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1 Introduction

Differential equations are the most frequently used tools to understand how variables such
as population densities or concentrations of biomolecules change in time. We introduced
differential equations already in Part 1, but now we can considerably extend the analysis
of such models. The reason why this had to be delayed until now is that when the model
has more than one variable, then we need matrix techniques (in particular, eigenvalues)
for the analysis. And of course almost all interesting models capture interactions between
several populations or several kinds of molecules, and as such, have more than one variable.

In the first half of this part, I shall use a series of infectious disease models as run-
ning examples. The simplest SIS model in the next section serves to briefly recap ideas
from Part 1, and to provide a springboard towards more elaborate models and techniques.

2 Recap of models with a single variable: The SIS

model of infectious diseases

The simplest model of an infectious disease divides the population of the host organism
into just two groups: those susceptible to the disease and those infected (and infectious).
Susceptible individuals may become infected and thus move from the susceptible class
to the infected class. Infected individuals can recover, whereby they become susceptible
again; this model thus assumes no acquired immunity. The name SIS model refers to the
sequence of being susceptible (S), infected (I) and susceptible again. Further, the model
assumes that the epidemic plays out quickly, so that the number of births and deaths is
negligible during the time interval we consider. In the SIS model thus only two processes
occur:

1. Susceptibles become infected when they interact with infected individuals. Interac-
tions occur according to mass action (Part 1, section 3.1) and the disease is trans-
mitted at rate β. This means that in a short time interval ∆t, a single susceptible
individual encounters a specific infected individual and pick up the disease from him
with probability β∆t. If there are not one but I infected individuals in the popula-
tion, then the probability that a given susceptible gets infected is β∆t · I. Finally,
with S susceptibles present, the number of new infections in ∆t time is given by
β∆t · I · S = βSI∆t.

2. Infected individuals recover at rate v. This means that in a short time interval ∆t,
each infected recovers with probability v∆t; and with I infected individuals present,
the number of recoveries is v∆t · I. Notice that we assume a constant recovery
rate (i.e., independent from how long the infection has lasted). This results in an
exponential recovery process (see Part 1, section 1.4), which is not very realistic for
real infections, but here we prefer the mathematically simplest assumption.
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How the numbers of susceptibles (S) and infected (I) change follows directly from the
above two processes. In a short time ∆t, the number of susceptibles decreases by βSI∆t
and increases by vI∆t, hence the net change is

∆S = −βSI∆t+ vI∆t

Similarly, the number of infected individuals increases by βSI∆tand decreases by vI∆t
such that we have

∆I = βSI∆t− vI∆t

By dividing with ∆t and taking ∆t→ 0 (as in Part 1, sections 1.4 and 2.3), we arrive at
the system of differential equations

dS

dt
= −βSI + vI (1a)

dI

dt
= βSI − vI (1b)

Strictly speaking, in these equations one should write S(t) and I(t) instead of S and I,
because they change with time and at any time point t we should use their current values,
but this is often suppressed for brevity.

It is conspicuous that ∆I is the negative of ∆S such that ∆S + ∆I = 0; and, conse-
quently, the sum of equations (1a) and (1b) is also zero. This is because the total number
of individuals N = S+ I is constant (i.e., dN

dt
= dS

dt
+ dI

dt
= 0; in the terminology of Part 1,

S + I = N = const is a conservation law). The model assumes no births and no deaths,
which would change the total number of individuals; all what happens is that individuals
move between the classes S and I, but their total number does not change. We can thus
express S as S = N − I with N being a constant. This allows us to rewrite equation (1b)
into

dI

dt
= β(N − I)I − vI (2)

which is a differential equation for a single variable, I.

Exercise 1. Rearrange equation (2) to show that it is identical to the logistic
model of population growth, i.e., equation (2) could be written as dI

dt
= rI[1−

I/K], with r and K being some combinations of the parameters of the SIS
model, β, v and N .

Exercise 2. Assume that initially only a few individuals are infected in a
large population, i.e., I(0) � N . Show that if N < v/β, then I will not
increase, i.e., there will be no epidemic outbreak.

Exercise 3. Suppose that a fraction p of N individuals are vaccinated against
the disease. Since vaccinated individuals cannot contract and transmit the dis-
ease, they are effectively absent from the infection’s point of view. Determine
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the minimum fraction of individuals to be vaccinated to prevent an epidemic
outbreak. Hint: use the result of the previous exercise. Populations where the
vaccination fraction exceeds this minimum are said to exhibit herd immunity.
In such a population random sporadic cases of the disease might occur, but
these will not lead to a major outbreak.

The analysis of a model with a single differential equation, such as the SIS model in
equation (2), usually follows three steps (see also Part 1, section 3.5):

1. Find all equilibria of the model. At equilibrium, the change of the variable must be
zero (dI

dt
= 0) such that from equation (2), we obtain

β(N − I)I − vI = 0 (3)

The equilibrium equation in (3) has two solutions, and therefore the SIS model has
two equilibria: the trivial equilibrium Î1 = 0 (obviously, if no one is infected now
then no one will ever be infected if the population is closed to the outside) and the
nontrivial equilibrium Î2 = N − v/β.

Exercise 4. Check that the last statement is true.

Exercise 5. Calculate the equilibrium number of susceptibles. Compare
to the result of exercise 2: Can you explain why the number of susceptibles
equilibrates to the critical value of population size, below which there is
no epidemic outbreak? What happends when N < v/β such that Î2 is
negative?

2. Local stability analysis. The next step is to establish the stability of the equilibria.
Let f(I) denote the entire right hand side of the differential equation in (2). The
equilibrium Î is stable if f ′(Î) < 0 (cf. Part 1, section 3.5). With f(I) = β(N −
I)I − vI, the derivative evaluates to f ′(I) = βN − 2βI − v. The trivial equilibrium
is stable if f ′(0) = βN − v < 0, whereas the nontrivial equilibrium is stable if
f ′(N − v

β
) = −βN + v < 0. The latter is equivalent to βN − v > 0, i.e., the

nontrivial equilibrium is stable when the trivial equilibrium is unstable.

Exercise 6. Show that the nontrivial equilibrium of the SIS model is
stable whenever it is positive.

3. Bifurcation diagram. Finally, we investigate how the equilibria change when chang-
ing the model parameters. Figure 1 shows Î1 and Î2 with their stability (thick line
when stable, dashed line when unstable) against total population size N . As derived
in exercise 6, Î2 is stable when it is positive; and Î1 is stable when Î2 is not. At
N = v/β, the equilibria undergo a transcritical bifurcation, i.e., they cross each
other and exchange their stability (cf. Part 1, section 3.7).
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Exercise 7. Suppose a medical treatment makes recovery faster such that
the recovery rate v becomes higher. How does this change the bifurcation
diagram in Figure 1?

Figure 1: The bifurcation diagram of the equilibria of the SIS model. Thick and dashed
lines represent stable and unstable equilibria, respectively. Negative values are shown in
grey because these are biologically irrelevant. At N = v/β a transcritical bifurcation
occurs, i.e., the two equilibria cross each other and exchange their stability.

The analysis outlined above concentrates on equilibria. Models with a single differen-
tial equation (such as the SIS model in equation (2)) can behave in only two ways: either
their variable grows unboundedly (at some time it becomes larger than any fixed large
number; or it becomes ever more negative in a similar fashion) or they approach an equi-
librium. Since the former possibility is biologically unrealistic, we expect an equilibrium
or several equilibria in biologically well justified models. As we shall see, models with
several variables can have also other types of dynamics (cycles and chaos), yet equilibria
are the simplest and generally it is a good idea to start the analysis of any model with
investigating its equilibria.

Exercises

Exercise 8. Medicine concentration. The concentration of a medicine decays
in the body as the liver metabolizes the medicine and/or the kidneys excrete it.
At low concentrations of the medicine, this is approximately an exponential
decay process. At higher concentrations, however, the amount of medicine
removed per unit of time saturates since the body cannot remove more than
a certain amount per unit of time. This saturating removal process can be
modelled with the equation

dx

dt
= − cx

k + x

where x is the concentration of the medicine, c is the maximum amount re-
moved per unit time (as x goes to infinity, the right hand side goes to −c),
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and k is the half-saturation value (when x = k, removal occurs at speed c/2;
cf. section 1.2 of Part 1). If the medicine is infused at a constant rate u, then
the infusion and the decay together yield the dynamics

dx

dt
= u− cx

k + x

Find all equilibria of this model and establish their stability.

Exercise 9. Prebiotic replicators. It is thought that before the emergemce
of life proper, RNA-like molecules were replicating themselves in an auto-
catalytic reaction, where one RNA molecule is copied by another (identical)
RNA molecule acting as a ribozyme (”RNA-enzyme”). In this autocatalytic
reaction, the replication rate of a given copy of the RNA molecule, bx, is
proportional to the concentration of RNA, x, because to replicate one copy,
another is needed as a ribozyme. The speed of replication is also propor-
tional to the concentration of the monomers from which RNA is synthesized,
c. The RNA molecules decay at a constant rate d. The concentration of RNA
therefore changes according to

dx

dt
= [bxc− d]x

The monomer concentration c varies in time depending on how many monomers
are incorporated into RNA molecules. Suppose that monomers are not de-
stroyed and not synthesized anew, so that their concentration changes only by
being built into RNA and released when RNA decays. If one RNA molecule
contains k monomers, then a unit volume contains c0 = c + kx monomers
either free (c) or part of an RNA molecule (kx). Since the total number of
monomers does not change, c0 = c+ kx = const is a conservation law and we
can substitute c with c = c0 − kx to obtain the equation

dx

dt
= [bx(c0 − kx)− d]x

where b, c0, k and d are constants.
(a) Find all equilibria of this model.
(b) Establish the stability of the trivial equilibrium x̂ = 0 and deduce the
stability of all other equilibria. Hint: recall that stable and unstable equilibria
alternate (see section 3.5 of Part 1).
(c) Draw a bifurcation diagram to show how the equilibria change when the
decay rate d is varied.
(d) In reality, there is a very low rate a of spontaneous, non-catalysed RNA-
replication. This changes the dynamics into

dx

dt
= [(a+ bx)(c0 − kx)− d]x

How does this change the stability of the trivial equilibrium? How does the
bifurcation diagram change?
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3 Phase plane analysis: The SIR and SI models

The SIS model in the previous section assumed that individuals who recover from the
disease return to the susceptible state. Because recovery replenishes the susceptibles, the
disease always finds new hosts to infect; the disease can thus be present permanently at
the nontrivial equilibrium found above. The outcome of an epidemics will however be
rather different if recovering individuals acquire immunity to the disease such that they
cannot be infected again. In this case the population is divided into three groups: suscep-
tible (S), infected (I), and recovered (R), giving this model the name SIR model. Since
the recovered individuals no longer participate in the disease dynamics, we can consider
them as having been removed from the system (R may also stand for ”removed”). In fact,
the same SIR model applies also to a disease that kills its victims, with R representing
the dead.

The model equations are constructed similarly to the SIS model in equations (1),
except that the recovering individuals are not put back in S (the last term of the fisrt
equation is missing),

dS

dt
= −βSI (4a)

dI

dt
= βSI − vI (4b)

but are moved to R,

dR

dt
= vI

We still have that the total population size N = S+ I +R is constant, but the sum S+ I
is not constant any more. Hence we have to analyze the two equations (4a,b).

A quick graphical method to gain insight into the behaviour of a model with two
differential equations is to draw how the variables change on the phase plane (Figure 2.
The phase plane is a coordinate system with the two variables (S and I) on the two axes.
For each point on this plane, we can evaluate the right hand side of the first differential
equation (4a), and decide whether it is positive or negative; accordingly, we see whether
the first variable (S) increases or decreases. This amounts to moving horizontally to the
right or to the left on the phase plane (marked with horizontal arrows). Similarly, we
can decide using the second differential equation (4b) whether the second variable (I) is
increasing or decreasing, and mark this vertical movement on the phase plane.

In the case of the SIR model, the right hand side of dS/dt in equation (4a) is nega-
tive whenever S and I are positive; hence S always decreases (horizontal arrows to the
left in Figure 2). dI/dt in equation (4b) is positive if βSI > vI. Assuming that I is
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positive, this simplifies to βS > v or, equivalently, to S > v/β. Hence I increases when
S exceeds v/β (vertical arrow up in the right half of Figure 2), but I decreases when S
is below v/β (vertical arrow down in the left half of Figure 2). The line across which
the direction changes is referred to as an isocline. In the SIR model, the vertical line at
S = v/β is an isocline for the variable I; and S has no isocline because it always decreases.

Figure 2: Phase plane analysis of the SIR model; see the text for explanation.

The dashed curve in Figure 2 shows the trajectory the system follows when the initial
population has S(0) susceptibles and a very small number of infected. At the outbreak of
the epidemic, the number of infected increases and the number of susceptibles decreases
(movement up and to the left). When the trajectory crosses the I-isocline, the direction
of vertical movement changes such that I starts to decrease, whereas S continues to de-
crease (movement down and to the left). Notice that the trajectory crosses the I-isocline
horizontally; this is because at this point it no longer moves upwards but does not yet
move downwards. Eventually the disease disappears (I becomes zero), even though some
susceptibles remain (their number is marked with S(∞) in Figure 2). The number of
individuals who got infected during the epidemic can be obtained as S(0)− S(∞), which
is called the final size of the epidemic.

Figure 2 shows just one trajectory, but of course a separate trajectory may be drawn
starting from any values of S(0) and I(0) we may choose. When sketching possible tra-
jectories, it is useful to keep in mind that trajectories cannot intersect. This is because
the differential equations unequivocally prescribe at any point of the phase plane how the
system will move on. For example in the SIR model, S increases by dS = −βSIdt and I
increases by dI = [βSI − vI]dt in the next short time interval dt, such that the system
moves from the point (S, I) along the tangent dI/dS = −1 + v/βS. If two trajectories
intersected, then from the point of intersection they would continue in two different ways;
but that is impossible because the differential equations give always one tangent for the
trajectory.
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Exercise 10. Sketch several more trajectories of the SIR model in Figure
2, assuming realistically that the initial number of infected, I(0), is small.
Use these trajectories to argue that in a population of fewer susceptibles, the
epidemic leaves more individuals uninfected (i.e., S(∞) is higher when S(0)
is smaller).

Exercise 11. Solve the SIR model in equations (4) numerically with param-
eter values β = 1, v = 1, and N = 1.2; 1.5; 1.7; 2; 2.5; 3; 4; 5, assuming that
initially 1% of the population is infected. Plot the final number of susceptibles
S(∞) againts N .

Exercise 12. At the onset of an epidemic outbreak, all but the few initially
infected individuals are susceptible so that S(0) ≈ N . Show that no epidemic
outbreak occurs (the number of infected does not increase) if N < v/β. This
is the same threshold as in the SIS model (cf. exercise 2); explain why the
SIR and SIS models have the same threshold for an outbreak.

Exercise 13. Calculate the minimum fraction of individuals to be vaccinated
in order to avoid an outbreak of an epidemic in the SIR model; explain why
it is the same as in the SIS model (exercise 3).

In the basic SIR model in equations (4), we neglect the birth and (not disease-related)
death of the hosts. This is justified for short epidemic outbreaks during which the number
of births and deaths is negligible (such as an influenza epidemic), but not for endemic
diseases that are permanently present (such as measles and other childhood diseases in
unvaccinated human populations). A disease can be permanently present precisely be-
cause the birth of new hosts replenishes the susceptibles, such that the disease can always
infect new hosts. In the remainder of this section, we develop and analyze a model for an
endemic disease with births and deaths included.

Before turning to the dynamics of an endemic disease, we need a model for the host
population dynamics in absence of the disease. Since the host population cannot grow in-
definitely, the birth rate or the death rate (or both) of the host must be density-dependent
(see section 3.4 of Part 1). Here I assume that the birth rate is given by

b

[
1− N

M

]
(5)

where N is the host population size and b and M are constants. This birth rate is linearly
decreasing with the host population size. A simple justification for this formula is if we
assume that the hosts live in individual sites (patches of the habitat able to support only
one individual), and newborns disperse randomly to one of these sites. If there is a total
of M sites and N of these are occupied, then a randomly dispersing newborn lands in an
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occupied site with probability N
M

, in which case it perishes; and it lands in an empty site
with probability

[
1− N

M

]
, in which case it survives. If each host produces newborns at a

constant rate b but only the fraction
[
1− N

M

]
of the newborns is added to the population,

then the per capita rate of offspring production is as given in formula (5). Assuming a
constant death rate µ, the host population dynamics in absence of the disease is given by

dN

dt
= b

[
1− N

M

]
N − µN (6)

Exercise 14. Show that the host population is has a stable positive equilib-
rium when b > µ and dies out when the opposite holds.

Exercise 15. Rearrange equation (6) to show that it is identical to the logistic
model of population growth, dN

dt
= rN(1−N/K), and express r and K with

the parameters b, M and µ.

To add birth and death to the SIR equations, assume that all hosts can reproduce
(including the infected), and all newborns are susceptible (there is no vertical transmission
from an infected parent to its offspring and there is no vaccination). This means that
the birth term b

[
1− N

M

]
N is added to dS

dt
. All S, I and R individuals suffer disease-

unrelated death at the rate µ, and infected individuals die due to the disease at a rate α,
the virulence of the disease (α = 0 corresponds to a harmless disease). This leads to the
equations

dS

dt
= b

[
1− N

M

]
N − µS − βSI (7a)

dI

dt
= βSI − vI − µI − αI (7b)

dR

dt
= vI − µR (7c)

Note that due to the births and deaths, the total population size N = S + I + R is no
longer constant, and therefore in this model there is no conservation law we could use to
reduce the number of equations.

The analysis of the full model in equations (7) is hindered by the difficulty of visualizing
the dynamics in a 3-dimensional phase space (with axes for S, I and R). In order to
simplify, I make the new assumption that infected individuals never recover (v = 0).
With this assumption R is always zero (no one ever enters the class of recovered), so that
the model becomes the 2-dimensional SI model

dS

dt
= b

[
1− N

M

]
N − µS − βSI (8a)

dI

dt
= βSI − µI − αI (8b)
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with N = S + I.

It is easier to carry out the phase plane analysis of the SI model if we rewrite the
equations such that we use the total population size N and the number of infected I as
the two variables. Adding (8a) and (8b) yields the equation

dN

dt
= b

[
1− N

M

]
N − µN − αI (9a)

whereas substituting S = N − I into (8b) and factoring I out gives

dI

dt
= [β(N − I)− (µ+ α)]I (9b)

The two equations in (9a) and (9b) we use to obtain the isoclines, find the equilibria and
establish their stability as far as possible with a phase plane analysis. Throughout, we
assume that the host population is viable (b > µ, cf. exercise 14).

The N -isocline consists of the points where dN
dt

= 0, and hence, from equation (9a),

b

[
1− N

M

]
N − µN − αI = 0

With N on the horizontal axis and I on the vertical axis as in Figure 3, the isocline is
plotted easiest if we express I from the above equation:

I =
b
[
1− N

M

]
− µ

α
N (10)

The graph of I as a function of N is the ”upside down” parabola in Figure 3 (notice
the negative sign of the N2 term). The parabola goes through the origin because at
N = 0, the isocline equation (10) gives I = 0. The other zero of the parabola is where
the numerator in equation (10) vanishes; I shall denote N at this point with K.

