above. In all figures, we scale time such that the expected
lifetime of an uninfected host (1 /µ) is the unit of time, i.e. µ = 1 and all quantities are
dimensionless (host population density has been scaled such that N̄̄ = 1 in each of
the three models). Note that scaling time affects the numerical values of α and ρ�(0): If the
infection dynamics are (considerably) faster than other demographic processes of the host,
then α assumes values (considerably) greater than 1, and the numerical value of ρ�(0)
is small. β assumes large values both because the unit of density is large (N̄̄ = 1) and because
the time unit is long compared with the infection dynamics.

Constant population size

Calculations are relatively easy if total population size is constant (N̂ ≡ 1), and therefore the
population dynamic equilibrium of equations (1) for k = 1 is simply Ŝ = (α + µ)/β(α) and
Î = 1 − (α + µ)/β(α). A straightforward, exact calculation [using equation (8) for the slope
β�(α) in (7)] shows that within the region of viability, M is negative when β > βM = (1 − ρ(0))/
2ρ�(0) and positive otherwise.
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If ρ(0) is set to be zero, then equation (8) can be solved analytically to obtain

βcrit(α) =
βcrit(0)(α + µ)

βcrit(0) − (βcrit(0) − µ)e−2��(0)� , (9)

where βcrit(0) is the initial value that varies among critical functions. Our model assumes
ρ(0) > 0, but realistic values of ρ(0) are close to zero (see Discussion). The critical functions
in Fig. 1, obtained by numerical solution of equation (8) with ρ(0) = 0.01, are close to the

Fig. 1. Constant population size. Critical functions are shown as thin black lines; the lowermost
critical function coincides with the border of pathogen viability (dashed). M is negative above the
thick horizontal line at βM and positive below (in (c), M is positive whenever the pathogen is viable).
The thin grey lines are contour lines of the convexity range permitting evolutionary branching, with
contours drawn at values (0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12) [when less than
10 contour lines are shown, the first values of the list apply]. In (a), segments of the most concave
trade-off leading to evolutionary branching at the highlighted point are shown at two points (note
that the convexity of the trade-off matters only locally; relatively long segments are shown for visual
clarity). Parameter values are µ = 1, ρ(0) = 0.01, and (a) ρ�(0) = 0.02, (b) ρ�(0) = 0.005, (c) ρ�(0) = 0.
Note the different vertical scales.
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curves given by equation (9) (the fit is best in Fig. 1a and becomes worse for smaller values
of ρ�(0)).

In Fig. 1a, the critical functions are concave at low transmission rates such that only
concave trade-offs can result in a convergence stable singularity. Evolutionary branching is
not possible for β < βM (below the thick line) because M is positive. At higher transmission
rates and low values of virulence, the critical functions are decreasing: The advantage of
increasing virulence via enabling superinfections is so great that it could balance some
loss in the transmission rate. Since we assume that the trade-off is an increasing function
(i.e. higher virulence implies higher transmission), the trade-off cannot tangent a critical
function in this region and hence no singularities occur. (It is conceivable that hosts infected
by more virulent strains become increasingly immobilized so that they do not encounter
other hosts, and this could result in decreasing trade-off functions.) Evolutionary branching
is possible above the β = βM line and at sufficiently high virulence such that the critical
function is increasing.

To see how likely evolutionary branching is, we compute the range of convexity the
trade-off can assume to obtain branching (cf. de Mazancourt and Dieckmann, 2004), i.e. the difference
between the maximum value of β″(α) set by the convexity of the critical function and the
minimum value of β″(α) set by inequality (6b), at every point (α, β) where M is negative. The
results are shown with grey contour lines in Fig. 1a. Evolutionary branching is thus most
likely if the singularity is at low virulence and high transmission (but assuming increasing
trade-offs, the singularity needs to be right of the minimum of the critical function). At
two points in Fig. 1a, we show segments of the most concave trade-off that still leads to
evolutionary branching: a trade-off lying locally between the critical function and the
segment will lead to evolutionary branching at the point highlighted.

