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These are notes from a graduate course in theoretical physics given at the University of

Helsinki over the years. It contains basic material which, as we feel, should be known to

everybody graduating in theoretical physics, from string theorists to ionospheric physicists.

The material has been covered in four 45 min weekly lectures during thirteen weeks, with

four hours of problem sessions each week.

This is not a course in ”many body quantum theory” with a detailed discussion of Green’s

function techniques etc.

The guiding idea is a path integral defining statistical and quantum systems and various

approximations to it: mean field plus fluctuations, coarse graining, integrating out irrelevant

degrees of freedom.

It is assumed that the participants of the course have had some 50 hours of lectures in classical

mechanics, electrodynamics, quantum mechanics and statistical physics each.



Chapter 1

Equilibrium thermodynamics

1.1 Basic concepts

Perhaps the most important concept in any course of many body physics is thermal equi-
librium. One should have both a physical understanding of thermal equilibrium (one needs
infinite systems, but in physics nothing is infinite) as well as an operative formal understand-
ing (define a system by an action, compute the partition function, compute physics by partial
derivatives of thermodynamic potentials). In this Chapter we shall remind the reader of the
standard formulas of equilibrium thermodynamics.

The key object of study in many particle physics is the partition function

Z = e−βF = Tre−βH =
∑

n=all states

e−βEn , β ≡ 1

T
, (1.1)

〈O〉 = Z−1TrOe−βH ≡ TrOρ (1.2)

and its reformulation in terms of path integrals

Z = e−βF = Tre−βH ⇒
∫
DΦe−S[Φ]/~, (1.3)

〈Φ1Φ2 . . . ΦN〉 =

∫
DΦ Φ1Φ2 . . . ΦNe−S[Φ]/~, (1.4)

where Φ is a set of fields, degrees of freedom, and S[Φ] is the Euclidean action of the theory
governing the dynamics of the fields Φ. We shall discuss path integrals in detail in Chapter
2. In Chapter 3 we move on to study ”ideal gases” and the multitude of their physical
applications.

Remember: in terms of eigenvalues an of a matrix A, TrA = a1 + a2 + · · · + aN , det A = a1a2 . . . aN =
exp(log a1 + log a2 + · · · + log aN ) = exp(Tr log A). This relation holds also for a general non-diagonal
matrix since both Tr and det are invariant under A → UAU−1. From here one can further derive
δ detA = det A Tr(A−1δA).
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4 CHAPTER 1. EQUILIBRIUM THERMODYNAMICS

The difference between Eqs. (1.1) and (1.3) is that of the difference between quantum me-
chanics and quantum field theory. In the latter the sum is over all possible field configurations,
not just over all the eigenstates of the Hamiltonian. The Euclidean action S[Φ] gives a weight
also to the configurations that do not obey the classical equations of motion and hence takes
into account all possible quantum fluctuations.

The word ”partition” refers to the way the fundamental degrees of freedom of the system are
arranged into the available states. It could be argued that partition is a more fundamental con-
cept than, say, thermal equilibrium, which corresponds to a very special partitioning. Indeed,
”partition” and ”correlation” may be considered as describing the fundamental properties of
the system while ”entropy” and ”temperature” are derived concepts.

To demonstrate this, let us consider a system that is divided up in j subsystems consisting of Nj identical
particles. Each subsystem containing Gj states and each state has energy Ej . Let us further impose a
global constraint: there can be only one particle per state. Then we have a problem which is identical to the
combinatorial problem of putting Nj balls into Gj slots. Each ball should be delivered into a slot independently,
i.e. without any correlation to past or future. This can be done in Zj = Gj(Gj − 1) · · · (Gj −Nj −1)/N ! ways
so that the number of possible partitions balls into slots in the subsystem is Zj = Gj !/Nj !Gj(−Nj)! and the
total number of the partitions for the whole system is

Z = ΠjZj . (1.5)

If we now define entropy as S = logZ it is clear it is just a measure of the number of partitions. Using
logx! = xlogx/e for x À 1 we find

S = −
∑

j

Gj [n̄j logn̄j + (1− n̄j)log(1− n̄j)] (1.6)

where we have defined the mean occupation number n̄j ≡ Nj/Gj .

Let us consider a system whose total energy and total particle number is fixed: N =
∑

Nj = const., E =∑
j EjNj = const. What is the most probable partition? We maximize S subject to the energy and particle

number constraint, writing
∂

∂n̄j
(S − αN − βE) = 0 , (1.7)

where α and β are Lagrange multipliers. We then find that the most probable occupation number is given by
the Fermi-Dirac distribution

n̄j =
1

eα+βEj + 1
, (1.8)

identifying α ≡ −µ/T, β ≡ 1/T . (Had we allowed many particles to occupy the same state, we would have
obtained the Bose-Einstein distribution.) Thus thermal equilibrium is seen to correspond to the maximum
entropy state or to the likeliest partition of completely uncorrelated degrees of freedom. If all other things are
kept equal, adding correlations (i.e. interactions) will decrease the number of available partitions and hence
entropy.

Note that if Gj À Nj we could argue that when partitioning particles into the available states, there is a
very small probability to hit a state that is already occupied so that we could write just Zj ≈ GN

j /N !; the
resulting most probable partition corresponds then to the Maxwell-Boltzmann distribution.

A similar line of argument can be carried over to quantum mechanics, where instead of classical
energies one has to deal with operators. Recall that in quantum mechanics

E = 〈H〉 = TrρH , (1.9)
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where ρ is the density matrix, and

S = −
∑

pnlogpn = −ρ logρ . (1.10)

Let us now vary S by requiring that E =const and Trρ = 1:

0 = δ(S − β〈H〉 − αTrρ)

= Trδρ(−logρ− I − βH − α) . (1.11)

Here again β and α are Lagrange multipliers. Eq. (1.11) should hold for arbitrary variation
so that we find the solution (taking now α = 0)

ρ = const× e−βH ≡ Z−1e−βH , (1.12)

which, recalling that Trρ = 1, reproduces Eq. (1.1).

1.2 Global versus local thermal equilibrium

Infinity is defined by a dimensionless number À 1, so effectively a spatially infinite system
requires system size À relevant length scale, which could be some correlation length ξ or some
mean free path λ ≈ 1/(nσ). Here n = number density and σ = cross section. Alternatively
temporal infinity would mean system life time À relevant dynamical time scale, which could
be the combination ξ/vsound or the collision time τcoll = λ/vthermal.

Exercise. Why λ ≈ 1/(nσ) is a good estimate of a mean free path and τcoll = λ/vthermal of collision time?
Check dimensions.

Theoretically one can study a homogenous infinite system (say, T = constant everywhere),
but in practice one always has gradients (say, T = T (x) varies as a function of one spatial
coordinate x). Nevertheless, there may exist local thermal equilibrium if the range in space
or time within which T varies is À some microscopic scale. Formally one could write as the
conditions for local equilibrium λfree · ∇ ¿ 1 or τcoll∂t ¿ 1 (small λfree or frequent collisions
thermalise the system locally). Dynamically, this also induces hydrodynamics (∇p ⇒ flow
= v(t,x)). The smaller the above dimensionless variables are, the better the assumption of
ideal = adiabatic = entropy conserving = isentropic motion. This dynamics is built in the
Euler equations. Corrections of O(λfree∇) give rise to dissipation (∆S > 0), viscosities, heat
conductivity, etc, built in the Navier-Stokes equations. (See Ch. 5.)

1.3 Microcanonical ensemble

Let us now go through the pragmatic formal side of thermodynamics. We define various en-
sembles (microcanonical, canonical, grand canonical, etc) which are minimised in equilibrium.
The value of the potentials at the minima is unspecified (this is the cosmological constant
problem!), but partial derivatives (of first, second, etc order) give physics.
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In the microcanonical ensemble the potential E depends on only extensive (proportional to the
size of the system) variables: E = E(S, V,A, B, N, ...), where, for generality, several different
variables are indicated. These variables, together with their conjugate intensive variables, are

E = potential
S = entropy ↔ T = temperature
V = volume ↔ p = pressure
A = area ↔ σ = interface tension
B = magnetic flux density ↔ H = magnetic field
N = conserved particle number ↔ µ = chemical potential.

Then E is explicitly given by

E = TS − pV + µN + σA + V H ·B + . . .

= T (S, V,A, B, N)S − p(S, V, A, B, N)V + µ(S, V,A, B, N)N + . . . (1.13)

The aim is to use capital letters for extensive variables and small letters for intensive ones.
For historical reasons, this does not work for T, H. We also define the intensive densities
ε = E/V , s = S/V and n = N/V . Often ε → ρ = mc2n.

The combination V H · B is also somewhat special. It should really be written as LH · AB
with V = LA and AB symbolising the magnetic flux ΦB (check dimensions!).

Differentiating Eq.(1.13) with respect to its variables gives

dE =
∂E

∂S
dS +

∂E

∂V
dV +

∂E

∂N
dN + . . .

= TdS − pdV + µdN + · · · (1.14)

Partial derivatives of E are physical and measurable:

1st derivatives ⇒ T,−p, µ, ...
2nd derivatives ⇒ Cv, Cp, v

2
sound, ...

There are lots of relations among partial derivatives; use, choosing z, ω suitably,

∂u

∂x
|y =

∂(u, y)

∂(x, y)
=

∂(u,y)
∂(z,ω)

∂(x,y)
∂(z,ω)

=

∣∣∣∣∣
∂u
∂x

∂u
∂y

∂y
∂x

∂y
∂y

∣∣∣∣∣ (1.15)

Starting from E, many further potentials with various names (sometimes confusing!) can be
defined by trading extensive↔ intensive variables by a Legendre transformation. A prototype
Legendre transformation is that in Hamiltonian mechanics:

L(q, q̇) = T − V ⇒ H(p, q) = pq̇ − L(q, q̇), p =
∂L

∂q̇
. (1.16)

Equally, starting from some f(x, y) and defining z = ∂f/∂y one can define

g(x, z) = f(x, y)− yz (1.17)
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satisfying

dg =
∂f

∂x
dx +

∂f

∂y
dy − ydz − zdy =

∂f

∂x
dx− ydz =

∂g

∂x
dx +

∂g

∂z
dz (1.18)

since ∂f
∂y

dy − zdy cancels.

1.4 Canonical Ensemble

Starting from E = TS−pV +µN = E(S, V,N) (omit possible other variables) trade extensive
S → intensive T by inverting T = ∂E/∂S to give S = S(T, ..). Relevant formulas are:

F (T, V, N) = E − TS = −p(T, V,N)V + µ(T, V, N)N

dF =
∂F

∂T
dT +

∂F

∂V
dV +

∂F

∂N
dN

= −S dT − p dV + µdN. (1.19)

Thus the first derivatives are

∂F

∂T
= −S,

∂F

∂V
= −p,

∂F

∂N
= µ (1.20)

For the pair T, V there are three second derivatives, which can be expressed in terms of three
measurable quantities, two specific heats and the sound velocity (ρ = mn is the mass density):

FTT = −ST = − 1

T
CV , V FV V = ρ

CV

Cp

νs
2, FTV

2 =
ρ

TV
CV

2νs
2(

1

CV

− 1

Cp

)

To derive these, use (1.15).

F is computed from the partition function:

Z = e−βF = Tre−βH =
∑

n=all states

e−βEn , β ≡ 1

T
. (1.21)

The fixed values of V , N are implicit in the definition of ”all states”. The quantity ρ = e−βH/Z
is the density matrix which maximizes the entropy -Trρ logρ keeping 〈H〉 = TrρH = E fixed.

Eq. (1.21) presents an extremely general formula: H can be the Hamiltonian of any quantum
system! Much of the work in statistical mechanics boils down to computing Z, exactly or
approximately.

Example. An important special case is that of p = nT -gas, ideal gas of non-relativistic particles in Maxwell-
Boltzmann statistics. Let us review the appropriate formulas.

