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EXERCISES 1-6: GRAPHING FUNCTIONS

The aim of these exercises is to get familiar with the functions one encounters most often in mathematical

modelling and statistical analysis. Although at this point we are not yet addressing biological questions

directly, these functions we shall use over and over again, so it is worthwhile to know them well.

Exercise 1. Hyperbolas. Plot the hyperbola

f(x) =
βx

1 + ax

with β = 2 and a = 1 using any software (e.g. Excel). Then plot this hyperbola with
other values of its parameters (β, a) and compare with the original. What happens if β
is greater (e.g. β = 3, a = 1)? What happens if a is greater? And what happens if both
β and a are greater, but such that we preserve the ratio β/a = 2 as in the original (take
e.g. β = 10, a = 5)?

Convince yourself that f(x) is approximately β/a when x is very large, i.e., this gives
the saturation (or asymptotic) value fa shown in the figure below. Calculate the half-
saturation point x1/2 where the function attains fa/2. Use these results to explain how
the shape of the hyperbola changes with the parameter values.

Exercise 2. Exponential and logarithmic functions.

(a) Plot the exponential function
f(x) = cekx

with both positive and negative values of k. Is the function increasing (exponential
growth) or decreasing (exponential decay)? Is it convex or concave? How does the shape
change if k is greater in absolute value (i.e., if k is greater positive or more negative)?
What if k = 0? What happens if we change c?
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(b) Plot the logarithmic function

f(x) = c ln(kx)

and study the effects of parameter changes as above.

Exercise 3. The Gaussian function. The Gaussian function

f(x) = α exp

(
−(x−m)2

2σ2

)
is often used in modelling and, with the choice α = 1/

√
2πσ2, it defines the famous normal

distribution, which is exceedingly important in both probability theory and statistics. Plot
the Gaussian function with α = 1 and study how its shape depends on m and σ2. Next,
substitute α = 1/

√
2πσ2 and investigate again how the shape of the function changes

with the parameters m and σ2.

Exercise 4. A sigmoidal function. Another commonly used function is the sigmoidal
function

f(x) =
1

1 + exp[−(α + βx)]

with α and β positive or zero.

(a) Plot this function and study how its shape depends on α and β.
(b) How should we modify this function if we want
− a decreasing, sigmoidal-shaped function
− a sigmoidal function that spans the interval (0,2)
− a sigmoidal function that spans the interval (-1,1)?

Exercise 5. Logistic regression. In ordinary linear regression, we seek a straight line that
fits the data best as shown in the left panel of the figure below. There are many statisti-
cal software packages that can find the regression line. However, linear regression is not
appropriate if the variable plotted on the vertical axis is a fraction or a probability (for ex-
ample the fraction of animals dead in a drug safety test, at different dosages of the drug).
This is because the fraction (or probability) must remain between 0 and 1 even if the
variable on the horizontal axis (e.g. dosage) takes a very small or very large value. In this
case, we want to fit a sigmoidal curve to the data as shown in the right panel of the figure.
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To this end, we first transform the probability p with the so-called logit function

logit(p) = ln

(
p

1− p

)
and then perform the linear regression analysis with logit(p) on the vertical axis and an
explanatory variable (e.g. drug dosage) x on the horizontal axis.

(a) Plot the logit function and check that logit(p) can take any positive or negative value
with p between 0 and 1.

(b) Suppose that using linear regression, we find the relationship logit(p) = α+βx. Show
that in this case, p depends on x according to the sigmoidal function given in exercise 4.

Exercise 6. Log-log plots. In an experiment, we measure two quantities, x and y, and
plot ln y against lnx. Suppose that in this so-called ”log-log” plot, the data fit a straight
regression line. What is the relationship between the original variables, x and y? Draw a
figure with x and y on the axes.

EXERCISES 7-12: EXPONENTIAL GROWTH AND DECAY

Exercise 7. Bacterial growth. Under ideal conditions, a bacterium can divide every 15
minutes. How long would it then take that a single bacterium produces 2 · 1035 descen-
dants? (They would weight about as much as the Earth!)

Exercise 8. Radioactive decay. How many times the half-life of a radioactive material
we have to wait until only 1% of the original activity is left? Until 1 ppm (part per
million, 10−6) is left? Calculate these waiting times for caesium-137, a radioactive isotope
that polluted Europe after the Chernobyl accident and still contaminates mushrooms and
fishes. The half-life of Cs-137 is 30 years.

Exercise 9. Carbon dating. Carbon dating cannot be used for very old samples, because
the remaining activity of C14 is too small to measure reliably. In practice, the minimum
activity required for measurement is about 0.05 decays per minute per gram carbon.

(a) Calculate the activity (number of decays per minute per gram carbon) of a carbon
sample extracted from living tissue. Recall that 1 g carbon is 1/12 mole and hence con-
tains 5 · 1022 carbon atoms, in living tissue a fraction 10−12 of carbon atoms is C14, the
half-life of C14 is 5730 years, and 1 year is approximately 526,000 minutes.

(b) How old is a sample when its activity is at the minimum measurable level? Can we
use carbon dating for archaeological samples, for the first hominids, or for dinosaurs?

Exercise 10. The habitable zone of algae. In water, light intensity decreases with depth
as water absorbs and scatters the photons. The chance that a photon is absorbed in the
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next infinitesimal layer of water is constant.

(a) Argue that light intensity must decrease exponentially, i.e.,

I(z) = I(0)e−αz

where I(z) is the intensity of light at depth z (z = 0 at the surface). The coefficient α is
called the vertical attenuation coefficient. Is α greater or smaller when the water is more
opaque?

(b) To measure α, a simple method is to drop a standardized white disk, called a Secchi-
disk, in the water and measure the depth where it disappears from sight. This happens
when the light reaching the eye from the disk is about 1% of the surface light intensity.
What is the attenuation coefficient of a lake where the Secchi-depth is 10m? (Remember
that light must cross the water column twice: once to reach the disk, once to come up to
the observer.)

