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1Setup:

- Bulk gravity in d + 1 dim/boundary CFT in d dim duality, AdSd+1/CFTd duality

- Black holes in 5d have temperature T and entropy

S =
A

4G5

which are also those of boundary CFT

- Can one in the boundary theory define pressure satisfying p′(T ) = s(T )?

ep(T )V/T =
∫ Dφ e−

∫β
0 dτd3xL = e−Sgrav = e

−1
2πG5L2

∫β
0 dτd3x

∫z0
ε dz

√−g(z0)

The prototype is AdS5/CFT4 with CFT4 = (N = 4 SYM), with some experimental
support:



2N = 4 SYM prediction ”compared with hot QCD”:
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Expectation:

Wrong for T<∼3Tc (not conformal) and T>∼100Tc (not strongly coupled)



3Black Holes in Classical Gravity

Einstein-Hilbert for AdSd+1 (some coordinates xµ = x0, x1, ..., xd):

S[gµν] =
1

16πGd+1

∫
dd+1x

√−g


R +

d(d− 1)

L2


 =

1

16πGd+1

∫
dd+1x

√−g
−2d

L2
,

ds2 = gµνdxµdxν,

EOM from δS/δgµν = 0:

Rµν − 1

2
Rgµν − Λgµν = 0


= 8πGTµν, Tµν =

−2√−g

δSmatter

δgµν


 .

For AdSd+1 of radius L:

Λ =
d(d− 1)

2L2
⇒ Rµν = − d

L2
gµν

There is a length scale L associated with AdS!



41. Black hole in our world, d = 4, solution of

Rµν = 0 or of Rµν − 1

2
Rgµν = 0

which is asymptotically flat (ηµν) and regular on and outside an event horizon
(coordinates t, r, θ, φ):

ds2 = −F (r)dt2 +
dr2

F (r)
+ r2 (dθ2 + sin2 θdφ2)

︸ ︷︷ ︸
≡dΩ2

2

F (r) = 1− rs

r
rs = 2MG4

THawk =
F ′(rs)

4π
=

1

4πrs
=

1

8πMG4
,

SBH =
A

4G4
= 4πG4M

2 A = r2
sΩ2.

dM = TdS, but M = 2TS!

Charged BH, Reissner-Nordström:

F (r) = 1− 2GM

r
+

G(q2 + p2)

r2



52. Pure AdS5, a solution of

Rµν − 1

2
Rgµν =

6

L2
gµν with Rµναβ =

R

(d− 1)(d− 2)
(gµαgνβ − gµβgνα)

With coordinates t, x1, x2, x3, z

ds2 =
L2

z2
(−dt2 + dx2 + dz2) z = 0 is boundary, z > 0 is bulk

AdS5 black hole:

ds2 =
L2

z̃2


−


1− z̃4

z4
0


 dt2 + dx2 +

dz̃2

1− z̃4/z4
0




with temperature

THawk =
1

πz0

and entropy

S =
A

4G5
= V3 · π

2N 2
c

2
T 3 A =

∫
d3x

√−γ = V3
L3

z3
0

,
L3

4πG5
=

N 2
c

2π2



6Now you have entropy, what about p(T ), even better Tµν?

Expect Tµν(x) to be related to gMN(x, z).

Method: write the 5d metric in the form

gMN =
L2

z2



gµν 0
0 1




and expand near z = 0:

gµν(x, z) = g(0)
µν (x) + g(2)

µν (x)z2 + g(4)
µν (x)z4 + ....

Then

Tµν =
L3

4πG5

[
g(4)

µν + ...
]

Bulk black hole metric was

ds2 =
L2

z2


−(1− z4/(4z4

0))
2

1 + z4/(4z4
0)

dt2 +


1 +

z4

4z4
0


 (dx2

1 + dx2
2 + dx2

3) + dz2






7

≡ L2

z2







gµν(x, 0) + g(4)

µν (x)
︸ ︷︷ ︸
∼Tµν

z4 + ...



dxµdxν + dz2





⇒ g(4)
µν = diag(3, 1, 1, 1)

1

z4
0

,
1

z0
= πT.