¿From the definition of Z one obtains for N identical independent particles

Z(T, V,N) =
∑

i

e−βEi =
1

N !

(
V

λ3
th

)N

=
1

N !
Z(1)N (1.22)
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(V/N)1/3

λ th

Figure 1.1: Particle wave packets should not overlap for MB statistics to be valid

where

Z(1) =
∫

d3p d3x

h3
e−p2/(2mT ) (1.23)

and

λth = ~
√

2π

mT
(1.24)

is the thermal Compton wave length. In (1.23) one has applied the semiclassical rule that the volume dxdp
in phase space should be divided by h, Planck’s constant. The rule is derived in (1.51) below. This statistics
is valid if the distance between particles, (V/N)1/3 is much greater than the size of wave packets, λth. From
(1.22), using Stirling, N ! ≈ (N/e)N ,

F = −NT

(
1 + log

V/N

λ3
th

)
(1.25)

so that the validity criterion implies that the log here and below is a number of order 10, logs are never very
big. The rest is now a mechanical application of the formulas given above. We have three first derivatives

S = −∂F

∂T
= N

(
5
2

+ log
V/N

λ3
th

)
, (1.26)

p = −∂F

∂V
=

NT

V
, (1.27)

µ = − ∂F

∂N
= −T log

V/N

λ3
th

. (1.28)

Inserting back to (1.25) one sees that F = −NT + µN = −pV + µN = E − TS, E = 3
2NT . For the second

derivatives in the T, V space one has FTT = −3N/2T, FTV = −N/V, FV V = NT/V 2, compatible with
γ = Cp/CV = 5/3, v2

s = γT/m. We shall soon rederive these expressions in the full relativistic case from the
complete BE and FD statistics.

As a quantitative application one may quote

S(Argon)
N

= 18.4 + log[
V

22.4l
·( T

273K
)3/2]

These formulas illustrate the following properties of entropy:
- S is a pure number = (number of order 1)·N.
- S is additive (depends on V/N , resolution of Gibbs paradox).
- S(T=0) is undefined; it can be meaningfully discussed only in true Fermi-Dirac or Bose-Einstein statistics.

One difference between a physicist and a chemist is that the former counts particles microscopically and
simply writes pV = NT or even simpler p = nT . The latter measures amounts of gas of atomic number A by
weighing macroscopically and thus has to convert mass to number by (g=gram)

N =
M

Amp
≡ M

Ag
NA, mp ≡ 1

NA
g (1.29)
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so that the gas law becomes pV = (M/(Ag)NAT ≡ RT , where R is the universal gas constant. Actually
mp here is replaced by mass of a 12C atom divided by 12. The dimensionless number M/(Ag) is called the
number of moles of the gas.

Exercise.Check that (room temperature/pressure)1/3 gives the average distance between molecules in the air
≈ 3 nm.

Example: black hole entropy. For comparison, the black hole entropy is

SBH =
4πGM2

~c
≡ 4π

M2

M2
Pl

=
c3

~G
A

4
≡ A

8πL2
Pl

, (1.30)

where M is the black hole mass and A = 4πr2
s , rs = 2GM/c2 are respectively its area and the Schwartzschild

radius. For a ball of gas like the sun we would have Ssun ∼ N ∼ nV ∼ M/mp ∼ 1057 since in the Sun there
are about (MPl/mp)3 = 1057 (mp= proton mass) nucleons. For a BH with the same mass

SBH(M = Msun = mp

(MPl

mp

)3) = 4π
(MPl

mp

)4 ≈ 1077. (1.31)

So the entropy of a solar mass black hole wins that of the sun by a factor ∼ 1020; collapse increases S
tremendously. Similarly, the entropy of a single million solar mass BH in the center of a galaxy equals the
entropy of the entire cosmic background radiation.

Actually even for a black hole S ∼ N , but N is now the number of quanta in the Hawking radiation emitted
by the black hole. If there is radiation at T = THawk the energy of each quantum is ∼ THawk and one may
argue that their number is

N ∼ Mc2/THawk ∼ S ∼ (M/MPl)
2 (1.32)

so that (with correct factors inserted)

THawk =
~κ
2πc

=
~c

4πrs
=

~c3

8πGM
=

M2
Plc

2

8πM
. (1.33)

Here κ is the surface gravity κ = GM/r2
s = c2/(2rs). Many alternative expressions were given here.

Let us parametrically estimate the lifetime of a radiating BH. The radiation luminosity in J/m2/s is ∼ T 4

(derived later) so that the total power = mass loss is

dM

dt
∼ −r2

sT 4
Hawk ∼ − 1

r2
s

∼ −M4
Pl

M2
. (1.34)

Integration leads to M3(t) = M3(0)− 3M2
Plt and the mass is gone when

t ∼
(

M(0)
MPl

)3 1
MPl

. (1.35)

A BH of mass 1012kg would live as long as the present universe radiating at a temperature of ∼ 10 MeV.

These results arise from considerations of virtual particle production near the event horizon, or more properly,
from field theory in curved space. Entropy of a black hole seems rather puzzling considering that the black
hole is pointlike; from a (classical) statistical perspective, it should not have entropy any more than, say,
an electron. However, perhaps a black hole has a substructure? The key question then is, what exactly are
the microscopic degrees of freedom that give rise to the entropy of a black hole? This is one of the deepest
questions of today’s physics. In string theory the answer would be that black holes are just certain string (or
brane) configurations in extra dimensional spaces.

Modification: Tsallis statistics. The exponential function ex permeates statistical physics. We know that
ex = limn→∞(1 + x/n)n. Tsallis statistics 1 introduces here one parameter q by defining

eq(x) =
(
1 +

x

n

)n

, n ≡ 1
1− q

(1.36)

1see, e.g., http://www.ccsem.infn.it/issp2006/docs/Tsallis.pdf or http://tsallis.cat.cbpf.br/biblio.htm
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Its inverse defines a q-logarithm

logq(x) = n(x1/n − 1) =
x1−q − 1

1− q
. (1.37)

The crucial functional equations satisfied by log and exp are modified:

logq(xy) = logq(x) + logq(y) + (1− q) logq(x) logq(y). (1.38)

Entropy will now be defined by

Sq(p) =
1

q − 1

(
1−

N∑

i=1

pq
i

)
,

∑

i

pi = 1 (1.39)

and satisfies Sq(piqj) = Sq(pi) + Sq(qj) + (1 − q)Sq(pi)Sq(qj); entropy is non-extensive. Proceeding from
this one can develop q-thermodynamics with some interesting q-mathematics. In nature there are lots of
distributions which are non-exponential, rather powerlike, and they can often be fitted with some value of q.
Effectively one writes

e−E/T ⇒ 1
(1 + E/T0)(T0/T )

(1.40)

and fits the measured E-distribution. Note that one can write

eq(x)−1 =
1

(1 + x/n)n
=

1
Γ(n)

∫ ∞

0

dt tne−(n+x)t, (1.41)

which describes the q-exponential as a weighted integral over exponentials.

1.5 Grand Canonical ensemble

Going from microcanonical to canonical we replaced E = TS − pV + µN ⇒ F = −pV + µN .
Now we clearly have two alternatives, either trade N for µ (get Ω = −pV = −V p(T, µ), the
grand canonical ensemble) or trade V for p (get G = µN = Nµ(T, p), the Gibbs ensemble).
Chemists like the Gibbs energy but we shall concentrate on the grand potential Ω, since we
often have a situation with some conserved (= commutes with the Hamiltonian, [H,N ] = 0)
particle number N . The basic equation is

Z(T, V, µ) = e−βΩ = Tre−β(H−µN) =
∞∑

N=0

(eβµ)NZ(T, V, N), [H,N ] = 0 (1.42)

This is a ”generating function of multiplicity moments”, Z(z) =
∑∞

N=0 zNZ(N), with z = eβµ

sometimes called fugacity. Since Ω is extensive and V is the only extensive variable, we must
have

Ω = −V p(T, µ) . (1.43)

The remaining basic equations are

dΩ = −SdT − pdV −Ndµ, S = −∂Ω(T, µ)

∂T
, N = −∂Ω(T, µ)

∂µ
, (1.44)

which we write in terms of densities as

s(T, µ) = +
∂p(T, µ)

∂T
, n(µ, T ) =

∂p(T, µ)

∂µ
=

N

V
. (1.45)
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Here the first derivatives give averages, the second derivatives give fluctuations, widths of
distributions, e.g.,

〈N2〉 − 〈N〉2 = −T
∂2Ω

µ2
= TV

∂2p

∂µ2 . (1.46)

Thus pressure is the fundamental quantity. It gives s and n and the energy density ε through

ε = Ts− p + µn. (1.47)

In thermal equilibrium, Ω is minimised and hence p is maximised. In particular, if the system
has several different minima of Ω, the true stable ground state is the one with minimal Ω
(maximal pressure); the other ones are metastable states. This is a very common situation
(see Fig.?? below).

1.6 Density of states

The general relation (1.21) can, by normalising E ≥ 0, be written in the form

Z = e−βF = Tre−βH =
∑

n=all states

e−βEn =

∫ ∞

0

dE
dN

dE
e−βE, (1.48)

where
dN

dE
≡ ρ(E) ≡ ρ(E,N) (1.49)

is the density of states, the number of states of the system per unit E. The relation (1.48)
implies that Z(β) and ρ(E) are Laplace transforms of each other. Both are as good in
giving the full thermodynamics. The density of states is practical since it arises naturally in
numerical simulations. It is also conceptually important: of there is an exponential density
of states, there is a singularity in the partition function.

Example: Particle(s) in a box. This trivial case is a cornerstone. From periodicity (surface effects can
usually be neclected) of a 3d box

k =
2π

L
(n1, n2, n3), ni = 0,±1,±2, .. (1.50)

so that (E2 = k2 + m2)

∑

i

=
∫

d3n =
V

(2π)3

∫
d3k =

∫ ∞

m

dE
V

2π2
E

√
E2 −m2. (1.51)

Note that now we have derived the classical result (1.23):

∑

i

=
∫

V d3k

(2π)3
=

∫
d3x d3p

h3
(1.52)

since p = ~k. In the ultrarelativistic (UR) limit, where m << E, and in the non-relativistic (NR) limits we
thus obtain

ρUR(E) =
1

2E

V E3

π2
, ρNR(E) =

V

2π2
m
√

2mE. (1.53)
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E N(E) = log S(E)
-200 1
-196 0
-192 100
-188 190
-184 5390
-180 19920
-176 226185
-172 1123330
-168 8441545
-164 46439270
-160 288232165
-156 1596503840
-152 9008597790
-148 48530806690
-144 258919598835
-140 1348085135068
-136 6918375532625
-132 34921952998720
-128 173864285141465
-124 853528946161100
-120 4131702217991006
-116 19598116107747500
-112 92337394182797240
-108 424635096183933970
-104 1910993686546702565
-100 8394325581182421100
-96 35900636024138056610
-92 149134699701274540190
-88 600434187444808042305
-84 2338237484656296289710
-80 8790991827530811266845
-76 31852806882802872810510
-72 111039862678342970767760
-68 371793726574328382611580
-64 1193670523583033542771745
-60 3668437423804485582262430
-56 10772807184138254585743365
-52 30174747119602748554894980
-48 80467250627920555722255415
-44 203904785227407787528278180
-40 490026517327332203099130689
-36 1114622254786255520262613920
-32 2974787743912498152267010800
-28 4849969799910449080522379200
-24 9239228193366464362451697155
-20 16521328755364544210468233924
-16 27673114057688890670065067455
-12 43328960149817735987320787580
-8 63289600282274727602148469440
-4 86076254527328476831763676120

E N(E) = log S(E)
0 108804232426376087683496097815
4 127615138775266749696010320050
8 138682226083589753382353631155
12 139467535997338317070747513220
16 129673265537564086898449474485
20 111398087687361442602934363604
24 88394194656000609637107306835
28 64789735278060885125545778420
32 43882526876091406802688842040
36 27484620182084875609413209920
40 15934677821408488316923097025
44 8562769731912107647661352420
48 4271377195758556988860024315
52 1981325557749994784540426400
56 856247175668720270761391354
60 345440085480687517414714344
64 130373941135805243213306725
68 46131131663242989983156880
72 15336949736067657882440975
76 4801625511818556981759340
80 1418746354667950902604900
84 396504230728933768862650
88 105044804469611713155910
92 26439076355718752657610
96 6336775057494900296995
100 1449347253869825330984
104 317184792213120157975
108 66590745159525686410
112 13450173814318534170
116 2621824707749641960
120 494837291835094171
124 90726699739843320
128 16209249292505960
132 2829255985524290
136 483344637121035
140 80889449574800
144 13259776474415
148 2126884521530
152 333319272600
156 50912615760
160 7565408818
164 1088231770
168 151489010
172 20119550
176 2579540
180 303762
184 35230
188 3340
192 350
196 20
200 2

Table 1.1: State counts for the Ising model on a 10 by 10 lattice (Stodolsky-Wosiek, Nucl.Phys.
B413(94) 817)
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But what if we have N MB particles in a box? Then by just counting the states one has

ρ(E,N) =
1

N !

