É. Kisdi & G. Meszéna (1993):

Density dependent life history evolution in fluctuating environments

In: "Adaptation in a stochastic environment", eds. C.W. Clark & J. Yoshimura, Lecture Notes in Biomathematics, vol. 98, pp. 26-62, Springer Verlag, Berlin

 

Environmental fluctuation may not only alter the life history optimization problem but also query optimization itself. Under density regulation annual growth rate is influenced by the direct effect of fluctuation as well as by an indirect effect due to fluctuating population density. For a weak fluctuation there is an optimal strategy which is slightly different from the stable environment optimum, since (a) it should adapt to an average density altered by fluctuation, (b) it should diminish the fluctuation in annual growth rate caused by direct and indirect effect of environmental fluctuation, and (c) it should exploit an increase, but avoid a decrease in average annual growth rate caused by fluctuation. The "optimal" strategy becomes meaningless if the fluctuation is strong, because long run growth rates are not independent of the established population. Coexistence (or exclusion of the rare strategy) may be mediated by a sufficiently strong fluctuation, which is illustrated by a simple model elucidating the connection with resource-competition models. Moreover, some other consequences of strong fluctuation are demonstrated by the example of a lottery model, such as multiple ESS, ESS which cannot invade an established population, and historical events which determine the outcome of the evolution.

 

Back to publication list