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Abstract

A number of ecologically and economically important pathogens exhibit a com-
plex transmission dynamics that involves distinct transmission modes. In this paper,
we study the evolutionary dynamics of pathogens for which transmission includes
direct host-to-host as well as indirect environmental transmission. Different routes
of infection spread require specific adaptations of the parasite, which may result
in conflicting selection pressures. Using the framework of Adaptive dynamics, we
investigate how these conflicting selection pressures are resolved in the course of
evolution and determine the conditions for evolutionary diversification of pathogen
strains. We show that evolutionary branching and subsequent evolution of specialist
strains occurs in wide parameter regions but evolutionary bi-stability and evolution
of generalist pathogens are possible as well. Our analysis reveals that the relative
contributions of direct and environmental transmission, as well as the underlying
ecological dynamics, play a crucial role in shaping the course of pathogen evolu-
tion. Our findings may explain the coexistence of high and low virulence strains
observed in several pathogenic organisms utilising different transmision modes (e.g.
influenza viruses) and highlight the importance of considering ecological dynamics
in virulence management.
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†Éva Kisdi, Department of Mathematics and Statistics, University of Helsinki, FIN - 00014, Finland.

E-mail: eva.kisdi@helsinki.fi

1



Introduction

Studies of the evolutionary dynamics of pathogen life-history traits tend to focus on
evolutionary changes in virulence in pathogens transmitted exclusively upon a contact of
an infectious host with a susceptible individual (but see e.g. Ewald (1983) and Dieckmann
et al. (2002)). Virulence, defined here as the host’s infection induced mortality, has
been shown empirically to be positively correlated with parasite’s transmissibility (for
a recent review, see Alizon et al. (2009)). Directly transmitted pathogens thus face a
delicate task of balancing the gains of increased transmission to new hosts and the losses
suffered due to shortening the expected life-span of their host. Simple models of virulence
evolution predict that such trade-offs between transmissibility and virulence result in
evolution of a single strain of intermediate virulence, but more realistic ecological settings,
host-heterogeneity and multiple infections predict more complex evolutionary dynamics,
including evolutionary branching and evolutionary bi-stability (Nowak and May (1994);
Mosquera and Adler (1998); Pfennig (2001); Dieckmann et al. (2002); Gandon (2004);
Green et al. (2006); Boldin and Diekmann (2008); Alizon (2008); Svennungsen and Kisdi
(2009)).

In many ecologically and economically important pathogens, transmission occurs via
two, or even more, distinct transmission routes. Human pathogens such as HIV, HTLV-
I, hepatitis B and C, for example, can all be transmitted vertically (i.e. from mother
to offspring) as well as directly (Bittencourt (1998); Dunn et al. (1994); Thaler et al.
(1991); Lipsitch et al. (1996)). Mixed vertical and direct transmission has also been
documented for many plant pathogen species (van den Bosch et al. (2010)). Some other
pathogenic organisms produce free parasites that survive for non-negligible periods of
time outside their hosts, which enables the parasite to be transmitted indirectly via an
outside environment, such as contaminated soil or household surfaces. Influenza viruses,
smallpox and bacterial genera Bacillus and Clostridium are all examples of such pathogens.
Within one infected host, HIV can be transmitted directly from one target cell to another,
as well as environmentally via free virions (Deeks (2011); Sigal et al. (2011)). Nosocomial
pathogens, such as Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-
resistant Enterococcus (VRE), utilise a combination of direct host-to-host, environmental
and vector-borne transmission.

Alternative modes of transmission require specific adaptations of the parasite and
a mutation that enhances transmission via one of the routes may hamper the spread of
infection in other ways. For a pathogen with mixed direct and environmental transmission,
for example, increased longevity of spores in an outside environment requires the parasite
to develop a persistent coat, which may, in turn, decrease the chances of infection upon a
host-to-host contact (Caraco and Wang (2008)). Multiple transmission modes may thus
generate conflicting selection pressures and trade-offs between the different transmission
modes. How are these conflicting selection pressures resolved in the course of adaptation?
In this paper, we investigate this question for pathogens utilising direct and environmental
transmission.

Studies of strictly environmentally transmitted pathogens have traditionally focused
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on the relation between longevity of free parasites and virulence, investigating the so called
‘curse of the pharaoh’ hypothesis that parasites with long-lived spores necessarily evolve
high virulence (Bonhoeffer et al. (1996); Gandon (1998); Caraco and Wang (2008)). One
of the conclusions of the studies of Bonhoeffer et al. (1996), Gandon (1998) and Caraco
and Wang (2008) is that a single strain emerges as the outcome of adaptation. In fact, all
three models are optimization models and thus unable to explain coexistence of pathogen
strains.

To our knowledge, the studies of Day (2002) and Roche et al. (2011) are the only two
studies that investigate the evolution of pathogens with mixed direct and environmental
transmission. In the model of Day (2002), pathogens can be transmitted via three routes:
(i) directly, (ii) indirectly through release of free pathogens while the host is alive or
(iii) indirectly through release upon the host’s death. Despite the seemingly large scope
for coexistence, the model includes an assumption that severly limits the possible evolu-
tionary outcomes: the rate at which a susceptible host encounters free propagules in the
environment is proportional to the environmental pathogen load (in other words, mass
action incidence is assumed). The upshot is that the model is an optimization model
and hence also unable to explain evolutionary coexistence od strains. The assumption of
mass action incidence is replaced by a saturating incidence in the recent study by Roche
et al. (2011). While coexistence of pathogen strains is observed in a population dynamical
context, the emergence of pathogen diversity via evolutionary branching is not found. In-
stead, the authors observe either a single evolutionary winner or evolutionary bi-stability
(i.e., two continuously stable strategies, separated by an evolutionary repeller), where the
outcome of pathogen adaptation depends on the virulence of the initial strain. Overall,
thus, no theoretical studies can account for evolutionary diversification and coexistence
in infectious diseases that are transmitted both directly and environmentally.