∫
δ(E −

∑

i

Ei)
N∏
1

V

(2π)3

∫
d3ki, (1.54)

which one can evaluate by introducing a Fourier representation for the δ function and using steepest descent.
But let us compute ρ(E, N) by inverting the Laplace:

ρ(E, N) =
1

2πi

∫ i∞+βc

−i∞+βc

dβZ(β,N) (1.55)

for the UR case

Z(β, N) =
1

N !

(
V T 3

π2

)N

. (1.56)

A saddle point calculation leading to βc = 3N/E gives

ρ(E, N) =
1

N ! (3N − 1)!
1
E

(
V E3

π2

)N

, (1.57)

a powerlike behaviour. Remember, though, that the exponent can be gigantic. However, if you do the same
with the Grand potential Ω(T, µ), using

Z(T, z) =
∞∑

N=0

zNZ(T,N) =
∫ ∞

0

dE ρ(E, z)e−βE = exp(zV T 3/π2), z = eβµ (1.58)

and (1.55) in the saddle point approximation (with β4
c = 3zV/(π2E)), one finds

ρ(E, z) =
1√
8π

(
3zV

π2

) 1
8

E− 5
8 exp

[
4
3

(
3zV

π2

) 1
4

E
3
4

]
, (1.59)

an exponential of a fractional power.

Example: particles in a harmonic potential. Instead of a box we can also have a smoother confinement
by a harmonic oscillator potential V = 1

2mω2x2. This case will be important when discussing Bose-Einstein
condensation. Then the energy spectrum is (ωi = ω)

E = ~ω(n1 + n2 + n3 +
3
2
), ni = 0, 1, 2, . . . (1.60)

and we can write
∑

states

=
∫

d3n =
∫

dE

∫
d3n δ(E − ~ω(n1 + n2 + n3)) ≡ dEρ(E), (1.61)

with (integrating first over n3 and imposing the condition n3 > 0

ρ(E) =
1
~ω

∫ ∞

0

dn1dn2Θ
(

E

~ω
− n1 − n2

)
=

E2

2(~ω)3
. (1.62)

More generally, in d dimensions,

ρ(E) =
Ed−1

(d− 1)!
∏
~ωi

. (1.63)

Example: Ising model. We shall later define the d-dimensional Ising model. For this one can numerically
compute the exact numbers of states corresponding to a fixed total energy of the system. A concrete example
for the 2d model is shown in Table 1.1. Huge numbers enter; more of them can be found in Paul D. Biele,
Phys. Rev. Letters 76, 78, 1996 or F. Wang and D.P.Landau, Phys. Rev. E64, 056101, 2001.
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Example: density of state and partitioning an integer. Some cute combinatorics enters here. See
http://arxiv.org/ps/math-ph/0309020.

Let us now try to evaluate the expression Eq. (1.48) in suitable approximation. Since (or
when) ρ(E) increases extremely fast and since e−βE decreases fast the method of choice is the
saddle point ”semi-classical” approximation:
∫ ∞

−∞
dx e−

1
~S(x) =

∫ ∞

−∞
dx exp{−1

~
[S(x̄) + S ′(x̄)(x− x̄) +

1

2
S ′′(x̄)(x− x̄)2 +

1

6
S ′′′(x̄)(x− x̄)3 +

+
1

24
S ′′′′(x̄)(x− x̄)4 + . . . ]}

= e−
1
~S(x̄)

∫ ∞

−∞
dx exp[− 1

2~
S̄ ′′(x− x̄)2 − 1

6~
S̄ ′′′(x− x̄)3 − 1

24~
S̄ ′′′′(x− x̄)4 + . . . ]

= e−
1
~S(x̄)

√
2~
S̄ ′′

∫ ∞

−∞
dy e−y2

[1− ~
6

S̄ ′′′′

(S̄ ′′)2
y4 +

~
9

(S̄ ′′′)2

(S̄ ′′)3
y6 . . . ]

= e−
1
~S(x̄)

√
2π~
S̄ ′′

{
1− ~

[
S̄ ′′′′

8(S̄ ′′)2
− 5

24

(S̄ ′′′)2

(S̄ ′′)3

]
+O(~2)

}
(1.64)

We have gone through the various steps in some detail since there is lots of important physics
behind the simple mathematics here:

• First, we have introduced ~ as a formal parameter and one observes that the outcome
will be an expansion in ~.

• Second, we have expanded the integrand around some point x̄ and chosen this point
so that S ′(x̄) = 0 (the name saddle point fits better when this is done in the complex
domain or with more than one degree of freedom). This is the analogue of finding
classical equations of motion by extremizing the action; S(x) is the action and x̄ is the
analogue of a solution of classical equations of motion.

• For the solution to be a stable minimum, one must have S̄ ′′ ≡ S ′′(x̄) > 0. Then one can

take y =
√

S̄ ′′/2~(x − x̄) as a new variable, expand in
√
~ and do the y integral. The

odd terms vanish and the result becomes an expansion in ~.

• In the result the first term has, in various connections, the names classical, tree level,
mean field approximation. Its evaluation is relatively simple, one just finds the ”classical
field” x̄ and finds the value of the action for this field. The second term is important
in that it gives the correct dimensions (those of x) to the integral. It is called the
fluctuation, Gaussian, one-loop term and its evaluation is often possible - it comes from
a Gaussian integration - but may be technically very complicated. The corrections are,
for example, called loop corrections. For the harmonic oscillator they vanish.

To apply Eq. (1.64), write the partition function (1.48) as (include 1/T to keep Z dimensionless
and extend the lower limit to −∞, what matters is anyway a small region around the saddle
point)

Z =

∫ ∞

−∞
dE

dN

dE
e−βE ≡

∫ ∞

−∞
dE

1

T
eS(E)−βE. (1.65)
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Figure 1.2: S, E competition in more detail (schematically)

In the saddle point approximation one solves Ē from S ′(Ē) = β and expands the integrand
around Ē. Neglecting higher terms S(E)− βE = S(Ē)− βĒ + S ′(Ē)− β + 1

2
(E − Ē)2S ′′(Ē)

and

Z =
1

T
eS(Ē)−βĒ

∫ ∞

−∞
dEe−

1
2
S′′(E−Ē)2

= eS(Ē)−βĒ

√
2π

−T 2S ′′(Ē)
= e−βF . (1.66)

What is happening is shown in Fig.1.6: rapidly increasing and decreasing terms together give
a Gaussian. The saddle point equation further gives S ′′(Ē) · dĒ/dT = −1/T 2 so that the
specific heat CV = dĒ/dT = −1/T 2S ′′(Ē). From the above we can then read

F (T ) = Ē(T )− TS(Ē(T ))− 1

2
T log CV ≈ Ē(T )− TS(Ē(T )) . (1.67)

(T log CV is tiny and can be neglected).

Thermodynamics is in derivatives of F (T ) (there is no N,µ in this simple example):

{
F ′(T ) = Ē ′(T )− S(Ē(T ))− TS ′(E) · dĒ

dT
= −S(Ē(T )),

F ′′(T ) = −S ′(Ē) · dĒ
dT

= − 1
T
CV .

The probability for a fixed E is

P (E) =
1

Z

dN

dE
e−βE ≈

√
−S ′′

2π
e−

(−S′′)
2

(E−Ē)2 (1.68)

The factor (−S ′′) represents fluctuations in energy: 〈(E − Ē)2〉 = 1/
√−S ′′ = T

√
CV .
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Example: negative temperature The competition between entropy and energy is manifest also for negative
temperatures. (When finding the most likely partition, temperature is just a Lagrange multiplier that can be
either positive or negative, see Eq. (1.7).) Negative temperature requires that there is a finite upper limit
in the energy spectrum; otherwise the Boltzmann factor, i.e. the occupation probability, e−βE would grow
without limit for β < 0.

Consider a 2-state spin system in an external magnetic field B with

H = −µ ·B =
{

+µB ≡ +E0 spin ↓
−µB ≡ −E0 spin ↑ (1.69)

For fixed particle number N , the total energy and entropy can then be written as

E = −n1E0 + (N − n1)E0,

S = −n1logn1 − (N − n1)log(N − n1), (1.70)

where n1 is the occupation number of the spin ↑ level.

Since F = S − βE, as β → 0+ the free energy is extremized by S, and dS/dn1 = 0 implies n1 = N/2 = n2,
a fully disordered state. The same holds when β → 0−. For β → ∞, when F is extremized by E, we would
find n1 = N, n2 = 0 so that at zero temperature the system is at its ground state. However, when β → −∞,
we find n2 = N, n1 = 0 so that the system finds itself in the excited state.

Since the disordered state corresponds to both T = ∞ and T = −∞, one can say that the jump from positive
to negative temperatures goes by way of infinity. ”Negative temperatures”, i.e. certain partitions, have been
observed in well isolated systems of e.g. silver and rhodium atoms2.

2See P.Hakonen and O.Lounasmaa, Science 265 (1994) 1821.



Chapter 2

Partition functions and path integrals

In the previous section we discussed how all the equilibrium thermodynamics can be computed
from the partition function, defined by

Z = e−βF = e−βE+S = Tre−βH =
∑
states

e−βEi , (2.1)

where the sum goes over all the eigenstates i of the Hamiltonian of the system.

Now comes a very important technical step: we write the fundamental formula for the partition
function as a path integral containing the Lagrangian of the system. Symbolically,

Z = e−βF = Tr e−βH ⇒
∫
DΦ e−S[Φ]/~, (2.2)

where Φ is a set of degrees of freedom defining the system, L[Φ] is the Lagrangian density of
the theory governing the dynamics of the degrees of freedom Φ and S[Φ] =

∫
dτd3xL[Φ] is

the Euclidean action. We shall see that thermodynamics leads to Euclidean spacetime with
imaginary time which we shall, conventionally, define as τ = it. The measure DΦ ≡ ΠdΦ
is defined so that in the path integral one is integrating over all possible field configurations
Φ(x, τ) (which are functions). To get a proper Minkowskian quantum (field) theory, we need
to Wick rotate τ → it to obtain e−SE [Φ]/~ → eiSM [Φ]/~. (For rules of going from Minkowski to
Euclidian space, see end of Section 2.2.)

The relation between quantum mechanics and field theory should be appreciated at this stage.
In the simplest quantum mechanical case, particle in one dimension x, Φ = x so that one
integrates over all possible paths x(t) of the particle. This is straightforward to generalise
first into one particle in many dimensions, Φ = x, then to N particles in many dimensions,
Φ = xi, i = 1, .., N , in just adds more indices. N can be arbitrarily large but it always obtains
discrete values. However, in quantum field theory the index i corresponds to the value of some
field φ (possibly with many components φa) in the spatial point x, φ(t,x) ≡ φi=x(t) so that
effcectively N → continuum∞. Then sums become integrals,

∑N
i=1 →

∫
ddx, functions of

coordinates xi become functionals of fields φ(t,x), etc.