As ρ�(0) decreases, the minimum transmission for evolutionary branching, βM, increases
(Fig. 1b). This progressively limits the possibility of branching. When both ρ�(0) and ρ(0)
are close to zero, the critical functions are nearly linear (Fig. 1c) and the model is close to an
optimization model (see above).

It is noteworthy that for β < βM, M is positive. Superinfection is generally regarded as
a mechanism that promotes co-existence by mutual invasibility; a positive value of M
however implies the opposite, i.e. mutual exclusion between pairs of strains, such that
neither strain can spread in the established population of the other (Geritz et al., 1998).

Suppose now that the probability of superinfection is independent of virulence
(ρ�(0) = 0), whereas ρ(0) > 0 is arbitrary. This situation occurs if the success of the super-
infection is determined either by random factors or pathogen traits not related to its
virulence. In this case, equation (8) can be solved analytically for the inverse critical
functions,

α = (βcrit(α) − µ) − (βcrit(0) − µ)�βcrit(α)

βcrit(0)�
1 − �(0)

. (10)

Since the inverse functions are convex, the critical functions are always concave such that
the trade-off also needs to be concave to have a convergence stable singular point (although
the critical functions are close to linear when ρ(0) is close to zero, as in Fig. 1c). Moreover,
M is positive everywhere [as ρ�(0) goes to zero, βM = (1 − ρ(0))/2ρ�(0) goes to infinity], and
evolutionary branching is not possible. Therefore, ρ�(0) > 0 is essential for evolutionary
branching in this model (but not under other modes of host density regulation; see below).
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Constant population birth rate

With constant population birth rate, the population dynamic equilibrium of equations (1)
(with k = 1) is Ŝ = (α + µ) /β(α) and Î = µ/(α + µ) − µ /β(α). Substituting this equilibrium
into the fitness function, M can be obtained as

M = −
βµ

2(β − α − µ)[ρ(0) + 2(α + µ)ρ�(0)]2

(α + µ)[(α + µ)2 + µ(β − α − µ)ρ(0)]2 . (11)

Because β > α + µ whenever the pathogen is viable, M is always negative if ρ(0) or ρ�(0) is
greater than zero (when both are zero, superinfections are absent and the model reduces
to an optimization model; see above). Superinfections thus facilitate co-existence even
if higher virulence gives no advantage in superinfection (ρ�(0) = 0; note that the opposite
result was found for the case of constant population size). As before, equation (8) can be
solved analytically for the critical functions in the limiting case ρ(0) = 0:

βcrit(α) =
βcrit(0)(α + µ)

βcrit(0) − (βcrit(0) − µ)[µ/(α + µ)]2��(0)� , (12)

and the numerical solutions of equation (8) shown in Fig. 2 are qualitatively similar to the
curves specified by equation (12).

Of the three modes of density regulation considered, the case of constant population
birth rate is the most conducive to evolutionary branching: M is always negative whenever
the pathogen is viable, permitting branching everywhere if the trade-off is chosen
appropriately. The trade-off can be chosen from a relatively broad range of convexity also
in the part where the critical functions are increasing, i.e. where a singular strategy is
possible with an increasing trade-off (Fig. 2a).

Recall that critical functions are decreasing where the competitive advantage of higher
virulence during superinfections is so high that it can compensate even for a decrease in the
transmission rate. For greater values of ρ�(0) this happens in a larger area of the (α, β) plane,
i.e. the minima of the critical functions shift towards the right. Conversely, as ρ�(0)
decreases, the minima of the critical functions move to the left and disappear (Fig. 2b, c).
Evolutionary branching remains possible also with arbitrarily small ρ�(0), but the most
likely branching points shift towards low virulence.