Exercise 16. Show that N = K is the equilibrium size of the disease-free
host population, i.e., the carrying capacity of the logistic model in exercise 15.

On the I-isocline dI
dt

= 0, and hence, from equation (9b),

[β(N − I)− (µ+ α)]I = 0

This equation has two solutions. The first is I = 0, which means that the N -axis of Figure
3 is itself an I-isocline. The second solution is where the expression in the brackets is
zero, i.e.,

I = N − µ+ α

β
(11)
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Figure 3: Phase plane analysis of the SI model with births and deaths. Dots denote equi-
libria (irrespective of stability). In the grey area I > N , which is biologically impossible.
See the text for further explanation. Parameter values: b = 5, M = 1, µ = 1, β = 5,
α = 1

The I-isocline corresponding to this second solution is a straight line with slope 1, which
intersects the horizontal axis at N = µ+α

β
.

To draw the N - and I-isoclines in the same figure, we need to know their positions
relative to each other. More precisely, what important is the position of the intersection
of the second I-isocline with the horizontal axis, µ+α

β
relative to K, the nontrivial zero

of the N -isocline. Figure 3 shows the isoclines assuming µ+α
β

< K; the opposite case is
analyzed in exercise 18.

The isoclines divide the phase plane in Figure 3 into areas with different directions
of movement. To find these directions (i.e., to draw the arrows of Figure 3), it is easiest
to start on the horizontal axis, where the disease is absent. In this case the host pop-
ulation tends to its disease-free stable equilibrium at N = K, i.e., moves to the right if
we start below K and moves to the left if we start above K. The same directions hold
also when I is not zero but small (because then the last term in (9a) is, even though not
zero, but negligible), i.e., the same horizontal arrows apply in the phase plane just above
the N -axis. The horizontal arrows change only when we cross the N -isocline; hence at
every point below the parabola the horizontal arrow points to the right, and at every
point above the parabola it points to the left. To see the directions of the vertical arrows,
notice in equation (9b) that dI

dt
is negative when N is small and positive when N is large.

Hence on the left of the second I-isocline (where the small values of N are ) the number
of infected decreases and the vertical arrow points downward; and on the right side of the
second I-isocline the vertical arrows point upward. (The first I-isocline coincides with
the horizontal axis, so that it does not divide the positive, biologically meaningful part of
the phase plane.) This completes drawing the phase plane diagram in Figure 3.
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We can find the equilibria of the model as the intersections of N - and I- isoclines.
On the N -isocline the change in N is zero (equation (9a) evaluates to zero); and on the
I-isocline the change in I is zero (equation (9b) evaluates to zero). The intersection point
is a point on both isoclines where neither N nor I changes (both differential equatiions
evaluate to zero), i.e., an equilibrium.

In Figure 3, there are three equilibrium points:

• The origin, where the parabola-shaped N -isocline intersects the horizontal axis,
which is the first I-isocline. This represents the trivial equilibrium of not having a
population at all.

• The point K on the horizontal axis, where the N -isocline intersects the horizontal
axis (the first I-isocline) again. This represents the disease-free equilibrium of the
host.

• The interior equilibrium where the N -isocline intersects the second I-isocline. This
is an equilibrium where the disease is endemic.

To see the stability of an equilibrium, we investigate a trajectory starting from the
vicinity of that equillibrium. If all trajectories starting from near the equilibrium tend
back to the equilibrium, then the equilibrium is (locally) stable. Since we have three
equilibria in the SI model, we have to investigate the stability of each:

• When the system starts from near the origin, it will move down and to the right
(cf. arrows). This means that it will move towards the horizontal axis (returning
towards I = 0), but also towards the right along the horizontal axis. This latter
movement will take it away from the origin, i.e., the equilibrium at the origin is
unstable.

• When the system starts from near the disease-free equilibrium, then horizontal
movement tends to push it towards K, but vertically it moves upwards and hence
away from the equilibrium. The disease-free equilibrium is therefore also unstable.

• In the vicinity of the endemic equilibrium, the arrows suggest the possibility of a spi-
ralling movement. It is unfortunately not possible to say just from the directions of
the arrows whether the system is indeed spiralling around the endemic equilibrium,
and whether such spirals lead closer (”spiralling in”) or further away (”spiralling
out”) from the equilibrium.

Exercise 17. Sketch an example where the configuration of isoclines and
arrows is as near the endemic equilibrium in Figure 3, yet the trajectory is not
spiralling. Hint : consider the case when movement is much faster horizontally
that vertically (or vice versa).
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The failure to establish the stability of the endemic equilibrium highlights that we
need also more sophisticated methods for stability analysis. However, we can make an
important conclusion based on Figure 3: if µ+α

β
< K (this is the case for which Figure

3 is drawn), then the disease will remain endemic either at the endemic equilibrium or
exhibiting some non-equilibrium behaviour. The disease cannot disappear because then
the system should settle on the horizontal axis; and on the horizontal axis all trajectories
go to K, which in turn is unstable such that the disease can spread again once the
population is near K. In many other models, a simple phase plane analysis suffices also
to establish the stability of all equilibria (see the exercises below).

Exercise 18. Carry out the phase plane analysis of the SI model assuming
µ+α
β

> K, i.e., that the second I-isocline intersects the horizontal axis to the

right of K. Show that (i) no endemic equilibrium exists, and (ii) the disease-
free equilibrium is stable.

Exercise 19. Sketch a few examples for the isoclines of the SI model starting
with Figure 3 and assuming smaller and smaller values for the transmission
rate β. How does the endemic equilibrium change? How does Figure 3 trans-
form into the figure obtained in exercise 18? What happens when β is such
that µ+α

β
= K? The phenomenon observed there is a transcritical bifurcation

in a 2-dimensional system (compare with section 2).

Exercise 20. In the SI model, the disease is endemic when µ+α
β

< K (cf.

Figure 3) or, equivalently, βK/(µ + α) > 1. Show that βK/(µ + α) is the
expected number of new infections a single infected individual makes before
it dies in the equilibrium population of susceptible hosts (hint: recall the
expected lifetime in an exponential decay process from section 1.4 of Part 1).
This quantity is known as R0, the basic reproduction number of the infection
(see also section 1.3 of Part 3). When R0 > 1, then each infected makes on
average more than 1 new infections in an all-susceptible population, which
means that the infection spreads and an outbreak ensues.

Exercises

Exercise 21. The SI model with frequency-dependent transmission. The epi-
demic models we have studied so far assume that the individuals make contact
with each other according to mass action, i.e., the number of contacts one indi-
vidual makes per unit time is directly proportional to population size. This is
however not a realistic assumption for animals living in herds, where the num-
ber of contacts one individual makes is approximately constant. A constant
number of contacts per unit time is also a better approximation for humans.
Assume thus that a susceptible individual makes βdt contacts in dt time, and
if the partner contacted is infected, then contracts the disease. The probability
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that a randomly chosen partner is infected equals the frequency of the infected,
I/N , such that the probability that a given susceptible becomes infected in dt
time is given by β(I/N)dt. This is called frequency-dependent transmission
(or standard incidence); the difference from the mass action model is the divi-
sion by N . With frequency-dependent transmission, the SI model in equations
(9a,b) becomes

dN

dt
= b

[
1− N

M

]
N − µN − αI

dI

dt
= β(N − I)

I

N
− (µ+ α)I

Investigate this model using phase plane analysis. In particular, show that
with frequency-dependent transmission, a deadly disease (α > 0) can drive
the host population extinct.

Exercise 22. The SI model with Allee effect in the host. Suppose that in a
sexual host species the number of births is limited by how often the females
encounter males, such that the birth rate is proportional to the density of
males. Assume 1:1 sex ratio such that the density of males equals the density
of females, N . (Since the total population size is now 2N , we have to change
the number of living sites to 2M , too, such that the fraction of occupied sites
remains 2N

2M
= N

M
.) The per capita birth rate of females is then bN(1 − N

M
)

(as in equation (9a), but with bN in place of b) and the SI model in equations
(9a,b) becomes

dN

dt
= b

[
1− N

M

]
N2 − µN − αI

dI

dt
= [β(N − I)− (µ+ α)]I

(a) Study the dynamics of this model in absence of the disease. Find all
erquilibria and establish their stability.
(b) Perform the phase plane analysis of the full model with parameter values
b = 2, M = 10, µ = 3, α = 3 and (i) β = 2 or (ii) β = 6. Find out whether
an endemic equilibrium exists, and if not, what happens if an epidemic breaks
out.
(c) Suppose that a fraction p of the newborns are vaccinated and therefore
cannot contract the disease. Modify the model equations and sketch the iso-
clines on the phase plane for increasing values of p. Discuss how the equilibria
change.

Exercise 23. Competition between two strains of a pathogen. Consider the
SIS model in equations (1) but with two strains of the pathogen, which differ
in their transmission rates (β1 vs β2) and recovery rates (v1 vs v2). Assuming
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that once an individual is infected with one strain of the pathogen, it cannot
be infected with the other (cross-immunity), the two-strain SIS model becomes

dS

dt
= −β1SI1 − β2SI2 + v1I1 + v2I2

dI1
dt

= β1SI1 − v1I1
dI2
dt

= β2SI2 − v2I2

where I1 and I2 denote the number of hosts infected with strain 1 and strain
2, respectively, and N = S + I1 + I2 is constant. Use this conservation law to
rewrite the model with only two equations, and perform a phase plane analysis
to show that (i) the two strains do not coexist unless β1

v1
= β2

v2
(which is very

unlikely); and (ii) strain 1 outcompetes strain 2 if β1
v1
> β2

v2
, whereas strain 2

outcompetes strain 1 if the opposite inequality holds.

Exercise 24. The Lotka-Volterra competition model. The simplest model for
competition between two species is

dN1

dt
= r1[1− α11N1 − α12N2]N1 (12a)

dN2

dt
= r2[1− α21N1 − α22N2]N2 (12b)

where N1 and N2 are the population densities of species 1 and 2, respectively,
r1 and r2 are their intrinsic growth rates, and αij measures the competitive
effect of species j on species i. Perform the phase plane analysis of this model:
find all equilibria and if possible, establish their stability for all possible com-
binations of the competition coefficients:

(i) α11 > α21, α22 > α12

(ii) α11 < α21, α22 < α12

(iii) α11 < α21, α22 > α12

(iv) α11 > α21, α22 < α12

Optional: Show that the Lotka-Volterra competition model can be written in
the form

dN1

dt
= r1N1

[
1− N1 + a12N2

K1

]
(13a)

dN2

dt
= r2N2

[
1− N2 + a21N1

K2

]
(13b)

and calculate the parameters of equations (12) if the parameters of equation
(13) are known. Most textbooks display the Lotka-Volterra competition model
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in the form of equations (13), but the analysis is more transparent when using
equations (12). In equations (13), it is easy to see that the Lotka-Volterra
competition model is a straightforward extension of the logistic model (see
section 3.4 of Part 1).

Exercise 25. A genetic switch. To differentiate into different tissues dur-
ing ontogenesis, cells need to switch certain sets of genes on or off. The ge-
netic switch must be inducable (so that with different initial conditions, cells
with the same genome can arrive at different final states) and must also be
stable against random perturbations of the concentrations of the regulating
molecules. Whether a certain set of genes is active or not depends on the pres-
ence of transcription factors, proteins that bind to regulating DNA-sequences
upstream from the structural genes and determine whether the genes are be-
ing transcribed or not. The simplest genetic switch consists of two sets of
genes. Each set of genes includes the gene of a transcription factor (U and V ,
respectively) and each set of genes is preceded by a separate regulating DNA-
sequence (RU and RV , respectively). Both regulating sequences can bind one
transcription factor at a time. If the regulating sequence RU binds transcrip-
tion factor U , then the genes regulated by RU are active; these genes include
the gene for U . Hence U must be present for its own production. The alter-
native transcription factor, V , can also bind to RU , but binding V does not
activate RU . RU is thus inactive so that U is not produced if either RU is free
or V is bound to RU ; and V can prevent activation simply by taking the place
of U (this is called competitive inhibition by V ). The regulating sequence RV

works analogously: it can bind either U or V but it is activated only when V
is bound to it, and it controls, among other genes, the gene producing V .

The chemical reactions of binding and unbinding transcription factors to and
from the regulating sequence RU are thus

RU + U
k1


k−1

RUU

RU + V
k2


k−2

RUV

and, analogously, the same reactions involving regulating sequence RV are

RV + U
k2


k−2

RVU
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RV + V
k1


k−1

RV V

Notice that, for simplicity, we have made the assumption that RV binds its
own activating factor V at the same rate k1 at which RU binds U ; and so
forth, each pair of analogous reaction has the same rate for the two regulating
sequences. This need not be so chemically, but nevertheless this simplified
model will serve as a useful illustration of the processes underlying a genetic
switch.

Let x denote the probability that (or fraction of time while) RU binds U and
is therefore active; and let y denote the probability RU that binds V . With
probability 1−x−y, the regulating sequence is free and is available for binding
either U or V . Denoting the concentrations of the transcription factors U and
V respectively with u and v, the first set of the above reactions implies

dx

dt
= k1(1− x− y)u− k−1x (14a)

dy

dt
= k2(1− x− y)v − k−2y (14b)

Binding unbinding the transcription factors are simple chemical reactions that
play out much faster than the synthesis and decay of the transcription factors
(large proteins), hence these processes attain a quasi-equilibrium in such a
short time while the total amounts of U and V can be considered (almost)
constants. To determine the quasi-equilibrium of equations (14a,b), we set the
right hand sides to zero to obtain

k1(1− x− y)u = k−1x

k2(1− x− y)v = k−2y

The easiest way to solve these equations for x and y is to multiply the first
equation with k2v and the second equation with k1u so that the left hand sides
of the two equations become the same:

k1k2(1− x− y)uv = k−1k2vx

k1k2(1− x− y)uv = k1k−2uy

Because k−1k2vx and k1k−2uy are equal to the same quantity, they must be
equal to each other. From k−1k2vx = k1k−2uy, we obtain y = k−1k2vx

k1k−2u
. Finally,
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we substitute this into the first equation k1(1− x− y)u = k−1x to obtain

k1

(
1− x− k−1k2vx

k1k−2u

)
u = k−1x

k1u = x

[
k1u+

k−1k2v

k−2
+ k−1

]
x =

k1u

k1u+ k−1k2v
k−2

+ k−1

The result becomes more transparent if we divide both the numerator and the
denominator with k−1; then everywhere we see ratios of reaction rates:

x =
(k1/k−1)u

(k1/k−1)u+ (k2/k−2)v + 1

For brevity, we shall write α = (k1/k−1) and β = (k2/k−2). With this new
notation, we have at the quasi-equilibrium

x =
αu

αu+ βv + 1
(15)

Now we turn to the slow processes of the production and decay of U and V .
U is produced at a constant rate a when RU is active, which occurs in the
fraction x of time; hence the speed of production is ax. U decays at a constant
rate µ. U is also binding to and dissociating from RU and RV , but these fast
processes are at their quasi-equilibrium where binding balances dissociation
and therefore they cause no net change in the concentration of U . u thus
changes according to

du

dt
= ax− µu

By substituting the quasi-equilibrium value of x from equation (15), we arrive
at

du

dt
=

aαu

αu+ βv + 1
− µu (16a)

and, assuming that the production and decay rates a and µ are the same for
both U and V , an analogous derivation shows that v changes according to

dv

dt
=

aαv

βu+ αv + 1
− µv (16b)

Perform the phase plane analysis of the model in equations (16a,b) to find all
equilibria and their stability (assume aα > µ). You will need to distinguish
the two cases α > β and α < β; in which case does this system work as a
genetic switch? What conditions should the binding/unbinding reaction rates
k1, k−1, k2 and k−2 satisfy for having a genetic switch (recall the definitions
of α and β)?
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4 Local stability of equilibria

This section explains the method of local (or linear) stability analysis of equilibria in mod-
els with several differential equations. What we obtain in this section is a generalization
of the stability condition for a single variable (see section 2 and section 3.5 of Part 1): if
the model is written in the form dx

dt
= f(x) (where x is the variable and f(x) represents

whatever expression is on the right hand side of the differential equation), then a point
x̂ is a locally stable equilibrium if f(x̂) = 0 (it is an equilibrium) and f ′(x̂) < 0 (the
equilibrium is stable). The basic idea behind the stability analysis with multiple variables
is the same as with a single variable, but technically the analysis is more complicated.
Because the stability analysis is our main tool in exploring the behaviour of differential
equation models, it is important to understand it in detail, and therefore this section
presents all derivations behind the method in a step-by-step fashion in sections 4.1-4.3.
Yet at the end, the method boils down to a straightforward recipe, summarized in section
4.4. Section 4.5 contains a shortcut that is valid when the model has two variables (which
is very often the case).

4.1 Linearization

The method of local stability analysis is applicable to models with any number of dif-
ferential equations. However, to ease the notation, I present the method with only two
differential equations; the generalization to more equations is straightforward. (Only sec-
tion 4.5 is specific to the case of two differential equations.)

We start with a model written in the form

dx1
dt

= f1(x1, x2) (17a)

dx2
dt

= f2(x1, x2) (17b)

where x1 and x2 are the two variables, and f1(x1, x2) and f2(x1, x2) are the expressions on
the right hand sides of the model equations. For example in the SIS model in equations
(1a,b) of section 2, x1 = S, x2 = I, f1(S, I) = −βSI + vI, and f2(S, I) = βSI − vI.

Suppose that we have an equilibrium in the model, the stability of which we want
to establish (recall that if the model has several equilibria, the stability of each must be
investigated separately). Let x̂1 and x̂2 denote the equilibrium values of the variables.
Because this is an equilibrium, we must have that

f1(x̂1, x̂2) = 0 (18a)

f2(x̂1, x̂2) = 0 (18b)

As the first main step, we approximate f1(x1, x2) and f2(x1, x2) for values of x1 near
x̂1 and for values of x2 near x̂2. This approximation is easier to visualize for a function
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of a single variable (see Figure 4). If we have some function f(x), we can approximate
it with a straight line tangent to the function at x̂; this approximation is of course not
good at all points but it is good as long as we look at values of x near x̂. Using the
definition of the derivative, the tangent line is given by f(x̂) + f ′(x̂) · (x − x̂). We thus
have f(x) ≈ f(x̂) + f ′(x̂)(x − x̂) as the linear approximation of the function in the
neighbourhood of x̂. This linear approximation takes the value f(x̂) as the baseline and
adds how much the function changes when x is different from x̂, estimating the latter
from the slope (derivative) of the function.

Exercise 26. Verify the formula for the tangent line.

Figure 4: Linear approximation of a function near x̂.

The extension of the linear approximation to two variables is straightforward, because
we have to do the same as above for each variable separately; only the notation becomes
more cumbersome. Near the point (x̂1, x̂2), a function f(x1, x2) is approximated as

f(x1, x2) ≈ f(x̂1, x̂2) +
∂f

∂x1

∣∣∣∣
x̂1,x̂2

(x1 − x̂1) +
∂f

∂x2

∣∣∣∣
x̂1,x̂2

(x2 − x̂2)

The partial derivative ∂f
∂x1

means that the function is differentiated with respect to the
variable x1 (i.e., differentiated as if x2 were simply a constant; see section 2.11 of Part 1),
and the subscript that follows the partial derivative indicates that after differentiation,
the result is evaluated at x1 = x̂1 and x2 = x̂2 (this is the same as in Figure 4, where the
derivative f ′ had to be evaluated at x̂).