The aim of the current paper is to present a rather general model that incorporates
direct host-to-host transmission as well as indirect environmental spread of an infection.
We investigate how the relative strengths of the two transmission modes shape the course
of pathogen adaptation and determine the conditions under which we expect diversifica-
tion and subsequent coexistence of pathogen strains on the evolutionary time-scale. We
show that, by creating two environmental feedback variables, the two transmission modes
can induce the evolution of strain diversity, but only under certain conditions. In other
cases, evolutionary bi-stability or evolution of a single generalist strain are observed. Our
analysis reveals that ecological dynamics plays an important role in shaping the course of
pathogen evolution.

The model

We base our model on a simple SIR framework (Diekmann and Heesterbeek (2000)) and
assume that the total population comprises of susceptible (S), infected (and infectious;
I) and recovered hosts (R) and denote by N = S + I + R the total host population size.
In addition, we include an environmental reservoir and denote by P the number of free
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parasites.
We assume that susceptible individuals are born at a constant rate b and die at per

capita rate d. A susceptible host can become infected either through a contact with
an infected individual (i.e., by direct transmission), or environmentally, by coming into
contact with a free parasite. The rate at which a susceptible host makes contact with
another host depends on the size of the total population, N, and is denoted by f(N). If
a contact is made with an infected host (which occurs with probability I

N
), infection is

transmitted with probability β. The rate at which a susceptible host comes into contact
with pathogen spores in the environment depends on the total environmental load, P, and
is denoted by g(P ). Upon contact with a free parasite, a susceptible becomes infected
with probability γ. We assume that multiple infections do not occur, neither via the
environment, nor via host-to-host transmission. The detrimental effect of infection is
modeled as an increase in host’s death rate and is denoted by α. In epidemiological
literature, the infection induced death rate is commonly reffered to as virulence. Infected
hosts recover at a rate ρ and are immune upon recovery. An infected host produces free
pathogens at a rate θ. There is no pathogen release upon the host’s death. Finally, we
assume that free parasites in the environment die at a rate σ.

The above assumptions can be translated into the following system of differential
equations:

dS

dt
= b− βf(N)

SI

N
− γg(P )S − dS

dI

dt
= βf(N)

SI

N
+ γg(P )S − (d+ α + ρ)I

dN

dt
= b− dN − αI

dP

dt
= θI − σP,

(1)

Note that the depletion of free pathogens due to infection is neglected in (1). This omission
does not bring visible changes to the results, it does, however, greatly simplify the analysis
(see Dwyer (1994)). Note also that, if ρ = 0, we are dealing with a chronic infection and
the model is an extension of a simple SI model. For readers’ convenience we summarize
the parameters and their meaning in Table 1.

Our aim in this paper is to study the evolution of a phenotypic characteristic of the
pathogen. The evolving trait will be denoted by x and can, as is done traditionally,
represent virulence, but can also refer to some other pathogen characteristic, such as its
within-host reproduction rate. When considering epidemiological and evolutionary dy-
namics of pathogenic organisms, pathogen life-history characteristics can not be viewed
as independent traits but are instead tied to each other via trade-offs. Trade-offs be-
tween pathogen transmissibility and virulence have been extensively studied for directly
transmitted pathogens (for a recent review, see Alizon et al. (2009)). With an additional
transmission route, the pathogen is faced with further restrictions. For example, survival
outside the host requires the pathogens to evolve resistant spores, which, in turn, de-
creases the probability of infection upon a contact with a susceptible host (Caraco and
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Notation Meaning

S abundance of susceptible hosts
I abundance of infected hosts
N total host population size
P abundance of free pathogens
b population birth rate
d per capita natural death rate
α per capita disease induced death rate (virulence)
ρ per capita recovery rate
θ rate at which free parasites are produced by infected hosts
σ rate of decay of free pathogens
β probability of infection on contact infected - susceptible
γ probability of infection on contact susceptible - free parasite
x evolving trait
f(N) per capita rate of contacts among hosts
g(P ) rate of contact between a susceptible and free parasites

Table 1: Notation

Wang (2008)). To keep our model as general as possible, the parameters α, β, θ, σ, γ and
ρ will all be allowed to depend on the evolving trait x. In a special, and most frequently
studied case, the evolving trait is virulence (i.e. x = α) and the remaining traits are
tied to α. Note that, for a specific host-pathogen system, only some of the trade-offs
α(x), β(x), θ(x), σ(x), γ(x) and ρ(x) may be ‘active’ while other parameters may simply
be considered as constants. The host’s demographic parameters, b and d, will be assumed
to be fixed on the time-scale of pathogen evolution.

In addition to the flexibility in trade-offs between various pathogen traits, the model
is rather general when it comes to incidence functions f and g. Classical examples of con-
tact rates between hosts include the mass action incidence, f(N) = N , and the standard
incidence, f(N) = 1. Examples of contact rates between hosts and free-living para-
sites include the mass action incidence, g(P ) = P , and the family of functions given by
g(P ) = φP

P+κ
. The latter can be obtained mechanistically from an individual-based model

that describes how a susceptible moves about the contaminated area (see Breban et al.
(2010) for details). Our goal in the current paper is to perform a detailed analysis for
the special case of (1) where host-to-host contacts are made according to the mass action
principle, i.e., f(N) = N . Incidence g, on the other hand, will be kept general. Bio-
logically meaningful incidence functions g are non-decreasing functions that saturate for
large values of pathogen load P . To simplify the analysis, we assume that g is a twice
differentiable, positive and concave function. Since the contact rate g is zero whenever
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free pathogens are absent, we can write

g(P ) = P G(P )

for some function G for which G′(P ) ≤ 0.
With mass action incidence f(N) = N , the equations for dS

dt
, dI
dt

and dP
dt

in eq. (1) form
a closed system, which means we can omit the equation for dN

dt
and focus on the system

dS

dt
= b− βSI − γSPG(P )− dS

dI

dt
= βSI + γSPG(P )− (d+ ρ+ α)I

dP

dt
= θI − σP.

(2)

We refer the interested reader to the companion paper by Kisdi and Boldin (in prepara-
tion), in which we present some results on the general model (1).