Logistic growth

When the host population obeys logistic growth in the absence of the pathogen, the
equilibrium density of the infected hosts is given by a more lengthy formula and we could
obtain results only numerically. In Fig. 3a, the critical functions are qualitatively similar to
the case of constant population birth rate (compare with Fig. 2a), but M is positive and thus
evolutionary branching is excluded for low transmission rates (below the thick line). As
ρ�(0) decreases (Fig. 3b, c), evolutionary branching remains possible but the area of positive
M increases, limiting the possibility for branching and indicating that mutual exclusion
rather than co-existence becomes more common. In the previous cases, we found that
analytic solutions with ρ(0) = 0 were similar to the critical functions obtained numerically
for ρ(0) = 0.01 (recall that realistic values of ρ(0) are small). In the logistic case, equation (8)
cannot be solved analytically but decreasing the value of ρ(0) does not change the curves
appreciably (Fig. 3d).
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The logistic model has one more parameter, the maximum per capita birth rate (r).
Since we scale the pathogen-free population density to 1 by setting c = r − µ in the logistic
equation, r parameterizes the strength of density regulation: when r takes a high value, the
population returns to its equilibrium quickly. With the pathogen present but with r � α, β,
the infection has only a negligible effect on total population size. This implies that as r
increases, the critical functions converge to the case of constant population size (see Fig. 1).

The host population is viable only if r > µ. When r decreases towards µ, the likely points
of evolutionary branching shift towards lower virulences (Fig. 3e); comparing the same
point (α, β) across different values of r (e.g. in Fig. 3a and 3e), evolutionary branching
becomes less likely as r decreases. To explain this change, recall from equations (1) that
with a single pathogen (k = 1), total population density N = S + I grows according to
dN /dt = N[b(N) − µ − (I /N)α]. Since b(N) < r, (I /N)α cannot exceed r − µ in equilibrium.
If r decreases towards µ (while we keep α and β fixed), (Î /N̂) must decrease to zero and thus
in the limit the density of infected vanishes [whereas Ŝ = (α + µ) / β is fixed and N̂ goes to Ŝ].
This implies that superinfections disappear, and, as discussed above, the model becomes an

Fig. 2. Constant population birth rate. Notations and parameter values are as in Fig. 1, with the
exception that M is negative at every point where the pathogen is viable.
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Fig. 3. Logistic population growth. Notations as in Fig. 1. M is negative above the thick curve and
positive below it; in (e), M is negative whenever the pathogen is viable. In panel (a), parameter values
are µ = 1, r = 10, ρ(0) = 0.01, and ρ�(0) = 0.02; in panels (b–e), parameters are as in (a) except (b)
ρ�(0) = 0.005, (c) ρ�(0) = 0, (d) ρ(0) = 0.001, and (e) r = 2.
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optimization model. In particular, in the limit r → µ and hence Î → 0, the critical functions
from equation (8) become straight lines such that a singular point is convergence stable if
and only if the trade-off is concave. The condition for evolutionary stability (i.e. E in (6a) is
negative) reduces to β″(α) < 0 such that every convergence stable singularity is an ESS,
leaving no possibility for evolutionary branching. The speed of convergence depends on the
virulence: with a high value of α, Î /N̂ must be smaller to make (I /N)α less than r − µ. In Fig.
3e, the limit is not reached yet, but conditions for branching are very restrictive except at low
values of virulence. Note that similar results should hold for any mode of density regulation
where the per capita birth rate is bounded; with the assumption of constant population size
or constant population birth rate, however, this is not the case.

ADAPTIVE DYNAMICS AND BIFURCATION ANALYSIS: EXAMPLES

In this section, we illustrate the results of the critical function analysis with examples from
the constant population birth rate model, using standard techniques of adaptive dynamics
(see Geritz et al., 1998).

Adaptive dynamics in selected examples of virulence evolution

In Figs. 4 and 5, we show examples of adaptive dynamics in monomorphic and dimorphic
pathogen populations. For modelling the co-evolution of two strains, we need to specify the
superinfection function; hence we choose

ρ(α2 − α1) =
A

A + (1 − A)e−B(�2 − �1) , (13)

where the constants A and B relate to the value and slope of the superinfection function at
zero according to A = ρ(0) and B = ρ�(0)/[ρ(0)(1 − ρ(0))].