Magnitude: Relating string theory → supergravity

16πG10 = 16πG5L5π3 = (2π)7α′4g2
s, gs = g2/4π nontrivial!!

gs = closed string coupling, one handle costs g2
s . L4 = g2Ncα

′2

⇒ L3

G5
=

2N 2
c

π

⇒ Tµν =
L3

4πG5
g(4)

µν =
N 2

c

2π2
g(4)

µν =




3aT 4 0 0 0
0 aT 4 0 0
0 0 aT 4 0
0 0 0 aT 4




a =
π2N 2

c

8



8Black holes with other symmetries:

ds2 = −

r̂2 + k − µ

r̂2


 dt2 +

dr2

r̂2 + k − µ/r̂2
+ r2dΩ̃2

3,k r̂ ≡ r

L
dΩ̃2

3,k = dη2 + sin2η (dθ2 + sin2θdφ2) k = +1 S3

= dy2
1 + dy2

2 + dy2
3 k = 0 R3

= dη2 + sinh2η (dθ2 + sin2θdφ2) k = −1 H3 ⇐ we

T =
F ′(r+)

4π
=

1

πL

r̂+ − 1

2r̂+


 ⇒ r̂+ = 1

2

(
πTL +

√
(πTL)2 + 2

)

r+ is the larger root of r̂2 − 1− µ
r̂2 = 0

T ≥ 0 means r̂+ ≥ 1√
2
, µ ≥ −1

4

s =
S

L3Ω̃3

=
1

4G5
r̂3
+,



9

k=+1

k=0 k=-1

r+rex
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Figure 1: The dependence of temperature on r+ for transverse metrics S3,R3,H3 (k = +1, 0,−1); πLT is plotted vs. r+/L.

For k = −1 s(T = 0) = N2
c

√
2

8πL3 is non-zero!

Multiply degenerate ground state!



10Boundary thermo of 5d AdS BH with hyperbolic horizon, k = −1

Transform metric to the form:

ds2 =
L2

z2





−


1−



µ + 1

4

4


 ẑ4




2


1 +

ẑ2

2
+



µ + 1

4

4


 ẑ4




dt2 +


1 +

ẑ2

2
+



µ + 1

4

4


 ẑ4


L2 dΩ̃2

3 + dz2





Boundary metric:

g(0)
µν =




−1 0 0 0
0 L2 0 0
0 0 L2 sinh2η 0
0 0 0 L2 sinh2η sin2θ




, R ν
µ = − 2

L2 diag(0, 1, 1, 1)

= hyperbolic Robertson-Walker with constant scale factor!

〈T ν
µ 〉vacuum = 0, Bunch 1978.



11Energy-momentum tensor is all fluid, no vacuum:

T ν
µ =

L3

4πG5

µ + 1
4

4L4




−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




,
L3

4πG5
=

N 2
c

2π2
.

µ + 1
4 = 1

4 (πTL)2
(
πTL +

√
(πTL)2 + 2

)2
,

⇒ p(T ) =
1

3
ε(T ) =

π2N 2
c

8
T 4 1

4


1 +

√√√√√√√1 +
2

(πTL)2




2

, p(0) = 0

From
A

4G5
: s(T ) =

π2N 2
c

2
T 3 1

8


1 +

√√√√√√√1 +
2

(πTL)2




3

, s(0) =
N 2

c

√
2

8πL3

dε = Tds

but
dp

dT
= s(T )

1
√
1 + 2/(πTL)2

6= s(T ) unless T À 1/L ε 6= Ts− p



12This strongly coupled fluid in curved space is never thermalised:

Estimate collision time by

η =
1

4π
s = pτc ⇒

τc = λfree =
s

4πp
= L r̂3

+

r̂4
+ − r̂2

+ + 1
4

> L · L
r+
≈ 1

πT

- τc ¿ L if r+ À L, big black holes, πT À 1/L

- even then collision time is ∼ microscopic time 1/πT



13But there is a further mystery (for us):

The boundary partition function was to be evaluated from

ZCFT = ep(T )V/T = e
−1

2πG5L2
∫β
0 dτd3x

∫z0
ε dz

√−g(z0)

where in full glory the regulated gravity action in d dim is

S =
1

16πGd+1





∫
dd+1x

√−g
−2d

L2
−

∫
ddx

√−γ


2K +

2d− 2

L +
L

d− 2
R(γ)



z=ε





γµν = induced metric on the surface z = ε, K = its extrinsic curvature.

