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The Evolution of Virulence  II

A population of hosts grows, in absence of the disease, according to the simple model

( )dN b N d N
dt

(1)

where N is population density, ( )b N  is the density-dependent birth rate, and d is the
death rate. We consider a disease that causes lifelong infection (no recovery). Infected
individuals die at a rate d , where , the extra mortality caused by the disease, is
called the virulence. All individuals are born free of the disease. The disease is
transmitted between infected and susceptible individuals at rate , such that the
dynamics of susceptible (S) and infected (I) individuals are given by

( )
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with N S I .

The disease increases the rate of mortality because the pathogen is using resources to
multiply in the body of the host and because it produces symptoms (such as coughing,
bleeding, etc.) which enhance its transmission to other host individuals. Faster
replication in the body and more symptoms ensure a higher transmission rate but
cause higher mortality as well. We thus assume that  is an increasing function of
virulence. Note however that  cannot exceed the contact rate between individuals,
hence the function ( )  will saturate for large values of . Different strains of the
pathogen differ in their virulence, , and in the associated transmission rate, ( ) .
We say that a strain is viable if it can spread in a disease-free population.

In this project, we study the consequences of superinfection. When superinfection
occurs, a second strain of the pathogen infects an already infected host. Because more
virulent strains replicate better in the body, it is expected that more virulent strains
generally replace the less virulent strain within the host. We assume that the within-
host dynamics is fast such that this replacement can be considered instantaneous.
Upon superinfection, strain 2  takes over a host infected by strain 1  with probability

2 1( ) , where  is an increasing function.



There are very interesting results on different evolutionary scenarios depending on whether
is continuous or not and whether it is continuously differentiable or not. For example, a
discontinuous function results if we take the within-host dynamics to be fully deterministic,
such that even a slightly more virulent strain always wins.  In this project however we make
the mathematically most straightforward assumption that  is a smooth function. With this
assumption, less virulent strains may win against more virulent ones with some small
probability ( 2 1( ) is small but still positive when 2 1 ). This can be justified by
stochastic effects within the host body.

When a mutant strain with virulence mut  appears in the population infected by strain
, but the density of hosts infected with the mutant strain is still low, the dynamics of

mutant-infected hosts are given by
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where Ŝ  and Î  are the density of susceptible and of infected individuals,
respectively, in the equilibrium population with the resident strain, as determined
from equations (2) with virulence  and transmission rate ( ) . The first term in
equation (3) describes infection of susceptibles by the mutant pathogen, and the
second term is death (natural plus disease-induced). The third term corresponds to
superinfection by the mutant strain, when it is infecting and taking over hosts already
infected with the resident strain. The last term is the loss of mutant-infected hosts due
to superinfection with the resident strain.

For numerical work, assume that the disease-free population grows logistically, i.e.,
( )b N a cN . Use 2 1 2 1( )  =  1 1 exp ( )v k  for the superinfection

function, choosing parameters such that (0)  is small (equally and less virulent
strains do not take the host over too often). For the transmission rate, start with

( ) 1 exp( )  (you can explore other functions later).

Construct PIPs and show that two strains of the pathogen can coexist (remember to
study only viable strains). Investigate the singular strategy and its stability properties;
find examples for evolution to an ESS and for evolutionary branching. Construct the
isocline plot in an example with evolutionary branching to explore the coevolution of
two strains. Study the effect if k, the steepness of the superinfection function , on
the dynamics of evolution.