An example of evolutionary branching is shown in Fig. 4, where we used a concave, fast
saturating trade-off (Fig. 4b). When ρ�(0) is small enough such that the critical functions
become increasing before the trade-off saturates, a quickly saturating trade-off typically
tangents a critical function in or near the region where saturation occurs. Note that
the second derivative of the trade-off, β″(α), changes rapidly in this region. In Fig. 4, the
trade-off is nearly linear at the point of tangent to a critical function, such that condition
(6b) is satisfied and the singularity is an evolutionary branching point (this may be hard to
judge from the pairwise invasibility plot shown in Fig. 4a, but is confirmed by the enlarged
plot showing the fitness gradients in the vicinity of the singularity in Fig. 4e). With small
changes in parameter values, however, the point of tangent in Fig. 4b may shift to the
strongly concave part of the trade-off, resulting in an ESS rather than a branching point.

Following evolutionary branching, the two co-existing strains undergo parallel evolution
towards higher virulence: an evolutionary arms race occurs. Note that the direction of
evolution changes after evolutionary branching: in monomorphic populations virulence
evolves downwards over the same range where dimorphic populations exhibit an arms race
towards high levels of virulence (Fig. 4d). The area of co-existence attached to the branch-
ing point forms a narrow corridor (Fig. 4c), but the boundaries of the corridor are repelling
such that the evolutionary dynamics keep the population within the narrow area where two
strains co-exist. The evolutionary arms race ends at the upper end of the corridor, where the
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two strains attain a dimorphic evolutionary singularity at the intersection of isoclines
(Fig. 4f). At this point, the less virulent strain undergoes evolutionary branching, yielding
three co-existing pathogen strains (not shown).

Pugliese (2002) proved for a class of concave trade-offs that every monomorphic singularity
is an ESS. In Fig. 5, we show the adaptive dynamics of virulence with the hyperbolic
trade-off β(α) = 30α/(1 + α), which is an example from Pugliese’s class. The critical functions
(Fig. 5b) indicate that evolutionary branching would be possible if the trade-off were
chosen to be less concave at the singular point; this is however not possible within the family
of hyperbolic trade-offs of the form β(α) = kα/(c + α). Nevertheless, the singularity is close
to the bifurcation point between an ESS and a branching point.
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Figure 5e shows the fitness gradients of dimorphic populations in a neighbourhood of
the monomorphic singularity. Near the ESS, co-existing strains always converge towards
one another and towards the ESS. When a monomorphic population evolves towards the
ESS, it may temporarily become dimorphic in the vicinity of the singularity, but every
dimorphism is eventually resolved at the ESS (cf. Fig. 5d). This prediction, however, holds
only if mutation steps do not exceed a maximum size, and the maximum gets smaller
when the model is approaching a bifurcation point. Because the ESS in Fig. 5 is close to
bifurcating into a branching point, areas of different dimorphic fitness gradients exist
relatively close to the ESS (shown by arrows and separated by the isoclines in Fig. 5e). With
sufficiently large mutations, it is possible to step into the area of co-existence above the
dashed isocline in Fig. 5e. Here the strains are subject to parallel selection (between the
isoclines) or disruptive selection (above the continuous isocline), and can therefore diverge
from one another (Fig. 5f). Note that at the point of bifurcation itself, the same happens
with arbitrarily small mutations.

Bifurcation analysis of adaptive dynamics

Next we show how a classic bifurcation analysis of monomorphic evolutionary singularities
relates to the critical function analysis presented earlier. Since here we deal only with
monomorphic singularities, it suffices to specify the values of ρ(0) and ρ�(0); the shape of
the superinfection function away from zero is irrelevant. For the trade-off function, we
choose the three-parameter family

β(α) = a + bα − ae−c� (14)