(c) Algae can live in water to the depth where the light intensity is at least 1% of the
surface intensity: Below this so-called compensation level, photosynthesis is so ineffective
that the respiratory loss exceeds the photosynthetic product. Calculate the compensation
level in a lake where the attenuation coefficient is α = 0.5/m.

Exercise 11. Plant growth. Under ideal conditions (no resource limitation etc.) and
with constant illumination, the weight of algae (w) grows exponentially according to the
equation

dw

dt
= rw

(a) Calculate the time, expressed in terms of the growth rate r, when the weight of the
algae hits 10-fold of the initial weight.

(b) At night, there is no photosynthesis. The weight decreases due to respiration at rate
µ, i.e., the equation

dw

dt
= −µw

applies during the night. Suppose that at the beginning of daytime on day 1, the algae
weigh 1g. Daytime lasts 14h and the night 10h. At what time will the weight of the algae
first hit 10g if r = 0.1/h and µ = 0.02/h?

Exercise 12. Exponential decay with influx. The equation

dx

dt
= c− ax

is similar to the equation of exponential decay, except the constant c on the right hand side.
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(a) Argue that this equation describes a process where a substance is provided at a con-
stant rate c and is decaying exponentially at the per capita rate a. Examples include
proteins that are synthesised at a constant speed in a cell and decay spontaneously; a
medicine infused at a constant speed and removed by metabolism; an empty chemostat
where the nutrient is supplied at a constant rate and lost with the outflow; a population
in an unsuitable habitat that is maintained by immigration but mortality exceeds local
reproduction.

(b) Show that the function

x(t) =
c

a
−
( c
a
− x(0)

)
e−at

is the solution to the differential equation above.

(c) To interpret the solution, plot x(t) as a function of time for different initial values
of the variable, x(0) (choose arbitrary positive values for the parameters a, c). How does
x change in time if x(0) is small relative to c/a? What if x(0) exceeds c/a? And if
x(0) = c/a? Describe in words how x changes in time relative to c/a, and demonstrate
that a affects the speed of this change.

EXERCISES 13-15: DIFFERENTIATION

Exercise 13. Maximum frequency of heterozygotes. Use the standard technique of dif-
ferentiation to show that the frequency of heterozygotes in Hardy-Weinberg equilibrium,
H = 2p(1 − p), is maximal when the two alleles have the same frequency, i.e., when
p = 0.5.

Exercise 14. The shape of the Gaussian function. Use the standard technique of dif-
ferentiation to show that the Gaussian function given in exercise 3 has its maximum at
x = m. Use the second derivative to find which parts of the Gaussian function are concave
and which parts are convex.

Exercise 15. Mode of the lognormal distribution. The function

f(x) =
1√

2π σx
exp

(
−(ln(x)−m)2

2σ2

)
defines the so-called lognormal distribution. Find the value of x where f(x) is maximal
(you may skip checking the sign of the second derivative). This value of x is called the
mode of the distribution.
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EXERCISES 16-18: OPTIMIZATION PROBLEMS

Exercise 16. Optimal harvest. The most common model to describe the growth of a
population is the so-called logistic equation,

dN

dt
= rN

(
1− N

K

)
where N is the number of individuals and r,K are positive parameters. If the population
has size N = K, then the expression in the parentheses is zero, and therefore dN

dt
is zero.

This means that the size of the population constant in time, i.e., the population is at
equilibrium. If N is less than K, then N/K is less than 1, so that the expression in
the parentheses is positive, and therefore dN

dt
is positive. This means that the size of the

population increases with time. Find the value of N where the speed of growth, dN
dt

, is
the highest. This value is important for a sustainable economy: If we want to harvest the
population, we can remove as many individuals per unit of time as natural population
growth can compensate for. Hence if we keep the size of the populaion, N , at its optimal
value, then we can harvest the most individuals in a sustainable manner.

Exercise 17. Iteroparity vs semelparity. If a mother produces more offspring, this jeop-
ardizes her own physiological condition and therefore decreases the probability that she
survives to the next year. Let p(x) denote the probability of survival of a mother with
x offspring, and let s be the (constant) probability that an offsping survives till the next
year. One mother thus leaves sx surviving offspring plus herself with probability p(x),
i.e., a total of f(x) = sx+p(x) descendants by the next year (cf. lecture notes, optimal fe-
cundity 2). The optimal fecundity, xopt, maximizes the number of descendants, f(x). For
the trade-off function p(x), consider two variants: (i) p(x) = p0−cx2; (ii) p(x) = ce−αx−b
(where we assume 0 < c− b < 1 so that the probability of survival of a non-reproducing
female, p(0) = c− b, is between 0 and 1).

(a) The probability of survival, p(x), cannot be negative. Plot the two trade-off functions
and determine the maximal value xmax such that this condition is satisfied. We assume
that the mother cannot produce more than xmax offspring.

(b) Find the optimal fecundity for each trade-off function. (Remember to check the second
derivative.) Does the optimum correspond to an iteroparous population (the mother may
survive and reproduce several times) or a semelparous population (the mother reproduces
only once because she never survives)?

Exercise 18. Optimal age at maturation. Many animals grow only until maturation. A
large body size is advantageous because it correlates with high fecundity, but delaying
maturation in order to grow large means a higher risk that something kills the animal
before it could reproduce. The optimal maturation strategy is the best compromise be-
tween a large enough size and short enough time before reproduction.

6



(a) Suppose that before maturation, individuals die at a constant rate µ. Let s(T ) denote
the fraction of individuals who survive from birth to maturation if maturation occurs at
age T . Calculate s(T ).

(b) The growth of an individual is commonly described by the Von Bertalanffy function,

L(t) = a− be−kt

where L(t) is the length of the body at age t and a, b, k are positive parameters. Assume
that an individual follows this growth curve until age T , when it matures and does not
grow any more. Fecundity is proportional to body volume, so that an individual who
matures at age T has B(T ) = cL(T )3 offspring in her adult life.