17
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The partition function is a powerful tool in many fields of physics and writing it in path
integral form is an exercise one will never regret. All the correlators – and hence all physics
– can be constructed as expectation values from the probability distribution defined by Z:

〈Φ1Φ2 . . . ΦN〉 = Z−1

∫
DΦ Φ1Φ2 . . . ΦNe−S[Φ]/~. (2.3)

To compute them, one introduces the generating functional

Z[J ] = e−W [J ] =

∫
DΦe−S[Φ]−R dxJΦ , (2.4)

where dx stands for dτ or dτdnx, depending on the case at hand. One then takes (functional)
derivatives with respect to J to obtain

〈Φ1Φ2 . . . ΦN〉 = (−1)N−1 δNZ[J ]

δJ(x1)δJ(x2) · · · δJ(xN)

∣∣∣
J=0

. (2.5)

A reminder: Functional differentiation. Let E[f ] be a functional of f(x) (e.g. E =
∫

dx f(x) etc.).
Then functional derivation is defined as

δE[f(x)]
δf(y)

= lim
ε→0

E[f(x) + εδ(x− y)]− E[f(x)]
ε

. (2.6)

The chain rule
δE

δf(y)
=

∫
dx′

δE

δF (x′)
δF (x′)
δf(y)

(2.7)

holds and so on. The functional Taylor series is defined by

E[f ] =
∞∑

n=0

1
n!

∫
dx1 . . . dxnf(x1) . . . f(xn)

δnE[f ]
δf(x1) . . . δf(xn)

∣∣∣
f=0

. (2.8)

As a concrete example, let us consider the functional E[J ] =
∫

dx dy J(x)K(x− y)J(y); this is a functional of
the function J , and K is a fixed kernel function. Then the functional derivative is

δE

δJ(z)
=

∫
dx dy

δJ(x)
δJ(z)︸ ︷︷ ︸
δ(x−y)

K(x− y)J(y) + . . .

=
∫

dy K(z − y)J(y) +
∫

dxK(x− z)J(x)

= 2
∫

dxK(z − y)J(y) .

Likewise, the second functional derivative is found to be

δ2E

δJ(z)δJ(u)
= 2

∫
dxK(z − y)

δJ(y)
δJ(u)︸ ︷︷ ︸
δ(y−u)

= 2K(z − u) . (2.9)

A practical way to approach functional derivation is to think of the function f(x) as a variable f with an
index x, never minding what the mathematicians say.
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2.1 Partition function of a particle in a potential as a

path integral

What is important and perhaps surprising in the path integral formulation is that the La-
grangian (or its integral, the action) appears, not the Hamiltonian. This is a great sim-
plification at least when Lorentz covariance is needed. So let us first collect some simple
Hamiltonian mechanics formulas relating L(x, ẋ) and H(x, p) for a particle in a potential
V (x) in 1+1 dimensions (e.g., V = 1

2
mω2x2):

x

V(x)

En

Figure 2.1: Particle in potential V (x); discrete energy levels are known.

Classically, the Lagrangian is

L(x, ẋ) = T − V =
1

2
mẋ2 − V (x) (2.10)

leading to the equation of motion (the solutions of which give the extrema of the action
∫

dtL)

∂L

∂x
− d

dt

∂L

∂ẋ
= −V ′(x)−mẍ = 0 ⇒ mẍ = −V ′(x) = F (x). (2.11)

The Hamiltonian is obtained as the Legendre transform:

H = H(x, p) = pẋ− L(x, ẋ) =
p2

2m
+ V (x), p =

∂L

∂ẋ
= mẋ (2.12)

so that

dH =
∂H

∂x
dx +

∂H

∂p
dp = ẋdp + pdẋ− ∂L

∂x
dx− ∂L

∂ẋ
dẋ (2.13)

from which follow the Hamiltonian equations of motion

ṗ = −∂H

∂x
, ẋ =

∂H

∂p
(2.14)

(and possibly ∂L/∂t = ∂H/∂t). In quantum mechanics p → −i}∂x and E → i}∂t:

i}∂tΨ(x, t) = HΨ(x, t) =
[− }2

2m

d2

dx2
+ V (x)

]
Ψ(x, t) = EnΨ(x, t) (2.15)
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Ψ(x, t) = e−
i
}EntΨ(x) (2.16)

so that the evolution operator is
U(t, 0) = e−iHt/~ (2.17)

and the amplitude for an infinitesimal step from x1 to x2 is given by

〈x2(t + ∆t)|x1(t)〉 = 〈x2|e−iH∆t/~|x1〉 . (2.18)

We observe that the Boltzmann factor is obtained from the evolution operator by taking
t = −i~β:

U(t = −i~β, 0) = e−βH . (2.19)

This hints at a the connection between imaginary time and thermodynamics (remember that
there is no real time in equilibrium thermodynamics!) as well as at a connection between
thermal averages and real-time amplitudes represented as sums over all possible paths.

In quantum mechanics, in important quantity is the matrix element < xbtb|xata >, the prop-
agator from point xa at time ta to point xb at time tb. This can be evaluated exactly for the
harmonic oscillator. First, for a free particle the result is

〈xbtb|xata〉 =

√
m

2πi}(tb − ta)
exp[

i

}

class. action︷ ︸︸ ︷
m

2

(xb − xa)
2

tb − ta
] (2.20)

x
a

x
b

t
a

t
b

x

t

Figure 2.2: Free particle with classical path and action.

For the harmonic oscillator, V = 1
2
mω2x2:

〈xbtb|xata〉 =

√
mω

2πi sin[ω(tb − ta)]
exp

{
imω

2} sin[ω(tb − ta)]

[
(x2

a + x2
b) cos[ω(tb − ta)]− 2xaxb

]}

=

√
determinant of gaussian fluctua-

tion (around classical solution)

︸ ︷︷ ︸
can be calculated

exactly for harm. oscillator!

· exp

{
i

}
Sa(harm.osc.)

}
(2.21)
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After these preliminaries, go back to the main problem, changing Tre−βH to a “path” integral?
What paths are there if there is no time? (Paths will be pariodic paths in imaginary time!).

We have one particle in 1+1d in some V (x) (see fig.2.8) with the Hamiltonian H = H(x, p) =
p2

2m
+ V (x). To evaluate the Trace we shall use two complete orthonormal sets of basic states

|x〉 or |p〉:

|p〉 =
∑

x

|x〉〈x|
︸ ︷︷ ︸

=1, completeness

p〉 ≡
∫

dx 〈x|p〉︸ ︷︷ ︸
eipx

|x〉 (2.22)

To normalize carefully one should use a finite box and let L →∞. Then simply

Tre−βH =

∫ ∞

−∞
dx1 〈x1|e−βH |x1〉. (2.23)

Now comes the trick: write

e−βH = e−
β}
N
·H} · e−β}

N
·H} · . . . · e−β}

N
·H} (N times) (2.24)

and put

∫
dx|x〉〈x| = 1 (2.25)

to each of the N − 1 intervals, calling the new variables x2, . . . , xN and renaming x1 → xN+1

when it appears for the second time (see Fig.2.3). One obtains for Z

Z =

∫ ∞

−∞
dx1 dx2 . . . dxN 〈x1|e−ε H

} |x2〉〈x2|︸ ︷︷ ︸
new ones

e−ε H
} |x3〉 . . . 〈xN−1|e−ε H

} |xN〉〈xN |e−ε H
} |xN+1 = x1〉,

(2.26)

where ε = β}/N . The operator e−εH moves the state from x1 to x2 in the direction of

imaginary time τ = it (U(τ, 0) = e−τ H
} ). The total motion will be Nε = β}. Since you

integrate over all xi (keeping x1 = xN+1) you are summing over all periodic paths (one such
“configuration of x(τ)” is shown in Fig. 2.3) for N →∞.

The idea now is that for N → ∞ the amplitude 〈xk+1|e−εH |xk〉 in the small interval ε → 0
can be reliably estimated by assuming that the potential V in that interval is essentially a
constant: ∂xV ≈ 0 or equivalently [p, V ] ≈ 0. A single step can then be written as (put for a
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x

t=it

1 2 3 N-1 N N+1

1 2 3 N-1 N

4

bh

N

x =0
1
( )t x =

2
( )t e x

3
x

4
x

N-1
x

N
x =  x

N+1 1 1
( ) = ( )bh x 0

N-1 intervals

Figure 2.3: How a periodic path arises, x1 = xN+1.

while } = 1):

〈x1|e−ε[ p2

2m
+V (x)]|x2〉 (2.27)

≈〈x1|e−ε p2

2m |x2〉︸ ︷︷ ︸
free motion in τ

·e−εV (

or
x1+x2

2︷︸︸︷
x1 )+O([p,V ]) (2.28)

=

∫
dp1

2π

dp2

2π
〈x1|p1〉 〈p1|e−ε p2

2m |p2〉︸ ︷︷ ︸
2πe−ε

p2
1

2m δ(p1−p2)

eip2x2︷ ︸︸ ︷
〈p2|x2〉 e−εV (2.29)

=

∫ ∞

−∞

dp

2π
eip(x2−x1)−ε p2

2m e−εV (2.30)

where we have used
∫ ∞

−∞
dx e−αx2−βx =

√
π

α
e

β2

4α (2.31)
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Inserting, for each step, (2.30) to (2.26), we obtain an intermediate form for Z:

Z =

∫
dx1 . . . dxN

dp1

2π}
. . .

dpN

2π}
exp

{
ε[ip1

x2 − x1

ε
+ ip2

x3 − x2

ε
+ . . .−H(x1)− . . .−H(xN)]

}

(2.32)

≡
∫ Dx(τ)Dp(τ)

2π}︸ ︷︷ ︸
∆x∆p

h

exp
{1

}

∫ β}

0

dτ [ipẋ−H(x, p)]
}

(2.33)

Note that the factor ipẋ−H(x, p) in the integrand is just the Lagrangian (remembering that
τ = it). Note also the basic phase space unit cell volume ∆x∆p = h = 2π~ = 2π.

With H = p2/2m + V the p-integration can be done: Then

∫ ∞

−∞

dp

2π
exp

[
ip(x2 − x1)− ε

p2

2m

]
=

√
m

2πε
exp[−m

2ε
(x2 − x1)

2
]

(2.34)

and we get the free particle propagator

K(x2, τ = it; x, 0) =

√
m

2π}∆(it)
exp

[
− 1

}
m

2

(x1 − x2)
2

∆(it)

]
(2.35)

and the matrix element

〈x1| exp(−εH)|x2〉 =

√
m

2πε
exp

{
−ε[

m

2
(

ẋ(τ)2︷ ︸︸ ︷
x2 − x1

ε
)2 +V (x1)]

︸ ︷︷ ︸
Euclidean Lagrangian!!

}
(2.36)

Putting everything together, we have an important (Feynman-Hibbs at the end of their book
call it “amusing”) result:

Z = Tre−βH =
∑
states

e−
En
T , H =

p2

2m
+ V (x)

=

∫ N∏
1

dxi√
2π}ε
m

exp
[
− ε

}
{m

2
[(

x1 − x2

ε
)2 + . . . + (

xN − xN−1

ε
)2 + (

x1 − xN

ε
)2]

+ V1 + V2 + . . . + VN

}]
(2.37)

≡
N→∞

∫

x(0)=x(β})
Dx(τ) exp

{− 1

}

∫ β}

0

dτ [
m

2
ẋ2(τ) + V (x(τ)) ]

}
(2.38)

≡
∫
Dx(τ) exp

(− 1

}

∫ β}

0

dτ L(x, τ)
) ≡

∫
Dx(τ) exp

(− 1

}

∫ β}

0

dτ SE[x]
)

, (2.39)

where SE is the euclidean action. Note that Eq. (2.39) is defined as the N → ∞ limit
of Eq. ((B.1)). The partition function also has a similar limit, the thermodynamic limit
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V →∞. We have now attained our goal, the partition function has been expressed in terms
of the Euclidian Lagrangian of the system (LE(τ) = −LM(τ = it)). For curiosity, note that
β} = 25ps for T=300K. This is the amount of imaginary time you have to cover in room
temperature!