Fig. 4. Evolutionary branching and co-evolution of co-existing strains assuming constant population
birth rate, the superinfection function given in equation (13) with ρ(0) = 0.02 and ρ�(0) = 0.02,
the trade-off function shown in panel (b) (obtained as an Interpolation function in Mathematica
with the following points and derivatives: (α, β) = (0,0); (2, 67.5889) with slope 2.73486 [tangent
to a critical function] and second derivative −0.1; (3, 70) with slope 1.4; (10, 75) with slope 0.2; (20, 76)
with slope 0), and µ = 1. (a) Pairwise invasibility plot. The mutant’s invasion fitness is positive
in the white areas (invasion) and negative in the black areas (no invasion). There is an evolutionary
branching point at α* = 2.0. The resident strain is viable for 0.0106 < α < 59.4427. (b) The trade-off
function superimposed on the critical functions (notations as in Fig. 2). (c) Area of co-existence
and dimorphic evolution. Two resident strains can co-exist in the white area. The arrows show
the direction of evolution. The first resident’s fitness gradient changes sign across the continuous
isoclines (zero fitness gradient horizontally); the second resident’s isoclines are shown by dashed lines
(zero fitness gradient vertically). The fitness gradient vanishes in both strains at the dimorphic
singularity (intersection of isoclines). (d) Simulated evolutionary tree. Each step on the horizontal
axis corresponds to the invasion attempt of one randomly generated mutant (maximum mutation
size 0.05). The vertical axis shows the virulence of the resident strain(s) when the population
has equilibrated after invasion. (e) Enlargement of (c) near the monomorphic singularity. In the
immediate vicinity of the singular strategy, the two co-existing strains evolve away from one another,
i.e. evolutionary branching occurs. (f) Enlargement of (c) near the dimorphic singularity. The singular
dimorphism (at the intersection of isoclines) is absolutely convergent stable (Matessi and Di Pasquale,

1996) but not evolutionarily stable for the strain with lower virulence, which will undergo further
evolutionary branching.
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Fig. 5. Evolutionary dynamics with a single ESS in the model with constant population birth rate,
assuming the superinfection function of equation (13) with ρ(0) = 0.1 and ρ�(0) = 0.135, the trade-off
function β(α) = 30α/(1 + α), and µ = 1. Notations as in Fig. 4. (a) Pairwise invasibility plot. The
resident population is viable for 0.03576 < α < 27.9642; the ESS is at α* = 5.35225. (b) The trade-off
function superimposed on the critical functions. (c) Area of co-existence and dimorphic evolution.
(d) Simulated evolutionary tree with maximum mutation size of 0.1. (e) Enlargement of (c) in the
neighbourhood of the ESS. Note that in the immediate neighbourhood of the monomorphic singular-
ity, the two co-existing strains evolve towards each other (stabilizing selection), and hence any
dimorphism will be resolved at the ESS. With somewhat larger mutations, however, a single evolution-
ary step may bring the population above the dashed isocline, from which part the two strains can
evolve apart. (f) Simulated evolutionary tree with maximum mutation size of 0.15.



and investigate the bifurcations of monomorphic evolutionary singularities when
parameters a, b, and c are varied. The trade-off function in (14) is exponentially convergent
to a straight line with slope b and intercept a. It is probably unrealistic to assume that the
transmission rate can increase indefinitely, but the trade-off may well have an approximately
linear segment. We thus think of the trade-off in (14) as part of a function that eventually
saturates, but saturation occurs outside the range of virulence considered here.

Figure 6 shows the shape of the trade-off for a few sets of parameter values (a, b, c),
overlaid the critical functions derived in the previous section. Comparison with the critical
functions immediately suggests some bifurcation patterns, which are confirmed by the
formal bifurcation analysis below; we summarize these patterns as valid for most of the
parameter space and refer to the exact bifurcation plots in Fig. 7 for the complete picture.
As a increases, the point of tangent between the trade-off and a critical function shifts to
the right, i.e. the monomorphic singularity is at a higher virulence (compare the black
continuous and black dashed trade-offs in Fig. 6). At the same time, the point of tangent
shifts from the strongly concave to the approximately linear part of the trade-off. With
convex critical functions, this does not affect convergence stability but signals a bifurcation
from an ESS to a branching point (recall from equation (6) that the singularity is an ESS
if the trade-off is sufficiently concave, but it lacks evolutionary stability if the trade-off
increases linearly). Increasing b also shifts the singularity towards higher virulence; when
b exceeds the limiting slope of the critical functions, no singularity occurs and virulence
evolves to ever higher values (i.e. until the trade-off eventually saturates outside the range
shown in Fig. 6). When c is small such that the trade-off converges only slowly to a straight
line, the singularity falls in the concave part of the trade-off and may be an ESS. In contrast,
with large values of c, the trade-off quickly converges to the line a + bα. Given that the
critical functions are convex, the singularity is then a branching point and its position is
independent of c.