If a newborn is to mature at age T , then with probability s(T ) she will survive till
maturation and produce B(T ) offspring, and with probability 1− s(T ) she will die before
reproduction. On average, a newborn thus expects R(T ) = s(T )B(T ) offspring. Find the
optimal age at maturation, at which R(T ) is the highest1.

(c) Calculate the optimal size at maturation, L(T ).

(d) Suppose that the environment gets worse such that the death rate of juveniles, µ,
increases. How does the optimum change; will the animals mature earlier and at a smaller
size, or later and at a larger size?

Exercise 19. Optimal virulence of a pathogen. The virulence of a pathogen is the rate
at which it kills the host. Suppose that infected hosts die at a rate α (the virulence) and
recover at a rate ν, so that they disappear at a total rate α+ ν (for simplicity, we assume
that natural death is negligible). The average length of an infection is then 1/(α + ν)
time units (see lecture notes, exponential decay). An infected host infects β other hosts
in each unit of time, and therefore one infected host infects

R0(β) =
β

α + ν

other hosts during the entre infection. R0 is called the basic reproduction number of the
disease.

Pathogens that can transmit from host to host more agressively (and hence have
higher β) are also more harmful to the host. Alizon and Van Baalen (2005, The American
Naturalist) argue that virulence is related to transmission according to the function

α(β) = aβ2 + bβ + c

1Hint: Checking the second derivative to see if we indeed got the maximum (and not the minimum)
of R(T ) is rather cumbersome. Instead of taking the second derivative, check whether the derivative
of R(T ) is positive at T = 0. Argue that if the derivative is positive at T = 0 and there is only one
point where the derivative is zero, then this zero derivative must correspond to a maximum and not a
minimum.

7



where a > 0 and b, c ≥ 0.

(a) Find the optimal value of β and calculate the corresponding optimal virulence, α(β).

(b) Suppose that by treating the disease, we increase the rate of recovery, ν. Show that
in this case, the optimal virulence increases. This means that if we treat the disease, it
evolves to be more dangerous!

(c*) The pathogen evolving to be more virulent is bad news, but what we may be most
interested in is the probability that an infected person dies because of the disease. Higher
virulence means that the disease kills faster, but higher recovery rate means that the
infected person gets free of the disease faster, so has shorter time while at risk. The
probability of dying of the disease is given by p = α/(α+ν) (see lecture notes, alternative
modes of decay). Show that the probability of death due to the disease, p, decreases if the
recovery rate increases and the virulence assumes its optimal value corresponding to the
increased recovery rate (use the result of (a))2. This means that, fortunately, treatment
is beneficial even after the pathogen has increased its virulence in response to the faster
recovery rate achieved by the treatment.

EXERCISES 19-21: CONSTRUCTION OF DYNAMICAL MODELS

Exercise 20. Enzyme reactions. Write down the differential equations modelling the
following processes, and note any conservation law. Can you point out weaknesses of the
models described below?

(a) An enzyme with two substrates (e.g. ligase, kinase). The enzyme E binds the substrate
S1 and thereby forms an enzyme-substrate complex X1. This complex, in turn, binds
substrate S2 to make X12. The enzymatic catalysis takes place in the complex X12 and
produces the product P , plus releases the free enzyme E. Alternatively, each complex
can decay into its progenitors (backwards reactions).

E + S1

k1


k−1

X1, X1 + S2

k2


k−2

X12

k3
→ E + P

(b) Competitive inhibition of an enzyme with an exponentially decaying inhibitor. There
is a single substrate S that is bound by the enzyme E to make the enzyme-substrate
complex X. The complex either decays into its progenitors (backwards reaction) or the
catalytic reaction takes place and the complex decays into the product P and free enzyme
E. The enzyme can also bind an inhibitor I to become an inactive enzyme E∗, which

2Hint: taking the derivative of p with respect to ν when α also depends on ν is very cumbersome.
Instead, use the following trick: (i) convince yourself that if 1/(1 − p) decreases then p must decrease,
too; (ii) express 1/(1 − p) with α and ν; (iii) differentiate the resulting formula to show that 1/(1 − p)
decreases when ν increases.
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cannot bind the substrate. This inhibition is reversible, the inhibited enzyme E∗ decays
back into the free enzyme plus the inhibitor. The free inhibitor decays exponentially.

E + S
k1


k−1

X
k2
→ E + P, E + I

µ


ν
E∗, I

α
→ ∅

Exercise 21. The SIR model of epidemics. Let S, I, and R denote respectively the
number of susceptible, infected, and recovered individuals in a population of total size
N = S + I + R. All individuals give birth to susceptible offspring at the same density-
dependent rate b(N) and die a natural death at a constant rate µ. Susceptible and infected
individuals encounter each other according to mass action with rate β, and when such an
encounter happens, the susceptible individual contracts the infection. Infected individuals
die because of the disease (i.e., in addition to natural death) at a rate α and recover at
a rate ν. Recovered individuals are immune and cannot contract the disease any more.
Write the differential equations for the dynamics of S, I, and R.

Exercise 22. A simple predator-prey model. Denote the number of prey and predator
with N and P , respectively. When the predator is absent, the prey population grows
according to the logistic model. A predator captures a prey individual according to mass
action with rate β. From each captured prey, the predator makes γ offspring. The
predators die at a constant rate δ. Construct differential equations for the change of prey
and predator population size. This is a very simplistic model of a predator-prey system:
which assumptions are unrealistic? Can you propose a better model?

EXERCISES 23-26: ANALYSIS OF DYNAMICAL MODELS

Exercise 23. Numerical solution of a differential equation. Solve the differential equation
of logistic growth numerically, and plot N(t) as a function of time. Hint: see section 3.3
of the lecture notes. First use the following parameter values: r = 2.5, K = 1, N(0) =
0.01,∆t = 0.1. Next, experiment with changing the parameters: What happens if K is
higher? if r is lower? Interpret the results. Furthermore, experiment with increasing r
or increasing ∆t. There will be weird results; to understand these, make sure to plot
invididual data points (not only a smooth line connecting them). We shall discuss the
weird results in the exercise class.