There are several interesting computations one can do starting from Eq. (2.39). First, it is
a very good exercise to work out the integrals in (B.1) for the harmonic oscillator potential
and then take the limit N →∞ of the result, to again get the vibrational partition function.
Second, one may calculate the same result directly from the gaussian functional integral, using
functional methods. Third, one may evaluate the ”fluctuation determinant around a classical
solution”. We shall return to these after some general remarks about finite T and imaginary
time.

One more good application of the harmonic oscillator is to compute the finite T expectation value of the time
dependent correlator 〈x(t)x(0)〉. Here we really have both real time t and finite T in the same quantity, which
now can be exactly computed:

〈x(t)x(0)〉T = Z−1Tre−βHx(t)x(0) (2.40)

= Z−1
∞∑

m,n=0

e−β~ωn+it(ωn−ωm)〈n|x(0)|m〉〈m|x(0)|n〉. (2.41)

Insert here
En = ~ωn = ~ω(n + 1/2) (2.42)

〈n|x(0)|m〉 =
√

n

2
δm,n−1 +

√
n + 1

2
δm,n+1 (2.43)

and obtain

〈x(t)x(0)〉T =
~
2ω

cosh(β~/2− it)ω
sinh(β~ω/2)

=
~
ω

[
nBE(β~ω) cos(ωt) +

1
2
e−itω

]
. (2.44)

Plot this in imaginary time τ = it! It is useful to separate a commutator and anticommutator:

〈x(t)x(0)〉T = 〈1
2
{x(t), x(0)}〉T + 〈1

2
[x(t), x(0)]〉T =

~
ω

[
nBE(β~ω) +

1
2

]
cos(ωt) +

~
2iω

sin(ωt) (2.45)

Thus the anticommutator is the real part, ∼ 1 + (~ω/T )2/12 + .. and even in t while the commutator is the
imaginary part, O(~), and odd in t.

How does all this match with classical physics? Harmonic motion with some initial values xc(0), pc(0) is

xc(t) = xc(0) cos ωt +
pc(0)

ω
sin ωt. (2.46)

Thus

〈x(t)x(0)〉T = 〈x2
c(0) cos ωt +

pc(0)xc(0)
ω

sin ωt〉T = 〈x2
c(0)〉T cos ωt (2.47)

since the thermal average of the initial momentum is zero. But here we can insert the fact that the thermal
energy per quadratic degree of freedom is T/2: 〈 12ω2x2

c(0)〉T = 1
2T and obtain

〈x(t)x(0)〉T =
T

ω2
cosωt. (2.48)

Comparing with the exact quantum mechanics result (2.45) one sees that to order O(~2) the classical result
(averaging over initial conditions, taking t dependence from classical equations of motion) = result from
quantum theory. This seems rather trivial but actually forms the groundwork for many numerical attempts to
compute field theory correlators 〈O(t)O(0)〉. There is no nonperturbative first-principle method for computing
these correlators in gauge field theory and one thus has had to resort to the above approximation, separating
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• Equilibrium average over initial conditions,

• Subsequent classical motion.

Applications range from baryon number generation in field theory (the correlator then is that of topological
susceptibility, FF̃ ) to particle production in ultrarelativistic heavy ion collisions.

2.2 Finite T means compact imaginary time

We can summarize the properties of the result as follows:

• Thermodynamics is now formulated in terms of the “Euclidean” Lagrangian, which in
many cases is much simpler than H. In particular, in gauge field theories the Lagrangian
is Lorentz scalar and a simple singlet under gauge transformations, while defining H
requires gauge fixing.

• The formulation is easy to generalize from one particle in 1d ⇒ N particles in d dimen-
sions ⇒ Field theories in d dimensions = infinite number of particles.

• Very general, applies to any system the dynamics of which is expressed in terms of an
action.

• Good starting point for numerics.

• One avoids computing the energy levels En, one gets directly the sum over them! For
example, for QCD nobody can compute the full energy spectrum, i.e., the spectrum
of hadrons (mπ, mN , mδ, . . . ) and it is inconceivable to compute Z by summing over
states. In the path integral formulation this is entirely avoided and, in some sense,
computing Z(T ) is as simple (difficult!) as computing a single mass.

We have thus the general result that thermal equilibrium means summing over all “periodic
configurations”: x(0) = x(β}). Periodicity reflects the fact that one is computing a Trace.
For fermions the configurations actually have to be antiperiodic. Graphically:

Because of the periodicity the usual continuous energy is replaced by a discrete sum over
”Matsubara frequences”. A physicist frequently wants to analyze time or space dependence
in terms of Fourier modes. For usual real time (−∞ < t < ∞) one writes:

f(t) =

∫ ∞

−∞

dk0

2π
e−ik0tf(k0)

and we have continuous energy modes. For real f(t), f ?(k0) = f(−k0) and in terms of these,
for example, ∫ ∞

−∞
dt [ẋ2(t) + m2x2(t)] =

∫ ∞

−∞

dk0

2π
f(k0)(k

2
0 + m2)f(−k0) (2.49)
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Figure 2.4: Complex time plane

and the whole theory can be formulated in terms of the Fourier components f(k0). Now we
want to do Fourier in imaginary time, e−ik0t = e−k0τ ≡ eik4τ with real k4. However, since τ
now is varying over a finite interval, we must write a Fourier series to represent f(τ):

f(τ) = T

∞∑
n=−∞

eiωnτ f(ωn) (2.50)

and the requirement f(0) = f(β~) specifies ei}ωnβ = 1 or

}ωn = 2πnT, n = 0,±1,±2 (2.51)

These are the ”Matsubara frequences”, the modes f(ωn) are “Matsubara modes”. Going
beyond the interval 0, β~, the function f is periodic, f(τ) = f(τ + β}), the τ space has
become topologically a circle. The factor T in Eq. (2.50) follows from changing k4 to 2πTn:∫

dk4

2π
⇒ T

∑
n

. (2.52)

One the complex energy plane:

A parenthesis on Minkowskian ⇔ Euclidean: How do different quantities behave when τ = it or x0 = x0 =
−ix4? Clearly xµxµ = x2

0 − x2 = −x2
E . Then ∂0 = i∂4 and one also wants the covariant derivative to behave

similarly. Thus D0 = ∂0 + igA0 becomes iD4 = i(∂4 + igA4) so that A0 = +iA4, Ei = F0i = iF4i = iEE
i and

i

∫
dtd3x

1
2
(E2 −B2) = −

∫
d4xE

1
2
(E2

E + B2) (2.53)

which tells how, for electrodynamics, iSM transforms to −SE . For fermions the obvious goal {γE
µ , γE

ν } = 2δµν ,
replacing {γµ, γν} = 2gµν , is reached by

γE
0 = γ0, γE

i = −iγi = iγi. (2.54)

⇒ γE†
µ = γE

µ , iγµDµ = −γE
µ DE

µ (2.55)
so that the fermionic Lagrangian

LM = ψ̄(iγµDµ −m)ψ = −ψ̄(γE
µ DE

µ + m)ψ = −LE (2.56)

where γE
µ DE

µ + m is the famous fermion matrix, also a subject of much mathematical research.
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2.3 Finite T and T = 0

Usually the path integral is introduced for 1+1d quantum mechanics in real time. Then there
is no T and no trace to evaluate. Instead of the sum (2.23) over diagonal matrix elements one
has a single transition matrix element, for which slight modifications of the previous equations
give

〈xb tb|xa ta〉 = 〈xb 0| exp
[− i

H

}
(tb − ta)

]|xa 0〉 (2.57)

=

∫
DxDp exp

{
i
1

}

∫ tb

ta

dt [pẋ(t)−H(x, p)]
}

(2.58)

=

∫
Dx exp

{
i
1

}

∫ tb

ta

dt L(x(t), ẋ(t))
}

, (2.59)

Because of the i this is mathematically badly behaved; one has to introduce iε:s which have
a physics reason. Now the paths in real time arise as shown in Fig.2.6.

One usually also couples the system to an external current J(t), some external force affecting
the motion. Then the path integral becomes

〈xb tb = ∞|xa ta = −∞〉J (t) =

∫
Dx(t) exp

{
i
1

}

∫ ∞

−∞
dt

[
L(x, ẋ) + J (t)x(t)

]}
(2.60)

≡ Z(J ) ≡ eiW (J ) (2.61)

Then the functional derivatives δW/δJ (t), . . . , give expectation values of products of x̂-
operators. We shall expand on this when discussing extension to field theory.
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2.4 The path integral of harmonic oscillator using func-

tional methods

Let us now return to the path integral for the 1d harmonic oscillator at finite T :

Z =

∫

x(0)=x(β)

Dx exp

[
−

∫ β

0

dτ

(
1

2
mẋ2 +

1

2
mω2x2

)]
(2.62)

(here ~ = 1) and complete the circle of arguments by directly showing that this reproduces
the almost trivial vibrational partition function,

Zvib =
∞∑

n=0

e−β~ω(n+ 1
2
) =

1

2 sinh β~ω
2

. (2.63)

where we started from.

The harmonic oscillator is exactly solvable since the integral (2.62) is Gaussian, quadratic
in x. A complication is the time derivative of x. The standard way of getting rid of this
is by partial integration which casts the expression into the form x[ operator ]x. So use
d(xẋ)/dτ = ẋ2 + xẍ: ∫ β

0

dτ ẋ2 =
/β

0
xẋ

︸ ︷︷ ︸
=0: x periodic

−
∫ β

0

dτxẍ , (2.64)

so that we get the explicitly Gaussian integral,

Z =

∫

x(0)=x(β)

Dx exp

[
−1

2

∫ β

0

dτ x

(
−m

d2

dτ 2
+ mω2

)
x

]
(2.65)

A Gaussian integral can always be carried out using the fundamental formula

I =

∫ ∞

−∞

N∏
1

dxi exp

(
−1

2

∑
ij

xiAijxj +
∑

i

bixi

)
=

(2π)N/2

√
detA

exp

(
1

2

∑
ij

biA
−1
ij bj

)
, (2.66)
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which also leads to the Wick formulas for the correlators:

〈x1x2〉 ≡ I−1

∫ N∏
1

dxi x1x2 exp[−1

2
xAx] == (A−1)12, (2.67)

〈x1x2x3x4〉 = (A−1)12(A
−1)34 + (A−1)13(A

−1)24 + (A−1)14(A
−1)23, (2.68)

etc. One should understand that the
∑

ij in (2.66) is built in
∫

dτ in the path integral. Thus
we can write

Z = const︸ ︷︷ ︸
infinite!