These expectations are confirmed by the one- and two-parameter bifurcation diagrams in
Fig. 7. To obtain these bifurcation plots, we used equations (1) and (5a) with the trade-off

Fig. 6. Trade-off functions of the family in (14), shown together with the critical functions.
Parameters are (a, b, c) = (50, 1.2, 1.5) for the black continuous trade-off; (50, 2.5, 1.5) for the grey
continuous trade-off; (6, 1.2, 1.5) for the black dashed trade-off; and (50, 1.2, 0.14) for the grey dashed
trade-off. Parameters for the critical functions are µ = 1, ρ(0) = 0.1, and ρ�(0) = 0.08.
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function in (14) to obtain the singular point(s) numerically, and evaluated their evolutionary
stability by calculating E in (6a). Convergence stability is easily deduced: Since α = 0 is not
viable, there exists a minimum virulence, αmin, of viable strains, and αmin is evolutionarily
repelling (Gyllenberg and Parvinen, 2001). It follows that the lowest monomorphic singularity
is convergence stable, and if there is only one singular point, then it has convergence
stability.

The one-parameter bifurcation plot with respect to a reveals that in a narrow range of a,
two singularities exist within the virulence range shown in Fig. 7a (this is hard to see directly
from Fig. 6 because both the critical functions and the trade-off are close to linear at the
upper singularity). The upper singularity is a repellor, and evolutionary trajectories starting
above this point lead to ever increasing virulence (recall from Fig. 6 that the trade-off is
increasing steeper than the critical functions do near the border of viability); if the trade-off
eventually saturates (not shown), then the trajectories will reach an attractor at some high

Fig. 7. Bifurcations of monomorphic evolutionary singularities with trade-offs from the family in
(14). Upper panels: one-parameter bifurcation plots. Thick continuous lines: convergence stable ESS;
dashed lines: evolutionary branching points; dotted lines: evolutionary repellors. In (a), the fold
bifurcation is between a branching point and a repellor, but the branching point turns into an ESS
too close to the fold to show. In (b), note the short ESS segment at small values of b. Lower panels:
two-parameter bifurcation plots of the convergence stable evolutionary singularity. Grey areas: no
singularity exists (there is a fold bifurcation on the boundary of grey and white); black areas:
the pathogen is not viable. Parameter values: µ = 1, ρ(0) = 0.1, ρ�(0) = 0.08; when not varied, the
parameters of the trade-off are (a, b, c) = (50, 1.2, 1.5). Note the different scale for a in the upper and
lower panels.
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virulence. As expected, large values of a lead to evolutionary branching. When b increases
(Fig. 7b), the singularity turns from an ESS into a branching point and then disappears via
a fold bifurcation; for large b, virulence increases indefinitely as seen from Fig. 6. Increasing
c leads to evolutionary branching and the position of the singularity becomes independent
of c (Fig. 7c), again as expected from Fig. 6.

The two-parameter bifurcation plots in Fig. 7d–f indicate that evolutionary branching
occurs in a large part of the parameter space. This is because the singularity often falls in
the approximately linear part of the trade-off, and linearly increasing trade-offs lead to
evolutionary branching when the critical functions are convex. Evolutionary branching
is thus common within the family of trade-offs in (14), but not necessarily among other
trade-offs. A classic few-parameter bifurcation analysis is always restricted to a given
parameterized family of trade-offs, and may yield misguiding results (for other examples, see

de Mazancourt and Dieckmann, 2004; Geritz et al., 2007).
The case of asymptotically constant trade-offs merits extra attention. With b = 0 and

finite c, the trade-off in (14) falls in Pugliese’s class of concave trade-offs that can only
produce ESSs (Pugliese, 2002). As either a or c increases, however, the singularity approaches the
ESS-branching point bifurcation (cf. Fig. 7d, f; see Fig. 5 for a similar singularity). With
c → ∞, the trade-off becomes a constant line, whereas with a → ∞, the singularity shifts to
high virulences where the trade-off has saturated to a constant line. With β constant, the
only benefit from increased virulence is realized during superinfections, and is paid by
the shortened lifetime of an infection. The singular strategy is exactly between an ESS and a
branching point (with β� = β″ = 0, (6a) yields E = 0), which supports co-existence whenever
it is convergence stable and actually leads to evolutionary branching with any positive
mutation size (see above).