Exercise 24. Alcohol metabolism. Let x denote the concentration of alcohol in the blood
(since alcohol concentration equilibrates in all tissues within minutes after ingestion, we
can treat the entire body as a single unit). Alcohol is broken down in the liver. The
higher the alcohol concentration is in the blood, the harder the liver works to remove
it; as a result, the amount of alcohol removed, f(x) grams per litre per hour, increases
with the concentration of alcohol, x. f(x) can however not become arbitrarily high, as
the liver cannot remove more than a certain amount of alcohol. Therefore, f(x) must
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be a saturating function. As an approximation, we can use the familiar hyperbolically
saturating function

f(x) =
cx

k + x

Assume that there is a constant intake of u grams of alcohol per litre of body fluids per
hour (this approximates an evening of bar-hopping). The concentration of alcohol thus
increases by u∆t and decreases by f(x)∆t in ∆t time, i.e., we have

dx

dt
= u− f(x) = u− cx

k + x

(a) Show that if u > c, the concentration of alcohol increases without bound. Interpret
this result verbally.

(b) Calculate the equilibrium alcohol concentration for the case u < c, and plot it as a
function of alcohol intake, u.

(c) In a heavily intoxicated person, alcohol concentration initially decreases by 1 g/litre
in 4 hours (this gives you the maximum speed of the liver). An adult of average size has
approximately 45 litres of body fluids. A standard drink (e.g. 100 ml wine) contains 10
g alcohol. How many drinks per hour lead to serious intoxication?

Exercise 25. Allee effect in population growth. According to the logistic model, the
growth rate, r(1−N/K), is a decreasing function of population size, N ; i.e., an individ-
ual reproduces best when population size is small and resources are plentiful. In reality,
however, there may be factors not considered in the derivation of the logistic model, which
hinder the growth of small populations. An obvious example is mating (it is difficult to
find a mate and therefore to reproduce when few others are around), but other types of
cooperative behaviour such as cooperative defense and niche construction are also less
efficient when the population is small, and this has a negative effect on the growth rate.
All mechanisms that decrease the growth rate as the population becomes smaller (i.e.,
increase the growth rate with increasing N) are called Allee-effects.

The Wikipedia article on Allee effects proposes the equation

dN

dt
= rN

(
N

A
− 1

)(
1− N

K

)
with parameters r > 0, K > A > 0 to model an Allee effect in the dynamics of the pop-
ulation. This is a phenomenological model: it is not derived from underlying processes,
but behaves qualitatively as we expect a population with an Allee effect to behave3.

Find all equilibria of this model and investigate their stability.

3The use of phenomenological models is discouraged. Here this model serves only as an exercise to
practice the analysis of equilibria and stability.

10



Exercise 26. Environmental pollution of bacteria. A population of bacteria produces a
toxic substance that pollutes their environment and increases their death rate. Denote
the size of the bacterial population by N and the concentration of the toxin by T . The
bacteria reproduce at a rate b and die at a rate µ + ρT , where µ is the death rate in a
toxin-free environment and the coefficient ρ tells how fast the death rate increases with
increasing the concentration of the toxin, T . The population of bacteria therefore grows
according to the differential equation

dN

dt
= bN − (µ+ ρT )N

The toxin is produced by the bacteria at a rate α per bacterium per time, and decays
exponentially at a rate δ. This yields the differential equation

dT

dt
= αN − δT

for the toxin.

We assume that the production and decay of the toxin is much faster than the repro-
duction and death of the bacteria. In other words, the change in N is negligible during
the time the toxin concentration T needs to attain its equilibrium. If we follow the system
only for a short while, then we see that T equilibrates as if N were constant.

(a) Find the equilibrium toxin concentration T̂ (N) at a fixed bacterium density N . (Ob-
viously, the equilibrium we find in this step depends on at what value we fix for N , and
therefore we denote the equilibrium with T̂ (N).)

(b) Show that this equilibrium is stable: If we perturb T (but hold N fixed), then T
returns to T̂ (N).

(c) Now we want to follow the growth of the bacterial population over a long time. Since
the toxin equilibrates quickly, we can approximate T in the equation for dN/dt with T̂ (N).
Show that with this approximation, the bacteria follow the logistic model of population
growth with parameters r = b− µ and K = (b− µ)δ/(ρα).

Exercise 27. Consumer dynamics with constant resource influx. At the bottom of the
sea, resources arrive by sinking from the sunlit, productive layers of water. Suppose that
a resource R arrives at a rate c (i.e., the amount of resource that arrives in ∆t time is
c∆t), and it decays exponentially at a rate α (e.g. due to decomposition by bacteria). A
consumer captures the resource at a per capita rate β. With N consumers present, the
resource dynamics is then given by

dR

dt
= c− αR− βNR

11



The consumer produces γ offspring from each unit of resource consumed and dies at a
constant rate µ, yielding

dN

dt
= γβNR− µN

(a) Assume that the resource dynamics is much faster than the dynamics of the con-
sumer, i.e., R attains a (quasi-)equilibrium before N would change. From the equation
describing the resource dynamics, find the equilibrium of R̂ for N fixed, and check that
this equilibrium is stable.

(b) Now we want to follow the slow dynamics of the consumer over a long time. At
any point in time, we can approximate R with R̂ calculated for the current consumer
population size N . Verify that this approximation leads to the consumer dynamics

dN

dt
=

(
γβc

α + βN
− µ

)
N

(c) A population is said to be viable if it can grow when its population size is very small.
Suppose we start with a very small consumer population (N is near zero). Such a popu-
lation enjoys a high resource density, but still may fail to grow e.g. if its death rate, µ, is
too high. Under what condition is the consumer population viable?

(d) Find the equilibria of the consumer and investigate their stability. Check whether the
equilibrium population size is positive. Compare the results with (c), and summarize them
by drawing the biologically possible equilibria as a function of the consumer death rate, µ.

