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Exercise 2. Since I � N , the dynamics of the epidemic is given by

dI

dt
= β(N − I)I − vI ≈ βNI − vI = (βN − v)I

so that the number of infected decreases (from an initially small value towards zero) when
βN − v < 0, which is the same as N < v/β.

Exercise 3. Only unvaccinated hosts can spread the disease, hence in the condition
N < v/β obtained in exercise 2, we need to replace N with the number of unvaccinated
hosts. If a fraction p of hosts is vaccinated, then the number of unvaccinated hosts is
(1 − p)N , so that the condition for no outbreak is (1 − p)N < v/β, which can be rear-
ranged into p > 1− v/βN .

Exercise 5. At the trivial equilibrium, all individuals are susceptible. At the nontrivial
equilibrium Î = N − v/β, the number of susceptibles is Ŝ = N − Î = v/β. According to
the equation

dI

dt
= βSI − vI = (βS − v)I

the more susceptibles (S) are, the better the number of infecteds grows. When S is
greater than v/β, the number of infecteds increases (and hence the population is not at
equilibrium); when S is less than v/β, the number of infecteds declines (and hence the
population is again not at equilibrium). Between these two situations, the population is
at equilibrium when the number of susceptibles is just reaches, but does not exceed, the
critical number of susceptibles that separates the growth and decline of infecteds. And
because at the very beginning of the epidemic every host is susceptible, the critical num-
ber of susceptibles coincides with the critical population size above which an epidemic
outbreak can occur.

Exercise 8. The only equilibrium is x̂ = uk/(c− u), which is positive (biologically pos-
sible) if u < c, i.e., if the intake is less than the maximum speed of removal. f ′(x̂) =
−ck/(k + x̂)2 is always negative, hence the equilibrium is stable.

Exercise 9. (a) The model can have three equilibria, the trivial equilibrium x̂1 = 0 and
two nontrivial equilibria

x̂2,3 =
bc0 ±

√
(bc0)2 − 4bkd

2bk

(b) f ′(0) = −d < 0, the trivial equilibrium is stable for all positive decay rate d. It follows
that the smaller of x̂2,3 (the ”−” root) is unstable and the greater (the ”+” root) is stable.

(c) There is a fold bifurcation where the expression under the square root in x̂2,3 be-
comes zero and thus the two nontrivial equilibria collide and disappear. This happens at
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d = bc20/4k.

(d) f ′(0) = ac0−d, the trivial equilibrium is unstable for small values of d (where ac0 > d)
and there is a transcritical bifurcation at d = ac0.

Exercise 18. The figure below shows the phase plane of the SI-model when µ+α
β

> K.
The N - and I-isoclines do not intersect at positive densities, i.e., the model has no en-
demic equilibrium. Since the vertical arrow is down in the neighbourhood of the disease-
free equilibrium K, the infection cannot invade the disease-free host population. K is also
stable with respect to changes of N (the horizontal arrows on the horizontal axis point to
K), so that K is a stable equilibrium, and the only stable equilibrium in the case µ+α

β
> K.

Exercise 19. The N -isocline does not depend on β, hence the parabola remains the
same. As β decreases, µ+α

β
increases and therefore the I-isocline shifts to the right (dashed

lines in the figure below). The endemic equilibrium, at the intersection of the isoclines,
slides down on the parabola, and eventually crosses the disease-free equilibrium K when
µ+α
β

= K. When this has happened, the phase plane becomes like the figure obtained in

the previous exercise. Before the two equilibria cross (i.e., when µ+α
β

< K), the endemic
equilibrium is stable and the disease-free equilibrium is unstable; when these two equi-
libria cross each other, they also exchange stability so that for µ+α

β
> K, the disease-free

equilibrium is stable (as in the previous exercise) and the equilibrium that has left the
positive part of the phase plane is unstable (this is not shown because non-positive equi-
libria are biologically not relevant).
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Exercise 21. The N -isocline is the same as in the SI model with mass action (Figure
3 of the lecture notes). The I-isocline is given by the equation I = [1 − (µ + α)/β]N ,
i.e., it is a straight line through the origin. If the slope of the N -isocline at the origin is
steeper than the slope of the I-isocline, which is the case when (b−µ)/α > 1− (µ+α)/β,
then there is an interior equilibrium. If however the opposite inequality holds, then the
only biologically meaningful equilibrium is the origin, and it is stable. In this case, the
infection drives the host population extinct.

Exercise 22. (a) One equilibrium or three equilibria depending on whether the quantity
under the square root is positive:

• the trivial equilibrium at N = 0 is stable;

• N = M
2
−
√
M(bM−4µ)

2
√
b

is unstable;

• N = M
2

+

√
M(bM−4µ)

2
√
b

is stable.