Returning to the model in equations (17a,b), we approximate both functions f1 and
f2 just as above:

f1(x1, x2) ≈ f1(x̂1, x̂2) +
∂f1
∂x1

∣∣∣∣
x̂1,x̂2

(x1 − x̂1) +
∂f1
∂x2

∣∣∣∣
x̂1,x̂2

(x2 − x̂2)

f2(x1, x2) ≈ f2(x̂1, x̂2) +
∂f2
∂x1

∣∣∣∣
x̂1,x̂2

(x1 − x̂1) +
∂f2
∂x2

∣∣∣∣
x̂1,x̂2

(x2 − x̂2)
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Because we do this approximations near the equilibrium, we have from equations (18a,b)
that the first term on the right hand side of each approximation is zero. To ease the nota-
tion, we introduce abbrieviations for the derivatives: let Jij denote the partial derivative
of the ith function with respect to the jth variable evaluated at the equilibrium (hence
J11 = ∂f1/∂x1|x̂1,x̂2 , J12 = ∂f1/∂x2|x̂1,x̂2 , J21 = ∂f2/∂x1|x̂1,x̂2 , and J22 = ∂f2/∂x2|x̂1,x̂2).
With these, the approximations become

f1(x1, x2) ≈ J11(x1 − x̂1) + J12(x2 − x̂2)
f2(x1, x2) ≈ J21(x1 − x̂1) + J22(x2 − x̂2)

so that we write the model equations (17a,b) as

dx1
dt

= J11(x1 − x̂1) + J12(x2 − x̂2) (19a)

dx2
dt

= J21(x1 − x̂1) + J22(x2 − x̂2) (19b)

These equations are much simpler than the original model, because here the right hand
sides of the differential equations are just linear functions of x1 and x2, whereas f1(x1, x2)
and f2(x1, x2) in equations (17a,b) may stand for very complicated functions. This lin-
earized version of the model is, however, valid only near the equilibrium (x̂1, x̂2).

We can make one more simple change to bring out the essential features of equations
(19a,b). Let us introduce the new variable y1 to denote the difference between x1 and its
equilibrium value x̂1: y1 = x1 − x̂1, and the same for y2 = x2 − x̂2. Since the equilibrium
values are constants, the derivative of y1 is the same as the derivative of x1, and the
derivative of y2 is the same as the derivative of x2. Hence instead of equations (19a,b),
we can write

dy1
dt

= J11y1 + J12y2 (20a)

dy2
dt

= J21y1 + J22y2 (20b)

The goal of the local stability analysis is to see whether the system converges to the
equilibrium if started from a point nearby; in other words, whether the difference from
the equilibrium, measured by y1 and y2, decays to zero. We need to solve the differential
equations (20a,b) to see whether this is the case.

4.2 Diagonalization

To solve equations (20a,b), we shall need to work with the matrix

J =

[
J11 J12
J21 J22

]
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called the Jacobi matrix or Jacobian, and use matrix-vector notation for equations (20),(
dy1/dt
dy2/dt

)
= J

(
y1
y2

)
(21)

Exercise 27. Verify that equation (21) is indeed tha same as equations
(20a,b).

There is one special case when it is easy to solve equation (21), and even though this
case rarely occurs in practice, it will be useful to deal with this case first. Suppose that
the Jacobian is a diagonal matrix (J12 and J21 are zero). The equation then simplifies
into (

dy1/dt
dy2/dt

)
= J

(
y1
y2

)
=

[
J11 0
0 J22

](
y1
y2

)
=

=

(
J11y1
J22y2

)
(22)

which is just the vector notation for

dy1
dt

= J11y1

dy2
dt

= J22y2

Each of these equations contains only one variable, hence they can be solved separately,
one by one; and they are akin to the familiar equation for exponential growth or decay
(see section 1.4 of Part 1), the solution of which is

y1(t) = y1(0)eJ11t

y2(t) = y2(0)eJ22t

Here y1(0) is the difference between the first variable x1 and its equilibrium value at time
0; and similarly y2(0) is the difference between the second variable x2 and its equilibrium
value at time 0. If J11 and J22 are both negative, then the difference from the equilibrium
decreases with time, and eventually both y1(t) and y2(t) converge to zero, which means
that the system goes to the equilibrium. If however J11 or J22 is positive (or both),
then y1(t) or y2(t) is increasing such that the system gets more and more away from the
equilibrium in the direction of the x1- or x2-axis (or both). The equilibrium is therefore
stable if both J11 and J22 are negative.

Exercise 28. Generalize this result to a model with three (or an arbitrary
number n) differential equations: Write down the corresponding Jacobian,
assume that it is a diagonal matrix, and show that the equilibrium is stable if
all diagonal elements of the Jacobian are negative.
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In most models, the Jacobian is not a diagonal matrix, but a matrix we can diagonalize1

(see section 5.5 of Part 3). This means that we can write the Jacobian as the product of
three matrices,

J = CΛC−1

where Λ is a diagonal matrix with the eigenvalues of J as the diagonal elements, C is a
matrix the columns of which are the eigenvectors of J, and C−1, the inverse of C, is a
matrix the rows of which are the left eigenvectors of J. We can now substitute this into
equation (21), (

dy1/dt
dy2/dt

)
= CΛC−1

(
y1
y2

)
and pre-multiply both sides with C−1 (which removes C on the right hand side),

C−1
(
dy1/dt
dy2/dt

)
= ΛC−1

(
y1
y2

)
On the right hand side of this equation, we have the diagonal matrix Λ multiplied with
the vector ( z1z2 ) = C−1 ( y1y2 ); and on the left hand side, there is the derivative of this same
vector (because C−1 is a constant matrix, it can be factored out of the differentiation).
Hence we have (

dz1/dt
dz2/dt

)
= Λ

(
z1
z2

)
=

[
λ1 0
0 λ2

](
z1
z2

)
=

=

(
λ1z1
λ2z2

)
(23)

Notice that this is the same result as what we had for the special case in equation (22),
only the variables z1 and z2 replace y1 and y2, and the eigenvalues of J (i.e., λ1 and λ2)
replace J11 and J22. The solution of equation (23) is therefore analogous to the solution
of equation (22):

z1(t) = z1(0)eλ1t (24a)

z2(t) = z2(0)eλ2t (24b)

We can draw similar conclusions as in the special case above: If both λ1 and λ2 are
negative, then both z1 and z2 converge to zero. This implies that y1 and y2 in ( y1y2 ) = C ( z1z2 )
also converge to zero, i.e., the difference between the variables x1, x2 and their equilibrium
values disappears and the system goes to the equilibrium. If λ1 or λ2 is positive (or both),
then the system gets more and more away from the equilibrium. (Note that if the Jacobian
is a diagonal matrix as in the special case above, then its eigenvalues are the diagonal
elements, i.e., λ1 = J11 and λ2 = J22; and ( z1z2 ) equals ( y1y2 ) because C and C−1 equal the
identity matrix.)

1In fact, the results we derive are valid also when the Jacobian cannot be diagonalized. This is
however an exceptional case (most matrices are diagonalizable), and the derivation becomes much more
complicated without diagonalization.
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Exercise 29. Suppose that λ1 is positive and λ2 is negative. Show that y1
and y2 increase such that eventually the vector ( y1y2 ) will point in the direction
of the first eigenvector of the Jacobian. (Hint: recall that the columns of C
are the eigenvectors.)

Exercise 30. Suppose now that both λ1 and λ2 are negative, but λ2 is much
more negative than λ1 (i.e., λ2 � λ1). Show that y1 and y2 decrease such that
eventually the system approaches the equilibrium in the direction of the first
eigenvector of the Jacobian. (Hint: solving the previous exercise helps.)

Figure 5 summarizes our findings so far. If both λ1 and λ2 are negative, then trajec-
tories starting from the neighbourhood of the equilibrium converge to the equilibrium as
shown in Figure 5a; this type of equilibrium is called a stable node. Note that when λ2 is
more negative than λ1, then convergence is faster in the direction of u2 than in the direc-
tion of u1 (cf. exercise 30), such that eventually the trajectory approaches the equilibrium
along the u1-direction. If λ2 is negative but λ1 is positive, then the trajectories converge
in the u2-direction but diverge (leave) in the u1-direction; the result is a saddle point
(or saddle; Figure 5b), where the trajectories go away in the direction of the eigenvector
that corresponds to the positive eigenvalue (cf. exercise 29). Finally if both λ1 and λ2
are positive, then the trajectories are the reverse of those of a stable node, and the equi-
librium is an unstable node (Figure 5c). (The trajectories reverse because in equations
(24a,b), taking the opposite sign for the eigenvalues is equivalent to replacing t with −t,
which amounts to running time backwards. If the backwards trajectories converge to the
equilibrium as in Figure 5a, then the forward trajectories diverge from the equilibrium as
in Figure 5c.) Of the three types of equilibria shown in Figure 5, only the stable node is
stable.

Figure 5: Types of equilibria when the eigenvalues of the Jacobian are real. The dots
are the equilibria, the thick curves are typical trajectories, and the gray lines in the
background show many more trajectories (i.e., the ”phase portrait”). The straight lines
represent the eigenvectors of the Jacobian. (a) λ1, λ2 < 0, stable node; (b) λ1 > 0, λ2 < 0,
saddle point; (c) λ1, λ2 > 0, unstable node.
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Exercise 31. Sketch some trajectories near a stable node assuming that (i)
λ2 � λ1, i.e., convergence in the direction of the second eigenvector is much
faster; (ii) λ1 < λ2, i.e., convergence in the direction of the first eigenvector is
faster; (iii) λ1 = λ2, i.e., the speed of convergence is the same in all directions.

The above results extend naturally to models with more than two variables. If the
model has n differential equations for n variables, then the n × n Jacobian has n eigen-
values. If one (or more) of these is positive, then there is a direction (given by the
eigenvector(s) that corresponds to the positive eigenvalue(s)) where the trajectories leave
the neighbourhood of the equilibrium, i.e., the equilibrium is unstable. If all eigenvalues
are negative, then the equilibrium is stable. There is however a complication (also with
only two variables): the eigenvalues may not only be negative or positive (or zero), but
may also be complex numbers. This possibility is treated in the next section.

4.3 Complex eigenvalues

It is often the case that some of the eigenvalues of the Jacobian are complex numbers2. As
the following example illustrates, complex eigenvalues arise because of taking the square
root of a negative number while solving the characteristic equation in order to obtain the
eigenvalues (see section 5.2 of Part 3).

Example. The eigenvalues of the matrix

J =

[
1 4
−2 −3

]
are the solutions of its characteristic equation,∣∣∣∣ 1− λ 4

−2 −3− λ

∣∣∣∣ = λ2 + 2λ+ 5 = 0

given by

λ1,2 =
−2±

√
4− 20

2
= −1±

√
16 · (−1)

2
= −1± 2

√
−1 = −1± 2i

Since we can write the square root of any negative number (such as
√
−16 in the above

example) as the square root of a positive number times the square root of −1 (
√
−16 =√

16
√
−1), all complex numbers can be expressed using just

√
−1, the imaginary unit,

which is denoted by i. Any complex number z can therefore be written in the form

z = a+ bi

2In Part 3, we did not have to work with complex eigenvalues because we were concerned with the
dominant eigenvalue of a non-negative matrix. In contrast, here we need to consider all eigenvalues of
the Jacobian, which may be any matrix and does not have to be e.g. non-negative.
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where a and b are ”ordinary”, real numbers. a is called the real part of z (Re(z)), whereas
b is called the imaginary part (Im(z); note that the imaginary part is a real number!).
The basics of working with complex numbers are summarized in Box 1.

Box 1: Working with complex numbers

To add (or subtract) complex numbers, add the real part to the real part and the
imaginary part to the imaginary part:

(2 + 3i) + (5 + i) = 7 + 4i

To multiply complex numbers, multiply them as multiplying sums, and use that i2 =
(
√
−1)2 = −1:

(2 + 3i) · (5 + i) = 2 · 5 + 2i+ 3i · 5 + 3i2 = 10 + 17i− 3 = 7 + 17i

To take exponentials of complext numbers, first use that ea+bi = eaebi. Here ea is a
real number. ebi is evaluated using Euler’s formula:

ebi = cos(b) + i sin(b)

where b is in radians (2π radians equal 360◦, set the calculator to radians).

A particularly beautiful equation results when taking b = π in Euler’s formula. Since
cos(π) = −1 and sin(π) = 0, we get eπi = cos(π) + i sin(π) = −1, which yields the
relationship

eπi + 1 = 0

between the five most important numbers of mathematics, π, e, i, 0 and 1.

Two complex numbers that differ only in the sign of their imaginary part,

a+ bi and a− bi

are called complex conjugates. As the above example illustrates, complex eigenvalues
always come in complex conjugate pairs; if a complex number a + bi is an eigenvalue of
the Jacobian, then a− bi is also an eigenvalue.

To see that this is indeed so also for any large Jacobian with a high-degree characteristic

equation, suppose that the we substitute the eigenvalue a+ bi into the characteristic equa-

tion. The result must equal the zero on the right hand side, therefore the imaginary parts

must cancel in the characteristic equation. If we substitute a− bi, then the imaginary parts
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are exactly the same as for a + bi, only with a minus sign. If the imaginary parts cancel

with a plus sign, they also cancel with a minus sign (+0 is the same as −0); therefore a− bi
is also a solution of the characteristic equation, i.e., an eigenvalue.

Exercise 32. Carry out the multiplications to show that the following is true:

(a+ bi)(c+ di) + (a− bi)(c− di) = 2(ac− bd)

i.e., when the product of two complex numbers is added to the product of their
complex conjugates, the result is a real number. Intuitively, this is so because
for every term that contains i after opening the parentheses in (a+ bi)(c+di),
there is the same term but with a minus sign in (a− bi)(c− di).

Exercise 33. Show that

(a+ bi)(c+ di)(γ + δi) + (a− bi)(c− di)(γ − δi) =

= 2[c(aγ − bδ))− d(aδ + bγ)]

(This result will be used later in section 4.3.)

Now we return to the linearized model in equation (23) and to its solution

z1(t) = z1(0)eλ1t (25a)

z2(t) = z2(0)eλ2t (25b)

taking the case that λ1 and λ2 are complex conjugate eigenvalues, i.e., they can be written
as

λ1 = α + βi and λ2 = α− βi

Substituting λ1 into equation (25a) and using Euler’s formula (see Box 1) gives

z1(t) = z1(0)e(α+βi)t = z1(0)eαteβit = z1(0)eαt[cos(βt) + i sin(βt)]

Analogously, substituting λ2 into equation (25b) yields z2(t) = z2(0)eαt[cos(βt)+i sin(−βt)];
and finally note that sin(−βt) = − sin(βt) (cf. Figure 6) so that we have

z1(t) = z1(0)eαt[cos(βt) + i sin(βt)] (26a)

z2(t) = z2(0)eαt[cos(βt)− i sin(βt)] (26b)

Notice that the expression in the brackets, cos(βt) + i sin(βt), is a complex number such
that its real part, cos(βt), is between −1 and 1 (because the cosine function can take
only these values; see Figure 6) and also its imaginary part, sin(βt), is between −1 and
1 (because the sine function can take only these values). Hence the complex number in
the brackets cannot become very large. Whether or not z1(t) and z2(t) converge to zero
depends on the factor before the brackets, eαt. If α is negative, then eαt decays exponen-
tially toward zero, so that z1(t) and z2(t) converge to zero and the equilibrium is stable;
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Figure 6: sin(βt) (continuous line) and cos(βt) (dashed line) plotted against time.

if however α is positive, then the equilibrium is unstable. The stability of the equilibrium
thus depends on the sign of α, which is the real part of the two eigenvalues (α = Re(λ)).

To see in detail how the system converges to or diverges from the equilibrium, recall from section 4.2
that the elements of the vector ( y1y2 ) = C ( z1z2 ) measure the distance to the equilibrium horizontally and
vertically. The columns of C are the eigenvectors u1 and u2 that belong to the eigenvalues λ1 and λ2,
respectively. When the two eigenvalues are complex conjugates, then also the eigenvectors are complex
conjugates so that we can write them as

u1 =
(
γ1+δ1i
γ2+δ2i

)
and u2 =

(
γ1−δ1i
γ2−δ2i

)
Similarly, z1(0) and z2(0) are complex conjugates,

z1(0) = a+ bi and z2(0) = a− bi

because
(
z1(0)
z2(0)

)
= C−1

(
y1(0)
y2(0)

)
; the rows of C−1 are the left eigenvectors, which are complex conjugates,

so that the product of the first row with the real vector
(
y1(0)
y2(0)

)
is the complex conjugate of the same

with the second row. Substituting equation (26) as well as the complex conjugate pairs into
(
y1(t)
y2(t)

)
=

C
(
z1(t)
z2(t)

)
, we obtain(

y1(t)
y2(t)

)
=

[
γ1 + δ1i γ1 − δ1i
γ2 + δ2i γ2 − δ2i

](
(a+ bi)eαt[cos(βt) + i sin(βt)]
(a− bi)eαt[cos(βt)− i sin(βt)]

)
Let us calculate y1(t) explicitly:

y1(t) = eαt
(

(γ1 + δ1i)(a+ bi)[cos(βt) + i sin(βt)] + (γ1 − δ1i)(a− bi)[cos(βt)− i sin(βt)]
)

The expression in the big parentheses is the product of three complex numbers plus the product of their
complex conjugates. Using the result of exercise 33 (with c = cos(βt) and d = sin(βt)), the above equation
simplifies to

y1(t) = 2eαt
(

(aγ1 − bδ1) cos(βt)− (aδ1 + bγ1) sin(βt)
)

(27a)

and, analogously, we have

y2(t) = 2eαt
(

(aγ2 − bδ2) cos(βt)− (aδ2 + bγ2) sin(βt)
)

(27b)

30



Admittedly, these equations still do not look very simple. However, there are only two simple things we
need to notice. Firstly, all symbols in equations (27a,b) represent real numbers, so that we have got a
valid result for how far the system is from its equilibrium measured in horizontal (y1(t)) and vertical
directions (y2(t)). Secondly, the expression in the big parentheses depends on time t only via sin(βt)
and cos(βt). These functions are periodic: if we increase βt with 2π (which amounts to 360◦), then the
values of the cosine and the sine do not change (cf. Figure 6). In other words, if we wait T = 2π/β time
longer (such that β(t+T ) = βt+ 2π), then the value of the big parenthesis is exactly the same as T time
before. If α = 0 such that the factor eαt in front of the parenthesis is constant 1, then T time later the
system is exactly at the same position as before. The expression in the parenthesis thus describes a cyclic
(or periodic) movement. When this is multiplied with eαt, then the size of the cycles shrink with time
(when α < 0 so that eαt represents exponential decay) or grow with time (when α > 0 so that eαt gives
exponential growth). The result is a spiral movement towards or away from the equilibrium, as shown in
Figures 7a and 7b, respectively.

To summarize briefly, complex eigenvalues indicate that the system undergoes oscilla-
tions, such that both variables are sometimes below and sometimes above their equilibrium
values (Figure 7). These oscillations are however damped and the system converges to the
equilibrium if the real part of the eigenvalues is negative (Re(λ) < 0, Figure 7a), in which
case the equilibrium is a stable focus. The oscillations grow and the trajectory diverges
from the neighbourhood of the equilibrium if the real part of the eigenvalues is positive
(Re(λ) > 0, Figure 7b), in which case the equilibrium is an unstable focus.