In order to study the evolutionary dynamics by means of Adaptive dynamics, we must
understand the epidemiological dynamics with a single pathogen strain. In Supplementary
material A we show that a unique positive equilibrium of (2) exists whenever the basic
reproduction ratio (Diekmann and Heesterbeek (2000))

R0 =
b

d

( β

d+ α + ρ
+

γθG(0)

σ(d+ α + ρ)

)
(3)

exceeds one. Whenever it exists, the endemic equilibrium is stable, while the infection-free
equilibrium is unstable whenever R0 > 1. If R0 is below one, the only equilbrium is the
disease-free equilibrium, which is then stable.

It is important to note that, despite the potentially large number of trade-offs that
come into play, all the trade-offs enter the basic reproduction number via two composite
functions, D and E, given by

D =
β

d+ α + ρ
, (4a)

E =
γθ

σ(d+ α + ρ)
. (4b)

The functions D and E indicate, respectively, the strength of direct and environmental
transmission (Roche et al. (2011)). This observation will prove useful in the evolutionary
analysis that follows.

Evolutionary invasion analysis

Suppose that a resident strain xr is in a population dynamical equilibrium. A slightly
different mutant strain xm may affect any of the parameters (except for the host’s de-
mographic parameters, b and d, which are assumed to be fixed). We denote by αm the
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virulence of the mutant strain and use a similar short-hand notation to denote the re-
maining parameter values of the mutant.

The simplest way to determine the invasion fitness of a mutant is to look at its
growth on a generation basis. The per generation growth factor of a mutant trait xm
in a monomorphic resident community with trait xr, R0(xr, xm), is given by

R0(xr, xm) = Ŝ
[ βm
αm + ρm + d

+
θmγm

σm(αm + ρm + d)

g(P̂ )

P̂

]
= Ŝ

[
D(αm)+E(αm)G(P̂ )

]
, (5)

where Ŝ and P̂ denote, respectively, the equilibrium value of susceptible host population
and the equilibrium abundance of free pathogens, as they are determined by the resident
strain xr. Note that D and E in the invasion fitness in (5) depend only on the mutant’s
trait value and not on the resident.

Evolutionarily singular strategies (Geritz et al. (1998)) are solutions of the equation

D′(x) + E ′(x)G(P̂ (x)) = 0. (6)

Since G(P̂ ) is positive, it is clear that singular strategies can not be found in parame-
ter regions in which increasing (or decreasing) trait value simultaneously improves both
transmission routes.

Let now x∗ denote a singular trait value. Evolutionary stability of a singularity is
determined by the sign of

∂2R0

∂x2m

∣∣∣
xm=xr=x∗

= S(x∗)
[
D′′(x∗) + E ′′(x∗)G(P̂ (x∗))

]
. (7)

If the expression in (7) is negative, the singularity is uninvadable, while a positive value
implies that the singularity can be invaded by nearby strategies (Geritz et al. (1998)).
Using (6), we can rewrite (7) as

∂2R0

∂x2m

∣∣∣
xm=xr=x∗

= S(x∗)E ′(x∗)
(D′(x)

E ′(x)

)′∣∣∣
x=x∗

. (8)

Hence, if E ′(x∗) > 0 (i.e., if an increase in the trait value will enhance environmental
transmission) the singular strategy is invadable precisely when(D′(x)

E ′(x)

)′∣∣∣
x=x∗

> 0. (9)

Since in that case D′(x∗) < 0, we can say that the singularity is invadable when the loss in
direct transmission is overcompensated by the gain in environmental transmission. If that
is not the case, the singularity is uninvadable. Similarly, if E ′(x∗) < 0, the singularity
is invadable precisely when the loss in environmental transmission (that occurs when the
trait is increased) is overcompensated by the gain in direct transmission.

7



To determine which of the singular strategies act as (local) evolutionary attractors,
we look at the second derivative

∂2R0

∂x2m

∣∣∣
xm=xr=x∗

+
∂2R0

∂xr∂xm

∣∣∣
xm=xr=x∗

. (10)

If (10) is negative, the singularity is convergence stable (i.e. a local attractor for evolu-
tionary dynamics) while a positive value implies that the singularity is a local evolutionary
repeller (Geritz et al. (1998)).

Evolutionary branching points, a source for evolutionary diversification of an initially
monomorphic pathogen population, are singular points that are both convergence stable
and invadable, and can occur only when the mixed second derivative

M :=
∂2R0

∂xr∂xm

∣∣∣
xm=xr=x∗

= Ŝ(x∗)E ′(x∗)G′(P̂ (x∗))P̂ ′(x∗) (11)

is negative. Note that the singularity condition in (6) and M depend only on the first
derivatives, while the invadability condition in (7) contains the second derivatives of D
and E. By varying the convexities of the trade-offs at the singularity, without changing
the values and the slopes of the trade-offs in the singular point, we can thus change the
invadability of the singularity while keeping its position fixed (Bowers et al. (2005); Kisdi
(2006)). In particular, we can devise trade-off functions that yield evolutionary branching
points provided that M < 0 in the singularity (for applications of this technique, called
critical function analysis, to virulence evolution see the studies of Svennungsen and Kisdi
(2009) and Boldin et al. (2009)).

With these preliminaries we can now investigate how the incidence function g and the
trade-offs affect the possibility of evolutionary branching.

I. Mass action incidence for environmental transmission.

If g(P ) = P , we recover the model of Day (2002). Invasion fitness takes the form

R0(xr, xm) = Ŝ
[
D(xm) + E(xm)

]
.

In this case, there is but one environmental feedback variable (Ŝ), evolution acts as
optimization and coexistence is not possible, regardless of the shape of trade-offs. Since
R0(x, x) = 1, we can write

R0(xr, xm) =
D(xm) + E(xm)

D(xr) + E(xr)
,

from which it is clear that a mutant invades successfully precisely when it increases the
total transmission success. Hence, the optimal strain is the one that (locally) maximizes
D + E.
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II. A concave incidence for environmental transmission.