×(det K)−
1
2 , (2.69)

where now

K = m(− d2

dτ 2
+ ω2) . (2.70)

To define and evaluate the determinant of this operator we have to find its eigenvalues kn.
Then

det K =
∏

kn = e
P

lnkn = eTr lnK (2.71)

The eigenvalues are obtained by solving the eigenvalue equation

Kfn = knfn , (2.72)

where fn(τ) = fn(τ + β) are the periodic eigenfunctions. Clearly, the solutions to

(
− d2

dt2
+ ω2

)
fn = knfn (2.73)

are of the form fn = eiατ , and requiring periodicity τ → t + β we find fn = e2πinτ/β so that
the eigenvalues are

kn = ω2 + (2πnT )2 ≡ ω2 + ω2
n; (2.74)

the Matsubara frequences have reappeared and

Z(ω) =
const√∏∞

−∞(ω2 + ω2
n)

=
const

ω
∏∞

1 (ω2 + ω2
n)

. (2.75)

The determinant is obviously infinite, but this need not worry us: in any case, we have to
normalize to determine the constant. It is natural to normalise by the path integral of a free
theory with ω = 0. However, the n = 0 zero mode term in Eq. (2.75) diverges in this limit.
The physical reason is that if V = 0 the particle is free to move anywhere in space which leads
to this ”infrared divergence”. Mathematically, the problem is that the operator d2/dτ 2 has a
zero eigenvalue, which clearly must be removed from the definition det K =

∏
kn for this to

make sense. This situation is very common when evaluating functional determinants. Other
arguments must be used to evaluate their contribution. Here we simply say that to keep Z0

dimensionless, we must include a factor of dimension ω and there is just T . So we write

Z(ω = 0) ≡ Z0 = det

(
− m

d2

dτ 2

)− 1
2

× const =
const

T
∏∞

1 ω2
n

(2.76)
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The properly normalized harmonic oscillator partition function ZHO is thus

ZHO ≡ Z(ω)

Z(0)
=

1

βω
∏∞

n=1

(
1 + ω2β2

4π2n2

) =
1

2sinhβω
2

, (2.77)

where in the last step sinh x = x
∏∞

1 (1 + x2/(πn)2) (Gradsteyn-Rydzik 1.431) was used. So
we are back to Eq. (2.63) where we started from.

2.5 Generating functionals

By computing Z one obtains the thermodynamic potential of the system. In practise, for
interacting systems, this is unfortunately a calculation we do not know how to do analytically
(recall that physicists can, with some exceptions, do only gaussian integrals!). Therefore one
has to resort to perturbation theory (i.e. assume that the interaction is weak) or numerics.

We need a path integral which generates correlators (=Green’s functions). The task is then
to evalute the correlators in perturbation theory. To this end, let us define the generating
functional which in 1+1 dimensions can be written as

Z[J ] = N

∫
Dx e−[S+

R β
0 dτ J(τ)x(τ)], (2.78)

where J(τ) = J(τ + β) is an arbitrary (periodic) source functions so that formally

δZ

δJ(τ1) . . . δJ(τn)

∣∣∣
J=0

= N

∫
Dx x(τ1) . . . x(τn)e−S(−1)n

≡ 〈x(τ1) . . . x(τn)〉(−1)n (2.79)

with N = Z[0]−1. For the harmonic oscillator we immediately obtain, using Eq.(2.66),

Z[J ] = N

∫
Dx exp

[
−

∫
dτ(

1

2
mẋ2 +

1

2
mω2x2)−

∫
dτ J(τ)x

]

∝
[
det

(− d2

dτ 2
+ ω2

)]− 1
2

exp
[
− 1

2m

∫ β

0

dτ dτ ′ J(τ ′)
(− d2

dτ 2
+ ω2

)−1
J(τ)

]
. (2.80)

The definition Eq. (2.78) is carried over to field theory where (for a scalar field φ)

Z[J ] = N

∫
Dφ e−S−R d4x J(x)φ(x) . (2.81)

For an interacting scalar field theory S =
∫

d4x [1
2
∂µφ∂µφ − V (φ)]. By computing

δZ/δJ(x1) . . . δJ(xn) one finds the n-point functions (correlators). A similar procedure applies
to QED, QCD and other gauge theories, but with some additional technicalities:

• gauge must be fixed (→ ghosts),

• fermions are Grassmann numbers: Ψ2Ψ1 = −Ψ1Ψ2.
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2.6 Perturbation theory

The harmonic oscillator, V (x) ∼ x2, can be done exactly, as a Gaussian integral. For more
complicated interactions various approximation methods have to be applied. We will outline
two main methods. Both boil down to doing a Gaussian integral as a leading term and then
computing corrections. Firstly, one may assume all the non-Gaussianity is a small effect and
can be regarded as a perturbation. Secondly, one may attempt a semiclassical ~ → 0 saddle
point computation.

The substance of perturbation theory is easy to formulate. Suppose we have a theory with
action S[Φ] = S0[Φ] + S1[Φ], where Φ is a set of degrees of freedom, and S0 contains all the
quadratic terms. In the 1d case S0 =

∫
dt(1

2
mẋ2 + 1

2
mω2x2). All the physics is in expectation

values of operators O(Φ) and to compute them we expand in S1:

〈O〉 =

∫ DΦ O exp[−S0 − S1]∫ DΦ exp[−S0 − S1]

=

∫ DΦ O exp[−S0]
∑∞

0
(−)n

n!
Sn

1∫ DΦ exp[−S0]
∑∞

0
(−)n

n!
Sn

1

≡
∑∞

0
(−)n

n!
〈OSn

1 〉∑∞
0

(−)n

n!
〈Sn

1 〉

=
〈O −OS1 + 1

2
OS2

1 − . . . 〉
〈1− S1 + 1

2
S2

1 − . . . 〉 (2.82)

Thus perturbation theory boils down to computing Gaussian expectation values of powers of
the interaction term and of the operator O multiplied by powers of S1. Effectively, this is an
application of the Gaussian master formula (2.66) with the correlator formulas (2.67), (2.68)
and their generalisations.

Example: 1+1d interacting harmonic oscillator. Consider a theory defined by the Lagrangian

L(x) =
1
2
mẋ2 +

1
2
mω2x2 +

1
4
λmω4

0x4; λ ¿ 1 . (2.83)

Here ω, ω0, λ are some constants. The constants are chosen such that in the units ~ = c = 1, λ is a pure
number and can be used as an expansion parameter. For general ~, c one could write the interaction, e.g., in
the form +λm2ω4

0/~x4, where ω0 is a frequency. We may write down the path integral and, assuming a weak
interaction, make an expansion in the small coupling constant λ:

Zλ =
∫
Dx e−SHO− 1

4

R β
0 dτ λmω4

0x4

=
∫
Dx exp

{
− SHO

[
1− λ

4

∫ β

0

dτ mω4
0x4 +O(λ2)

]}

= ZHO −
λ

4
mω4

0

∫ β

0

dτ

∫
Dx e−SHOx4

= ZHO −
λ

4
mω4

0

∫ β

0

dτ
δ4ZHO[J ]

δJ(t) . . . δJ(t)

∣∣∣
J=0︸ ︷︷ ︸

this can be computed

+O(λ2) . (2.84)

(2.85)
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Thus we may write

Zλ

Zλ=0
= 1− λ

4
mω4

0Z−1
HO

∫ β

0

dτ
δ4ZHO

δJ4

∣∣∣
J=0

, (2.86)

where the second term represents the first-order correction to the path integral of the ordinary harmonic
oscillator.

Exercise: evaluate Zλ.

2.7 Semiclassical approximation, Gaussian fluctuation

determinant

Instead of expanding the potential with respect to some small dimensionless parameter, we
may also use another, different method called the semiclassical approximation or the loop
expansion, which does not require weak interactions. The following is equivalent to the saddle
point evaluation of the integral

∫
dx exp[−S(x)/~] in the first chapter, in the limit ~ → 0.

Here ~ may be the Planck constant, but it can also be some formal parameter counting
how many corrections are included. We discuss only the leading classical term and the first
correction, the Gaussian fluctuation determinant.

Let us consider a general 1+1d Euclidean action

S =

∫ β

0

dτ

[
1

2
mẋ2 + V (x)

]
=

∫ β

0

dτ

[
1

2
mx(−∂2

τ )x + V (x)

]
. (2.87)

Here V (x) is some arbitrary potential. In general, the configurations that contribute most to
Z are those for which S is at its minimum. These are the saddle points δS/δx = 0 which
correspond to the classical trajectories xcl(t) given by the equation of motion V ′(x)−mẍ = 0.
Therefore, it makes sense in the path integral to expand about the classical solution x(t) =
xcl(t):

S[x] =S[xcl] +

∫
δS

δx(τ1)

∣∣∣
x=xcl︸ ︷︷ ︸

=0, eq. of motion

(x(τ1)− xcl)dτ1

+
1

2

∫
δ2S

δx(τ1)δx(τ2)

∣∣∣
x=xcl

(x(τ1)− xcl)(x(τ2)− xcl)dτ1dτ2 + . . . (2.88)
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Note that −∂2
τ is a linear operator so that we may write

δS

δx(τ1)
=

δ

δx(τ1)

∫
dτ

(
1

2
mx(−∂2

τ )x + V (x)

)

=

∫
dτ

δV (x)

δx(τ)

δx(τ)

δx(τ1)︸ ︷︷ ︸
δ(τ−τ1)

−1

2
m

∫
dτdτ ′x(τ) K(τ, τ ′)︸ ︷︷ ︸

symmetric kernel

x(τ ′)

=V ′(x(τ1))− 1

2
m

∫
dτdτ ′ [δ(τ − τ1)K(τ, τ ′)x(τ ′) + δ(τ1 − τ ′)K(τ, τ ′)x(τ)]

=V ′(x(τ1))−m

∫
dτK(τ1, τ)x(τ)

=V ′(x)−m∂2
τx . (2.89)

Then
δ2S

δx(τ1)δx(τ2)
= V ”δ(τ1 − τ2)−mK(τ1, τ2) (2.90)

so that, defining x− xcl ≡ xq (where ”q” stands for quantum fluctuation), we find that

S[x] =S[xcl] +
1

2

∫
dτ1dτ2 [V ”(xcl)δ(τ1 − τ2)−mK(τ1, τ2)] xq(τ1)xq(τ2) +O(x3

q)

=S[xcl] +
1

2

∫
dτ1

[
xq(τ1)

(−m∂2
τ + V ”(xcl)

)
xq(τ1)

]
+O(x3

q) . (2.91)

If we neglect the terms of order O(x3
q) and note that in the path integral measure we may

perform the shift Dx → D(x − xcl) = Dxq because xcl is just a point in the space of all
configurations, we again have a Gaussian integral. Hence the in the Gaussian approximation
Z is obtained by an integration over small fluctuations:

Z =

∫
Dxe−S[x] ' e−S[xcl]

∫
Dxqe

− 1
2

R
dτxqKxq ∝ e−S[xcl][det K]−

1
2 . (2.92)

So we again end up evaluating a functional determinant, now the determinant of the operator
K = −m∂2

τ +V ”(xcl). Evaluating detK is often tricky because unless xcl is the trivial constant
vacuum configuration (e.g. xcl = 0), the determinant requires the solution of a complicated
eigenvalue problem.

Example:. Assume the potential is of the double-well form V (x) = 1
4λ(x2 − v2)2 with minima at x = ±v.