Figure 7: Types of equilibria when the eigenvalues of the Jacobian are complex. The
dots are the equilibria, the thick curves are typical trajectories, and the gray lines in the
background show many more trajectories (i.e., the ”phase portrait”). The eigenvectors
of the Jacobian are complex and therefore cannot be shown. (a) Re(λ) < 0, stable focus;
(b) Re(λ) > 0, unstable focus.

Exercise 34. Redraw the trajectory of Figure 7a assuming that (i) the real
part of the eigenvalues is strongly negative (Re(λ)� 0)) and (ii) the real part
of the eigenvalues is negative but close to zero.

Exercise 35. Explain why the trajectory of Figure 7b is the reverse of the
one in 7a.
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Since complex eigenvalues always come as complex conjugate pairs, there is always an
even number of complex eigenvalues. In a higher dimensional model, there can be several
pairs of complex eigenvalues, and each pair describes a damped or amplified oscillation
as in Figure 7. The pairs of complex eigenvalues can also combine with real eigenvalues,
which correspond to monotone (non-oscillating) convergence or divergence as shown in
Figure 5. A 3-dimensional example is shown in Figure 8. Here there is a pair of com-
plex eigenvalues with negative real part, hence the oscillations are damped, but the third
eigenvalue (which must be real since it cannot have a conjugate pair) is positive, hence
the system diverges in the direction of the (real) eigenvector that belongs to the positive
eigenvalue.

Figure 8: A trajectory in a 3-dimensional model that has a pair of complex eigenvalues
with negative real part and a positive eigenvalue. The equilibrium point (not shown) is
in the middle of the left face of the cubiod.

4.4 Summary and recipe for local stability analysis in practice

In local stability analysis, we linearize the original equations (i.e., we replace their right
hand sides with linear functions that are valid approximations near the equilibrium but
not further away; see section 4.1) and solve the linearized equations (here we did this
using diagonalization in sections 4.2-4.3). Naturally, these derivations do not have to be
repeated every time we use stability analysis. The steps that need to be carried out in
practice are as follows. We start with the model

dx1
dt

= f1(x1, x2)

dx2
dt

= f2(x1, x2)

where f1(x1, x2) and f2(x1, x2) stand for any (possibly complicated) formula on the right
hand side of the equations (the details obviously depend on the model at hand).
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1. Find all equilibria of the model by solving the equations

f1(x1, x2) = 0

f2(x1, x2) = 0

for the equilibrium values x̂1 and x̂2. There may be several solutions and hence sev-
eral equilibria; the stability analysis must be carried out for each of them separately.

2. Calculate the Jacobian matrix [
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
where all derivatives are evaluated at the equilibrium values obtained in step 1,
x1 = x̂1 and x2 = x̂2.

3. Calculate the eigenvalues of the Jacobian matrix, λ1 and λ2 (see section 5.2 of Part
3).

4. If all real eigenvalues are negative and the real part of all complex eigenvalues are
negative, then the equilibrium is stable. If there is a positive eigenvalue, or an
eigenvalue with a positive real part, then the equilibrium is unstable.

Since the real part of a real eigenvalue is the eigenvalue itself (the real part of
−5 = −5 + 0i is −5), we can state the condition for stability as follows:

• if Re(λ) < 0 holds for each eigenvalue, then the equilibrium is stable
• if there is an eigenvalue with Re(λ) > 0, then the equilibrium is unstable

Note the following points:

(i) This stability analysis is local, i.e., it tells us whether the system goes to the equilib-
rium if it starts in a close enough neighbourhood of the equilibrium. The starting
point must be close enough to the equilibrium because we have aproximated the
original model with its linearized version (section 4.1), and this approximation is
valid only in the neighbourhood of the equilibrium. Local stability is best thought
of whether the system returns to the equilibrium after a small perturbation has re-
moved it from the equilibrium. As perturbations occur in all natural systems, we
can expect to see a system only at stable equilibria, where they return to after being
perturbed.

(ii) A model may have several stable equilibria. It is then true for each of them that after
small perturbations the system returns to the equilibrium where it was perturbed
from. Large perturbations may cause the system to converge to another equilibrium
(or other type of attractor to be explored later); large perturbations cannot be
handled with local stability analysis.
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(iii) If there is an eigenvalue with Re(λ) = 0 and all others have negative real parts,
then the linear stability analysis is inconclusive: The equilibrium may be stable,
may be unstable, or may even be stable in certain directions and unstable in others,
depending on higher derivatives. This fact we have encountered also in the case
of a single differential equation, see section 3.5 of Part 1. If there is an eigenvalue
with Re(λ) = 0 and some other eigenvalue has a positive real part, then of course
the equilibrium is unstable; but even then, the local stability analysis cannot fully
determine the dynamics near the equilibrium, because it is unclear how the system
moves in the direction(s) corresponding to Re(λ) = 0.

(iv) If there is only one differential equation for a single variable, dx
dt

= f(x), then the

Jacobian is the 1 × 1 ”matrix” [∂f
∂x
|x=x̂] ≡ f ′(x̂), i.e., a number. The eigenvalue of

this ”matrix” is its only entry (λ = f ′(x̂)), which is of course a real number, so that
we recover the result of section 3.5 of Part 1: the equilibrium x̂ is stable if f ′(x̂) < 0.

(v) The equilibrium equations in step 1 above may be hard to solve. If this is the case
in a model with two equations, then it is helpful to draw the isoclines on the phase
plane and read the approximate locations of the equilibria from the plot (see section
3).

(vi) Obtaining the Jacobian matrix in step 2 is routine and never poses a problem.
Calculating its eigenvalues in step 3 may be possible only numerically if the matrix is
large (see section 5.2 of Part 3 for a graphical solution for real eigenvalues). However,
many models of interest have just two differential equations, and calculating the
eigenvalues of a 2×2 Jacobian is never a problem (see the next section for a shortcut).
Note that the eigenvectors are not needed to establish the stability of an equilibrium.

The method of local stability readily extends to any number of variables and differential
equations, and the criteria for stability stated above hold for models of any dimension.
In the next section, however, we focus on the special (but frequent) case of two variables.

4.5 A shortcut for the case of two variables

With only two variables, the Jacobian is a 2× 2 matrix. In this section, we calculate the
eigenvalues of a general 2 × 2 Jacobian, and find simple rules to establish the stability
of equilibria without calculating the eigenvalues each time we perform a local stability
analysis in a model with two variables.

The eigenvalues of a 2× 2 Jacobian

J =

[
J11 J12
J21 J22

]
are the solutions of its characteristic equation,∣∣∣∣ J11 − λ J12

J21 J22 − λ

∣∣∣∣ = λ2 − (J11 + J22)λ+ J11J22 − J12J21 = 0
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In this equation, we recognize J11J22 − J12J21 as the determinant of the Jacobian matrix
itself; let thus denote it with Det. The sum of the diagonal elements J11 + J22 is called
the trace of the matrix, Tr. With these shorthands, the characteristic equation is

λ2 − Trλ+Det = 0

which has the solutions

λ1,2 =
Tr ±

√
Tr2 − 4Det

2

We can judge the sign of the (real part of the) eigenvalues from Tr and Det as follows.

• If Det < 0, then Tr2 − 4Det under the square root is certainly positive, and larger
than Tr in absolute value; hence the ”+” solution is a positive eigenvale and the
”−” solution is a negative eigenvalue. Det < 0 hence corresponds to a saddle.

• If Det > 0 but Det < Tr2/4, then the expression under the square root is still
positive, but smaller than Tr in absolute value. The eigenvalues are therefore real,
and their sign is given by the sign of Tr (adding and subtracting a number small
compared to Tr will not change its sign). In this case the equilibrium is a node,
and it is a stable node if Tr < 0 but an unstable node if Tr > 0.

• If Det > Tr2/4, then the expression under the square root is negative and the
eigenvalues are complex. The real part of these eigenvalues is Re(λ) = Tr/2, which
has the same sign as Tr. Hence in this case the equilibrium is a focus, and it is a
stable focus if Tr < 0 and an unstable focus if Tr > 0

Figure 9 summarizes these conclusions visually. In practice, we may want to focus
only on stability and ignore the type of equilibria. Collecting the stable equilibria from
the above list (or noticing that in Figure 9, the equilibria in the upper left part are stable),
we see that

the equilibrium is stable if Tr < 0 and Det > 0

These conditions are known as the Routh-Hurwitz criteria for 2 × 2 matrices3. Since
it is easier to calculate the trace and the determinant of a matrix than to calculate its
eigenvalues, using these criteria spares some work when we apply local stability analysis
to concrete models of two differential equations.

3Similar conditions are known also for larger Jacobians, but they quickly get very complicated. It is
however important to stress that the simple conditions derived here are valid only for 2× 2 matrices, not
for larger ones.
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Figure 9: Stability of equilibria in two dimensions. The axes are for the trace (Tr) and
the determinant (Det) of the Jacobian, the parabola is given by Det = Tr2/4. Below the
horizontal axis (Det < 0), the equilibrium is a saddle; above the horizontal axis but below
the parabola (0 < Det < Tr2/4) the equilibrium is a node, stable in the left (Tr < 0) and
unstable in the right (Tr > 0); above the parabola (Det > Tr2/4) the equilibrium is a
focus, stable in the left (Tr < 0) and unstable in the right (Tr > 0). The stable equilibria
are in the upper left part (Tr < 0, Det > 0). In the insets, stable and unstable equilibria
are marked with filled dots and empty circles, respectively. For simplicity, in the insets
the eigenvectors are drawn horizontally and vertically, but this need not be the case (see
Figure 5).

4.6 A worked example: The Brusselator

For a chemical reaction that does not exist, the Brusselator is pretty well known. It is
a theoretical reaction scheme inspired by the famous (and real) Belousov-Zhabotinsky
reaction, a chemical reaction that exhibits periodic oscillations where the colour of the
reaction mixture changes back and forth4. The Belousov-Zhabotinsky reaction is very
complicated, so a group of chemicists in Brussel (hence the name), fascinated by the
possibility of non-equilibrium reactions, invented the Brusselator to serve as a simple
example:

A
k1−→ X

B +X
k2−→ Y + C

2X + Y
k3−→ 3X

X
k4−→ D

4Time lapse photos and videos are easy to find on the Internet.

36



The concentrations of X and Y are the variables (x and y, respectively), whereas the
concentrations of A and B are kept constants respectively at a and b. C and D are
decay products that do not participate in further reactions, hence their concentrations
are unimportant. Note the reaction involving three molecules in the third row; in reality
all reactions are betwen only two molecules at a time (because it is infinitely unlikely that
three molecules would hit each other at exactly the same instant), so that a trimolecular
reaction may only be an approximation. By mass action, the equations governing the
concentrations x and y are (cf. section 3.1 of Part 1):

dx

dt
= k1a− k2bx+ k3x

2y − k4x = α− βx+ k3x
2y − k4x (28a)

dy

dt
= k2bx− k3x2y = βx− k3x2y (28b)

where at the end we use the shorthand notation α = k1a and β = k2b.

We shall use this model to illustrate the technique of local stability analysis and also
later as an example in section 6.1 for its simplicity, while we leave many interesting bio-
logical examples for the exercises.

To analyze the Brusselator model in equations (28a,b), we follow the steps outlined
in section 4.4, but use the shortcut of section 4.5. Let me point out that although
this example is our first, it is not a particularly simple example; the analysis below is
representative for many models we may come accross.

1. Find the equilibria. At equilibrium the differential equations equal zero, i.e.,

α− βx+ k3x
2y − k4x = 0

βx− k3x2y = 0

It is easiest to solve these equations using their sum and the second equation:

α− k4x = 0

βx− k3x2y = 0

From the first of these equations we have x̂ = α/k4; and substituting this into the
second equation we obtain ŷ = βk4/αk3. Hence the model has only one equilibrium,
which is always positive.

2. Calculate the Jacobian matrix. In the Brusselator model, f1(x, y) = α−βx+k3x
2y−

k4x and f2(x, y) = βx − k3x2y. Taking the derivatives and evaluating them at the
equilibrium, we obtain

J =

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
=

[
−β + 2k3x̂ŷ − k4 k3x̂

2

β − 2k3x̂ŷ −k3x̂2
]

=

[
β − k4 k3(α/k4)

2

−β −k3(α/k4)2
]

where in the last step, I substituted x̂ = α/k4 and ŷ = βk4/αk3 from step 1 and
simplified.
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3. We use the shortcut of section 4.5: Instead of calculating the eigenvalues, we calcu-
late only the trace and the determinant of the Jacobian,

Tr = β − k4 − k3(α/k4)2

Det = (β − k4)(−k3(α/k4)2)− (k3(α/k4)
2)(−β) = α2k3/k4

4. The determinant is always positive, but the trace may be either positive or negative,
hence the equilibrium may be stable or unstable depending on the values of the
parameters. In particular, if β takes the critical value βcrit = k4 + k3(α/k4)

2, then
the trace is zero, i.e., the equilibrium is on the borderline between a stable and an
unstable focus (see Figure 9). For values of β below the critical value, the equilibrium
is stable. Increasing β beyond the critical value destabilizes the equilibrium such
that it becomes an unstable focus, and the concentrations of X and Y start to
oscillate. Since β = k2b is proportional to the constant concentration of B, in a real
system the equilibrium could be destabilized and oscillatory behaviour be observed
simply by keeping B at a higher concentration.

This example raises the question what happens to the concentrations in the long run
when the trajectory spirals away from an unstable focus. The concentrations obviously
cannot increase without bound, so that one may suspect that that eventually the system
may settle on a large periodic oscillation. (By ”large”, I mean a distance from the equilib-
rium where the linearized dynamics is no longer valid; as long as the linearized equations
describe the dynamics satisfactorily, the trajectory keeps spiralling away.). This question
we shall pursue in section 6.1.

4.7 A second worked example: The SI model revisited

In the phase plane analysis of the SI model in section 3, we found that if the disease
remains endemic, then there is one nontrivial equilibrium where both variables are posi-
tive; the stability of this equilibrium was however not obvious from the graphical analysis
(see Figure 3). Here we carry out the local stability analysis of the endemic equilibrium.
This example will illustrate how one can get around some technical difficulties when the
equilibria are given by unwidely formulas.

The SI model with births and deaths has been given in equations (9a,b), which were

dN

dt
= b

[
1− N

M

]
N − µN − αI

dI

dt
= [β(N − I)− (µ+ α)]I

From the second equation, we easily get the non-zero equilibrium density of the infected
as Î = N̂ − µ+α

β
. Substituting this into the first equation, the equilibrium value of N has
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to satisfy the quadratic equation

b

[
1− N

M

]
N − µN − α

[
N − µ+ α

β

]
= 0

Solving a quadratic equation is not a problem, but the result is a big formula:

N̂ =
βM(b− µ− α) +

√
(βM(b− µ− α))2 + 4αbβM(µ+ α)

2bβ

(the other root is negative).

To establish the stability of this equilibrium, we calculate the Jacobian,

J =

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
=

[
b
(

1− 2 N̂
M

)
− µ −α

βÎ −βÎ

]
and its trace and determinant,

Tr = b

(
1− 2

N̂

M

)
− µ− βÎ

Det = βÎ

[
µ+ α− b

(
1− 2

N̂

M

)]

Substituting the equilibrium values N̂ and Î would be very unpleasant. Hence we try to
establish the signs of the trace and of the determinant knowing that N̂ and Î are positive.
Two more considerations will help (these could be proven analytically, but should be clear
also from verbal reasoning):

(i) If the disease were not present, then the number of births would match the number
of natural deaths at equilibrium, so that b

(
1− N

M

)
= µ would hold. If all individuals

were infected, then the same would hold but with the death rate of the infected, µ+α,
instead of µ. At equilibrium, however, all individuals cannot be infected (explain

why!), so that the birth rate must be lower than µ+α; therefore b
(

1− N̂
M

)
≤ µ+α

must hold at the equilibrium value N̂ (the equality applies when the disease does

not cause extra deaths, i.e., α = 0). The difference µ+α−b
(

1− N̂
M

)
is thus positive

(or zero at worst). The determinant has a similar expression in its brackets, and if
we write

Det = βÎ

[
µ+ α− b

(
1− 2

N̂

M

)]
= βÎ

[
µ+ α− b

(
1− N̂

M

)
+ b

N̂

M

]
then we see that the expression in the brackets is the sum of the positive difference

µ+α−b
(

1− N̂
M

)
and another positive term. The determinant is therefore positive.
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(ii) Susceptible individuals contract the disease at a per capita rate βÎ at the equilibrium.
If the infected were immediately dead, then the rate of infection would just be added
to the death rate, and the births would balance the deaths if b

(
1− N

M

)
equalled

µ + βÎ. This is of course not the case, so the birth rate at the equilibrium density

N̂ must be smaller than this; hence we have b
(

1− N̂
M

)
< µ + βÎ. The difference

b
(

1− N̂
M

)
− (µ + βÎ) is therefore negative. Writing the trace as the sum of this

negative difference and the rest of the terms,

Tr = b

(
1− 2

N̂

M

)
− µ− βÎ = b

(
1− N̂

M

)
− (µ+ βÎ)− b N̂

M

we see that the trace is negative.

Since the determinant is positive and the trace is negative, the endemic equilibrium of
the SI model is always stable. We could establish this fact without actually substituting
the equilibrium values of the variables into the Jacobian; it was enough to know that
they are positive. This example was actually quite challenging, it is often much easier
to see the signs of the trace and of the determinant also without calculating their values
explicitly at the equilibrium. If however a model has several positive equilibria, then the
trace and the determinant of the Jacobian will have different signs for these (since not all
positive equilibria will have the same stability properties), so that it will not be enough
to know that they are positive.

Exercises

The first four of the following exercises can be done already after section 4.2, and in these
it will be easy to calculate the eigenvalues of the Jacobian explicitly. For the rest, keep
two hints in mind:

• For 2 × 2 Jacobians, use the trace and the determinant instead of the eigenvalues
(section 4.5).

• Try to obtain the signs of the trace and of the determinant of the Jacobian without
substituting the equilibrium values explicitly (as in section 4.7), especially if the
equilibrium values are complicated formulas. This is not always possible, but worth
a try.

Exercise 36. A simple enzyme-product system. An enzyme X is produced
by the cell at a constant rate a and decays exponentially at a rate µ. The
enzyme converts a substrate S into the product Y at a rate k. The substrate
concentration, s, is regulated by the cell such that it remains constant, whereas
the product is used in other biochemical reactions and therefore it is depleted
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exponentially at a rate δ. The concentrations of the enzyme (x) and the
product (y) therefore change according to

dx

dt
= a− µx

dy

dt
= cx− δy

where the constant c = ks combines the reaction rate and the constant sub-
strate concentration. Find the equilibrium of this model and establish its
stability analytically.

Exercise 37. Viability of a pathogen. Investigate analytically the stability of
the disease-free equilibrium of the host in the SI model in equations (9a,b).
When the disease-free equilibrium is not stable, then the pathogen can spread
when introduced at a low density, i.e., the pathogen is viable. Study how the
viability of the pathogen depends on the parameters of the host (b,M, µ) and
of the disease (β, α).