The dots on the horizontal axes of the figures below show the three equilibria above. Note
that their stability can be different when the disease is present: an equilibrium that is
stable with respect to perturbations of N (horizontally) need not be stable with respect
to the introduction of some infected (perturbation vertically). the figures mark stable
equilibria with filled dots and unstable equilibria with empty dots.

(b) β = 2: there is an interior equilibrium at the intersection of the isoclies. Unfor-
tunately its stability cannot be determined from the graphical analysis (and therefore no
filled/empty dot is drawn).
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(c) β = 6: no interior equilibrium, an outbreak of the disease leads to the extinction
of the host population.

Exercise 23. Using S = N − I1 − I2 the model can be written as

dI1
dt

= [β1(N − I1 − I2)− ν1]I1
dI2
dt

= [β2(N − I1 − I2)− ν2]I2

The I1-isoclines are the straight line I2 = N − I1 − ν1/β1 and the vertical axis I1 = 0;
the I2-isoclines are the straight line I2 = N − I1 − ν2/β2 and the horizontal axis I2 = 0
(see the figure below). The two nontrivial isoclines are parallel to each other. Hence the
isoclines do not intersect and the model has no interior equilibrium unless ν1/β1 happens
to be equal to ν2/β2; in this exceptional case ν1/β1 = ν2/β2, the two isoclies coincide and
all points on the isocline are equilibria. If ν1/β1 < ν2/β2, then the I1-isocline is above
the I2-isocline as shown in the figure, and all trajectories go to the equilibrium on the
boundary where I2 = 0. Rearranging the inequality we obtain that if β1/ν1 > β2/ν2, then
strain 2 of the pathogen goes extinct. In the opposite case, the position of the isoclines is
reversed and strain 1 goes extinct.
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Exercise 24. (i) α11 > α21 and α22 > α12: stable interior equilibrium, coexistence
(within-species competition is stronger than between-species competition).

(ii) α11 < α21 and α22 < α12: unstable interior equilibrium, the system is bi-stable,
i.e., one or the other species goes extinct depending on the initial population densities
(between-species competition is stronger than within-species competition)
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(iii) α11 < α21 and α22 > α12: species 1 excludes species 2

(iv) α11 > α21 and α22 < α12: species 2 excludes species 1

Exercise 25. Assume aα > µ, otherwise all concentrations go to zero.
If α > β, then the phase plane analysis yields the following figure:

In this case, the system always ends up at the only stable equilibrium (black dot in the
middle), hence this is not a genetic switch.

6



If α < β, then we obtain

In this case, the interior equilibrium is a saddle point, and there are two stable equilibria
on the axes where only one or the other gene is active. This is a genetic switch, which
has two stable states.

The system works as a genetic switch if α < β. Since α = k1/k−1 and β = k2/k−2,
this condition holds if the regulating sequences bind their inhibitor more strongly than
their activator.

Exercise 36. The only equilibrium is at x̂ = a/µ, ŷ = ca/δµ. The Jacobian matrix is

J =

[
−µ 0
c −δ

]
which has eigenvalues λ1 = −µ and λ2 = −δ. Both eigenvalues are negative and therefore
the equilibrium is stable.

Exercise 37. The disease-free equilibrium is N̂ = M(b − µ)/b, Î = 0. We assume that
b− µ > 0 so that the host has a positive disease-free equilibrium. The Jacobian is

J =

[
b− µ− 2bN̂/M −α

βÎ βN̂ − 2βÎ − (µ+ α)

]
Substituting N̂ and Î yields

J =

[
−(b− µ) −α

0 β[M(b− µ)/b]− (µ+ α)

]
The eigenvalues of the Jacobian are λ1 = −(b − µ) (which is negative since we assumed
b−µ > 0) and λ2 = β[M(b−µ)/b]−(µ+α). The pathogen is viable when the disease-free
equilibrium is not stable, i.e., when λ2 is positive. This is likely when the host death rate
µ is small; when the density of living sites M is high; and when the host birth rate b
is high but the effect of increasing b saturates. Note that the expression in the brackets

7



[M(b−µ)/b] is the equilibrium density N̂ of the host; M and b affect the outbreak of the
disease only through host density, which increases linearly with M but saturates with b
because there cannot be more hosts than living sites, however high b is. Of the parameters
of the pathogen, high transmission rate β and low virulence α increase λ2 and therefore
make the pathogen viable.

Notice also that λ2 > 0 is equivalent to βN̂/(µ+ α) > 1. An infected hosts dies at a rate µ+ α and
therefore the expected time of being infectious is 1/(µ + α) (cf. Part 1, section 2.5). In a population of
N̂ susceptibles, an infected host makes βN̂ new infections per unit of time, or on average βN̂/(µ + α)
new infections before its own death. If an infected host makes more than one new infections, then the
disease spreads.