DISCUSSION

In this paper, we used critical function analysis to explore the possible evolutionary
outcomes of a simple superinfection model (Adler and Mosquera-Losada, 2002; Pugliese, 2002) with three
different modes of host population growth and under any conceivable trade-off function
between transmission and virulence. Superinfections are known to facilitate the co-existence
and evolutionary branching of pathogens (e.g. Adler and Mosquera-Losada, 2002; Boldin and Diekmann,

2008). We find that evolutionary branching is indeed possible in a large part of the parameter
space, provided that the local convexity of the trade-off falls within a certain interval.
Too concave trade-offs result in ESSs, whereas too convex trade-offs result in evolutionary
repellors. The convexity thus must pass between Scylla and Charybdis, in a range that
is often limited (see Figs. 1–3), but includes at least some concave trade-offs as well
(cf. inequality 6b). In contrast, the simple single-infection model of Andreasen and Pugliese
(1995) may lead to evolutionary branching only with convex trade-offs (Pugliese, 2002; Svennungsen

and Kisdi, in press).
It is noteworthy that evolutionary branching is possible even if ρ�(0) = 0, i.e. if higher

virulence gives no advantage in superinfections. This possibility holds for constant
population birth rate (Fig. 2c) or logistic growth (Fig. 3c), but not for constant population
size (Fig. 1c) [the latter was assumed with constant ρ by Gandon et al. (2002)]. If ρ is constant
at value ρ0 > 0, the invasion fitness of a mutant strain simplifies from equation (3)
into s�(αmut) = β(αmut)(Ŝ + ρ0Î ) − ρ0β(α)Î − αmut − µ, and the resident strain influences the
invasion fitness of the mutant via two quantities, (Ŝ + ρ0Î ) and ρ0β(α)Î [recall that the
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population dynamic equilibrium (Ŝ, Î ) depends on the resident]. With multiple resident
strains i = 1, . . . , k, the invasion fitness is determined by two sums,

(Ŝ + ρ0�
k

i = 1

Îi) and ρ0�
k

i = 1

β(αi)Îi

(cf. equations 1). This means that the model with constant ρ has only two environmental
feedback variables, and hence can lead to the co-existence of at most two strains (Geritz et al.,

1997; Dieckmann and Metz, 2006; Meszéna et al., 2006; Durinx et al., 2008) [for a detailed discussion of the
role of environmental feedback variables in virulence evolution, see Svennungsen and Kisdi
(in press)]. Evolutionary branching can happen once, yielding two co-existing strains, but
further branching to higher levels of polymorphism is excluded. If ρ0 = 0 (superinfections
never occur), the environmental feedback collapses to the single variable Ŝ, and we recover
an optimization model where Ŝ is minimized (and R0 is maximized) by the optimal strain
(Bremermann and Thieme, 1989; Dieckmann and Metz, 2006). Note that if ρ is not constant, then no
analogous argument applies, and the number of environmental feedback variables does not
constrain the potential number of co-existing strains.

If the transmission rate is constant and the only benefit of higher virulence comes from
superinfections, then every evolutionary singularity is of the degenerate type between an
ESS and an evolutionary branching point (E is zero in (6a)). There is a large area of mutual
invasibility in the neighbourhood of a convergence stable singularity at the ESS–branching
point bifurcation (Geritz et al., 1998), and evolutionary trees will branch also at this degenerate
singularity.

Another surprising feature of the model is mutual exclusion, which occurs under
constant population size and logistic growth (Figs. 1 and 3) but not under constant
population birth rate. Mutual exclusion (extinction of the rare strain whichever it is) is the
opposite of co-existence by mutual invasibility. Since superinfections are known to support
co-existence, the occurrence of mutual exclusion is unexpected. Mutual exclusion was
observed by Mosquera and Adler (1998), but only when doubly infected hosts die
instantaneously rather than clear one of the infections as our model in equations (1)
assumes. Where mutual exclusion occurs, evolutionary branching is not possible with any
trade-off.