Exercise 38. The SIS model of a harmless disease with births and deaths.
Include births and deaths into the SIS model in equations (1) with the same
assumptions we used for including births and deaths into the SIR model in
equations (7), except that assume no disease-related mortality (α = 0). Find
the nontrivial equilibrium of this model, investigate under which conditions it
is positive, and investigate its stability. Hint: rewrite the model for the total
population size (N) and the number of infected (I) as we did for the SI model
in equations (9).

Exercise 39. A predator-prey model. In absence of predators, a population
of prey grows according to the logistic model with parameters r and K. The
predators catch prey according to mass action at rate β, and convert the
captured prey into predator offspring with efficiency γ. The predators die at
a constant rate δ. These simple assumptions lead to the model

dN

dt
= rN

(
1− N

K

)
− βNP

dP

dt
= γβNP − δP

where N and P are respectively the population density of prey and predator.
Find all equilibria and establish their stability for the parameter values r = 1,
K = 1, β = 1, γ = 1, and µ = 0.9. (Note that the results may be different
for different parameter values; we shall revisit this model to investigate it in
more detail in exercise 71).
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Exercise 40. The Lotka-Volterra competition model revisited. Carry out the
local stability analysis of those equilibria in the Lotka-Volterra competition
model where both species are present (see exercise 24), and compare the result
to the phase plane analysis.

Exercise 41. Bacterial growth limited by the accumulation of a toxin. Sup-
pose that a population of bacteria would grow exponentially at a rate r > 0,
but the bacteria produce a toxin at a per capita rate p, and the toxin kills
the bacteria proportionally to its concentration T , i.e., it leads to a per capita
death rate cT . The toxin decays at a constant rate α. The population den-
sity of the bacteria (N) and the concentration of the toxin (T ) thus obey the
equations

dN

dt
= rN − cTN

dT

dt
= pN − αT

(a) Show that this model has a single nontrivial equilibrium, which is always
stable.
(b) Investigate when the nontrivial equilibrium is a stable node and when it
is a stable focus. Interpret the result biologically: do oscillations occur when
the toxin decays fast or when it decays slowly? Can you explain why?
(c) Perform the phase plane analysis of this model. Sketch several trajectories
for increasingly fast toxin production and decay (i.e., assume that both p and
α double etc. such that p/α remains the same, and redraw the trajectory for
the faster toxin).
(d) Suppose now that the production and the decay of the toxin is much faster
than the population growth of the bacteria, i.e., p and α are large compared
to r and cT . Analyze the model using time-scale separation (see section 3.9 of
Part 1). Show that in this case, the bacteria follow logistic population growth,
and derive the carrying capacity.

Exercise 42. The SEIS model of infectious diseases. An infectious disease
spreads as described by the SIS model of section 2, except that newly infected
hosts are not immediately infectious, but first become only ”exposed” (the
letter E in ”SEIS” refers to the exposed state). Exposed individuals incubate
the disease and become infectious (I) at a rate γ. This yields the following
model (compare with equations (1a,b)):

dS

dt
= −βSI + vI

dE

dt
= βSI − γE

dI

dt
= γE − vI
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(a) This model assumes no birth and death for the host. Use the conservation
law N = S + E + I = constant to reduce the number of equations to two
(retain the variables E and I).
(b) What condition the parameters should satisfy for the disease-free equilib-
rium (E = 0, I = 0) to be unstable? Explain why this is the same as the
viability condition of the disease in the SIS model (see section 2).
(c) Suppose that the disease is viable. Find all equilibria where the disease is
present and establish their stability.

Exercise 43. A consumer-resource model. Assume that a resource flows into
a system at a constant rate α. The resource is used by a consumer, which
eats the resource with capture rate β and converts the consumed resource
into offspring with a conversion efficiency γ. The death rate of the consumer
is δ, whereas the spontaneous decay rate of the resource is ε. Let x and y
be the density of the resource and of the consumer, respectively. The above
assumptions lead to the model

dx

dt
= α− εx− βxy

dy

dt
= γβxy − δy

Find all equilibria of this model and establish their stability.

Exercise 44. Enzyme kinetics: Allosteric product inhibition. In allosteric
product inhibition, the product of the reaction inhibits the reaction itself in
order to prevent making too much of the product. To achieve this, the product
molecule binds to the enzyme molecule and thereby inactivates the enzyme;
this binding occurs at a site different from the catalytic active site of the en-
zyme, hence the inhibition is called ”allosteric”.

The enzyme molecules are divided into active enzyme (with concentration a)
and inactive enzyme (with concentration e − a, where e is the total enzyme
concentration, which is constant). The active enzyme molecules are lost due
to binding the product (the concentration of which is p) according to mass
action with a reaction rate γ, and are recovered as the inactive enzyme-product
complex dissociates at a rate δ. This yields the equation

da

dt
= −γpa+ δ(e− a)

for the concentration of the active enzyme.

If the substrate is present in a high concentration, then the active enzyme
is working at maximum speed, so that the product accumulates at a speed
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proportional to the concentration of the active enzymes (this is a limiting, or
”extreme”, case of the Michaelis-Menten kinetics discussed in section 3.9 of
Part 1). Suppose that the product decays (or is used up in other reactions)
at a rate µ. In addition, the free product molecules disappear when they bind
to the enzyme and inactivate it, and appear again when they dissociate from
the enzyme-product complex. Hence the concentration of the product changes
according to

dp

dt
= ka− µp− γpa+ δ(e− a)

Find the equilibrium concentrations and establish the stability of the equilib-
rium. (Heed the advice above: do not substitute the equilibium concentrations
explicitly into the Jacobian, it would be quite obviously futile!)

Exercise 45. The SIR model with demographic turnover. In this model, we
consider a non-lethal disease in a host population in demographic equilibrium,
where the number of births balances the number of deaths.The newborns are
susceptible to the disease, whereas those who have recovered from the disease
are immune. The demographic turnover (immune hosts dying and susceptible
hosts being born) will affect the disease, even though the total population size
N = S+ I +R is constant. The dynamics of susceptibles (S), infected (I) and
recovered (R) are given by

dS

dt
= µN − µS − βSI

dI

dt
= βSI − vI − µI

dR

dt
= vI − µR

where µ is the death rate of the host (all hosts die equally), and the other pa-
rameters are as in the standard SIR model in section 3. In the first equation,
the birth term µN is such that it balances the deaths, µS + µI + µR.

(a) Investigate the stability of the disease-free equilibrium. Show that the
disease is viable if βN

v+µ
> 1. (NB. This condition means that the R0 of the

disease is greater than 1, see section 1.3 of Part 3).
(b) Suppose that the disease is viable. Find the equilibrium where the disease
is present, and establish its stability.

Exercise 46. Medicine concentration. A medicine is administered by the con-
tinuous infusion of m milligrams per hour. The concentration of the medicine
in the body fluids (x1) and within the cells (x2) changes according to the com-
partment model shown in Figure 10.
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Figure 10: The flow of a medicine in the body.

To write the corresponding differential equations, we must be careful to note
that when a certain mass of the medicine moves from the body fluids into the
cells (or vice versa), then the changes in the concentrations (=mass/volume)
depend on the volumes of the body fluids and of the cells, respectively. (Mov-
ing a small mass from a small volume into a large volume can change the
concentration in the small volume considerably, but will not change the con-
centration in the large volume by much.) For this reason, it is best to start
with equations for the masses present in the body fluids (x1V1) and in the cells
(x2V2). Hence we write

dx1V1
dt

= m− (k1 + k3)x1V1 + k2x2V2

dx2V2
dt

= k1x1V1 − k2x2V2

Since V1 and V2 are constant volumes, we can factor them out of the deriva-
tives. Dividing with the volumes yields differential equations for the concen-
trations,

dx1
dt

=
m

V1
− (k1 + k3)x1 + k2x2

V2
V1

dx2
dt

= k1x1
V1
V2
− k2x2

(a) Find the equilibrium concentrations and establish the stability of the equi-
librium.
(b) Can this system have a focus, i.e., can the concentrations of the medicine
exhibit any oscillations?

Exercise 47. The Lotka-Volterra predator.prey model. A famous, historically
very important, if over-simplistic model of a prey population and its predator
is given by

dN

dt
= aN − bNP

dP

dt
= cNP − dP
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where N and P are respectively the population densities of the prey and the
predator. In absence of the predator (P = 0), the prey grows exponentially at
a rate a (which is of course unrealistic, and makes this model significantly dif-
ferent from the one in exercise 39 also mathematically). The predator catches
the prey at a rate b, and converts the consumed prey into predator offspring
with an efficiency e such that the bNP prey eaten per unit time results in the
birth of ebNP predators; in the above equations, the constant eb is denoted
with c. Predators die at at rate d.

(a) Find the nontrivial equilibrium of this model and perform its local sta-
bility analysis. Can this analysis prove the stability or the instability of the
equilibrium?
(b) Solve the differential equations numerically with various initial points (see
section 3.3 of Part 1). Plot the solutions on the phase plane together with the
isoclines.
(c) Let the function V (t) be defined as the following quantity calculated from
the population densities of the prey and of the predator:

V (t) = a lnP (t) + d lnN(t)− bP (t)− cN(t)

The value of V (t) depends on the values of P (t) and N(t), which change in
time according to the differential equations. Calculate the change of V (t) in
time (differentiate V (t) with respect to t, and substitute dN

dt
and dP

dt
from the

differential equations). You should get that dV
dt

= 0, i.e., V (t) is constant
in time; thus V is a so-called constant of motion. Use this fact to interpret
the numerical results obtained in (b) (hint: it may help to visualize V as a
function of N and P , and imagine the curve N(t) and P (t) must trace on the
surface of V ).

Exercise 48. Cyclic competition. The Lotka-Volterra competition model we
analyzed in exercises 24 and 40 extends naturally to three competing species
as

dN1

dt
= r1[1− α11N1 − α12N2 − α13N3]N1

dN2

dt
= r2[1− α21N1 − α22N2 − α23N3]N2

dN3

dt
= r3[1− α31N1 − α22N2 − α33N3]N3

The three- (and higher) dimensional Lotka-Volterra competition model ex-
hibits surprisingly rich dynamics, its behaviour is still not understood in full.
Here we consider a special case of cyclic competition, i.e., a situation where
species 1 beats species 2; species 2 beats species 3; and species 3 beats species
1. This is analogous to the famous Rock-Scissors-Paper game (Rock beats
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Scissors; Scissors beat Paper; Paper beats Rock). Antibiotic-producing bac-
teria provide a biological example, where the three ”species” are a strain that
produces the antibiotic, a sensitive strain and a strain that is resistant to the
antibiotic but does not produce it. Here the producer strain beats the sensitive
strain; the sensitive strain beats the resistant strain (when the two are pitted
against each other, there is no antibiotic production, but the resistant strain
bears the cost of maintaining the resistance mechanism); and the resistant
strain beats the producer strain (both are resistant, and the producer has the
cost of antibiotic production).

To keep the model as simple as possible, we assume r1 = r2 = r3 = 1,
α11 = α22 = α33 = 1, and equal interspecific competition coefficients arranged
such that each species is affected only by the one that beats it, not by the one
it beats. This leads to the model

dN1

dt
= [1−N1 − aN3]N1

dN2

dt
= [1− aN1 −N2]N2

dN3

dt
= [1− aN2 −N3]N3

where we shall assume a > 2.

(a) This model has three equilibria where only one species is present and the
other two are absent. Show that none of these single-species equilibria is sta-
ble.
(b) Show that there is no equilibrium where two species are present and the
third is absent.
(c) Find the equilibrium where all three species coexist. Calculate the corre-
sponding Jacobian matrix and show that the eigenvalues of the Jacobian are
the solutions of the characteristic equation

[(1 + a)λ+ 1]3 = −a3

One solution of this equation we get when (1 + a)λ + 1 = −a, which yields
λ1 = −1. A 3× 3 Jacobian must however have three eigenvalues (see section
5.5 of Part 3). Check that the complex numbers

λ2,3 =
a− 2±

√
3ai

2(1 + a)

satisfy the characteristic equation so that these are the other two eigenvalues.
Assuming a > 2, the real part of these eigenvalues is positive. The equilib-
rium where all three species coexist is unstable, so that the model has no
stable equilibrium at all (cf. (a) and (b)).
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(d) Solve the differential equations numerically for a = 2.1. Confirm that this
system oscillates such that (after some time) it approaches the equilibrium
where only species 1 is present; but then species 3 starts growing and takes
over such that the system moves to the neighbourhood of the species 3-only
equilibrium; but then species 2 starts growing and the system moves over
to the species 2-only equilibrium; but then species 1 starts growing and the
system moves back to the neighbourhood of the species 1-only equilibrium,
where the cycle starts again. This is however not a regular cycle where we
would periodically see the same population densities. Instead, the system gets
a little closer to the equilibria at each repetition, and therefore it takes ever
longer to get away and move to the next equilibrium (if the system ever reached
the equilibrium, it would take infinitely long to get away). Hence the system
spends increasingly long times near each equilibrium, and these almost-static
periods are interspersed with fast movements to the next equilibrium. The
circular chain of unstable equilibria (saddle points) we found here is called
a heteroclinic cycle. The possibility of heteroclinic cycles raises management
problems, beacuse the fast changes after long almost-static periods are very
difficult to control. In real ecosystems, species would easily go extinct while
they are at low population densities, and it would be nearly impossible to
predict which species will be lost.

5 Limit cycles

5.1 Theory

In the Brusselator model of section 4.6, we had an example where the only equilibrium of
the model was an unstable focus, which trajectories cannot converge to. Even in models
that have a locally stable equilibrium, we know only for trajectories starting in the vicinity
of the stable equilibrium that they will converge to it; trajectories starting further away
might do something else. What can happen to a trajectory if it does not approach an
equilibrium? There is a number of possibilities:

• The trajectory may escape to infinity (i.e., one or several variables may go to infinity
as time goes to infinity). Exponential population growth is an example: the model

dN

dt
= ρN

has only the trivial equilibrium N̂ = 0, which is unstable when ρ > 0. In this case,
the population size grows exponentially with time,

N(t) = N(0)eρt
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so that the population becomes arbitrarily large if we wait long enough (see section
3.4 of Part 1). This is however biologically impossible; a finite world cannot sup-
port an infinitely large population. Other variables of biological interest, such as
concentrations, cannot become infinitely large either. In biologically realistic mod-
els, therefore, there must be a (possibly large but finite) a ”box” in the coordinate
system of the trajectories, such that if the system starts within the box or enters
the box, then it will always remain within the box. I shall refer to this ”box” as a
trapping region.

• The trajectory may form a tangled jumble, curling around itself like a long spaghetti
in a big knot (although nearby parts of the trajectory run along each other for a
while before they separate, because small differences in the variables cause only
small differences in the direction of the trajectory). Moving along such a trajectory,
the system never visits the same point again. This happens when a 3- or higher
dimensional model has a chaotic trajectory5. In a 2-dimensional phase plane, how-
ever, the trajectory cannot be a jumble without crossing itself. And trajectories may
not cross; at every point on the phase plane, the differential equations of the model
unequivocally determine6 how the trajectory must continue, hence it is impossible
that at a crossing point the trajectory would continue in two different ways.

• The system may exhibit periodic oscillations, usually in the form of limit cycles7. A
limit cycle is a closed ”loop” to which the system either converges to (stable limit
cycle) or diverges from (unstable limit cycle). Figure 11 shows a stable limit cycle
from the Brusselator model of section 4.6. On the limit cycle, the system keeps
moving around forever. This cyclic movement corresponds to periodic oscillations
of the variables in time (Figure 12).

Exercise 49. Solve the differential equations of the Brusselator model nu-
merically and reproduce Figure 11.

5The Lorenz-attractor is a famous example of chaos in a simple 3-dimensional model; you can find
animated figures of the Lorenz-attractor in Wikipedia.

6This is true for autonomous ordinary differential equations (the only kind of differential equations
we consider) and under some technical conditions; it is sufficient if the right hand sides of the differential
equations are continuously differentiable in all their variables, which is the case in models of biological
interest.

7Exercise 47 shows an example for cycles that are not limit cycles. In the Lotka-Volterra predator-prey
model investigated in this exercise, there are infinitely many cycles such that every starting point is on
one of the cycles, and every trajectory continues on the cycle where its starting point is on. These cycles
are not limit cycles because trajectories do not converge to or diverge from them.
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Figure 11: Limit cycle in the Brusselator model (equations (28) with parameters α = 1,
β = 2.2, k3 = 1, k4 = 1). The thick black ”loop” is the limit cycle. The grey lines are
trajectories starting outside (in panel (a)) and inside (in panel (b)) of the limit cycle;
both converge to the limit cycle, i.e., the limit cycle is stable. The empty dots mark the
position of the unstable equilibrium.

Limit cycles are of great interest for understanding the oscillatory behaviour intrinsic
to many biological systems. The cell cycle, the biological clock behind circadian rythms,
and the heart beat are obvious examples, but many ecological systems also exhibit a
significant cyclic component in their observed dynamics. For a complete understanding
of a biological model, it is important to find out whether it has limit cycles. Unfortu-
nately, however, the mathematical tools that can be used to investigate limit cycles are
less powerful than the tools for equilibria. Usually it is not possible to find the position
of a limit cycle analytically. For equilibria, we solve the equilibrium equations to see how
many equilibria the model has and where they are (as in step 1 of section 4.4); for limit
cycles, there is no analogous procedure. In practice, limit cycles are located by solving
the differential equations numerically (see section 3.3 of Part 1) and checking whether the
solution revisits (approximately) the same point again and again. (To plot the limit cycle
as the black loop in Figure 11, one computes the trajectory for a long time, and plots
only the last part of it, so that the transient, the part of the trajectory where it is still at
a noticeable distance from the limit cycle (gray in Figure 11), is not shown.)

Exercise 50. The above procedure will find only stable limit cycles, to which
the trajectory converges as time goes on. Convince yourself that unstable limit
cycles can be found by running time backwards, i.e., substituting −dt in place
of dt in the differential equations. (This is equivalent to multiplying the right
hand side of each equation with −1.)

Exercise 51. Explain why a model with a single differential equation cannot
have a limit cyce.
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Figure 12: This schematic figure illustrates how a cyclic movement on the phase plane
(left) translates into periodic oscillations in time (right). As the system moves along the
limit cycle (indicated by the time arrow), first it moves to the left and upwards (thick
black line), i.e., x decreases and y increases (see the first part of the diagrams on the
right). Next, the system keeps on going left but turns downward (dashed black line),
i.e., x still decreases and now also y decreases. Then the trajectory turns to the right
while it still goes downwards (thick gray line) such that x increases whereas y decreases.
Finally, the trajectory goes right and upwards (dashed gray line), which means that both
x and y increase. After T time (the period) the system is back at the starting point, and
afterwards the same cycle repeats again and again. The direction of the rotation may of
course be also the opposite (see Figure 11).

In the remainder of this section, we consider models with only two variables. For
these (but only these) models, there are two useful tools to investigate whether a model
has a limit cycle. The first tool builds on the three possibilities what can happen to a
trajectory if it does not go to an equilibrium: escape to infinity, exhibit chaotic behaviour
or go to a cycle. As we have seen above, in 2-dimensional, biologically justified models
we can discount the first two of these, such that only periodic oscillations remain. This
is formulated in a famous theorem:

Poincaré-Bendixson theorem. If a two-dimensional system has a finite trapping re-
gion and a trajectory in the trapping region does not go to a small neighbourhood of any
equilibrium, then it goes to (or is already on) a periodic solution, generically a stable limit
cycle.