The z-integral above is:

∫ ẑ0

ε

dẑ

ẑ5


1− ẑ4

ẑ4
0





1 +

ẑ2

2
+

ẑ4

ẑ4
0


 =

1

4ε4
+

1

4ε2
− 1 + ẑ2

0

2ẑ4
0

+O(ε2), ẑ4
0 =

4

µ + 1
4

.

and the p(T ) coming from here satisfies dp/dT = s(T ), ε = Ts− p is unchanged but

ε− 3p = − 3N 2
c T

2

8L2


1 +

√√√√√√√1 +
2

(πTL)2






14What happens if a coordinate transformation is carried out in the bulk?

The boundary metric is changed by a conformal (Weyl) transformation:

g(0)(x) → ω2
Weyl

(x)g(0)(x)

A coordinate trafo t, r ⇒ τ, z in the AdS BH (d = 4):

ds2 =
L2

z2





−


1− µ

4



z

τ



d



2


1 +

µ

4



z

τ



d




2(d−2)
d

dτ 2 +

1 +

µ

4



z

τ



d




4
d

τ 2 dΩ̃2
d−1 + dz2





.

The boundary metric, ωWeyl = τ/L,

g(0)
µν = −dτ 2 + τ 2(dη2 + sinh2η dΩ2

d−2)

is flat; generalises Bjorken expansion to spherical expansion!

Where did the horizon at r = r+ disappear? Now a zero at z = (4/µ)1/d τ .



15Spherical similarity expansion in 1+(d-1)

Tµν = (ε+p)xµxν

τ2 +pgµν

Fixed time t:

v=0
v=1

v =
x

t
θ(t− |x|), uµ = (γ, γv) =

xµ

τ
, τ =

√
t2 − x2

Natural coordinates:

t = τ cosh η

xi = τ sinh η ωi, i = 1, d− 1

dΩ2
d−2 =

d−1∑

i=1
dω2

i

ds2 = −dτ 2 + τ 2
(
dη2 + sinh2 ηdΩ2

d−2

) ≡ −dτ 2 + τ 2dΩ̃2
d−1



16For d = 2 all is clear (0705.1791):

F (r) = r̂2 − 1− µ

r̂d−2
= r̂2 − 1− µ = 0 ⇒ r̂+ =

√
µ + 1

T ν
µ =

L
16πG3

µ + 1− 1

τ 2



−1 0
0 1


 =



−ε(τ ) 0

0 p(τ )


 +

L
16πG3

−1

τ 2



−1 0
0 1




︸ ︷︷ ︸
vacuum

s(τ ) =
πL
2G3

T (τ ) = p′(τ ), T (τ ) =

√
µ + 1

2πτ

For d = 4 in the coordinates (τ, η, θ, φ):

T ν
µ =

L3

4πG5

µ

4τ 4




−3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




,
L3

4πG5
=

N 2
c

2π2

〈T ν
µ 〉vacuum is unknown in these coordinates! Maybe in µ + 1

4 − 1
4 the −1

4 is vacuum?

For large r̂+, large BH, again consistent thermo with

T (τ ) =
1

4πτ


dr̂+ − d− 2

r̂+


 ≈ dr̂+

4πτ
, etc



17Conclusions

- The famous result pstrong coupling = 3
4pideal comes from an AdS BH with a flat horizon

- For a k = +1 spherical horizon there is a Hawking-Page phase transition at T = 1/L

- For a k = −1 hyperbolic horizon T can go all the way to zero. T, s and ε, p can be
defined but the system approaches thermalisation only when T À 1/L

- The AdS hyperbolic BH is the gravity dual of a spherically expanding system, which is
the closer to thermal equilibrium the larger Tτ is. Needs still computation of vacuum
energy in relevant coordinates

- Inclusion of three chemical potentials associated with SU(4) symmetry could sharpen
the analysis of thermodynamic (non)equilibrium. Much work has been done with a
multitude of rotating and charged 5d BHs.