Exercise 28. Chemostat dynamics. Bacteria are often cultured in continuous-flow chemostats
with a constant inflow of nutrients and a constant outflow of bacteria. The set-up is as
follows. The chemostat has volume V , and the speed of inflow is F units of volume per
unit of time. Obviously, the outflow must also be F (otherwise the chemostat is either
emptied or overfilled).

The inflow is a solution of a nutrient with concentration c0. Within the chemostat, the
concentration of the nutrient is c and the concentration of bacteria is x. The aim of the
model is to predict how c and x change with time, and how these quantities equilibrate
((a)-(b)). Having done that, we can determine how we can optimize the chemostat to our
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purposes (see (c)).

When working with flows, it is strongly recommended to set up the model in terms
of the number of particles (molecules of nutrient, bacteria), not in terms of concentra-
tions (=number/volume). This is because the number of particles is conserved in the
flow (i.e., with a flow from A to B, as many particles come in B as many left A). The
concentrations are however not conserved. (Just think of a flow from a small vessel A of
concentrated syrup into a big tank B of pure water; the outflow from the small vessel has
high concentration, but in the big tank, the same number of particles corresponds to a
low concentration.)

The number of bacteria in the chemostat is the concentration (=number/volume)
times the volume of the tank, i.e., xV.. Similarly, the number of nutrient particles is cV .
With the inflow, there are c0F nutrient particles arriving per unit of time, and with the
outflow, cF nutrient particles and xF bacteria leave per unit of time.

Inside the tank, the bacteria grow at a per capita growth rate r(c). The more nutrient
there is, the faster the bacteria can grow; yet the bacteria cannot divide arbitrarily fast
even if there is plenty of nutrient. Hence r(c) must be an increasing but saturating
function. The hyperbolic function

r(c) =
ρc

a+ c

satisfies these biological requirements (verify this statement!).

Each new bacterium incorporates k particles of the nutrient, i.e., when one bacterium
is born, k nutrient particles are taken away.

(a) Construct a model to describe how the number of bacteria (xV ) and of nutrient par-
ticles (cV ) changes in time. Then rewrite these equations to obtain differential equations
for the concentrations (x and c). [Since the rest of this exercise builds on these equations,
you may want to check the solution before proceeding.]

(b) Find the equilibria of the model. Investigate the conditions under which the equilib-
rium concentrations (ĉ and x̂) are positive (it is best to rearrange inequalities such that
you obtain conditions that F/V should satisfy). What happens if these conditions are
not met?

(c) Suppose we maintain the chemostat in order to harvest a substance that is produced
by the bacteria (e.g. antibiotics), and we want to optimise the set-up such that we can
harvest the most product per unit of time in equilibrium. The amount of product in the
outflow is proportional to the number of bacteria in the outflow, so we simply maximize
the number of bacteria that leave the chemostat per unit of time, x̂F .
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The model has six parameters, ρ, a, k, c0, F and V , of which ρ, a and k are properties
of the bacterium. Assume that c0 and V are also given (for example, there is a nutrient
solution of a given concentration c0 available in the shop, and we have bought a chemo-
stat of volume V ). We are however free to choose the flow F (by turning a knob on the
chemostat). Determine the optimal value of F , which maximizes the number of bacteria
harvested from the outflow per unit of time4. In particular, see (i) if, and how, the optimal
flow F depends on the volume of the chemostat, and (ii) if we have a more concentrated
nutrient solution as inflow, should we increase or decrease the flow.

4Hint: You get a quadratic equation. This is no problem to solve; however, the solution does not look
nice. Instead of solving this equation for the optimal value of F , you can solve it for c0, and plot the
solution as a function of F . The points of this graph represent optima: if you are given the value of c0,
you can read the optimal value of F from the graph. This trick is often used when the equation cannot
be solved, or when the solution would be too ugly, yet we would like to visualize the solution.
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SOLUTIONS

1. The following figure shows the shape of the hyperbola f(x) = βx
1+ax

with β = 2, a = 1
(thick line, ”original”), β = 3, a = 1 (dotted line), and β = 10, a = 5 (thin line).

If x is very large, then adding 1 to ax does not really matter, i.e., 1+ax ≈ ax. Taking
ax instead of 1 + ax in the denominator, f(x) ≈ βx

ax
= β

a
. Hence the hyperbola saturates

to fa = β/a. The half-saturation value x1/2 is the value of x where f(x) = fa/2, i.e.,

where βx
1+ax

= β
2a

. Solving this last equation yields x1/2 = 1/a.

If β is greater, then the function saturates to a higher asymptotic value but the half-
saturation point remains the same. At every x the value of the function is multiplied by
the same factor (e.g. by 3/2 when increasing β from 2 to 3), and therefore the function
is simply stretched vertically (compare the thick and the dotted lines).

If both β and a are greater but their ratio β/a remains the same, then the saturation
value remains the same but x1/2 = 1/a becomes smaller: the function saturates faster to
its asymptote. If e.g. both β and a are multiplied by 5, then the function assumes the
same value already at x/5 what the original function assumed at x (the products βx and
ax are the same, and hence f(x) = βx

1+ax
is the same). The function is thus ”compressed”

horizontally towards the y-axis.

If only the value of a is greater with no change in β, then the function saturates to a
smaller value (since fa = β/a) is smaller but saturates faster than the original (x1/2 = 1/a
is closer to the y-axis).
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2. (a) The exponential function is increasing when k > 0, decreasing when k < 0 and
constant (f(x) = c for every value of x) when k = 0. Except the constant case, the
function is convex. The figure below shows f(x) = cekx with c = 1 and k = 1 (thick line),
k = 1.5 (dotted line) and k = −1 (thin line).

When k is greater in absolute value, then the value of the function remains the same at
x = 0 (f(0) = ce0 = c · 1 = c irrespectively of k), but changes ”faster” elsewhere. If k is
multiplied with a factor m (e.g. k is doubled, m = 2), then the function attains the same
value already at x/m what the original attained at x, since the product kx is then the
same. A smaller change on the x-axis therefore implies the same change on the y-axis,
and the function is horizontally ”compressed” towards the y-axis.

