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The Evolution of Virulence  I

A population of disease-free hosts grows according to one of the two simple models

( )dN b d N N
dt

(1)

or

( )dN b N d N
dt

(2)

where N is population density, b is the per capita birth rate and d is the death rate. The
two models differ in whether birth or death is density dependent: In model 1, the
death rate is a monotonic increasing function of N and in model 2, the birth rate is a
monotonic decreasing function of N.

Consider a disease that causes lifelong infection (no recovery). Infected individuals
die at a rate of d , where , the extra mortality caused by the disease, is called
the virulence. All individuals are born free of the disease. The disease is transmitted
between infected and susceptible individuals at rate , such that the dynamics of
susceptible (S) and infected (I) individuals are given by

( )

( )

dS bN SI d N S
dt
dI SI d N I
dt

(3)

in model 1 and

( )

( )

dS b N N SI dS
dt
dI SI d I
dt

(4)

in model 2, with N S I .

The disease increases the rate of mortality because the pathogen is using resources to
multiply in the body of the host and because it produces symptoms (such as coughing,
bleeding, etc.) which enhance its transmission to other host individuals. Faster
replication in the body and more symptoms ensure a higher transmission rate but
cause higher mortality as well. We thus assume that  is an increasing function of



virulence, . Note however that  cannot exceed the contact rate between
individuals, hence the function ( )  must saturate for large values of . Different
strains of the pathogen differ in their virulence, , and in the associated transmission
rate, ( ) . A strain is viable if it can spread in a disease-free population.

We further assume that once a host is infected with a certain strain, it cannot be
infected by any other strain (no co-infection or superinfection). When a mutant strain
with virulence mut  appears in the population infected by strain , but the density of
hosts infected with the mutant strain is still low, the dynamics of mutant-infected
hosts are given by the following two equations:

Model 1

ˆ ˆ( ) ( )mut
mut mut mut mut

dI I S d N I
dt

(5)

Model 2

ˆ( )mut
mut mut mut mut

dI I S d I
dt

(6)

where Ŝ  and N̂  are the density of susceptibles and of all individuals, respectively, in
the equilibrium population infected with the resident strain, as determined from
equations 3 and 4 with virulence  and transmission rate ( ) .

Start with model 1 and assume that the transmission rate is a simple hyperbolic
function of virulence, ( ) /( )c a  and the death rate is a linear function of
density, ( )d N A BN . Construct PIPs and show that two strains of the pathogen
can coexist. Investigate the singular strategy and its stability properties. It is possible
to prove also analytically that whenever ( )  is concave and the viable strains are in
an interval ( , )m M  with  0 m M , there is a unique evolutionarily singular
strain, which is both convergence stable and evolutionarily stable.

Next, find a different function ( )  such that the model exhibits evolutionary
branching. Construct the isocline plot in an example with evolutionary branching to
explore the coevolution of two strains.

In Model 2, show that different strains of the pathogen cannot coexist in equilibrium.
Find the evolutionarily stable strain *  and illustrate the results with a PIP.