Then the classical EOM has a ”kink” solution, a solution of ẍ = V ′(x), taking us from one minimum to the
other:

xcl(τ) = v tanh
√

λ/2v(τ − τ0) (2.93)

with the classical action

S[xcl] =
4
3

√
λ

2
v3 =

m3
H

3λ
, m2

H = V ′′(±v) = 2λv2 (2.94)

and with
V ′′(xcl(τ)) = λv2[(3 tanh2(τ/τ1)− 1], τ2

1 λv2 = 2; τ0 = 0. (2.95)

In (2.93) τ0 is the ”position of the kink” and we assume that β~ and the parameters are such that the kink
fits in the interval 0, β~, i.e., we can take τ → ±∞ in (2.93). A periodic configuration then is one in which
one jumps from one minimum to the other and then returns, a kink + antikink. The nontrivial zero mode is
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easy to identify: by construction xcl satisfies ẍcl − V ′(xcl) = 0, take the derivative of this with respect to τ
and find

[−∂2
τ + V ”(xcl)]

dxcl

dτ
= 0 (2.96)

so that the normalised zero mode is

x0(τ) =
√

3
4τ1

1
cosh2(τ/τ1)

. (2.97)

Finding the eigenvalues an of the operator K = −m∂2
τ + V ”(xcl) we must, scaling variables suitably, solve

−1
2
ẍ + (3 tanh2 τ − 1)x = τ1anx (2.98)

Astonishingly, these can be obtained analytically - not so many cases where analytic solutions of the eigenvalue
equation can be given. There are two discrete eigenvalues and -functions:

a0 = 0 x0 =
1

cosh2 τ

a1 =
3

2τ2
1

x1 =
sinh τ

cosh2 τ
(2.99)

and a continuum
τ2
1 ap = 2 +

1
2
p2, xp = eipτ (3 tanh2 τ − 1− p2 − 3ip tanh τ). (2.100)

These may seem like very formal developments, but the applications are very practical: physics of the NH3

molecule, symmetric and antisymmetric ground states and the tunneling between the two minima of the
potential.
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2.8 Path integrals in finite T field theory

In field theory one replaces x with the field φ(x). Let us focus here on scalar fields only. At
T = 0, a classical free real scalar field obeys the equation of motion

(¤ + m2)φ = 0 , (2.101)

where ¤ = ∂µ∂
µ = ∂2

t − ∂2
x The Klein-Gordon solutions are plane waves φ = eik·x with a

dispersion relation k2 − m2 = 0 (here k = (k0, ki) is a 4-vector). The equation of motion
follows from the action

S =

∫
d4x

[1

2
∂µφ∂µφ− 1

2
m2φ2

]
. (2.102)

As discussed previously, at T 6= 0, we take the euclidean action and periodic fields so that

Z = N

∫
Dφ exp

[
−

∫ β

0

dτ

∫
d3x

(1

2
∂µφ∂µφ +

1

2
m2φ2

)]
, (2.103)

where φ(x, τ + β) = φ(x, τ). Let us first note that

∫
d3x dτ︸ ︷︷ ︸
periodic

1

2
∂µφ∂µφ =

∫
d4x

[1

2
∂µ(φ∂µφ)− 1

2
φ¤φ

]

=
1

2

∮
dSµ φ∂µφ

︸ ︷︷ ︸
= 0 for φ(x) → 0 as
x →∞

−1

2

∫
d4xφ¤φ . (2.104)

The surface terms thus vanishes because there is no field at infinity. We can evaluate this,
again using the fundamental Gaussian integral (2.66),

Z = N

∫
Dφ exp

(−
∫

d3x dτ φKφ
) ∝ (detK)−

1
2 (2.105)

where now

K = ¤ + m2 . (2.106)

and where the box operator at T 6= 0 is euclidean: ¤ = ∂2
t +∇2.

Let us now compute

detK = eTr ln K (2.107)

for a massless scalar field. Taking a trace means summing over the diagonal matrix elements
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of the operator, and since K is continuous, we take an integral:

Tr ln K =

∫
〈x, τ | ln K|x, τ〉d3x dτ /V4

= V 2
4 V −1

4

∫
d3k

(2π)3

d3k′

(2π)3
eik·x−ik′·x

×
∫ ∞∑

n,j=−∞

τ is compact
L = 2πT : k → k + L︷ ︸︸ ︷
ei2πnτ/β−i2πjτ/β

[2πT

2π

]2

dτ

︸ ︷︷ ︸
T 2δ(n−j)

× 〈k′, n′| ln(k2
0 + k2 + m2)|k, n〉d3x (2.108)

Note the normalization factor 1/V4: for an identity operator the trace yields 1. For τ =
τ + β → k0 = 2πn

β
, n ∈ Z, so that

Tr ln K = V3

∞∑
n=−∞

∫
d3k

(2π)3
ln

(
4π2n2T 2 + k2 + m2

)
(2.109)

where we have used the fact that V3βT = V4T .

The result Eq. (3.28) obviously diverges, so we need to take into account the normalization
in Z. Let it be such that Z(T = 0) = 1. Thus we wish to compute

∆ ≡ Tr ln K − Tr ln K(T = 0)

= Tr ln K − V4

∫
d4k

(2π)4
ln

(
k2

0 + k2 + m2
)

. (2.110)

Let us get rid of the infinity by first taking a derivative with respect to a parameter. We may
then employ an extremely useful relation given by

T

∞∑
n=−∞

p

4π2n2T 2 + p2
=

1

2
+

1

eβp − 1
(2.111)

which is often used in finite temperature field theory. Thus, let us consider

∂∆

∂m2
= V4

∫
d3k

(2π)3

[ ∞∑
n=−∞

T

4π2n2T 2 + k2 + m2
−

∫
d4k

(2π)4

1

k2
0 + k2 + m2

]

= V4

∫
d3k

(2π)3

[( 1

2E︸︷︷︸
diverges like
k2

+
1

E

1

eβE − 1

)− 1

2π

1

E

/∞

−∞

integrated
over k0︷ ︸︸ ︷

arctan
k0

E︸ ︷︷ ︸
=π

]
(2.112)

where E2 ≡ k2 + m2. Noting that d
dm2 ln(1− e−βE) = 1

eβE−1
β dE

dm2 we find

∆ = 2V4

∫
d3k

(2π)3
β−1 ln

(
1− e−βE

)
. (2.113)
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Thus we may write

Z = e−Ω/T = e−F/T = e−
1
2
∆

(
V4 = V3β

)
, (2.114)

or

Ω = V T

∫
d3k

(2π)3
ln(1− e−βE) . (2.115)

It should come to as no surprise that the final result is just ideal gas which by definition is
non-interacting.

Note 1: that the beautiful formula (2.111) can even be generalised to

T

∞∑
n=−∞

1
(2πnT + C)2 + E2

=
1

2E

(
1 +

1
eβ(E+iC) − 1

+
1

eβ(E−iC) − 1

)
, (2.116)

T

∞∑
n=−∞

1
((2n + 1)πT + C)2 + E2

=
1

2E

(
1− 1

eβ(E+iC) + 1
− 1

eβ(E−iC) + 1

)
. (2.117)

200 400 600 800 1000

0.1

0.2

0.3

0.4

0.5

Figure 2.7: Top curve: limit, lower ones: sums up to 1000,100,10 terms.

Note 2, dimensional regularisation: Let us now evaluate the above sum

I(T, m) = T
∑

n

∫
ddk

(2π)d

1
ω2

n + k2 + m2
, d = 3− 2ε (2.118)

in the T À m limit in a different way. As long as ε 6= 0 all the integrals are finite, divergences are exposed by
taking ε → 0. First, the zero mode term n = 0 has to be given special treatment:

In=0(T, m) = T

∫
ddk

(2π)d

1
k2 + m2

= −Tm

4π
. (2.119)

Something seemingly positive has suddenly become negative: an infinite positive term has effectively been
thrown away. Why this is justified has, of course, to be proven in theory of renormalisation. For the n 6= 0
terms one obtains

In 6=0(T, m) =
2T

(4π)d/2

1
(2πT )2−d

∞∑

l=0

( −m2

4π2T 2

)l Γ(l + 1− d/2)
Γ(l + 1)

ζ(2l + 2− d). (2.120)

Expanding for small ε and including terms up to l = 2:

I(T, m) =
T 2

12
− Tm

4π
− m2

16π2

(
1
ε

+ log
4π

T 2
− 2 log(2π) + 2γE +O(ε)

)
+

m4ζ(3)
128π4T 2

+O(m6/T 4). (2.121)
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2.9 Effective actions

An effective action is the fluctuation corrected action. The basic definition of the effective
action for a fixed background xb is

Γ(xb) = W (J)−
∫

dτ J(τ)xb(τ) . (2.122)

One may then trivially divide the effective action into kinetic and potential parts:

Γ(xb) =

∫ β

0

dτ
[
Ekin(xb) + Veff(xb)

]
(2.123)

so that for xb = const ≡ x0

Γ(x0) =
Veff(x0)

T
. (2.124)

The question one should then pose is: What is the value of the fixed background at which the
effective action is minimized, i.e. what is the ground state of temperature-corrected system.

Here are a number of general equations on the effective potential in a compact notation. They
may look very formal and boring but are actually very important for any computations in
theories defined by path integrals. The basic definition is

Z(J) =

∫
Dx e−S(φ)−R dτJx =

= e−W (J) = e−Γ(x̄)−R dτJx̄

(e...+
R

dτJx̄ is perhaps nicer: then J > 0 → x̄ > 0) where the mean field or the expectation value
x̄ is defined as

x̄J = 〈x〉J = Z−1(J)

∫
Dxe−S−R dτJxx = − 1

Z(J)

δZ(J)

δJ
= W ′(J) , (2.125)

where the subscript J reminds us that the expectation value depends on the fixed source.
From (2.125)

δx̄J1

δJ2

=
1

Z(J)2

δZ

δJ1

δZ

δJ2

− 1

Z(J)

δ2Z

δJ1δJ2

= x̄2 − 〈x(τ1)x(τ2)〉 . (2.126)

Noting that 〈(x̄− x(τ1))(x̄− x(τ2))〉 = −x̄2 − 〈x(τ1)x(τ2)〉 we may also write

δx̄J

δJ
= W ′′(J) = 〈(x̄− x)2〉 (2.127)

so that W ′′ is the fluctuation width.

Now perform a Legendre transformation and take x̄ as a variable, instead of J :

Γ(x̄) = W (J)−
∫

dτ Jx̄ . (2.128)
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Then

Γ′(x̄) =
δW

δx̄
− δ

δx̄

∫
dτ Jx̄ =

∫
δW

δJ

δJ

δx̄
dτ − J −

∫
δJ

δx̄
x̄ dτ = −J (2.129)

and thus Γ′(x̄) = 0 gives the true ground state (J=0). Further derivatives are

Γ′′(φ̄) = −dJ

dφ̄
= − 1

W ′′(J)
, Γ′′′(φ̄) = W ′′′/(W ′′)3,

Γ(4)(φ̄) = W (4)/(W ′′)4 − 3(W ′′′)2/(W ′′)5, ..

The physics behind this is that an external current J is used to tune 〈φ〉 to the value φ̄;
otherwise it relaxes to the value of φ̄ in the ground state.

Since Γ determines the ground state, it is very important to find methods to compute it.
This can be done in the loop expansion (Jackiw74). Very schematically, taking J(τ) ≡ J and
x(τ) ≡ φ to be constants instead of functions so that we may perform the imaginary time
integrals trivially, the following steps are needed:

1. Compute W (J) expanding about the classical saddle point φc:

S(φ) + Jφ = S(φc) + Jφc + [S ′(φc) + J)](φ− φc) +
1

2!
S ′′c (φ− φc)

2 +

+
1

3!
S ′′′c (φ− φc)

3 + +
1

4!
S(4)

c (φ− φc)
4 + ....

where the saddle point is chosen by

S ′(φc) + J = 0.

Then W (J) is given by the Gaussian integral

e−W (J) = e−(Sc+Jφc)

∫
Dφe−

1
2!

S′′c (φ−φc)2−...

= e−(Sc+Jφc)

∫
Dχe−

1
2!

S′′c χ2

[
1− 1

3!
S ′′′c χ3 −− 1

4!
S(4)

c χ4 +
1

2(3!)2
(S ′′′c )2χ6 + ..

]

= e−(Sc+Jφc)

√
2π

S ′′c

[
1− S

(4)
c

8(S ′′c )2
+

5

24

(S ′′′c )2

(S ′′c )3
+ ...

]

leading to

W (J) = S(φc) + Jφc +
~
2

log S ′′(φc) +
~2S

(4)
c

8(S ′′c )2
− 5~2

24

(S ′′′c )2

(S ′′c )3
+ ...

≡ S(φc) + Jφc + Γ1(φc).

Here we have scaled φ− φc =
√
~χ to demonstrate that we are dealing with an expansion in

~, the loop expansion (~ is brought back into the equations by the scaling S → S/~). Thus
Γ/~ = S/~+ 1

2
logS ′′+O(~) and the gaussian contribution ∝ logS ′′ is thus of the order O(~0).