(b) The figure below shows f(x) = c ln(kx) with c = 1 and k = 1 (thick line) and
k = 3 (thin line). Multiplying k with a factor m (m = 3 in the figure) means that the
function is horizontally ”compressed”, for the same reason as above. For the logarithmic
function, we also have ln(mkx) = ln(m) + ln(kx). Hence the same change in the shape of
the function can also be seen as the function simply shifted vertically (the number lnm
added to the function at each point). Compression and shift are the same only for the
logarithmic function.
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3. With α = 1, the Gaussian function f(x) = α exp
(
− (x−m)2

2σ2

)
is shown in the figure

below for m = 1, σ = 1 (thick line), m = 1, σ = 1.5 (dotted line) and m = 2, σ = 1 (thin
line).

The value of m sets where the maximum of the function is: For higher m, a higher value
of x is necessary to make the same difference x − m, and therefore the whole function
shifts horizontally to the right. σ controls how broad the function is. When σ is higher,
the fraction (x−m)/σ is correspondingly smaller [this fraction is squared in the Gaussian
function)], so that a greater difference (x−m) is necessary to obtain the same value of the
function. The function thus becomes wider by ”expanding” around m when σ is increased.

With α = 1/
√

2πσ2 (normal distribution), the same parameters yield the plot

(notice that the vertical scale is different from the previous figure). Multiplying with
the number α = 1/

√
2πσ2 instead of 1 stretches the function vertically (every point on

the y-axis is multiplied with the same number). When σ increases, then α = 1/
√

2πσ2

decreases, and therefore the width and the height of the function change in a concerted
way; the function becomes wider as above and also lower because α is smaller. With the
specific choice α = 1/

√
2πσ2, changing σ does not change the area below the function; it

can be proven that the area is then always 1. This fact is important in probability the-
ory, where the areas below some parts of the function represent probabilities, and these
probabilities must always add up to 1 (or 100%) for the area below the entire function.
Changing m only shifts the function horizontally for the same reason as above, and does
not affect the area below the function.
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4. (a) The graph of f(x) = 1
1+exp[−(α+βx)] is shown below for α = 0 and β = 1.

Increasing α shifts the function to the left, because then a smaller value of βx makes the
same value of α+ βx. Increasing β makes the function steeper, because a smaller change
in x makes then the same change in βx.

(b) To get a decreasing sigmoidal function, replace βx with −βx, i.e., take f(x) =
1

1+exp[−(α−βx)] . To get an increasing sigmoidal function that spans the interval (0, 2) instead

of (0, 1), multiply the original function with 2, i.e., take f(x) = 2
1+exp[−(α+βx)] . To get an

increasing sigmoidal function that spans the interval (−1, 1), subtract 1 from the previous,
i.e., take f(x) = 2

1+exp[−(α+βx)] − 1.

5. (a) The graph of logit(p) = ln
(

p
1−p

)
is

Notice the two vertical asymptotes at p = 0 and at p = 1: at these points, the function
goes to minus and plus infinity, respectively, and hence takes every possible value on the
vertical axis.
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(b) The equation logit(p) = α + βx can be rearranged into p(x) = 1
1+exp[−(α+βx)] , the

sigmoidal function in exercise 4. The detailed steps are

ln

(
p

1− p

)
= α + βx

p

1− p
= eα+βx

1− p
p

=
1

p
− 1 = e−(α+βx)

1

p
= 1 + e−(α+βx)

p =
1

1 + e−(α+βx)

6. The log-log regression line is (ln y) = a+ b(lnx). Rearrange this equation to express y
as a function of x:

y = ea+b lnx = (ea)(eb lnx) = k(eb lnx) = kxb

where I wrote k = ea (a positive number). y is thus proportional to xb.

7. In one period of 15 min, there are two descendants; in n such periods, there are 2n

descendants. Solving the equation 2n = 2 · 1035 yields n = 117.26 periods of 15 min each,
i.e., 29.32 hours: In little more than a day, the descendants of a single bacterium would
outweigh the Earth! Of course there is no way to maintain ideal conditions for all this
time. As these numbers aptly illustrate, population growth must be limited by shortage
of food and other factors, which slow and eventually stop population growth.

8. The half-life is the length of time during which the activity decays to 1/2 times the
original. After n half lives, the remaining activity is (1/2)n. If we seek n such that the
remaining activity is only 1%, then we need to solve the equation (1/2)n = 0.01, which
gives n = 6.64 half-lives. Repeating the same with 1 ppm (= 10−6) instead of 0.01 gives
n = 19.93 half-lives. For Cs-137, n = 6.64 half lives are 199 years and n = 19.93 half lives
are 598 years.

9. (a) 11.5/min/g carbon; (b) ca 45 000 years old.

10. (a) α is greater for more opaque water; (b) α = 0.23/m; (c) 9.21 m

11. (a) t = ln 10
r

(b) At the end of the first daytime period, the weight of the algae is w(0)e14r = 1·e1.4 =
4.055g, i.e., the algae do not reach 10g in the first day. At the end of the night, there
remains 4.055 · e−10µ = 4.055 · e−0.2 = 3.320g. By the end of the second daytime period,
the algae grow by a factor 4.055 again, i.e., they reach 3.320 · 4.055 = 13.46g. Since this
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is more than 10g, it should happen during the second daytime period that the algae hit
10g. Let t denote the time in hours since the beginning of the second day. The weight
of the algae during the second day is w(t) = 3.32ert = 3.32e0.1t in grams, and from the
equation 3.32e0.1t = 10, we obtain t = 11.03h. Hence the weight of the algae reaches 10g
at 11.03 hours of the second daytime period.