Let now g be an arbitrary concave function (i.e. g′′(P ) < 0). Differentiation of the
equilibrium equations of (2) (see (1) in Supplementary material A) and evaluation in a
singularity yields

S ′(D + EG(P )) + SEG′(P )P ′ = 0 (12a)

(b− dS)E ′ = dS ′E + γP ′ + γ′P. (12b)

If the probability of infection upon contact with a spore is independent of the evolving
trait, i.e. γ′ = 0, then expressing P ′ from (12b) and rewriting (12a) in the form S ′ =
−S2EG′(P )P ′ yields

M = SE ′G′(P )P ′ =
S

b− dS
P ′2G′(P )(γ − dE2S2G′(P )).

Since G′(P ) ≤ 0, M is always negative. That is, branching is always possible whenever
infectivity of a spore does not depend on the evolving trait (cf. Figure 1). Let us now
suppose that γ is negatively correlated with the evolving trait, i.e. γ′ < 0. This is
meaningful to expect when, for example, the evolving trait is virulence or the within-host
replication rate of the pathogen (Caraco and Wang (2008)). If P ′ < 0 in the singularity,
then M is always negative. If, however, P ′(x∗) > 0, then M is negative only when

γ′ >
P ′

P

(
dE2S2G′(P )− γ

)
(13)

i.e., if γ does not decrease too steeply in the singular point. If γ is positively related to the
evolving trait thenM is always negative whenever P ′ > 0 in the singularity. If P ′(x∗) > 0
thenM is negative only when the reversed inequality in (13) holds (i.e. when γ does not
increase too steeply). We conclude that M is negative and thus evolutionary branching
is possible at least in the situations where γ is weakly dependent on the evolving trait.

Classification of evolutionary scenarios

We have already observed that evolutionarily singular strategies can only lie inbetween
the local maxima of D and E. Let us suppose for simplicity that both D(x) and E(x)
have a unique maximum (if that is not the case, we may expect the possibilities described
below inbetween any two consecutive local maxima of D and E). In view of the number
of singular traits and their invadability, we can then classify the evolutionary scenarios as
follows:

(i) A single continuously stable strategy (CSS). In such a case, the evolutionary
winner is a generalist strain that prudently utilizes both transmission routes, possibly
to a different extent. But is this generalist strain more virulent than the evolutionary
winner in the case of pure host-to-host transmission? To answer this question,
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we observe that, for a strictly directly transmitted pathogen, the invasion fitness
(denoted by Rd) has the form

Rd(xr, xm) = Ŝd D(xm),

where Ŝd stands for the equilibrium abundance of susceptibles set by the resident
strain in the context of a direct-transmission-only model (this model can be obtained
from (2) by setting either θ = 0 or γ = 0). Let x∗d be the evolutionary winner in
the pure host-to-host transmission model. Then D′(x∗d) = 0. If an increase of
trait value enhances environmental transmission (i.e. E ′(x∗d) > 0), then evolution
in the case of mixed transmisson will proceed past the point that maximizes D.
On the other hand, if E ′(x∗d) < 0 then evolution in the case of mixed transmission
will favour lower trait values. Since E involves various trade-offs pertaining to
pathogen’s environmental transmission, one cannot make general conclusions as to
whether mixed transmission leads to, for example, more virulent strains than direct
transmission. Conclusions can only be drawn on a case to case basis where empirical
studies can tell us something about the nature of the trade-offs for a specific host-
pathogen system.

(ii) A unique branching point. If the loss (gain) in direct transmission is overcom-
pensated by the gain (loss) in environmental transmission, then the singularity is
invadable (cf. eq. (9)). When directional evolution drives the trait towards the
singularity, the pathogen population becomes dimorphic in a vicinity of the singu-
larity and the two morphs begin to specialize on different transmission modes. To
investigate what happens with the pathogen population after branching, we proceed
by studying the invasion fitness with a dimorphic resident population (see below).

(iii) Evolutionary bi-stability (two continuously stable strategies, separated
by a repeller). In such a case, one of the two continuously stable strategies
is predominantly transmitted directly, while the second transmits mostly via the
environment. The outcome of pathogen adaptation depends on the trait of the initial
strain and it is the evolutionary repeller that separates the domains of attraction.
Since both attracting singular strategies are uninvadable, any dimorphisms in a
vicinity of convergence stable strategies (if they exist at all) will be of a passing
nature and evolution eventually ends in either a predominatly directly transmitted
infection or in an infection largely transmitted via the environment.

(iv) One continuously stable strategy, one branching point and an evolution-
ary repeller inbetween. Again, the outcome of evolution depends on the initial
strain: either a generalist strain evolves (note that this generalist strain may be
biased towards one of the two transmission routes), or we have (at least initially)
diversification and specialization to different transmission modes. The evolutionary
repeller separates the domains of attraction.

(v) Two branching points separated by a repeller. Evolutionary branching is
in this case initiated nearby any of the two convergence stable strategies. After
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branching, the two strains begin to specialize on the different transmission routes.
To see what happens with the pathogen population in the long run, we proceed by
studying the invasion fitness with a dimorphic resident population (see below).

Examples of the adaptive dynamics of virulence

In this section we demonstrate the above evolutionary scenarios by focusing on a special,
and most frequently studied case, in which the evolving trait is virulence (i.e. the disease
induced death rate), x = α.

The outcome of strain adaptation in a specific host-pathogen system will depend on
the relative strengths of direct and environmental transmission. Given a large number
of trade-offs in our model, there are several ways in which changes in the intensities
of environmental and direct transmission can come about. For example, environmental
transmission can be enhanced by increasing the rate at which the pathogens are released
into the environment (i.e. by increasing θ) or by developing more persistent spores that
survive longer outside the host (i.e. by decreasing σ). To illustrate the above evolutionary
scenarios we present a series of numerical examples in which the strength of environmental
transmission is varied by changing spore longevity. In particular, we assume that

σ(α) = e−uα + v (14)

for some positive constants u and v. In this way, the spores of avirulent strains are
expected to survive 1

1+v
units of time outside the host, while longevity can increase to

at most 1
v

when virulence increases towards infinity. The parameter u determines how
quickly longevity can be increased by increasing virulence.

