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Evolution of resistance in host-pathogen systems

In this project, we consider a pathogen that causes lifelong infection of its hosts, and
assume that hosts may develop resistance against this pathogen (i.e., are able to
defend against getting infected) but only at some cost. The question is how much
resistance the host should evolve.

The following background will hopefully further motivate this project but its understanding is
not necessary for the immediate job. From basic models of epidemiology, such as the SIR
model, you may be aware of the phenomenon of herd immunity. Herd immunity means that if
a large enough fraction of the population is resistant or immune to the pathogen, then there is
no epidemic outbreak, because the expected number of secondary infections during the
lifetime of a primary infection (i.e. till recovery or death of the infected host) is less than 1 and
is thus not enough to replace the primary infected host. The point here is that not every
individual need to be resistant for herd immunity, and it is possible to enjoy protection from
herd immunity without being resistant to the disease. When resistance is costly, there is an
incentive to rely on herd immunity and avoid paying the cost. This is a form of cheating,
because such non-resistant individuals enjoy benefit from others' costly resistance. Of course
if non-resistant cheaters are too frequent, then herd immunity collapses. Yet we may expect
the evolution of resistant and cheating strategies, and this is what the present project will
elaborate on.

A basic ecological model of a lifelong infection is given by
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where S and I are respectively the number of susceptible and the number of infected
hosts. It is assumed that susceptible and infected individuals reproduce equally and
newborns are free of infection, hence all the ( )r S I  newborns are added to the
susceptibles (r is the birth rate). The death rate, ( )q S I , depends linearly on total
population size S I  such that in absence of the pathogen, the host population grows
according to the logistic model.  is the infection rate and  is the rate of death
caused by the disease, called the virulence.

We assume that different strains of the host differ in how much they are resistant to
the disease. More resistance implies a lower rate of contracting the disease and
therefore a smaller value of   (full resistance is achieved when 0 ). Resistance
implies a cost: we assume that more resistant strains have lower birth rates such that r
is some increasing function ( )r  in equations (1).



Assume that a rare mutant host strain characterised by mut  is present in the
established population of strain . The population dynamics of the mutant strain are
given by
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where S and I are the equilibrium densities of the resident population calculated from
equation (1).

Whether or not the mutant can invade can be determined by investigating the stability
of the trivial equilibrium of eqs. (2), 0, 0mut mutS I : If the trivial equilibrium is
unstable then mutants grow from a low population density. This can be done
calculating the Jacobian of eqs. (2). There is however a simpler way to obtain a fitness
proxy: Calculate the number of newborn offspring expected by a mutant host during
its lifetime (the basic reproduction number, R0). If R0 is greater than 1, then the mutant
strain spreads, otherwise the mutant dies out. One can use R0 to obtain PIPs, singular
strategies, and their stability properties just as one can use the invasion fitness.

To calculate R0 of the mutant strain, notice first that every individual starts its life
uninfected. The uninfected stage is left either via infection, which occurs at rate

mut I , or via death, which occurs at rate ( )q S I . Because S and I of the resident
population are constant at equilibrium, both infection and death are exponential decay
processes. The rate of removal of susceptibles is ( )mut I q S I  and therefore the
expected lifetime spent uninfected is 1 ( )mut I q S I . Uninfected lifetime ends

with infection rather than death with probability ( )mut mutI I q S I . If the
individual gets infected but remains alive, it can expect an additional lifespan of
1 ( )q S I  as infected (note once somebody is infected, it stays infected till
death; the formula is analogous to the uninfected lifespan except that disease-induced
mortality replaces infection). If, on the other hand, an individual exits the uninfected
stage via death, there is no lifetime to add. Putting this together, a newborn can on
average expect a lifetime of
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(note that this depends both on the mutant and on the resident trait values mut  and ;
the latter is via the equilibrium densities S and I). The individual gives birth to ( )mutr
offspring per unit of time throughout its lifetime, hence the total number of offspring
of a mutant is

0 ( )mut mutR r L (4)



When necessary for numerical work, assume the trade-off function ( )r  is either
linear [ ( )r a c ] or is given by
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assuming 0a . You can use the left branch of this hyperbola (with 0, 0b c  and
b ) for a convex trade-off function or the right branch (with 0, 0b c ) for a

concave trade-off function.

Investigate the adaptive dynamics of  by constructing PIPs and exploring the
stability properties of monomorphic singularities. Find examples for evolutionary
branching. Construct the isocline plot for an example with evolutionary branching to
explore the coevolution of two host strains: Will one strain evolve to be a cheater?
Investigate the effect of changing the virulence ( ) on the adaptive dynamics.


