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Mutual invasability: also consider "role reversal" of x and y
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The classification of evolutionarily singular points,
an algebraic approach
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x*  is  a  singular point  iff

dy
dsx(y)   = 0

y=x=x*
(x* is an extremum in the y-direction)
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v=y-x*

u=x-x*

su(v) = a + b1u+b0v + c11u2+2c10uv+c00v2

+ h.o.t

b1=b0=0

a=0
b1+b0=0
c11+2c10+c00=0

neutrality of resident

x*  is an extremum in y

s0(0)=0

su(u)=0
su(v) = c11u2−(c11+c00)uv+c00v2

                                                                                     + h.o.t

Linearization  around  x = y = x*
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Why we may only use directional derivatives:
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Dimorphic linearisation around x1=x2=y=x*, I:

Linearization:          v  = y-x*                                      mutant
                               u1 = x1-x*,     u2 = x2-x*          residents

 Only directional derivatives (!):

                               u1 = uw1,       u2 = uw2

su ,u  (v)  = α +

 β1(w1,w2) u   +   β        0 v  +

 γ11(w1,w2) u2   +   γ        10(w1,w2) uv  +   γ        00 V2   +

 h.o.t.

1 2 (*)



s00 (v) = s0(v)

su ,u  (u1) = 0 =
1 2

su ,u  (u2)
1 2

neutrality of residents

su ,u  (v) =
1 2

su  ,u  (v)
2 1

symmetry

if u1=u2=0 we are back in the
monomorphic  resident  case

su ,u  (v)  =
1 2

expansion formula  (*)

(v-u1) (v-u2) [c00+ h.o.t]

Dimorphic linearisation around x1 = x2 = y = x*, II:
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Su   ,u   (v)
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Su  ,u  (v)  =  (v-u1) (v-u2) [c00+ h.o.t]
1 2

c00<0

Su   ,u   (v)
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u1 u2

Dimorphic linearisation around x1 
= x2 

= y = x*, III:



Some further useful consistency conditions:
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Bifurcations of evolutionarily singular points
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Seed size 1

seed size evolution:  Trait Evolution Plots



Population dynamics:

First round:  Let P be the probability to encounter a, temporary,
Hawk.  An individual with inborn probability  p  of playing Hawk
accrues a contribution   pP  (V-C) + p(1-P)V + 0 + (1-p)(1-P)  V
to  its  effective fertility.   To  this  is  added  a  basic fertility    B
giving it  an  overall  effective  fertility    [B + V (1-P) + (V-CP) p].

Second  round:   Density  dependence  allows  only  a  fraction
  1/ [  f(p1,…;N1,…;V,C;…)]   to survive  to  the  next  generation.
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ni   =                                        ni        with      P  :=  Σ pini / Σ ni.
B + V (1-P) + (V-CP) pi

f(p1,…;N1,…;V,C;…)
'

The Hawk-Dove game

              H          D

H          (V-C)      V

D           0            V

1
2

1
2

Pay-off table:

B + V(1-p) + ( V- Cp) q

B + V  -  C p2
sp(q)   =   ln

Fitness:

    sp(q)  =  ln[                                   ]
 t  =

                  ln[B + V (1-p) + (V-Cp)q]  -  ln[f(p;N(t);V,C;…)]
 t

    sp(p)  =  ln[B + V (1-p) + (V-Cp)p]  -  ln[f(p;N(t);V,C;…)]
 t  =

                  ln[B + V - C p2]  -  ln[f(p;N(t);V,C;…)]
 t  =  0.

B + V (1-p) + (V-Cp)q
f(p;N(t);V,C;…)

Application: Unfolding the Hawk-Dove game
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Special case:  Evolutionary Game Theory:

Example:   Hawk - Dove

ni   =                                        ni        with      P  :=  Σ pini / Σ ni.

                    sp(q)   =   ln                                      :

              H          D

H          (V-C)      V

D           0            V
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B + V (1-P) + (V-CP) pi

f(p1,…;N1,…;V,C;…)

B + V(1-p) + ( V- Cp) q

B + V  -  C p2

'

sp(q)
e   - 1

mutant  q

resident p

optimal
p*

ESS:  p*
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"Generic"  Evolutionary  Game  Theory:

Hawk - Dove with between generation fluctuations in the pay-off

 ni    =                                          ni     with   P  :=  Σ pini / Σ ni

              sp(q)   =   E  ln                                      :

              H          D

H          (V-C)      V

D           0            V
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B + V (1-P) + (V-C P) pi

f(p1,…;n1,…;V,C;…)

B + V (1-p) + (V- Cp) q

B + V  -  C p2

'

sp(q)
e   - 1

mutant  q

resident p

optimal

p*

ESS:  p*



Unfolding the Degeneracy
                 of
Evolutionary Game Theory



To first order of approximation for small mutational steps:

where   ε   is  the probability of a mutation per birth event,

C  is  the mutational  covariance matrix,

 and  α  depends on the relative reproductive variability.

dX
dt

= α ε N(X)
∂sX(Y)

∂Y Y=X

T

C

When everybody is born equal & the community attractor is just a point:

                                 α = 2 / Var[lifetime offspring number] .