If a model has no stable equilibrium at all, then by the Poincaré-Bendixson theorem,
we expect that the trajectories converge to a stable limit cycle8. This is the most common

8There is however a fine detail here (and this is the reason why in the Poincaré-Bendixson theorem
we have to say ”does not go to a small neighbourhood of an equilibrium” rather than saying simply
that the model has no stable equilibrium). It is possible that the model has several saddle points (see
Figure 5b) connected to each other in such a way that when the trajectory leaves from one saddle
point along its ”outgoing” eigenvector, it approaches the neighbourhood of the next saddle point near
its ”incoming” eigenvector; then as the trajectory leaves the second saddle point, this repeats until the
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way of discovering limit cycles. For example, the Brusselator model has only one equilib-
rium, and with the parameters used in Figure 11, this equilibrium is an unstable focus.
Clearly, trajectories will not go to the vicinity of this equilibrium; to the contrary, they
leave the neighbourhood of the unstable focus. The model has a finite trapping region (the
concentrations will not become infinite), hence the conditions of the Poincaré-Bendixson
theorem are satisfied. As expected, the model has a stable limit cycle (Figure 11).

A stable limit cycle may however exist also if the model does have a stable equilibrium.
Figure 13 shows a hypothetical example, where a stable equilibrium is surrounded with
an unstable limit cycle, which again is surrounded with a stable limit cycle. Trajectories
starting outside the stable limit cycle and trajectories starting inbetween the two limit
cycles converge to the stable limit cycle. trajectories starting inside the unstable limit
cycle converge to the stable equilibrium.

Figure 13: Nested limit cycles. Filled dot: stable equilibrium; dashed line: unstable limit
cycle; thick line: stable limit cycle; gray arrows: trajectories

The second tool for investigating whether a model has limit cycles aims at proving
that the model has none. This method is applicable only in two-dimensional systems,
and it gives only a sufficient condition to exclude limit cycles. This means that if the
condition is satisfied, then we know that the model has no limit cycle; but if the condition
is not satisfied, then the model may or may not have a limit cycle, we still don’t know.
This sufficient condition is known as

trajectory gets back to the first saddle point. Such a loop of connecting saddles is called a heteroclinic
cycle. A heteroclinic cycle contains no stable equilibrium, yet the trajectory visits the neighbourhoods of
equilibria (the saddle points). Heteroclinic cycles are uncommon, but there is a famous example shown
in exercise 48. There can also be a loop between the ”outgoing” and ”incoming” directions of a single
saddle point, but such a homoclinic cycle exists only for specific parameter values and disappears upon
the slightest change of parameters.
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Bendixson’s negative criterion. If, in the two-dimensional system

dx1
dt

= f1(x1, x2)

dx2
dt

= f2(x1, x2)

the quantity
∂f1
∂x1

+
∂f2
∂x2

has the same sign at every point, then the system has no limit cycle (neither stable nor
unstable).

The expression ∂f1
∂x1

+ ∂f2
∂x2

is reminiscent of the trace of the Jacobian, but here it is not
evaluated at an equilibrium point (as in the Jacobian); rather, here we check whether it
is always positive or always negative for any x1 and x2. The quantity ∂f1

∂x1
+ ∂f2

∂x2
is called

the divergence and denoted with div(f1, f2).

Bendixson’s negative criterion is based on a simple geometrical argument. Place a small rectangle
of size dx1 × dx2 on the phase plane such that its lower left corner is at the point (x1, x2), as in Figure
14. Start four trajectories from the four corners of the rectangle; the arrows in Figure 14 indicate how
these trajectories go in a short time interval dt. The parallelogram drawn with dashed lines connects
the four trajectories after dt time. All trajectories that start from within the original rectangle end up
on the dashed parallelogram dt time later. If the area of the dashed parallelogram is greater than the
original rectangle, then the area is expanded under the flow of the trajectories; and conversely, if the
parallelogram is smaller than the rectangle, then the area is contracted under the flow. A somewhat
tedious calculation shows that the area of the parallelogram is

[
1 + ( ∂f1∂x1

+ ∂f2
∂x2

)dt
]
dx1dx2, whereas the

area of the rectangle is dx1dx2. The difference is therefore ( ∂f1∂x1
+ ∂f2

∂x2
) · dt · dx1dx2, or ∂f1

∂x1
+ ∂f2

∂x2
per

unit time and unit area. This quantity is the divergence defined above and used in Bendixon’s negative
criterion.

Figure 14: Change of area under the flow of trajectories (see text for explanation).

Suppose now that the system has a limit cycle. The limit cycle itself is a trajectory; if we start
exactly on the limit cycle, then the trajectory follows the limit cycle (even if the limit cycle is unstable).
Since trajectories may not cross each other, every trajectory that starts inside the limit cycle will remain
inside the limit cycle, and every trajectory that starts outside will remain outside. If we divide the area
inside the limit cycle into many small rectangles and follow how each of those expand or contract under
the flow, then the resulting parallelograms must exactly cover the area inside the limit cycle. This means
that the total area of the parallelograms must equal to the total area of the rectangles, which is possible
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only if some rectangles expand and some rectangles contract. If we find that the divergence is everywhere
positive, then every rectangle expands; and if the divergence is everywhere negative, then every rectangle
contracts. Both cases are impossible if the system has a limit cycle; hence if the divergence is always
positive or always negative, then no limit cycle can exist. Note, however, that the divergence may switch
sign also if the system has no limit cycle. Bendixson’s negative criterion works only in one direction: if
the criterion is satisfied, then we have excluded any limit cycle, but if the criterion is not satisfied, then
we haven’t learned anything.

To illustrate the use of Bendixson’s negative criterion, we investigate whether the
following resource-consumer model may have a limit cycle. Let x and y denote the pop-
ulation density of resource and consumers, respectively, and suppose that the resource is
provided at a constant rate α. The consumer captures the resource at a rate β according
to mass action, and converts the resource into consumer offspring with a conversion factor
γ. This means that in dt time, each consumer captures βx resources and gives birth to
γβx consumer offspring. Finally, assume that the resource decays at a constant rate ε and
the consumer dies at a constant rate δ. These assumptions lead to the consumer-resource
model

dx

dt
= α− εx− βxy (29a)

dy

dt
= γβxy − δy (29b)

The results of exercise 43 show that this model has a locally stable equilibrium, but this
does not exclude that the model may also have a limit cycle (cf. Figure 13). To see if we
can exclude limit cycles, we calculate the divergence

∂[α− εx− βxy]

∂x
+
∂[γβxy − δy]

∂y
= −ε− βy + γβx− δ

Unfortunately, this quantity may be both positive and negative; for example, if we take
small values for both x and y then −ε−βy+ γβx− δ ≈ −ε− δ is negative, but if we take
small y and very large x, then −ε − βy + γβx − δ ≈ γβx is positive. Hence Bendixon’s
criterion does not hold, so that we cannot exclude limit cycles based on the divergence.

There is, however, a nice trick to make Bendixon’s method much more powerful.
Whether or not the model has a limit cycle depends on the shape of the trajectories,
not on the speed how fast the system moves along them. The shape of the trajectory is
characterized locally by its slope, dy/dx, which we obtain from the differential equations
as

dy

dx
=

dy
dt
dx
dt

=
γβxy − δy
α− εx− βxy
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This quotient remains the same if we multiply both the numerator and the denominator
with the same positive function9 h(x, y):

dy

dx
=

[γβxy − δy] · h(x, y)

[α− εx− βxy] · h(x, y)

This means that the trajectories of the original model in equations (29a,b) and of an
alternative model

dx

dt
= [α− εx− βxy] · h(x, y) (30a)

dy

dt
= [γβxy − δy] · h(x, y) (30b)

have exactly the same shape, only the speed of moving along the trajectory is different.
If the alternative model has no cycle-shaped trajectory, then the original model has none
either. It is therefore enough to exclude limit cycles in the alternative model of equations
(30). Now the trick is to find a function h(x, y) so that the divergence of the alternative
model is always positive or always negative — if there is any such function. Nobody can
give a recipe for how to find a suitable function, but often quite simple functions help.
Let us try h(x, y) = 1

xy
in the consumer-resource model. The alternative model is then

dx

dt
= [α− εx− βxy] · 1

xy
=

α

xy
− ε

y
− β

dy

dt
= [γβxy − δy] · 1

xy
= γβ − δ

x

and if we calculate the divergence from this model, we get

∂[ α
xy
− ε

y
− β]

∂x
+
∂[γβ − δ

x
]

∂y
= − αy

(xy)2
+ 0 = − α

x2y

which is obviously negative. Since the alternative model in equations (30) has no limit
cycle, we can conclude that the original consumer-resource model has no limit cycle ei-
ther. Since the model has a single locally stable equilibrium (cf. exercise 43), and we
have excluded any limit cycle, we can conclude that all trajectories that start with posi-
tive resource and consumer densities (i.e., not only those that start near the equilibrium)
must converge to the equilibrium, so that the equilibrium is globally stable.

The fact that we may multiply the right hand sides of both equations with the same
function h(x, y) before calculating the divergence is referred to as Dulac’s Lemma, and
h(x, y) is called a Dulac function.

9h(x, y) must also be continuous and differentiable so that its derivatives with respect to x and y are
also continuous, but in practice this condition is usually satisfied.
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Exercise 52. Exclude limit cycles in the consumer-resource model in equa-
tions (29) using h(x, y) = 1

y
as a Dulac-function (this is a constant function of

its first variable, x). As you will see, this choice also works; hence there can
be several simple choices for a Dulac function.

Exercise 53. Exclude limit cycles
(i) in the model for allosteric product inhibition in exercise 44;
(ii) the model for medicine concentrations in exercise 46.
These models do not need a Dulac function.

Exercise 54. Exclude limit cycles
(i) in the Lotka-Volterra competition model in exercises 24;
(ii) in the model for bacterial growth in exercise 41;
(iii) in the model for a genetic switch in exercise 25.
Find simple Dulac functions similar to the worked example above.

5.2 Example: The cell cycle

This section gives a brief illustration of limit cycles in higher dimensional models via
Goldbeter’s10 classic model for the cell cycle. To explain the mitotic cycle, we need two
key elements: (i) an oscillating molecular system that acts as a ”clock” and initiates pe-
riodic division as it occurs e.g. during embyonic development; and (ii) a way to switch
these cycles off when necessary (unregulated growth yields only cancer, not normal devel-
opment). Goldbeter’s minimal model explains these with only a few biochemical reactions.

Mitosis is initiated by a protein kinase called cdc2 (in fission yeast; the nomenclature
varies between organisms). cdc2 phosphorilates other enzymes and thereby triggers the
breakdown of the nuclear envelope, the condensation of the chromosomes, the formation
of the mitotic spindle, etc. cdc2 itself is activated by a protein called cyclin. Cyclin is
produced at a constant rate but its decay is variable, because it is ultimately a conse-
quence of high cdc2 concentrations: Among many other proteins, cdc2 also activates the
enzyme called cyclin protease, which destroys cyclin.

Goldbeter’s mechanism for the cell cycle thus involves just three main players, cyclin
(with concentration C), cdc2 (M), and cyclin protease (X). The concentration of cyclin
changes according to

dC

dt
= vi − kdC − vdX

C

Kd + C
(31a)

where vi is the constant rate of cyclin production, kd is the rate of spontaneous decay, and
the last term is the amount of cyclin destroyed by cyclin protease. This is proportional to
the amount of cyclin protease present (X), but saturates as a function of C according to
the Michaelis-Menten enzyme kinetics (see section 3.9 of Part 1; briefly, saturation occurs

10Goldbeter 1991, Proc. Narl. Acad. Sci., USA
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because a given amount of cyclin protease cannot destroy more than a certain number of
cyclin molecules per unit of time even if the number of cyclin molecules is very large).

The number of cdc2 molecules is assumed to be constant, but only a fraction M of the
molecules is activated. cdc2 is directly activated by a not identified ”activase”, which is
in turn activated by cyclin. Assume that the total concentration of ”activase” molecules
is constant, but within this, the fraction of active ”activase” is a saturating function of
cyclin and is proportional to C/(Kc +C). Because the ”activase” is also an enzyme, it is
assumed to follow the Michaelis-Menten kinetics where the substrate is the inactive form
of cdc2, present in concentration 1−M . This gives the first term in equation

dM

dt
= V1

C

Kc + C

1−M
K1 + 1−M

− V2
M

K2 +M
(31b)

The second term describes how cdc2 is inactivated by an enzyme which is present in con-
stant concentration (and hence its concentration can be absorbed into the constant V2).

The last equation describes the activation and deactivation of cyclin protease similarly
to equation (31b). Like cdc2, the total number of cyclin protease molecules is assumed to
be constant, but only fraction X of them are active. Cyclin protease is activated by cdc2
itself and deactivated by a phosphatase present in constant concentration, yielding

dX

dt
= V3M

1−X
K3 + 1−X

− V4
X

K4 +X
(31c)

Equations (31a,b,c) constitute the minimal model of the cell cycle. Let us fix the param-
eters as

K1 = K2 = K3 = K4 = 0.005

V2 = 1.5/min, V3 = 1/min, V4 = 0.5/min

vi = 0.025µM/min, vd = 0.25µM/min

Kc = 0.5µM, Kd = 0.02µM

kd = 0.01/min

which leaves only V1 to vary. V1 is proportional to the number of ”activase” molecules,
hence by regulating the concentration of ”activase”, the cell can tune the value of V1.

As Figure 15(a) shows, the concentrations settle on a stable limit cycle for high values
of V1 (i.e., when the ”activase” is present in sufficiently high concentration). This limit
cycle corresponds to the cell cycle; at the point where the concentration of active cdc2
(M) is high, the cell undergoes mitosis. The model has also an equilibrium point, but at
high concentrations of V1 it is not stable.
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Figure 15: Equilibria (dots) and limit cycles (thick black lines) in the Goldbeter model
of the cell cycle. (a) V1 = 3/min. The equilibrium is at Ĉ = 0.500, M̂ = 0.474 and
X̂ = 0.083; the eigenvalues of the Jacobian are λ1 = −0.85 and λ2,3 = 0.23 ± 0.60i,
i.e., the equilibrium is an unstable focus. As the gray trajectory indicates, the limit
cycle is stable. (b) V1 = 2.017/min. The equilibrium is at Ĉ = 1.440, M̂ = 0.450 and
X̂ = 0.043; the eigenvalues of the Jacobian are λ1 = −1.14 and λ2,3 = −0.0086 ± 0.24i,
i.e., the equilibrium is a stable focus. The limit cycle is also stable. (c) V1 = 2/min. The
equilibrium is at Ĉ = 1.488, M̂ = 0.448 and X̂ = 0.041; the eigenvalues of the Jacobian
are λ1 = −1.23 and λ2,3 = −0.014± 0.23i, i.e., the equilibrium is a stable focus. There is
no limit cycle.

For somewhat lower values of V1 the stable limit cycle is still there, but the previously
unstable equilibrium turns into a stable focus (Figure 15(b)). If V1 is decreased further,
then the limit cycle disappears and the trajectories converge to the stable focus; the cell
cycle is then switched off (Figure 15(c)).

Exercise 55. Solve the differential equations of the model numerically (see
section 3.3 of Part 1) for V1 = 3/min and plot the concentrations C, M and
X against time. Compare the result to Figure 15(a). Study the shape of the
cycle in time: Where do the concentrations change quickly? Where do they
change slowly? Why is there such a sharp turning point on the limit cycle
near the lower left corner of Figure 15(a)?

Exercise 56. Plot the equilibrium concentration M as a function of C (pre-
tending that C is not a variable) from equation (31b), and plot the equilibrium
concentration X as a function of M from equation (31c) with the parameters
as above. Use these plots, and the fact that cyclin (C) is produced at a
constant but low speed, to explain verbally how the cell cycle works.

Exercise 57. By experimenting with the numerical solution of the differential
equations, explore the range of V1 where the model has both a stable equi-
librium and a stable limit cycle as in Figure 15(b) (hint: this range is rather
narrow). How do the limit cycles disappear as V1 decreases? Do they become
small before they vanish?
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6 Bifurcation analysis

With bifurcation analysis, we explore how the behaviour of a model depends on its pa-
rameters. In particular, we are interested in qualitative changes in the behaviour: For
example, a model may exhibit a stable equilibrium for certain parameter values, whereas
a stable limit cycle for others. Or a model may have a single equilibrium for some pa-
rameter values, but multiple equilibria for others. Such qualitative changes are called
bifurcations (cf. sections 3.7 and 3.8 of Part 1). Within the domain of parameters where
the qualitative outcome is the same (e.g. where the model has a single stable equilib-
rium), the quantitative predictions of the model still vary (as the equilibrium values of
the model variables change with the model parameters), and this of course may also be
of interest. However, relatively little can be said about quantitative changes in general;
each model needs to be analyzed separately to make quantitative predictions. In contrast,
most qualitative changes in the model behaviour are described by only a few types of bi-
furcations, and the bifurcations act as ”organizing centres” for the exploration of a model.
In this chapter, we investigate the most common bifurcations directly via the analysis of
a few worked examples. The boxes included in the text provide the theory and the last
section summarizes the technique of bifurcation analysis; these parts can be used as quick
references not cluttered by the details of the examples. Throughout, we consider models
with two differential equations, although the methods can easily be extended to larger
models.

6.1 The Brusselator revisited

In section 4.6, we introduced the Brusselator model for a chemical reaction that may
exhibit sustained oscillations in the form of limit cycles (see Figure 11 in section 5.1).
Whether or not limit cycles occur depends on the values of the model parameters. Here
we focus on the parameters α and β; since these are proportional to the concentrations
of molecules A and B, respectively (cf. section 4.6), these would be easy to manipulate
experimentally.

In section 4.6, we found that the Brusselator model has a single equilibrium and that
the trace and the determinant of the Jacobian at that equilibrium are

Tr = β − k4 − k3(α/k4)2

Det = α2k3/k4

The determinant is always positive. This means that the stability of the equilibrium de-
pends on the trace; the equilibrium is stable when the trace is negative and unstable when
the trace is positive. At the point where the trace flips between negative and positive
(i.e., where the trace is zero), the stability of the equilibrium changes and a bifurcation
occurs.

59



Figure 16: Hopf bifurcation in the Brusselator model. The parameters α = 1, k3 = 1, k4 =
1 are held constant, such that the trace of the Jacobian is Tr = β−k4−k3(α/k4)2 = β−2.
(a) β = 1.95, Tr = −0.05. The equilibrium (filled dot) is a stable focus. (b) β = 2,
Tr = 0. The equilibrium is still stable, although the local stability analysis is inconclusive
(Re(λ) = 0) and the trajectory converges very slowly. (c) β = 2.0005, Tr = 0.0005. The
equilibrium is an unstable focus (empty circle), surrounded with a small limit cycle (black),
which is stable.

First I vary the parameter β while keep all the others fixed, i.e., I use β as a bifurcation
parameter. The trace of the Jacobian is negative and therefore the equilibrium is stable
when β < k4 +k3(α/k4)

2, and the equilibrium is unstable when the opposite holds. Hence
there is a threshold at

βcrit = k4 + k3(α/k4)
2

such that if β is below this critical value, then the equilibrium is stable, whereas if β is
above the critical value, then the equilibrium is unstable. The critical value is referred to
as the bifurcation point.