As suggested by Ewald (1994) and also more recently by Day (2002), the maximum of
E is likely to be obtained for higher virulence values than the maximum of D since direct
transmission requires infected hosts to be active whereas environmental transmission only
requires hosts to transmit into an environmental pool contacted by susceptible hosts. In
our numerical examples, we achieve this by tuning the parameter values. We furthermore
assume that the incidence takes the form g(P ) = P

P+1
(cf. Breban et al. (2010)). Figure

1 shows a series of pairwise invasability plots (Figures (b)-(f)) for different values of u
in (14). When u is low (meaning that spore longevity is gained slowly by increasing
virulence), we observe two continuously stable strategies, separated by an evolutionary
repeller. In this case, the maxima of D and E are obtained for very different virulence
levels and pathogen strains have to ‘choose’ between specialising on direct or indirect
transmission. Which of the two will actually evolve depends on the virulence of the initial
strain. When u is increased, and the peaks of D and E move closer to one another (cf.
Figure 4), the upper of the two CSS (which corresponds to the strain that specializes on
environmental transmission) becomes a branching point. When u is increased further, we
observe a small parameter region in which both of the convergence stable singularities are
invadable. By increasing u further, we observe another bifurcation in which the lower of
the two singularities disappears. At first, we have a unique branching point but increasing
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(a) (b) (c)

(d) (e) (f)

Figure 1: Parameter values and trade-off functions: b = 1, γ = 0.35, ρ = 0, d = 0.2,
β(α) = α

α+0.1
, θ(α) = α

α+1
and v = 0.02. (a) Bifurcation plot: singular strategies as a

function of u in (14). Black depicts continuously stable singularities, full red lines depict
evolutionary branching points and dashed red curves represent evolutionary repellers. The
remaining figures show pairwise invasibility plots with (b) u = 3, (c) u = 5, (d) u = 6.1,
(e) u = 7 and (f) u = 10. In all the PIPs, blue circles depict continuously stable strategies
(CSS), red circles show evolutionary repellers and green circles represent branching points.

u even further will cause the singularity to become a CSS. The figure showing the number
of evolutionarily stable strategies along with their types is shown in a bifurcation diagram
in Figure 1a, where black curves depict continuously stable singularities, full red lines
represent evolutionary branching points and evolutionary repellers are depicted by dashed
red curves.

Thus far we have investigated the evolutionary scenarios by varying only the strength
of environmental transmission. To see how the outcome of strain adaptation, and in par-
ticular, the scope for evolutionary branching, changes when both transmission intensities
are varied, we present in Figure 2a another bifurcation diagram. As in the previous ex-
ample, we vary the strength of environmental transmission by changing u in (14). The
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Figure 2: (a) Bifurcation diagram: the number and type of singular strategies, depending
on c in (15) and u in (14). Region 1 (in blue) depicts parameter regions in which a single
CSS is found. In region 2 (in green), we have a single branching point. In regions 3-6,
we have three singular strategies: in region 3 (in red) we have two CSSs, separated by
a repeller. In region 4 (in white), the lower singularity is a branching point, the upper
is a CSS. In region 5 (in orange), the upper singularity is a branching point, the lower
is a CSS. In region 6 (in purple), both outer singularities are branching points. (b) Two
bifurcation diagrams showing the value and the type of the singularity as a function of
u: c = 0.6 in top and c = 1.4 in bottom figure. For the interpretation of curve types and
another bifurcation diagram with c = 1, see Figure 1a.

strength of direct transmission is controled by varying parameter c in transmissibility β,

β(α) =
cα

cα + 0.1
. (15)

Figure 2a reveals that evolutionary branching is common in the context of our model.
Indeed, regions 2, 4, 5 and 6, in which branching is observed, represent substantial portions
of parameter space.

Dimorphic evolutionary dynamics

We now return to the general case in which the evolving trait is an arbitrary phenotypic
characteristic of the parasite and focus on a situation where an initially monomorphic
pathogen population turns dimorphic in a vicinity of a branching point. What can we say
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about the subsequent adaptive dynamics? Will evolution lead the two morphs towards
a dimorphic singular point? If a dimorphic singularity exists, how do the trait values
of the strains that form a dimorphic singularity change when the relative strength of
environmental (or direct) transmission is varied?

To gather more information about the evolution in dimorphic populations, we write the
invasion fitness (again measured on a generation basis) in a dimorphic resident community
with traits x1 and x2, R0(x1, x2, xm). We have

R0(x1, x2, xm) = S̃
[
D(xm) + E(xm)G(P̃ )

]
, (16)

where S̃ and P̃ denote, respectively, the equilibrium values of susceptibles and free par-
asites in a dimorphic resident community with strains x1 and x2. We first observe that
any two coexisting strains x1 and x2 satisfy the condition

S̃
[
D(x1) + E(x1)G(P̃ )

]
= S̃

[
D(x2) + E(x2)G(P̃ )

]
= 1.

Hence, the straight line connecting the points (E(x1), D(x1)) and (E(x2), D(x2)) has slope
−G(P̃ (x1, x2)). If a coalition (x1, x2) is to be a dimorphic singularity, then in addition

S̃(D′(x1) + E ′(x1)G(P̃ )) =0 (17a)

S̃(D′(x2) + E ′(x2)G(P̃ )) =0 (17b)

has to hold. Since (17) implies that D′(x1)
E′(x1)

= D′(x2)
E′(x2)

= −G(P̃ (x1, x2)), we can conclude that
strains x1 and x2 form a dimorphic singularity precisely when the straight line connect-
ing the points (E(x1), D(x1)) and (E(x2), D(x2)) is tangent to the parametrically given
curve (E(x), D(x)) (see also Svennungsen and Kisdi (2009)). Thus, a simple graphical
consideration of the parametric curve (E(x), D(x)) can give us candidates for dimorphic
singularities. It remains to be seen whether such coalitions lie in the coexistence re-
gion. Note also that this graphical method gives us a dimorphic singularity in terms of
(E(x1), D(x1)) and (E(x2), D(x2)), i.e. in terms of the strengths of environmental and
direct transmission of the two strains. To obtain the singular coalition (x1, x2), we need
to find the values x1 and x2 at which the precise values of D and E are reached.