Exercise 40. If both species are present at equilibrium, then N̂1 and N̂2 are not zero,
and the equilibrium densities are determined by the equations

1− α11N̂1 − α12N̂2 = 0

1− α21N̂1 − α22N̂2 = 0

Using these two equalities, the Jacobian becomes

J =

[
−r1α11N̂1 −r1α12N̂2

−r2α21N̂1 −r2α22N̂2

]
(substituting the formulas for N̂1 and N̂2 would not help). The trace of the Jacobian
−r1α11N̂1 − r2α22N̂2 is negative when the population densities are positive. The equilib-
rium is therefore stable if the determinant of the Jacobian is positive, i.e., if

r1r2N̂1N̂2(α11α22 − α12α21) > 0

In exercise 24, we found two configurations of the competitive coefficients where both
species can be present at equilibrium:
(i) α11 > α21, α22 > α12: in this case the determinant is positive and the equilibrium is
stable;
(ii) α11 < α21, α22 < α12: in this case the determinant is negative and the equilibrium is
unstable (it is a saddle point, and indeed, the phase plane analysis of exercise 24 shows a
saddle point for this case).

Exercise 41. (a) From the second differential equation, we have that N̂ = (α/p)T̂ must
hold at any equilibrium, i.e., either both N̂ and T̂ are zero or both are positive. This
makes perefct sense biologically: the toxin cannot be present without the bacteria, and
when bacteria are present, they make some toxin. We consider the nontrivial equilibrium
where both N̂ and T̂ are positive. In this case, dN/dt is zero if r − cT = 0 and therefore
T̂ = r/c. Substituting this into N̂ = (α/p)T̂ , we obtain N̂ = αr/pc.
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The Jacobian is

J =

[
r − cT̂ −cN̂
p −α

]
=

[
0 −cN̂
p −α

]
where we could substitute also N̂ but it will not make a difference at this step. The
trace of this Jacobian (−α) is negative and the determinant (cpN̂) is positive, hence the
nontrivial equilibrium is stable.

(b) The equilibrium is a focus if the eigenvalues are complex, which happens when
Tr2−4Det = α2−4cpN̂ = α2−4αr = α(alpha−4r) is negative (notice that here we had
to substitute N̂ to get the result in terms of the model parameters). The model exhibits
some oscillations before settling at the equilibrium if α < 4r, i.e., if the toxin decays only
slowly and hence has delayed effect on the bacteria.

(c) The N -isocline is the horizontal line T = r/c and the T -isocline is the straight line
T = (p/α)N :

The following plots show trajectories for r = 1, c = 1 and p, α as shown above the
panels. Notice that as the production and decay of the toxin get faster relative to the
growth of the bacteria, i.e., the toxin dynamics becomes fast, the trajectories go quickly
to the toxin isocline and follow that isocline towards the equilibrium.
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(d) The toxin concentration fast converges to the quasi-equilibrium value T = (p/α)N .
(This happens approximately in the last of the figures above: The vertical movement is
very fast, the toxin concentration quickly settles ca on the T -isocline, which corresponds
to the quasi-equilibrium.) Substituting the quasi-equilibrium of T into the dynamics of
the bacteria, we obtain

dN

dt
= rN − cTN = rN − c p

α
N2 = rN

(
1− cp

rα
N
)

= rN

(
1− N

rα/cp

)
which is the logistic model with carrying capacity rα/cp.

Exercise 44. The equilibrium concentrations are

â =
−µδ +

√
(µδ)2 + 4µδγke

2γk
and p̂ =

−µδ +
√

(µδ)2 + 4µδγke

2γµ

(the other solution is negative). The Jacobian is

J =

[
−γp̂− δ −γâ
k − γp̂− δ −µ− γâ

]
(substituting the complicated formulat for â and p̂ would not help). The trace of this
Jacobian is negative and the determinant

(γp̂+ δ)(µ+ γâ) + γâ(k − γp̂− δ) = γµp̂+ δµ+ γkâ

is positive, hence the equilibrium is stable.

Exercise 46. (a) The only equilibrium is at

x̂1 =
m

k3V1
and x̂2 =

k1m

k2k3V2

The Jacobian is

J =

[
−(k1 + k3) k2V2/V1
k1V1/V2 −k2

]
The trace of this Jacobian is negative and the determinant

Det = (k1 + k3)k2 − k1k2 = k2k3

is positive, hence the equilibrium is stable.

(b) The equilibrium is a focus if the eigenvalues are complex, i.e., if Tr2 − 4Det < 0.
Substituting the trace and the determinant we obtain

Tr2 − 4Det = (k1 + k2 + k3)
2 − 4k2k3 = k21 + 2k1(k2 + k3) + (k2 + k3)

2 − 4k2k3

= k21 + 2k1(k2 + k3) + (k2 − k3)2
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which is always positive, i.e., the equilibrium cannot be a focus. (This is good for a
medicine, oscillations could complicate the treatment.)

Alternatively, perform a phase plane analysis. The phase plane indicates a stable
node, no oscillations:
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