Figure 16 shows the dynamics of the model for β below its critical value (such that the
trace is negative), at its critical value (such that the trace is exactly zero), and slightly
above its critical value (such that the trace is slightly positive). With a positive trace, the
only equilibrium is unstable, and hence by the Poincaré-Bendixson theorem, we expect
the model to have a limit cycle. Indeed, exactly as the equilibrium loses its stability, a
small limit cycle is ”born” around the equilibrium (Figure 16c). At the bifurcation point
itself (Figure 16b), we can think of the model as having a limit cycle of zero size exactly
on top of the equilibrium; and as the trace of the Jacobian becomes positive, this limit
cycle grows first into a small ellipse, and then into a larger cycle of gradually different
shape (compare with Figure 11, where β is greater than in Figure 16c).
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The bifurcation seen in the Brusselator model is called a Hopf bifurcation. We can
summarize the qualitative changes at a Hopf bifurcation in the following bifurcation dia-
gram:

Near the Hopf bifurcation point at βcrit, the equilibrium is always a focus; this follows
from the fact that with (almost) zero trace and with a positive determinant, the eigen-

values λ1,2 = Tr±
√
Tr2−4Det
2

are complex numbers due to the negative term −4Det under
the square root. Further away from the bifurcation point, the equilibrium may turn into
a node, but this means no change in its stability and therefore this does not count as a
bifurcation.

We can naturally extend the above analysis to include a second (etc.) bifurcation
parameter. Let us therefore vary α as well as β in the Brusselator model. The trace of
the Jacobian is zero and therefore a Hopf bifurcation occurs when β = k4 + k3(α/k4)

2 or,
equivalently, when α = k4

√
(β − k4)/k3. The curve depicting this relationship between α

and β is shown in Figure 17. When crossing this Hopf bifurcation line, a Hopf bifurcation
occurs such that the equilibrium is stable on the left of the curve (i.e., for values of β that
are below the critical value corresponding to the given value of α) whereas the equilibrium
is unstable on the right of the curve. As the grey cross-sections indicate, the 2-dimensional
bifurcation diagram in Figure 17 is simply the one-dimensional bifurcation diagram shown
above, repeated for a range of values of α.

Figure 17: Bifurcation diagram of the Brusselator model. The parameters k3 = 1, k4 = 1
are held constant.
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Box 2: The Hopf bifurcation

A Hopf bifurcation occurs when the real part of a complex pair of eigenvalues
of the Jacobian is zero as it crosses between negative and positive values. In a
model with two differential equations, this happens when the trace of the Jaco-
bian switches sign while the determinant is positive; with Tr = 0 and Det > 0,
the eigenvalues of the Jacobian simplify to λ1,2 = Tr±

√
Tr2−4Det
2

= ±
√
−Det,

i.e., Re(λ1,2) = 0.

At a Hopf bifurcation, a stable focus bifurcates into an unstable focus (or vice
versa). The Hopf bifurcation has two types:

(i) At a supercritical Hopf bifurcation, a stable limit cycle is born when the
equilibrium loses its stability:

Notice that in this case, the equilibrium is stable also at the bifurcation point
(although the local stability analysis is inconclusive with Re(λ) = 0).

(ii) At a subcritical Hopf bifurcation, an unstable limit cycle exists around the
stable equilibrium. This unstable limit cycle shrinks onto the equilibrium, and
the equilibrium becomes unstable when the unstable limit cycle disappears:

In this case, the equilibrium is unstable at the bifurcation point.

The subcritical Hopf bifurcation is also called a catastrophic Hopf bifurcation. This is
because there is a drastic change in the local behaviour of the model: before the bifurcation
trajectories converge to the stable equilibrium, but immediately after the bifurcation, the
trajectories leave the neighbourhood and go to a widely different place. In contrast, when
the Hopf bifurcation is supercritical (or non-catastrophic), the trajectories go to a small limit
cycle around the equilibrium that has lost its stability, i.e., they remain in the neighbourhood.

The Brusselator model has a supercritical Hopf bifurcation, which appears to be more common
in relatively simple models. The analytic tools that distinguish the two types of the Hopf
bifurcation are rather complicated, but one can solve the differential equations numerically
and see whether a small stable limit cycle appears when the equilibrium becomes unstable.
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Exercise 58. Suppose that we add a catalyst to the Brusselator reaction
that speeds up the removal of X in the last reaction, i.e., increases the reaction
speed constant k4. To explore the possible consequences, perform a bifurcation
analysis of the Brusselator model with respect to k4. Extend the analysis to
include β as well as k4 as bifurcation parameters, and construct a bifurcation
diagram akin to Figure 17 with fixed parameters k3 = 1 and α = 1.

Exercise 59. Increasing temperature speeds up chemical reactions. Although
in reality different reactions may respond differently to changes in temperature,
assume now that in the Brusselator, all reaction speed constants (k1, k2, k3, k4)
increase by the same factor (e.g. double). Can this change in the parameters
lead to a bifurcation? Explain why or why not.

Exercise 60. Which type of bifurcation can explain the change the cell cycle
model exhibits between Figures 15a and 15b?

6.2 Predator-prey dynamics

This section investigates one of the most famous ecological models for the joint dynamics
of a prey species and its specialist predator. Suppose that in absence of the predator, the
prey population follows the logistic model of population growth (see section 3.4 of Part
1):

dN

dt
= rN

(
1− N

K

)
This prey population is exploited by a predator with Holling II functional response. The
Holling type II functional response means that each predator captures βN

1+βTN
prey indi-

viduals per unit of time, where β is the capture rate of searching predators and T is the
handling time the predator spends eating and digesting an individual prey. The formula
of the Holling type II functional response was derived in section 1.2 of Part 1. With P
predators present, the total number of prey killed is P · βN

1+βTN
per unit time, so that the

prey dynamics becomes

dN

dt
= rN

(
1− N

K

)
− βN

1 + βTN
P

In section 3.8 of Part 1, we investigated this model assuming that the predator population
size, P , is constant. This assumption approximates the situation when the predator is a
generalist that consumes a great variety of prey, so that the one prey species our model
focuses on does not influence the number of predators appreciably. In contrast, here we
shall consider a specialist predator, which depends on the single prey our model includes.
We assume that the predator converts the consumed prey into predator offspring, such
that from the βN

1+βTN
prey eaten by one predator per unit time, there are γ · βN

1+βTN
new

predators born (γ is a conversion factor that shows how many offspring can be produced
from one prey eaten). For simplicity, the death rate of the predator, δ, is assumed to be
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constant (although in reality, it would also depend on how much prey the predator can
consume). With these assumptions, the joint dynamics of the prey and the predator are
given by

dN

dt
= rN

(
1− N

K

)
− βN

1 + βTN
P (32a)

dP

dt
= γ

βN

1 + βTN
P − δP (32b)

This model is known as the Rosenzweig-MacArthur model of predator-prey dynamics.

6.2.1 Scaling (or nondimensionalization)

The Rosenzweig-MacArthur model has six model parameters (r,K, β, T, γ, δ) — quite
many. Obvipusly, it is easier to understand how the behaviour of a model depends on its
parameters if the number of parameters is small. It is therefore of interest to see how we
can reduce the number of parameters without compromising the generality of the model.
This is possible using a technique called scaling the model variables and parameters.

Let us start with the size of the prey population, N . We can measure N as the number
of individuals; for example, we may have N = 1200 individuals. But we can also express
the same population size in dozens of individuals, and having N = 100 dozens means
exactly the same as having N = 1200 individuals. Or we may count prey in units of 100
individuals, in which case the size of the same population is N = 12 units. Since K is
the equilibrium population size of the logistic model, K must be measured in the same
units what we use for N . Hence if K = 2400 individuals, but we want to count the prey
in dozens rather than in individuals, then we must use K = 200 dozens11.

The freedom of choosing the unit to measure prey population size gives a neat possibil-
ity: we may decide to measure prey density in units of K. This means that if in our model
the carrying capacity is K = 2400 individuals, then we decide that we count the prey
population in units of 2400 individuals (1 unit = 2400 individuals), and instead of writing
N = 1200 individuals, we write N = 0.5 units, which is the same. We must express K
also in the unit of 2400 individuals, which means that K = 1 unit. This was the goal of
the exercise: by choosing the appropriate unit, we can achieve that the numerical value
of K is 1. This we can always do, whatever the original value of K is, provided that it
is positive (which is of course the only biologically relevant case); zero would remain zero
in any unit and changing units would not make a negative parameter positive. The usual
phrase to refer to this procedure is to say that ”without loss of generality, we set K = 1”.
”Without loss of generality” emphasises that we have not made a particular assumption

11Strictly speaking, N is population density, i.e., the number of individuals per unit area. However,
if the area occupied by the population is fixed, then total population size (= density × area) is simply
proportional to population density.
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about the magnitude of K, just chose the units such that its numerical value is 1. With
K = 1, we can rewrite equation (32a) as

dN

dt
= rN(1−N)− βN

1 + βTN
P

which does not contain K as a free parameter, i.e., it has one parameter less.

To see which parameters we may set to 1 without loss of generality (i.e., via a clever
choice of units), it is useful to start with a list all parameters in equations (32a,b) with
their units (or ”dimensions”). From equation (32a), it is easy to see that N and K must
have the same units, because N/K must be a unitless (”dimensionless”) number to be
subtracted from the (unitless) number 1. (Adding or subtracting quantities with different
units would of course be like adding apples and oranges.) To figure out what is the unit of
the parameter r, note that the left hand side of equation (32a), dN/dt, is in units of prey
population size per time. Hence the term rN

(
1− N

K

)
must also be measured in units of

prey population size per time. The expression in the parenthesis is unitless; N is in units
of prey population size; and this leaves r to be in units 1/time (for example, 1/day) in
order to match the units of the left hand sise. Proceeding analogously, we arrive at the
following list of parameters:

r 1/time
K prey population size
β 1/(time× predator population size)
T time× predator population size/prey population size
γ predator population size/prey population size
δ 1/time

Exercise 61. Verify the above list.

We have seen above that by choosing the appropriate unit of prey population size, we
can set K = 1 without loss of generality. In the same way, we can choose the time unit so
that r = 1 is set without loss of generality (assuming only that r is positive). For example
if r = 12/day, then let 2 hours be the time unit (1 unit = 2h), and using this unit, we have
r = 1/unit time. By now, we have decided which prey population size and time units
we want to use. The only remaining unit to choose is the unit of predator population
size; and by choosing this appropriately, we can set one of those parameters equal 1 that
contain predator population size and are positive (i.e., one of β, γ or T ). Here I assume
that β is positive (otherwise the predator could not reproduce at all) and set β = 1. With
this, all units are fixed and the remaining parameters cannot be eliminated.

In summary, the Rosenzweig-MacArthur model in equations (32a,b) with positive r,K
and β can be simplified by setting r = 1, K = 1 and β = 1 without loss of generality,
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which yields the scaled model equations12

dN

dt
= N(1−N)− NP

1 + TN
dP

dt
=

γNP

1 + TN
− δP

These equations contain only three parameters (T, γ, δ), and are fully equivalent to the
original equations with positive r,K and β, only the units of measurements have been
changed. Therefore the variables and the remaining parameters must be expressed in the
new units: for example if δ = 0.6/day, but we have decided to use 2h as the time unit so
as to achieve r = 1, then we must use the numerical value δ = 0.05, since 0.05/2h is the
same as 0.6/day.

6.2.2 Analysis of the Rosenzweig-MacArthur model

Here we proceed with the analysis of the Rosenzweig-MacArthur model in equations (32)
assuming r = 1, K = 1 and β = 1 without loss of generality (as explained in the previous
section), i.e., using the equations

dN

dt
= N(1−N)− NP

1 + TN
(33a)

dP

dt
=

γNP

1 + TN
− δP (33b)

As a first step, we perform the phase plane analysis of this model.

Exercise 62. Let us draw the phase plane such that N is on the horizontal
axis and P is on the vertical axis.

(a) Confirm that

(i) the N -isoclines are the vertical axis and an ”upside down” parabola with
zeros at N = − 1

T
and at N = 1;

(ii) the P -isoclines are the horizontal axis and a vertical line at N = δ
γ−δT .

(b) Confirm that the arrows are shown correctly in Figure 18.

12These equations are also called nondimensionalized equations, loosely speaking because the freedom
of choosing the units (”dimensions”) has been exchanged for setting some parameters equal to 1. This
in effect removes all units (or dimensions) from the model. Here the word ”dimension” is a synonym of
”unit”, and does not refer to the number of variables or to the number of axes of the coordinate system
where the trajectories are drawn.
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Figure 18: Phase plane analysis of the Rosenzweig-MacArthur model. Dots denote equi-
libria irrespective of their stability. Parameter values: r = 1, K = 1 and β = 1 from
scaling (see section 6.2.1); T = 4, γ = 0.6 and (a) δ = 0.1, (b) δ = 0.125.

The model has three equilibrium points:

• the trivial equilibrium N̂ = 0, P̂ = 0;

• the prey-only equilibrium N̂ = 1, P̂ = 0 (recall that K = 1);

• the coexistence equilibrium N̂ = δ
γ−δT , P̂ = (1− N̂)(1 + TN̂).

Exercise 63. Investigate the equilibria and their stability. In particular,

(a) Verify N̂ and P̂ at the coexistence equilibrium, and show that these are
positive if γ > δ(1 + T ).

(b) Show that the trivial equilibrium is always unstable. (This is because we
have assumed that r is positive.)

(c) Show that the prey-only equilibrium is unstable (and therefore the preda-
tor is viable) if γ > δ(1 + T ). This is the same condition as in (a), and
therefore the predator is viable precisely when there is a biologically
meaningful coexistence equilibrium.

(d) Calculate the Jacobian matrix at the coexistence equilibrium and show
that its determinant is always positive (when the equilibrium is posi-
tive). Show that the trace of the Jacobian is negative, and therefore the
coexistence equilibrium is stable, if δ > γ T−1

T (1+T )
.

With the help of the results obtained in exercises 62 and 63, we perform a bifurcation
analysis of the Rosenzweig-MacArthur model using δ, the predator death rate, as bifur-
cation parameter. In Figure 18, changing δ influences only the position of the predator
isocline (i.e., the vertical isocline). Suppose first that δ is very large ( δ > γ

T
). In this case

δ
γ−δT , the position of the vertical isocline, is negative, so that no predator isocline appears
in the biologically relevant positive part of the phase plane. For somewhat smaller but
still large values of δ, the denominator of δ

γ−δT is a small positive number, so that the
vertical isocline appears at the far right as in Figure 18b. In either case, the predator
goes extinct (draw trajectories in Figure 18b).

67



Exercise 64. Show that δ
γ−δT decreases with decreasing δ, i.e., in Figure 18,

the predator isocline (the vertical isocline) moves to the left as the predator
death rate decreases. Show also that δ

γ−δT = 1, i.e., the predator isocline
crosses the prey-only equilibrium at N = 1, when δ = γ

1+T
.

Exercise 64 shows that starting with a high predator death rate and decreasing δ
gradually, an important change occurs at δ = γ

1+T
. When δ > γ

1+T
, then the N - and

P -isoclines do not intersect in the positive part of the phase plane, hence there is no
biologically meaningful coexistence equilibrium, and, by exercise 63(c), the predator is
not viable; but when δ < γ

1+T
, then there is a coexistence equilibrium and the predator is

viable. When δ < γ
1+T

holds but just barely (i.e., shortly after the coexistence equilibrium
appears), then this inequality will reverse if we multiply the right hand side with a number
less than 1. Since T−1

T
is less than 1, we have that δ > γ

1+T
T−1
T

, which, by exercise 63(d),
means that the coexistence equilibrium is stable when it appears.

Figure 19 shows the neighbourghood of the prey-only equilibrium for δ slightly below,
at, and above the critical value δ = γ

1+T
. For mathematical completeness, also negative

values of P are shown in this figure (the horizontal line is the N -axis). As δ decreases (i.e.,
from right to left), a negative equilibrium crosses the prey-only equilibrium and enters the
positive part of the figure as a coexistence equilibrium; and at the moment of crossing, the
two equilibria exchange stability such that when the coexistence equilibrium moves into
the positive part, the prey-only equilibrium becomes unstable (cf. exercise 63(c)) and the
coexistence equilibrium is stable. This is the two-dimensional version of the transcritical
bifurcation we have seen in section 2, Figure 1 (and also in section 3.7 of Part 1).

Figure 19: Transcritical bifurcation in two dimensions. Filled dots are stable equilibria,
empty circles denote unstable equilibria. δ increases from (a) to (c). At the transcritical
bifurcation point δTR, the only equilibrium is unstable towards negative values of the
variables, but all trajectories starting in the positive part converge to the equilibrium on
the horizontal axis.
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The transcritical bifurcation explains the change in the stability of the prey-only equi-
librium found in exercise 63(c). Part (d) of the same exercise shows that the coexistence
equilibrium loses its stability when δ dips below γ T−1

T (1+T )
. At this point, the trace of the

Jacobian changes its sign while the determinant is positive, hence a Hopf bifurcation oc-
curs (cf. section 6.1). Naturally, δ < γ T−1

T (1+T )
is possible only if the right hand side of this

inequality is positive, i.e., if T > 1. Therefore the Rosenzweig-MacArthur model exhibits
a Hopf bifurcation only if T , the handling time of the predator, is sufficiently large. The
full bifurcation diagram of the coexistence equilibrium for T > 1 is therefore as follows:

whereas for T < 1, the Hopf bifurcation point is not in the positive range of δ.

For δ < γ T−1
T (1+T )

, all equilibria are unstable, and the trajectories converge to a stable

limit cycle. This limit cycle is born at the Hopf bifurcation (see section 6.1). Figure
20 shows the dynamics for two values of δ on either side of the Hopf bifurcation point
δH = γ T−1

T (1+T )
; for δ above this threshold the trajectory converges to the stable coexistence

equilibrium (Figure 20a), whereas for δ below the bifurcation point the model exhibits a
limit cycle (Figure 20b). We can thus summarize the predictions made for the Rosenzweig-
MacArthur model as the following diagram shows:

Exercise 65. As Figure 19 shows, the coexistence equilibrium is a stable
node when δ is only slightly below the transcritical bifurcation point δTR; but
for the Hopf bifurcation to happen, it must be a stable focus when δ is only
slightly above δH . Hence between the two bifurcation points, the coexistence
equilibrium changes between a stable node and a stable focus. Find out at
which value of δ this happens when the other parameters are as in Figure 20.
(This is not a bifurcation point because the stability of the equilibrium does
not change.)
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Figure 20: The dynamics of the Rosenzweig-MacArthur model with parameters r =
1, K = 1, β = 1, T = 4, γ = 5 and (a) δ = 0.7, (b) δ = 0.8. Thick lines show the isoclines
(cf. Figure 18) and the limit cycle, the empty circle and the filled dot indicate the unstable
and stable coexistence equilibria, respectively.

Exercise 66. Show that the Hopf bifurcation occurs precisely when the ver-
tical predator isocline intersects the parabola of the prey isocline at its top.
Hence the predator-prey system settles at a stable equilibrium when the preda-
tor isocline is to the right of the maximum of the parabola, so that the prey
isocline intersects the predator isocline with a negative slope; and the system
has an unstable equilibrium and a stable limit cycle when the predator isocline
is to the left of the maximum, so that the prey isocline intersects the predator
isocline with a positive slope (cf. Figure 20). (This relationship between the
slope of the prey isocline at the equilibrium and the stability of the equilibrium
holds also for other predator-prey models where the per capita growth rate of
the predator depends only on the prey, and therefore the predator isocline is
vertical.)