As we demonstrate by way of an example in Figure 3, dimorphic singular strategies
need not exist. In this particular example, evolutionary invasion analysis predicts a CSS
and a branching point, separated by a repeller. If evolution drives virulence towards the
branching point, the pathogen population splits into two morphs that initially undergo
disruptive selection. However, dimorphic evolution ultimately drives the two strains to-
wards the extinction boundary where one of the two strains goes extinct. After extinction,
the pathogen evolves towards the CSS. Hence, even though the pairwise invasibility plot
shows branching nearby the singular strategy that excels in environmental transmission,
the final outcome is a strain that predominantly transmits directly from one host to an-
other. In other situations in which dimorphic singularities do not exist, branching may
lead to evolution of a parasite that excels in transmission via the environment.
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(a) (b) (c)

Figure 3: (a) Pairwise invasibility plot for u = 2.7, v = 0.025 and θ = 0.2α
0.3α+1

. The
remaining parameters and trade-offs are as in Figure 1. Branching point depicted with
a green, repeller with a red and a CSS with a blue dot. (b) Regions of coexistence
(in white) along with isoclines and arrows showing the direction of dimorphic evolution.
(c) Simulation of evolutionary dynamics showing convergence to the branching point,
subsequent diversification, extiction of one of the strains and final convergence to the
CSS.

Suppose now that a dimorphic evolutionary singularity does exist. Since neither of the
traits that form a dimorphic singularity can be found in parameter regions where both D
and E are increasing (or decreasing; see (17)), dimorphic singularities remain inbetween
the maxima of D and E. Hence, when an initially monomorphic pathogen population
branches, one of the strains will begin to specialize on direct transmission and the other
strain will excel in environmental transmission. However, both of the strains will remain
suboptimal when compared to the pure-direct or pure-environmental transmission model.
Since our model includes at most two environmental feedback variables we know that, if a
dimorphic singularity exists, it is uninvadable whenever it is convergence stable. In other
words, no further diversification is possible.

How does a dimorphic singularity change when we vary the strength of direct or
environmental transmission? To obtain some information, we return to the examples
of the previous section and choose three values of u that according to Figure 1 yield
branching: u = 5, u = 6.1 and u = 7. Thus, we keep the trade-offs pertaining to
direct transmission fixed, while the strength of environmental transmission is changed
by varying u in (14). In Figure 4 we present mutual invadability plots corresponding to
PIPs in Figures 1 (c)-(e), along with the isoclines and the arrows delineating the direction
of dimorphic evolution. In addition, we present in Figures 4 (d)-(f) the corresponding
graphs of D(α) and E(α). We observe that, when longevity is reached faster (u is high),
the peak of environmental transmission is reached sooner and is also higher. The upper of
the two values in a dimorphic singularity (which is better at environmental transmisson)
decreases, while the virulence of the strain that specializes on direct transmission increases
slightly. In other words, the more severe strain becomes less virulent, while the virulence
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(a) (b) (c)

(d) (e) (f)

Figure 4: Figures (a), (b) and (c) show regions of coexistence (in white) and isoclines
along with arrows that depict the direction of dimorphic evolution. These trait evolution
plots correspond to pairwise invasibility plots in Figure 1, with (a) u = 5, (b) u = 6.1 and
(c) u = 7. The dimorphic singularity, depicted by a blue dot, is the intersection of the
two isoclines: for u = 5 the dimorphic singularity is at (0.151, 1.12), at (0.153, 0.91) for
u = 6.1 and (0.154, 0.78) for u = 7. Figures (d), (e) and (f) show the graphs of D(α) (in
black) and E(α) (in red) for, respectively, u = 5, u = 6.1 and u = 7.

of the mild strain increases slightly as the strains move closer to each other.
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Discussion

Pathogens that spread via different transmission routes frequently face conflicting selection
pressures that arise due to contrasting adaptations required for enhancing the different
modes of infection spread. We have shown that multiple transmission modes, in particular
direct and environmental transmission, can induce the evolution of strain diversity. If the
two transmission modes require contrasting adaptations of the pathogen, then a single
ancestral strain may split into two lineages via evolutionary branching, and the emerging
two strains may subsequently specialise on separate transmission routes.

The essential feature of all models exhibiting coexistence or evolutionary branching
is the presence of at least two environmental feedback variables, i.e., of at least two
variables of population dynamics through which the coexisting strains affect each other
(Tilman (1982); Dieckmann and Metz (2006); Meszéna et al. (2006)). In our model,
the two feedback variables are the density of susceptibles (S) and the density of free
pathogens (P ). The density of susceptibles affects reproduction via both transmission
modes, whereas the density of free pathogens acts through the incidence function g(P ) of
the environmental transmission mode. It is essential that g(P ) is a non-linear function
(cf. section Evolutionary invasion analysis and Day (2002)) such that the density of free
pathogens influences the probability that any given free pathogen successfully infects a
susceptible host. Contrary to the simplest assumption of mass action incidence, non-
linear incidence functions g have the capacity to reflect the saturation of the rate at
which susceptibles encounter free pathogens at high environmental loads and can capture
the fact that, at low prevalence, free parasites may present a negligible risk of indirect
infection.

To explain how a non-linear incidence leads to coexistence we note that the fitness
function in equation (5) gives variable weights to the two transmission modes: the en-
vironmental transmission term E is weighted by the factor G(P ) = g(P )/P , relative to
the direct transmission term D. When g(P ) is concave, then G(P ) is decreasing in P . A
resident strain more specialised to environmental transmission produces a high equilib-
rium density of free pathogens (P ) and therefore a low weight G(P ) to the environmental
transmission term, which favours an alternative strain that specialises more on direct
transmission. Conversely, a resident strain adapted to direct transmission equilibrates
the density of free pathogens at a lower value, whereby the environmental transmission
term gets a higher weight and a strain more adapted to environmental transmission gains
an advantage. The variable weight of the two terms thus leads to coexistence by mutual
invasibility.