12. (b) To check whether the proposed function x(t) = c
a
−
(
c
a
− x(0)

)
e−at is indeed the

solution, take its derivative:

dx(t)

dt
= −

( c
a
− x(0)

)
e−at · (−a) = (c− ax(0))e−at

Substitute the proposed solution also into the right hand side of the differential equation:

c− ax(t) = c− a
( c
a
−
( c
a
− x(0)

)
e−at

)
= (c− ax(0))e−at

The two sides of the differential equation are indeed equal when the proposed solution
is substituted, i.e., the proposed solution is indeed the solution of the differential equation.

(c) The figure below shows x(t) = c
a
−
(
c
a
− x(0)

)
e−at with parameters c = 1 and a =

0.5 for different initial values x(0). As time increases, x(t) tends towards c/a = 2 because
in x(t) = c

a
−
(
c
a
− x(0)

)
e−at, the difference c

a
− x(0) is multiplied with an increasingly

small factor e−at, such that for large t, x(t) is approximately c
a
. If x(0) = c/a, the solution

is a constant line (grey line in the figure).

13. H ′(p) = 2[(1 − p) + p(−1)] = 2[1 − 2p] is zero when p = 0.5. The second derivative
H ′′(p) = −4 is negative, hence H has a maximum rather than a minimum at p = 0.5.

14. The first derivative is

f ′(x) = αe−
(x−m)2

2σ2

[
−(x−m)

σ2

]
which is zero at x = m. The second derivative

f ′′(x) = αe−
(x−m)2

2σ2

[
(x−m)2 − σ2

σ4

]
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is negative when (x−m)2 < σ2, i.e., when |x−m| < σ; the middle part of the Gaussian
function is therefore concave. This middle part includes x = m, which means that the
function has indeed a maximum, not a minimum. The second derivative is positive, and
hence the Gaussian function is convex when |x −m| > σ. In other words, the Gaussian
function is concave for x between m− σ and m+ σ, and convex outside this interval.

15. The mode of the lognormal distribution is at x = em−σ
2
.

16. The first derivative of rN(1−N/K) is r(1− 2N/K), which is zero at N = K/2. The
second derivative is −2r/K < 0. Hence N = K/2 yields the fastest population growth.

17. (a) The maximum fecundity is (i) xmax =
√
p0/c and (ii) xmax = 1

α
ln c

b
.

(b) For the case (i), f ′(x) is zero at x = s
2c

and the second derivative is f ′′(x) = −2c < 0.
s
2c

is therefore the optimal fecundity, provided that it is less than the maximum fecundity,

i.e., provided that s
2c
<
√
p0/c; in this case, the mother survives with some positive

robability and the population is iteroparous. If s
2c

is greater than the maximum fecundity,
then f(x) increases for all x between zero and the maximum, and therefore the maximum
fecundity is the best. In this case, the mother’s survival probability is zero (each mother
reproduces only once), and the population is semelparous.

For the case (ii), one finds that f ′(x) is zero at x = 1
α

ln αc
s

, but since the second
derivative f ′′(x) = α2ce−αx is positive, this point is a minimum, not a maximum. If
1
α

ln αc
s

is greater than the maximum fecundity 1
α

ln c
b
, then f(x) is decreasing for all x

between zero and the maximum, and therefore zero fecundity is the best (but this means
that the population goes extinct since realistically p(x) must be less than 1 even at
x = 0). In the opposite case, f(x) has a minimum between zero and xmax, and either
zero or the maximum fecundity may be the best; to decide which of the two, see whether
f(0) = p(0) = c − b is greater or smaller than f(xmax) = sxmax = s

α
ln c

b
. With trade-off

function (ii), the population cannot be iteroparous.

18. (a) s(T ) = e−µT

(b) The optimal age at maturation is Topt = 1
k

ln (3k+µ)b
aµ

. Note that this is negative if

(3k+ µ)b < aµ; in this case, the best is to mature at birth without growth, i.e., with size
L(0) = a− b. R′(0) = (a− b)2c[(3k+µ)b−aµ] is positive whenever Topt is positive. Hence
every positive Topt corresponds to a maximum of R(T ).
(c) The size at the optimal maturation age is L(Topt) = 3ak

3k+µ
.

(d) If µ increases, L(Topt) decreases: the juveniles mature at a smaller size (and younger
age).

19. (a) βopt =
√

c+ν
a

; α(βopt) = ν + 2c+ b
√

(ν + c)/a

(b) If ν increases, βopt increases; and since α(β) is an increasing function of β, α(βopt) also
increases.
(c) Decreasing p is equivalent to increasig 1−p and therefore to decreasing 1/(1−p). The
derivative of 1/(1− p) = (α/ν)− 1 with respect to ν (using α = ν + 2c+ b

√
(ν + c)/a) is

−
(b/2a)(ν + 2c) + 2c

√
(c+ ν)/a

ν2
√

(c+ ν)/a
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which is negative. Increasing ν therefore decreases 1/(1 − p), and this is equivalent to
decreasing p, the probability of dying of the disease.

20. For brevity, I use the ”dot” notation for the time derivative: ẋ means dx
dt

.

(a) ṡ1 = −k1es1 + k−1x1

ṡ2 = −k2x1s2 + k−2x12

ẋ1 = k1es1 − k−1x1 − k2s2x1 + k−2x12

ẋ12 = k2s2x1 − (k−2 + k3)x12

e = e0 − (x1 + x12) and p = s10 − (s1 + x1 + x12) = s20 − (s2 + x12)

where e0, s10 and s20 are the initial (total) amounts of the enzyme and of the substrates
S1 and S2, respectively.

(b) ṡ = −k1es+ k−1x

ẋ = k1es− (k−1 + k2)x

ė∗ = µei− νe∗

i̇ = −µei+ νe∗ − αi
e = e0 − (x+ e∗) and p = s0 − (s+ x)

where e0 and s0 are the initial (total) amounts of the enzyme and of the substrate,
respectively. Think about possible weaknesses or alternatives of these models before
checking the footnote5!

21. SIR-model:

dS

dt
= b(N)N − µS − βSI

dI

dt
= βSI − (µ+ α + ν)I

dR

dt
= νI − µR

22. Predator-prey model:

dN

dt
= rN(1−N/K)− βNP

dP

dt
= γβNP − δP

Think of weaknesses of this model before checking the footnote6!