Exercise 67. Figure 18 was drawn with T > 1. Redraw this figure for
T < 1, when a Hopf bifurcation is not possible. (Exercise 66 shows how
one can see in the phase plane analysis of the Rosenzweig-MacArthur model
whether the coexistence equilibrium is stable, or whether it can undergo a
Hopf bifurcation.)

Exercise 68. What outcome do you predict of the Rosenzweig-MacArthur
model for parameters r = 1, K = 1, β = 1, T = 3, δ = 0.1 and (i) γ = 0.55; (ii)
γ = 0.62? Solve the differential equations numerically with these parameters,
and plot the trajectories on the phase plane together with the isoclines. Next,
investigate what happens if you gradually increase γ from 0.55 to 0.62 and
beyond.

Exercise 69. Draw a 2-dimensional bifurcation diagram of the Rosenzweig-
MacArthur model using γ and δ as bifurcation parameters for T = 4.
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Exercise 70. Analyze the Rosenzweig-MacArthur model with T as bifurca-
tion parameter.

Exercise 71. A predator-prey model with linear functional response. A
predator-prey model simpler than the Rosenzweig-MacArthur model assumes
that the number of prey captured by a predator per unit time is simply pro-
portional to prey density, i.e., the functional response is the linear function
βN . With a logistic prey, this yields the model

dN

dt
= rN

(
1− N

K

)
− βNP

dP

dt
= γβNP − δP

where the notation is analogous to the one used in the Rosenzweig-MacArthur
model in section 6.2. Scale out as many parameters as possible, and perform
the full bifurcation analysis with respect to all remaining parameters. (A
special case of this model was treated in exercise 39.)

6.3 Competition with Allee effect

The logistic model of population growth

dN

dt
= rN

(
1− N

K

)
may be derived from assuming that each individual reproduces at a constant rate b and
dies at a density-dependent rate δ + cN . Indeed, since population growth is given by the
difference between the number of births and the number of deaths, we have

dN

dt
= bN − (δ + cN)N = [b− δ − cN ]N (34)

which is the same as the logistic model with r = b− δ and K = (b− δ)/c.

Exercise 72. Show that this last statement is true.

The density-dependent death rate may be the consequence of resource depletion; the
more individuals are competing for the resources, the less resource each individual can
get, so that each individual has a higher death rate due to the lack of necessary resources.
Alternatively, the density-dependent death rate may be interpreted as the consequence of
aggressive interactions. If individuals encounter each other randomly according to mass
action, then the number of opponents encountered per unit time is proportional to N ;
and if a fixed fraction of these encounters ends with death, then each individual faces a
death rate cN in addition to a background mortality δ due to causes other than aggres-
sion. In equation (34), the difference between the birth and the death rate, [b− δ − cN ],
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is the per capita rate of population growth (such that population growth is N times the
per capita growth). In the logistic model, the per capita rate of growth is the highest
when population density is the smallest, either because at low population density each
individual gets plenty of resources, or because they face little risk from aggression. It is a
basic feature of the logistic model that the per capita growth rate always decreases with
population density (and that this decrease is linear).

In reality, however, individuals of a low-density population may not enjoy the best
possible circumstances. The most obvious problem they face is that it may be difficult to
find mates, and therefore their birth rate may be low compared to the birth rate in more
dense populations. The individuals of a low-density population may also suffer from the
lack of shared vigilance and defence against predators as well as the lack of other social
interactions, which means that their birth rate is lower and/or death rate is higher than
it would be in a somewhat more dense population. The mechanisms that make the per
capita growth rate low at low population densities are collectively called Allee effects.

To incorporate an Allee effect into the dynamics of the population, here we assume
that the birth rate increases with increasing population density, e.g. because it is easier
to find mates when more individuals are around. However, a female cannot produce
an arbitrarily large number of offspring even if finding mates is no problem. Hence we
need a birth rate function that increases with population density but also saturates with
increasing density, such that it does not get higher than a certain value. The hyperbolic
function

b(N) =
βN

a+N
(35)

will serve this purpose well.

Exercise 73. Figure 21 shows the density-dependent birth rate function given
in equation (35). Verify that the saturation value is indeed β.

Incorporating the density-dependent birth rate into equation (34), we arrive at the
model

dN

dt
=

[
βN

a+N
− δ − cN

]
N (36)

Exercise 74. Show that next to the trivial equilibrium N̂ = 0, the model
in equation (36) has two positive equilibria if β > ca + 2

√
caδ + δ and no

positive equilibrium if the opposite of this inequality holds. Moreover, show
that when the model does have two positive equilibria, then the smaller of
these is unstable and the larger is stable. Hint: check the stability of the
trivial equilibrium and use that in one-dimensional models, stable and unstable
equilibria alternate (see section 3.5 of Part 1).
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Figure 21: The density-dependent birth rate given in equation (35). When N = 0, mating
is impossible and hence the birth rate is zero. The birth rate saturates with increasing
population density, and for sufficiently large values of N , the birth rate is approximately
constant (limited by the capacity of the female to produce eggs, not by the availability of
mates).

Next, we extend this model for competition between two species. For simplicity, we
assume that only the first species is affected by the Allee-effect, and the second species
has a constant per capita birth rate. This leads to the two-species model

dN1

dt
=

[
βN1

a+N1

− δ1 − c11N1 − c12N2

]
N1 (37a)

dN2

dt
= [b− δ2 − c21N1 − c22N2]N2 (37b)

where the coefficients c11 and c12 describe respectively the effect of species 1 and species
2 on the death rate of species 1, and c21 and c22 are the same for species 2.

Exercise 75. The competition model in equations (37) is similar to the Lotka-
Volterra competition model in exercises 24 and 40, except for the Allee effect
in the birth rate of the first species. How do the coefficients c11, c12, c21, c22
relate to the coefficients of the equations in exercise 24?

In the analysis below, we shall focus on exploring how the joint dynamics of the
competing species given in equations (37) depends on the birth rate of species 2, b. we
therefore fix the values of the other parameters as

β = 8, a = 1.5, c11 = 1, c12 = 0.5, c21 = 0.5, c22 = 1, δ1 = 1, δ2 = 1 (38)

This choice of parameters ensures that species 1 can persist when species 2 is absent.
As exercise 74 has shown, species 1 has two positive equilibria in absence of species 2,
an unstable equilibrium that we shall denote with A and a stable equilibrium that we
denote with K. If species 2 is absent and the population density of species 1 exceeds the
Allee threshold given by A, then it will grow until it equilibrates at K. If however the
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population density of species 1 is below A, it will die out even in absence of species 2.

First we perform a phase plane analysis. The N1-isoclines are the vertical axis (N1 = 0)
and the curve given by

N2 =
1

c12

(
βN1

a+N1

− δ1 − c11N1

)
(39)

This formula is the sum of a saturating function akin to the one in Figure 21 and a linearly
decreasing function, and hence it is like the curve in Figure 22. Note that the N1-isocline
must cross the horizontal axis (where species 2 is absent) at the equilibrium points A and
K. The N2-isoclines are the horizontal axis (N2 = 0) and the straight line given by

N2 =
1

c22
(b− δ2 − c21N1) (40)

Figure 22: Phase plane analysis of the two-species competition model in equations 37.
Filled dots mark stable equilibria, empty circles are unstable equilibria. Parameter values
as given in (38) and b = 4.

The number of equilibria depend on how the N1- and N2-isoclines are placed relative
to each other. With the choice of parameters in (38), the straight line of the N2-isocline
is not very steep; and with b = 4, its position is such that the isoclines intersect as shown
in Figure 22. In this case, the model has six equilibria:

• The trivial equilibrium N̂1 = 0, N̂2 = 0 (no population is present).

• The species 1-only equilibrium A.

• The species 1-only equilibrium K.

• The species 2-only equilibrium marked B in Figure 22.

• The coexistence equilibrium marked C1 in Figure 22.

• The coexistence equilibrium marked C2 in Figure 22.

74



As Figure 22 shows (and as it can be confirmed with local stability analysis), equilibria
B and C2 are stable and the others are unstable. If the initial density of species 1 is large
enough but the initial density of species 2 is not too large, i.e., if the trajectory starts
under the N1-isocline, then the two species settle at the stable coexistence equilibrium
C2. If N1 starts from a low value, or if it becomes small due to strong competition from
a large population of species 2, then species 1 goes extinct due to the Allee-effect (which
hinders its reproduction at low densities), and the trajectory converges to the species
2-only equilibrium B.

To explore how the behaviour of the model changes with b, we start with the situation
in Figure 22 and first gradually increase b (the case of decreasing b is left for exercises 76
and 77). As b increases, the N2-isocline shifts upward (since the first term in equation (40)
increases) and therefore the two coexistence equilibria C1 and C2 slide towards each other
on the N1-isocline (which does not depend b). At a critical value of b, the two equilibria
collide with each other, and as b increases further, the two equilibria disappear because the
isoclines no longer intersect (Figure 23). C1 is a saddle and C2 is a stable node before the
collision. The collision and disappearance of a saddle and a node is called a saddle-node
bifurcation. Notice the sudden change in the behaviour of the model: Whereas for b even
slightly below the bifurcation point the two species can coexist at a stable equilibrium
with N̂1 far from zero (as in Figure 23a), for b slightly above the bifurcation point there
is no coexistence equilibrium and species 1 goes extinct (see Figure 23c). The possibility
of a saddle-node bifurcation is of obvious importance for management and conservation
biology; when a saddle-node bifurcation occurs, then a small change in the environment
(harvesing, management policies, climate change, etc.) leads to a large and often catas-
trophic consequence.

Figure 23: Saddle-node bifurcation in the two-species competition model with an Allee
effect. For clarity, only the coexistence equilibria C1 and C2 are shown in (a) and (b).
Parameter values as given in (38). (a) With increasing b (solid isocline: b = 4, dotted
isocline: b = 5), the coexistence equilibria slide towards each other. (b) At the critical
value bSN = 5.25, the two coexistence equilibria collide (the subscript SN refers to the
saddle-node bifurcation). (c) When b is above its critical value (b = 5.5), there are no
coexistence equilibria and the only stable equilibrium is the species 2-only equilibrium B.
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We can easily determine the critical value bSN where the saddle-node bifurcation happens. Notice in
Figure 23b that when b = bSN , then the two isoclines are tangent to each other. This means that they
have a common point where both equations (39) and (40) hold, so that

1

c12

(
βN1

a+N1
− δ1 − c11N1

)
=

1

c22
(bcrit − δ2 − c21N1)

and that they have the same slope at the common point, i.e., the derivatives of equations (39) and (40)
are equal,

d
[

1
c12

(
βN1

a+N1
− δ1 − c11N1

)]
dN1

=
d
[

1
c22

(bcrit − δ2 − c21N1)
]

dN1

These two equations can be solved for the critical value bcrit and N1, which is the position where the two
equilibria collide (the N2-coordinate can be obtained from substituting the solution into equation (39) or
(40)).

Exercise 76. Redraw the isoclines of Figure 22 for gradually decreasing values
of b. Investigate the transcritical bifurcations that happen
(i) when C2 collides with K;
(ii) when C1 and collides with A;
(iii) when B collides with the trivial equilibrium at the origin.
How does the stability of the equilibria change at these bifurcations?

Exercise 77. For the parameters given in (38), the species 1-only equilibria
A and K are at N̂A = 0.288 and N̂K = 5.212, respectively. Determine the
critical values bTR,K , bTR,A and bTR,0 where the transcritical bifurcations (i)-

(iii) listed in exercise 76 occur. (You can also confirm the values of N̂A and
N̂K .)

We can summarize the results in the bifurcation diagram

(The value of bSN is from Figure 23, see the small print above for how it can be calculated.
bTR,K , bTR,A and bTR,0 are to be determined in exercise 77.)

Exercise 78. Describe the predictions of the competition model for each
interval of b in the above bifurcation diagram. Which species may be present
at equilibrium for various values of b?

Exercise 79. With the parameter values given in (38), the N2-isocline is not
too steep. Redraw the isoclines when c22 is smaller (this makes the N2-isocline
steeper, cf. equation (40)). Use the parameter values as in (38) but c22 = 0.2,
and start with b = 3. Investigate the equilibria and their stability based
on the phase plane analysis. Next, determine which bifurcations happen by
sketching the isoclines for increasing and decreasing b. Why is there no saddle-
node bifurcation? Can you determine for which values of c22 does a saddle
node bifurcation happen when varying b?
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Box 3: The saddle-node bifurcation

A saddle-node bifurcation occurs when a real eigenvalue becomes zero. This
is possible also in models with a single differential equation, where the same
bifurcation is referred to as a fold bifurcation (since there are no saddle points
in one-dimensional systems). As we have seen in section 3.8 of Part 1, a fold
bifurcation means that an unstable and a stable equilibria collide and disappear:

The saddle-node bifurcation is the same in two (or higher) dimensions, where
the trajectories approach the equilibria in the other (vertical) direction such
that a saddle and a stable node collide and disappear:

or the trajectories diverge in the other direction such that an unstable node and
a saddle collide and disappear:

In higher dimensions, the trajectories may approach the equilibria in some
directions but diverge in other directions.

The saddle-node bifurcation of a stable node and a saddle (just as the
one-dimensional fold bifurcation) is a catastrophic bifurcation, which causes a
sudden large change in the behaviour of the model: All trajectories that start
to the right of the saddle lead to the stable equilibrium before the bifurcation
happens, but trajectories starting at the same points leave the neighbourhood
and go to some possibly very different endpoint (such as extinction) after the
bifurcation.

In a model with two differential equations, a saddle-node bifurcation happens
when the determinant of the Jacobian is Det = 0, such that the two eigenvalues

are λ1,2 = Tr±
√
Tr2−4Det
2

= Tr±
√
Tr2

2
. If the trace is negative, then the ”+”

eigenvalue is zero; and if the trace is positive, then the ”−” eigenvalue is zero.
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Box 4: The transcritical bifurcation

The transcritical bifurcation may be seen as a special form of the saddle-node
bifurcation. As Figure 19 shows, two equilibria collide at the transcritical
bifurcation, but they cannot disappear, because one of the equilibria is on the
axis; and this trivial equilibrium must always be there in all models that describe
a closed system (if a population is absent now, it will always be absent).

To demonstrate the relationship between the transcritical bifurcation and the
saddle-node bifurcation in a one-dimensional model (where the saddle-node is
actually a fold), consider the harvested logistic model in section 3.7 of Part 1,

dN
dt

= rN
(
1− N

K

)
− hN

where h is the harvesting rate. At h = 0 we have the basic logistic model, whereas
at large values of h, population growth cannot compensate for harvesting and the
population goes extinct. From a mathematical point of view, this equation is
special (or ”degenerate”), because N̂ = 0 is always an equilibrium. The general
case would be to add a constant ε to the right hand side of the equation:

dN
dt

= rN
(
1− N

K

)
− hN + ε

Biologically, a positive ε describes immigration, whereby individuals appear
independently of the reproduction of individuals already present (and hence the
system is not closed anymore). A negative ε readily leads to negative values of
N , which is impossible, and therefore the above equation with negative ε is not
a biologically valid modela.

The following figures show the equilibria for ε slightly below, at, and above zero.
With ε < 0, there are two fold bifurcations (black lines of the first panel). As ε
aproaches zero, the two folds approach each other (gray lines in the first panel),
and at ε = 0, they merge (middle panel). This special case of ε = 0 is the trans-
critical bifurcation. With ε > 0, the transcritical bifurcation splits up such that
no bifurcation occurs at all; with immigration, the population is never extinct.

aOne might think that a negative ε means the removal of a constant number of individuals
per unit time. However, one cannot remove 50 individuals in the next day when only 30 are
there, and therefore it is biologically impossible to maintain constant removal at all N .
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6.4 Overview of bifurcations

Bifurcation points of equilibria are critical values of a model parameter where the num-
ber of equilibria or their stability changes. This happens when one of the eigenvalues
of the Jacobian is zero, or the real part of a pair of complex eigenvalues is zero. These
are the cases when the local stability analysis cannot determine the dynamics near the
equilibrium (see section 4.4). A slight change in a parameter of the model changes the
eigenvalues only slightly, and therefore if the real part of an eigenvalue is negative (or
positive), then after a sufficiently small change of the parameter it will still be negative
(or positive). The qualitative properties of the equilibria can change therefore only at
those critical parameter values where an eigenvalue has zero real part.

In models with only two differential equations, the stability of an equilibrium is deter-
mined by the sign of the trace and of the determinant of the Jacobian. When a parameter
of the model is varied, the trace and the determinant change. Bifurcations happen when
the trace or the determinant of the Jacobian becomes zero (Figure 24); a Hopf bifurcation
occurs when the trace is zero (see Box 2), and a saddle node or (when the equilibrium is
on the axis) a transcritical bifurcation occurs when the determinant is zero.

Figure 24: Stability of equilibria in two dimensions shown in terms of the trace and
the determinant of the Jacobian (as in Figure 9). Gray shading marks the area where
the equilibrium is stable. The system may leave the area of stability to the left (Hopf
bifurcation, H) or downwards (saddle-node bifurcation, SN , and, in models of closed
systems, also transcritical bifurcation, TR).

Bifurcations that can occur when varying a single model parameter are called codi-
mension 1 bifurcations. In models of arbitrarily many ordinary differential equations only
two types of codimension 1 bifurcations can happen, the Hopf bifurcation and the saddle-
node bifurcation. In biological models of closed systems, the transcritical bifurcation is
also a codimension 1 bifuraction, although from a pure mathematical point of view it is
not. (In the figures of Box 4, the transcritical bifurcation happens at some critical value
of h only when ε = 0, i.e., two parameters must take critical values; but for biological
reasons, the special ase of ε = 0 may be the only case of interest, and then a transcritical
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bifurcation occurs while varying only one parameter.)

Bifurcations with higher codimension require that several parameters are at critical
values simultaneously. In bifurcation diagrams drawn for a single parameter, only codi-
mension 1 bifurcations show up (unless the figure is drawn for an exceptional set of values
for the other parameters). In bifurcation diagrams with two parameters, such as in Figure
17, codimension 1 bifurcations correspond to lines; for an arbitrary value of one parame-
ter, there is a critical value of the other (in Figure 17, grey dots show the critical value
of parameter β for various values of α). Codimension 2 bifurcations would appear as
points in this figure, where both parameters must assume their specific critical values.
Codimension 2 bifurcations are useful for understanding how the lines of codimension 1
bifurcations connect to each other.

Limit cycles may also undergo bifurcations. As a parameter is varied, it may happen
that a stable and an unstable limit cycle approach each other and finally collide and
disappear; this is known as the fold bifurcation of limit cycles (Figure 25a). In more than
two dimensions, another possibility is that after a parameter crossed its critical value,
the trajectory does not return to the same point after one revolution, but makes another
revolution before closing the cycle (period doubling bifurcation, Figure 25b).

Figure 25: (a) Fold bifurcation of limit cycles. (b) Period-doubling bifurcation of a limit
cycle (the ”jump” is to denote that the limit cycle does not cross itself, which is possible
in 3 and higher dimensions).
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