Our model exhibits a remarkable degree of flexibility. In our general analysis, we
allowed for an arbitrary number and shape of trade-off functions connecting the evolv-
ing pathogen trait to the pathogen’s demographic parameters (α, β, ρ, θ, γ, σ) as well as
an arbitrary incidence function g(P ). Under such flexibility, the traditional methods of
analysis are less straightforward to apply. Instead, we relied on a simple observation
(Bowers et al. (2005); Kisdi (2006)) that evolutionary branching happens for a range of
trade-off functions provided that coexistence by mutual invasibility is possible near the
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singular trait value. We found that the latter condition holds for all concave incidence
functions g(P ), provided that the infectivity of free pathogens does not vary too steeply
with the evolving trait of the pathogen (i.e., |γ′| is not too large). We thus conclude
that evolutionary branching is possible under very mild restrictions on a rather flexible
model. Within these restrictions, there is always a range of trade-off convexities where
evolutionary branching occurs.

Concrete examples for evolutionary branching are shown in Figure 1. In this example,
we considered an important special case where the evolving trait is virulence, traded-off
against three other traits: infectivity via direct host-to-host transmission (β), the rate
of shedding of free pathogens (θ), and the decay rate of free pathogens (σ). The model
exhibits a rich pattern of bifurcations with evolutionary branching in a substantial part of
the parameter region (see Figure 2). By way of examples we have shown that evolutionary
branching may lead to evolutionary coexistence of two strains with markedly different
virulence levels. Our findings may thus explain the coexistence of high and low virulence
strains that is observed in several infectious diseases utilising multiple transmission modes,
such as avian influenza (see Olsen et al. (2006) and Chen et al. (2005)) or Vibrio cholerae
(Pascual et al. (2002)).

In addition to the evolution of pathogen populations in ecological communities (such
as influenza in human or avian populations), our framework can be applied to the within-
host setting to study, for example, the evolution of HIV within one infected host. Indeed,
recent results show that viruses can be transmitted directly from one cell to another as
well as via free viruses, which is likely to affect treatment (see Deeks (2011); Sigal et al.
(2011)). Alizon and Boldin (2010) have recently shown that branching within one HIV
infected host can be interpreted as the co-receptor switch (Regoes and Bonhoeffer (2005)).

We use Adaptive dynamics to explore not only whether evolutionary branching is
possible but also the coevolution of two coexisting strains after evolutionary branching
(Geritz et al. (1998)). Since there are only two environmental feedback variables, no more
than two strains can coexist (Tilman (1982)); and if there is a dimorphic singularity, one
can find it with a simple graphical method (see also Svennungsen and Kisdi (2009)). Note,
however, that a dimorphic ESS need not exist. In the example of Figure 3, evolutionary
branching is followed by extinction such that eventually the evolving pathogen arrives at
a single-strain ESS, even though its evolution had an “excursion” through dimorphisms.
Evolutionary branching is not sufficient for coexistence to persist on evolutionary time
scales (see also Geritz et al. (1998) and Geritz et al. (1999) for examples in the context
of competition models).

For virulence management, it is an important question whether some of the coexisting
strains in a diverse pathogen population evolve higher virulence than a single strain would
evolve in isolation, i.e., whether diversity promotes the existence of highly virulent strains
(Roche et al. (2011)). Suppose that the fitness via direct transmission only (D) and the
fitness via environmental transmission only (E) are unimodal functions of virulence, and
let α∗d and α∗e be the strains that are optimal in direct and environmental transmission,
respectively. Outside the interval spanned by these two optima both direct and environ-
mental transmission select in the same direction and hence no trait value can be singular;
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any dimorphic singularity must thus be such that both strains are inbetween α∗d and α∗e.
Whether α∗d is smaller or greater than α∗e depends on the trade-off functions and cannot be
established a priori. Day (2002) however argues that environmental transmission is likely
to select for higher virulence than direct transmission (α∗e > α∗d). It follows then that the
highest virulence (α∗e) evolves when transmission is solely environmental and the pathogen
thus remains monomorphic. In dimorphic pathogen populations, the more virulent strain
evolves near α∗e (but remains at least somewhat below) if the two optima are strongly sep-
arated such that the two strains are forced to adapt to alternative transmission modes.
If the optima α∗d and α∗e are less separated, then each strain benefits from retaining some
capacity to reproduce also via the transmission mode it is less adapted to, and therefore
evolution comes to a halt before the strains get near to their respective optima (this is
shown in Figure 4). Direct transmission therefore decreases the evolved virulence of the
more virulent strain of a dimorphism, and this effect is stronger if the two optima are less
separated. This pattern of dimorphic evolution is similar to the evolution of specialists
adapting to alternative habitats in spatially heterogeneous environments (e.g. Meszéna
et al. (1997); Kisdi and Geritz (1999)).

Evolutionary bi-stabilities leading to alternative ESSs represent a distinctly different
mechanism for the evolution of a virulent strain (cf. Figure 1b). In this case, the pathogen
population remains monomorphic. With a deep fitness valley between α∗d and α∗e, there
is no “compromise” generalist strategy that would be able to utilise both transmission
modes sufficiently well to act as an initial point of diversification. Instead, the initial
strain evolves towards one of the two transmission peaks. With α∗e > α∗d, high virulence
evolves if the initial strain is virulent enough to be attracted to the singularity near the
peak of environmental transmission. Since the singularity is always inbetween α∗d and
α∗e, direct transmission always decreases the evolved virulence of a strain that is adapted
mostly to environmental transmission; this effect is however weak because of the strong
separation of the fitness peaks. An evolutionary bi-stability is therefore likely to lead to
the evolution of a pathogen adapted to one transmission mode and performing weakly in
the other. Further adaptations in other pathogen traits can reinforce this pattern until
one transmission mode is lost for the pathogen.