As seen from the above discussion, the three different modes of host population dynamics
yield contrasting results. Most studies of virulence evolution consider only one type of
population dynamics and may not realize to which extent this choice affects the conclusions.

In this paper, we focused on monomorphic evolutionary singularities. It is possible
to extend critical function analysis to find dimorphic singularities, evolutionarily stable
coalitions of two strains or further evolutionary branching (Kisdi, 2006). The number of
parameters, however, increases quickly: For the critical function analysis of monomorphic
singularities, it is sufficient to specify the values of ρ(0) and ρ�(0), but for the dimorphic case
one needs the values and derivatives of the superinfection function at three separate points
(α1 − α2, 0, and α2 − α1; six parameters in total). A comprehensive analysis of dimorphic
singularities is therefore much more demanding.

For the ease of analysis and following Pugliese (2002), we assumed that ρ(0) > 0 and the
superinfection function is everywhere differentiable. This is not the only biologically
realistic choice, and different options may lead to qualitatively different evolutionary
dynamics (Mosquera and Adler, 1998; Adler and Mosquera-Losada, 2002; Boldin and Diekmann, 2008). The
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superinfection function is differentiable with ρ(0) > 0 if the within-host dynamics of the
competing strains is subject to demographic stochasticity. If the total number of pathogens
within a host individual is a finite number N and a new infection with identical virulence
enters the host with n pathogen particles, the old infection will be lost and the new infection
goes to fixation with probability ρ(0) = n /N. In reality, however, N is so large that it may
well be considered infinite, such that the existing infection is not subject to demographic
stochasticity. On the other hand, a new infection of many diseases starts with a much
smaller number of pathogens, such that demographic stochasticity plays a role in the
initial phase of a new infection. In this case, the new infection undergoes a stochastic
branching process within the host: A strain with higher virulence takes over the host with a
positive probability, but a strain with lower virulence dies out with probability 1 (Jagers, 1975;

Boldin and Diekmann, 2008). For small differences in virulence, the superinfection function has
the form

ρ(∆α) =� 0

cn∆α

for ∆α ≤ 0

for ∆α > 0

[the ‘mechanistic’ case of Boldin and Diekmann (2008); see also Appendix B of Mosquera
and Adler (1998)], i.e. it is not differentiable at zero. The present theory of adaptive dynamics
(including critical function analysis) assumes differentiability, and the extension of the
theory to non-differentiable functions is a future challenge motivated in particular by the
non-differentiable superinfection functions arising naturally in virulence evolution models.

Note that with finite but large N, the superinfection function is close to the above
non-differentiable form, with the value of ρ(0) = n/N close to zero but the function rising
steeply at positive arguments. Because the derivative of such a superinfection function
changes rapidly at zero (i.e. ρ″(0) is very large), the value of ρ�(0) is relevant only in the close
vicinity of zero, and the analysis relying on ρ�(0) is valid only if the maximum size of
mutations ∆α is sufficiently small such that ρ″(0)(∆α)2 is negligible.

Note further that if n also goes to infinity such that the entire within-host dynamics is
deterministic, then a new infection takes over the host if and only if it has higher virulence,
i.e. we have the superinfection function

ρ(∆α) = �0 for ∆α < 0

1 for ∆α > 0
,

which is discontinuous at zero [the ‘jump’ case of Boldin and Diekmann (2008)]. Such
extreme asymmetry drives an evolutionary arms race to the maximum viable virulence
(Mosquera and Adler, 1998; Adler and Mosquera-Losada, 2002; Boldin and Diekmann, 2008) and can maintain a
continuum of different trait values in an evolutionarily stable population (Maynard Smith and

Brown, 1986; Geritz, 1995; Adler and Mosquera, 2000), but the evolutionary dynamics of polymorphic
populations under extreme asymmetry are not well understood.
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