5(a) Can S2 bind to the enzyme before S1 binds? For some enzymes, the order of binding is fixed,
but for others, it is not. Can S1 be released from the complex X12 without releasing S2? Isn’t the last
reaction reversible? (b) Would not I decay also when bound to the enzyme? In the present model, the
inhibitor eventually runs out; would not it be supplied by another process in the cell?

6The predator puts all the resources it gains from the prey into reproduction, how does it maintain
its own body? Shouldn’t also the death rate of the predator depend on the food intake or on energy
reserves? You might include also the handling time a predator must spend on each prey, i.e., include the
Holling II functional response.
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23. Using the parameter values r = 2.5, K = 1, N(0) = 0.01 and ∆t = 0.1, one obtains
the figure below:

24. (a) Since c is the asymptotic value of f(x), the removal is never faster than c. If
u > c, then the right hand side of the differential equation is always positive, i.e., the
alcohol keeps accumulating and eventually would go to infinitely high concentration if the
person did not die.
(b) x̂ = ku/(c−u). The figure below shows the equilibrium concentration as the function
of the intake u for c = 0.25 g/l/h and k = 1 g/l.

Notice the vertical asymptote at u = c = 0.25 g/l/h: If u exceeds c, there is no (non-
negative) equilibrium concentration. Instead, x increases indefinitely (leading to serious
alcohol-poisoning or death).
(c) 1.125 drinks per hour7

25. The model has three equilibria, N̂1 = 0 (the trivial equilibrium), N̂2 = A (the
so-called Allee threshold), and N̂3 = K (as in the logistic model). The derivative of
f(N) = rN(N/A−1)(1−N/K) is f ′(N) = r(N/A−1)(1−N/K)+rN(1/A)(1−N/K)+
rN(N/A− 1)(−1/K). Evaluating the derivative at the equilibria, we obtain

7One can drink more in a bar-hopping evening, but the evening fortunately does not last long enough
for the alcohol concentration to reach equilibrium or infinity.
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f ′(0) = −r < 0, i.e., the trivial equilibrium N̂1 = 0 is stable
f ′(A) = r(1−A/K) > 0 (recall that A < K), i.e., the equilibrium N̂2 = A is unstable
f ′(K) = −r(K/A− 1) < 0, i.e., the equilibrium N̂3 = K is stable

Since the trivial equilibrium is stable, small populations go extinct. The initial popu-
lation size must be above the Allee threshold, i.e., above the unstable equilibrium N̂2 = A
for the population to grow and attain the positive stable equilibrium N̂3 = K (sketch
f(N) to see this).

26. (a) T̂ (N) = αN/δ (b) If T < αN/δ, then dT/dt is positive, i.e., T increases towards
αN/δ. If however T > αN/δ, then dT/dt is negative, i.e., T decreases towards αN/δ. In
both cases, T moves towards T̂ (N) = αN/δ, i.e., T̂ (N) is stable.
(c) Substituting T = αN/δ into the differential equation dN/dt yields

dN

dt
= bN −

(
µ+ ρ

αN

δ

)
N = (b− µ)N

(
1− N

(b− µ)δ/(ρa)

)
which is the logistic equation with r = b − µ and K = (b − µ)δ/(ρa). Note that K is
positive if r = b− µ is positive, i.e., if the bacteria can grow in a toxin-free environment.
K becomes infinite if α or ρ goes to zero. If the toxin is not produced (α = 0) or it is
not harmful (ρ = 0), then in this model there is nothing that would limit the bacteria,
and exponential growth continues at the rate r = b−µ ad infinitum. In reality, of course,
food limitation or other factors would influence the rates of reproduction and death, but
this model considered only the effect of the toxin.

27. (a) R̂ = c
α+βN

, stable

(c) The consumer is viable if the per capita growth rate at N = 0 is positive, i.e., if
γβc
α
> µ.

(d) The consumer has the trivial equilibrium N = 0 and the nontrivial equilibrium
N̂ = γβc−αµ

µβ
. When the population is viable, then the nontrivial equilibrium is posi-

tive and stable. When the population is not viable, the trivial equilibrium is the only
biologically possible equilibrium and it is stable. The figure below shows the equilibria
and their stability (thick line: stable, dashed line: unstable) as a function of µ. There is
a transcritical bifurcation at µ = γβc/α.
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28. (a) The equations for the numbers of particles are

dxV

dt
= r(c)xV − xF

dcV

dt
= c0F − kr(c)xV − cF

and for the concentrations

dx

dt
= r(c)x− x(F/V )

dc

dt
= c0(F/V )− kr(c)x− c(F/V )

Notice that the dynamics of concentrations depends only on the ratio F/V and not on
F or on V separately. This is because the concentrations remain the same if we use a
larger chemostat (V higher) and adjust the flow proportionally (F proportionally higher).

(b) Trivial equilibrium: ĉ = c0, x̂ = 0 (there are no bacteria, the nutrient flows through
the chemostat without change)

Nontrivial equilibrium: ĉ = a(F/V )/(ρ − (F/V )), x̂ = (c0 − ĉ)/k. ĉ is less than c0 such
that x̂ is positive if (F/V ) < c0ρ/(a + c0); this condition also guarantees that (F/V ) is
less that ρ and therefore ĉ is positive. The nontrivial equilibrium is therefore biologically
meaningful if

(F/V ) <
c0ρ

a+ c0
If this condition is violated, then there is no positive equilibrium; the flow F is too high
for the volume of the chemostat V , and the culture is flushed out.

(c) The optimal flow is determined by the equation

c0 = a(F/V )
2ρ− (F/V )

(ρ− (F/V ))2

The figure below shows c0 as a function of (F/V ), i.e., the points of the curve are the
pairs of c0 values and the corresponding optimal flow per volume. Hence (i) the optimal
flow F is proportional to the volume V ; and (ii) the optimal flow increases (!) with the
nutrient concentration of the inflow, c0.
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