Comparison to previous models

Maintenance of strain diversity has been well studied for strictly directly transmitted
infectious diseases, where diversity has often been attributed to multiple infections of
the host or to various kinds of host heterogeneity. Intrinsic variation in host properties
can induce evolutionary branching akin to the evolution of diversity in multiple habi-
tats (Gudelj et al. (2004); Gandon (2004); Osnas and Dobson (2012)). Similarly, hosts
with different vaccination statuses (André and Gandon (2006)) or with different levels of
evolved resistance (Best et al. (2010)) can promote the evolution of multiple pathogen
strains. Multiple infections of individual hosts sustain strain variety (Nowak and May
(1994); Mosquera and Adler (1998)) and promote the evolution of strain diversity (Alizon
(2008); Mosquera and Adler (1998); Boldin and Diekmann (2008); Boldin et al. (2009)),
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essentially by creating a number of host classes that differ in their infection status. To
exclude these known mechanisms promoting diversity, our model assumed a homogeneous
population of hosts with perfect cross-immunity between pathogen strains.

A different mechanism underlying strain diversity in single-infection models involves
the transmission-virulence trade-off and density dependence in the host’s natural death
rate (Andreasen and Pugliese (1995); Pugliese (2002); Svennungsen and Kisdi (2009)). We
excluded this mechanism of coexistence by assuming that the host population is regulated
via its birth rate. For simplicity, we assumed a constant population birth rate (b), which
corresponds to the per capita birth rate being inversely proportional to population size.

The role of alternative transmission modes has been studied in the case of vertically
versus horizontally transmitted pathogens. Lipsitch et al. (1996) pointed out that these
two transmission modes allow for the coexistence of strains, whereas Dhirasakdanon and
Thieme (2009) analysed the conditions for coexistence and found that it is possible even if
the vertically transmitted strain is not viable by itself. Ferdy and Godelle (2005) showed
that evolutionary branching can produce an avirulent, vertically transmitted strain that
coexists with a virulent, horizontally transmitted strain. This result is broadly similar
to our finding that contrasting selective forces acting in two different transmission modes
can lead to evolutionary branching of pathogens.

Two previous studies investigated the evolution of pathogens with direct and envi-
ronmental transmission (Day (2002); Roche et al. (2011)). Day (2002) assumed mass
action for both transmission modes, which implies a single environmental feedback vari-
able and therefore an optimisation model where coexistence and evolutionary branching
are not possible (cf. section Evolutionary invasion analysis; Metz et al. (2008)). Assum-
ing g(P ) = P implies G(P ) = g(P )/P = 1 in equation (5), which leads to fixed weights
of the two transmission terms. Coexistence, however, relies on variable weights the two
transmission modes get via G(P ) (see above). We note that also with other mechanisms
maintaining diversity, certain specific choices simplify the models such that they no longer
support coexistence. For example, the model of Regoes et al. (2000) includes multiple host
types but, contrary to the multi-host models cited above, it does not permit coexistence of
pathogen strains due to a constant ratio of hosts types. Similarly, partial vaccination leads
to pathogen diversity in the study of André and Gandon (2006) but not in the simpler
model of Gandon et al. (2003) (see Svennungsen and Kisdi (2009) for further discussion).
In our model, the choice of mass action is a simplification that fundamentally alters the
properties of the model.

More recently, Roche et al. (2011) studied the evolution of virulence for pathogens
utilising direct and environmental transmission. However, their study contains several
flaws, which we wish to discuss here. Roche et al. (2011) investigate a special case of our
model in (2) with the incidence function g(P ) = P/(P+κ) and with very specific choices of
trade-offs. Their simulations demonstrate coexistence, but they do not find evolutionary
branching points. They conclude that their model “exhibits an evolutionary bi-stability
yielding a coexistence of two strains”. This conclusion is incorrect; bi-stability does not
lead to coexistence. The simulation in Figure 4b of Roche et al. (2011) is especially
misleading as the splitting evolutionary tree suggests branching at a singularity they
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identify as a repeller. In this simulation, the initial pathogen population was perched
atop the repeller. There is no biological reason the initial virulence of a pathogen would
equal the singular virulence; and should the simulation start at a different virulence, the
population would not branch but would evolve away from the repeller. In contrast, the
evolutionary branching points we find in the model are attractors of single-strain evolution.
For diversity to evolve from a single ancestral strain, the pathogen first has to evolve to
the singularity where splitting will occur, and this happens only if the singularity is an
evolutionary branching point (Geritz et al. (1998)).

Further, Roche et al. (2011) claim that coexistence is possible only if virulence is
an evolving trait. In Figure B1 in Supplementary material B, we show an example of
evolutionary branching leading to coexistence with fixed virulence (α = 0), where β and θ
are traded off against σ according to the trade-offs assumed by Roche et al. (2011). Fixing
virulence and introducing trade-offs between direct and environmental transmission via
another evolving trait does not change the feedback structure and therefore does not
exclude coexistence and evolutionary branching.

To reconcile coexistence with the opposing result of Day (2002), Roche et al. (2011)
highlight Day’s assumption of a fixed decay rate σ and attribute coexistence to relaxing
this assumption. In Figure B2 of Supplementary material B, we show a counterexample,
where evolutionary branching occurs with a fixed σ. As we argued above, the true dif-
ference is in the feedback structure of the models and Roche et al. (2011) have seriously
misapprehended the conditions necessary for the evolution and maintenance of pathogen
diversity. In Supplementary material B, we point out some further modeling mistakes
made by Roche et al. (2011).

Conclusion and outlook

Our study highlights the role of incidence in the evolution of pathogen diversity. Pathogen
populations that are transmitted in host populations in which contact rates are not simply
proportional to population densities tend to exhibit richer evolutionary dynamics. In this
study, we considered host-pathogen systems in which the incidence for direct transmission
is proportional to the host density while assuming a concave incidence function for envi-
ronmental transmission. These simplifications do not to restrict the possible evolutionary
scenarios and all monomorphic evolutionary singularities (CSSs, branching points and
repellers) appear in the model (cf. Figure 2), which is in stark contrast with optimisation
under mass action law (Day (2002)). Allowing for arbitrary incidence functions in both
transmission modes would make the model difficult to analyse with current methods. In
a future paper (Kisdi and Boldin (in preparation)), we present new techniques to investi-
gate pathogen evolution in the context of the more general model summarized in eq. (1).
These new techniques allow us to study the evolutionary dynamics of pathogens in host
populations where incidence functions for direct and environmental transmission depend
arbitrarily on host population and pathogen densities.
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