1
2

that the domain of attraction
of an adaptive peak
will depend on
the covariance matrix:

differences in
evolutionary time scales
due to an
almost degenerate covariance matrix:

Two examples (from quantitative genetics, with a fixed
shape of the fitness landscape) showing

When the  shape of the fitness landscape depends
on the resident trait values,
even the attractivity of a singular point may depend
on the mutational/genetic covariance matrix.



Some matrix facts
A matrix is called symmetric if AT=A,
  where AT=(aij)

T =(aji) [the "transpose" of A].

Every square matrix can be decomposed into
          (A+AT)    the symmetric part
        (A-AT)   the antisymmetric part

A symmetric matrix A is called positive [nonnegative]
definite, written as  A>0  [A≥0],  if for all X ≠  0
      XTA X > 0
Covariance matrices are symmetric,  as are (nonmixed)
second derivatives of functions from vectors to scalars.
Covariance matrices are moreover nonnegative definite.

For general matrices A one can only conclude from
      XTA X = 0    for all X
that the symmetric part of A equals 0.
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2
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2

[XTA X ≥  0]

Some matrix facts II

For any quadratic form

       (X-X0)TA (X-X0)     ( 1 )

with  dim X = n  there exists a linear transformation of
coordinates such that this form can be written as

       (X-X1)T                            (X-X1)    (2)

h+k ≤  n, with Im the m×m identity matrix.

When h=n or k=0 (A positve rep. negative definite),
the level surfaces of (1) are elipsoids, and those of (2)
are spheres.

Ih 0  0
0 0 0
0 0  -Ik



Some results for higher dimensional trait spaces 2:

• Near a singular point X*:
   - The set of potential invaders into a given resident X is bounded
  by a quadratic surface, [in R2 an ellipse or a pair of hyperbolas].
  - The family of those sets, when X varies over a neighbourhood
  of X*, is selfsimilar under uniform expansion:

∂2sX(Y)
    ∂Y     Y=X=X*2

∂2sX(Y)
    ∂X     Y=X=X*2

∂2sX(Y)
    ∂X     Y=X=X*2

∂2sX(Y)
    ∂Y     Y=X=X*2

• X* is a local ESS (i.e., cannot  be invaded by any nearby strategy
 Y) iff
         C  :=            is negative definite.

∂2sX(Y)
    ∂Y     Y=X=X*2

• Convergence  to an ESS is assured, whatever the mutational
 covariance matrix,  iff

   A  :=        -                  is positive definite.

 (Olof Leimar, in press)

• No mutual invasibility iff

   B  :=        +                  is negative definite.

•       A > 0  &  B > 0    C < 0

 as in the one-dimensional case.



Let  X*  be a singular point and let

  X1 = X*+ εU1,  X2 = X*+ εU2,  Y = X*+ εV,

and let

   U =    (U1+ U2),    ∆ =    (U1- U2),

then

SX1X2(Y) = ε2   UTC11U - ∆TC00∆ +

     2  UTC10V +                                   ∆TC10(V-U)  +

         VTC00V              + h.o.t

with
  C01 = C10  and  C11 and C00 symmetric

and

    C11 + C01+ C10 + C00 = 0.

Normal form
of the dimorphic s-function

at a monomorphic singular point
for vector traits

1
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UT(C00-C11+C10-C01)∆
       ∆T(C00+C11)∆[ ]

T



Some results for higher dimensional trait spaces 3:

∂2sX(Y)
    ∂Y2    Y=X=X*

• The number of types that can coexist around a monomorphic
 singular point is bounded from above by  dim[X]+1.
 (Freddy Bugge Christiansen & Volker Loeschcke,1987)

• Near a singular point the sets of potential invaders into k-tuples
 (X1, .., Xk),  1 < k ≤ dim[X]+1,  are of the same form,
 bounded by the same quadratic surfaces (up to as scaling factor),
 independent of k or the choice of the X1, .., Xk:

• The number of branches that can coexist and diverge is
 in principle equal to the number of positive eigenvalues of

                            C :=

 However in practice usually only 2 branches get started,

 and  there are indications that
 if more get started, usually only 2 remain.



Splitting in three has only been observed in the
rotationally symmetric case (where the symmetry holds
in the coordinate system where the covariance matrix
becomes the identity matrix)

X1
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           2D resource competition model
(Andras Vukics, Janos Asboth & Geza Meszena)
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