40 CHAPTER 2. PARTITION FUNCTIONS AND PATH INTEGRALS

2. Compute Γ(φ̄), the effective action of the mean field ( 6= the saddle point φc if we go beyond
the lowest order). ¿From φ̄ = W ′(J) and the above result for W (J) one finds that

φ̄ = φc − S ′′′c

2(S ′′c )2
≡ φc − φ1.

Then write W (J)− φ̄J in terms of φ̄ + φ1, expand in φ1 and find that

Γ(φ̄) = S(φ̄) + Γ1(φ̄) + terms combining to 1− particle reducible diagrams

= S(φ̄) + Γ1(φ̄)|1-part.irred.diags

= S(φ̄) +
1

2
logS ′′(φ̄) +

S(4)

8(S ′′)2
− (S ′′′)2

12(S ′′)3)

Actually in W (J)
5

24
=

1

8
+

1

12
= spectacle + sunset

and the 1/8 is cancelled by 1PI. Some figure needed here!

Compact form of the result:

Veff(φ) = V0(φ)− 1

V3

ln

∫
Dφe−S0 − 1

V3

〈e−S1〉1PI

where one has shifted one of the components φi by φ, neglected linear terms and grouped the
quadratic terms in S0 and the rest + counter terms in S1.

Example: Inverted oscillator. Let us return to quantum mechanics and consider the 1+1 dimensional
inverted oscillator with the Lagrangian

L =
1
2
mẋ2 + V (x), V (x) = −1

2
mω2x2 +

1
4
λmω4

0x4 .
︸ ︷︷ ︸

needed for stabiliz-
ing V

(2.130)

Here we have chosen the coefficient of the x4 such that λ is dimensionless.

Let us take a constant background xc = const.; then V ′′(xc) = −mω2 + 3λmω4
0x2

c . From pages [49 prujussa]
and [76] we find that the gaussian integration yields

“detK” = const · e
P

n ln(3λω4
0x2+4π2n2T 2) (2.131)

so that for a constant background we may immeadiately write

Γ(xc) =
Veff(xc)

T
=

V (xc)
T

+
1
2

∑
n

ln
(
3λω4

0x2 − ω2 + 4π2n2T 2
)

.

︸ ︷︷ ︸
diverges→ must renormalize

(2.132)

The divergence is here due to the zero point quantum fluctuations, which are present already at T = 0. It is a
theorem that no new divergences appear at finite T so that the infinities can be absorbed by the redefinition
of the parameters of the T = 0 theory; this is just the usual renormalization procedure. Thus at large T we
may write the effective potential as

Veff(xc) ' 1
2
T

∑
n

ln(3λω2
0x2

c − ω2 + 4π2n2T 2) + terms independent of T .︸ ︷︷ ︸
these cancel the infinities

(2.133)
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Figure 2.8: Potential of inverted oscillator

Strictly speaking, the expression is well defined only when

U ≡ 3λω4
0x2

c − ω2 ≥ 0 . (2.134)

We may sidestep the issue of infinities by taking a derivative with respect to U (recall that xc is just some
fixed constant). Then

∂Veff

∂U
=

1
2
T

∑
n

[ 1
U + 4π2n2T 2

]

=
1
2

1√
U

∑
n

T
√

U

U + 4π2n2T 2

=
1
2

1√
U

[1
2

+
1

eβ
√

U − 1

]
. (2.135)

Thus the T -dependent part of the effective potential close to the origin xc ≈ 0 is found from

∂Veff

∂x2
=

∂U

∂x2
c

∂Veff

∂U
=

3
2
λω4

0

1√
U

1
eβ
√

U − 1

' 3
2
λω4

0

T

U
(2.136)

i.e. Veff ∝ x2
cT as T →∞. Thus, at very high temperatures, the term proportional to xc would dominate over

the zero temperature potential (at least close to xc ∼ 0). As a consequence, the high temperature ground
state is xc = 0. When the temperature decreases, eventually the vacuum term −mω2x2

c takes over and xc = 0
becomes unstable, triggering a phase transition from xc = 0 to xc 6= 0.

2.10 Effective theories in general

Note that the notion of an effective action is not unique; there are an infinite number of
effective actions. Starting with the path integral

Z =

∫
Dφ e−SE [φ] (2.137)



42 CHAPTER 2. PARTITION FUNCTIONS AND PATH INTEGRALS

V

x

T=0

T=¥

Figure 2.9: Phase transition

we may organize the degrees of freedom into different sets, for example

Z =

∫
ΠDφLDφS e−SE [φL,φS ] (2.138)

where φL stands for long wavelengths and φS for shortwavelengths; integrating the latter out
we find

Z =

∫
DφL e−Seff

E [φL] (2.139)

which is an effective action for the long wavelength degrees of freedom. How the division
is actually done is of course dictated by the physical problem at hand. Nevertheless, this
demonstrates a general principle of coarse graining : irrelevant degrees of freedom have been
averaged out. An example is chemistry, which can be viewed as coarse grained QED with an
integration over short wavelength modes.

Note that, because of nonlinearities, coarse graining gives rise to qualitatively new ”laws”
as the fundamental degrees of freedom q are replaced by the effective degrees of freedom
〈q〉time,space,.... This means that the equations of motion, which typically are of the form
Dq = λq2 + γq3 + . . . where D is some differential operator, gets replaced by

D〈q〉 = λ〈q2〉+ γ〈q3〉+ . . . 6= λ〈q〉2 + γ〈q〉3 . (2.140)

As a consequence, even simple fundamental laws may give rise to complicated laws for the
coarse grained quantities.

Example. Effective theories in quantum mechanics. Consider a quantum mechanical system (such as
a two-particle spin system) in an entangled state:

|ψ〉 =
1√
2

(|+〉|−〉+ |−〉|+〉) . (2.141)

The density matrix reads

ρ = |φ〉〈φ| =




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0




︸ ︷︷ ︸
++ +− −+ −−

(2.142)
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and we are obviously dealing with a pure state: ρ2 = ρ. An effective theory, describing only a reduced number
of degrees of freedom (here = 1), is obtained by integrating out (= taking a trace over) the superfluous degrees
of freedom. The effective density matrix reads

ρeff = Trρ︸︷︷︸
over states 2

= 〈+|ρ|+〉+ 〈−|ρ|−〉

= 1
2 (|+〉〈+|+ |+〉〈−|) (2.143)

which describes now a mixed state: ρ2
eff = ρeff .

The very interesting question is: given that at the fundamental level the world is quantum
mechanical with Z =

∫ DxeiS, how come for large ensembles we nevertheless write Z =∫ Dxe−SE?

The answer appears to be decoherence. Consider a quantum system that consist of a small
subsystem |a〉, with possible states labeled by |n〉 so that |a〉 =

∑
n cn|n〉, and the environment

|φ0〉. The total density matrix is ρtot = |φ0〉|a〉〈a|〈φ0| The density matrix of the subsystem
ρ = Trenvρtot = |a〉〈a| is subject to evolution, which has two sources, internal and interaction
with the environment:

i
∂ρ

∂t
= [Hint, ρ] + i

∂ρ

∂t

∣∣∣
scatt

. (2.144)

Let us assume slow internal dynamics. Then, with a single scattering event, the initial state
|a〉|φ0〉 → S|a〉|φ0〉, where S is the S-matrix. Assuming no recoil the subsystem remains the
same even after the scattering. Thus

S|a〉|φ0〉 =
∑

n

cn|n〉|φn〉 , (2.145)

where |φn〉 is the environment state corresponding to the subsystem state |n〉 (the environment
could be considered as a measuring device with n pointer position; after scattering, the device
would be in a superposition of the pointer positions). Thus, after scattering, the reduced
density matrix of the subsystem

ρ =
∑

c∗mcn|n〉〈m| →
∑

c∗mcn〈φn|φm〉|n〉〈m| (2.146)

or
ρnm → ρnm〈φm|φn〉 = ρnm〈φ0|S†nSm|φ0〉 . (2.147)

We now assume that a single scattering is not enough to resolve the different system states;
the system remains in ”almost unmeasured” state and S†nSm ≈ 1 − ε. The scattering rate
Γ = σvn depends on the dynamics, but in general we may now write

ρnm → ρnm(1− ε)Γt ≈ ρnme−εΓt (2.148)

so that the non-diagonal elements of the density matrix vanish exponentially fast. Because of
quantum entanglement, the subsystem is thus seen to become a statistical ensemble.

Here we may echo the sentiments of the French mathematician Emile Borel, who in 1914
wrote: ”Statistical mechanics is not mechanics of large complicated systems, rather it is the
mechanics of limited, not completely isolated systems”.
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2.11 Tunneling

Let us now apply path integral methods to tunneling, which relates directly to first order
phase transitions (phase transitions will be discussed in detail in Ch. X). ¿From quantum
mechanics we recall that in the WKB-approximation the tunneling rate Γ is given by

Γ =
1

τ
≈ ω

2π
e
−2
R x2

x1
dxK(x)

, K(x) =
2m

~2
(Veff − E) (2.149)

where Veff is the effective potential. For example, for a 3-d problem with spherical symmetry
Veff = V (r) + ~2l(l + 1)/(2mr2). Quantum mechanics gives directly the barrier penetration
probability e−2

R
dxK ; the prefactor ω is in general more difficult to compute. Quantum inde-

terminacy allows the system to go over (or rather, through) the barrier V (x0) even though
the energy is less than the barrier height. KUVA PUUTTUU

For a thermal system the situation is analogous. However, since the probability for a thermal
fluctuation is given by the Boltzmann factor e−βE, the tail of the distribution may escape from
the potential well simply by going classically over the wall. Let us consider the situation where
at x ≈ 0 the potential is given by V ≈ 1

2
mω2

0x
2 while at the barrier V ≈ V (x0)− 1

2
mω2(x−x0)

2.
We assume that T ¿ V (x0). Then classically the differential probability for going over the
wall is

dΓ

dx dp
= P (E ≥ V (x0))︸ ︷︷ ︸

∝e−βE≈e−βV (x0)

vθ(v) δ(x− x0)︸ ︷︷ ︸
rightmoving flux

. (2.150)

Then, assuming that most contribution to the path integral is obtained from x ≈ 0, we may
write

Γ =
e−V (x0)

∫
dp p

m
θ(p)e−βp2/2m

∫
dp e−βp2/2m

∫
dx e−

1
2
mω2

0x2+...

︸ ︷︷ ︸r
2π

βmω2
0

≈ ω0

2π
e−βV (x0) . (2.151)

Note that here we closed our eyes to the fact that at x ≈ x0

e−V (x) ≈ e−V (x0)e+ 1
2
mω2(x−x0)2 (2.152)

where the second factor is formally divergent but when analytically continued, gives rise to
an imaginary contribution. In a proper treatment, it is really this imaginary part which is
the source of non-zero tunneling rate. You should recall from quantum mechanics that the
probability distribution decays if there is an imaginary component in energy:

|ψ(t)|2 = |e−iHtψ(0)|2 = |e−iReEt+ImEtψ(0)|2 = e2ImEt|ψ(0)|2 (2.153)

so that Γ = −2ImE.

In a thermal system the instability of the (ground) state is signalled by a non-zero imaginary
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part of the free energy. Indeed, classically

ImF = −T
ImZ

Z
= −T

Im
∫

dxdp e−βp2/2me−β[V (x0)− 1
2
mω2(x−x0)2]

∫
dxdp e−βp2/2me−

1
2
mω2

0x2

= −T
Im e−βV (x0)

√
2πT
−ω2√

2πT
ω2

0

= T
ω0

2ω
e−βV (x0) , (2.154)

where we now have continued analytically the gaussian integral in the numerator. Thus we
find

Γ = T
ω0

ω
e−βV (x0) (2.155)

which agrees with (2.151) if we choose T = ~ω/(2π) (see Affleck, Phys. Rev. Lett. 46 (1981)
388.)

In the quantum case we should again look for the imaginary part of F (or Z). Let us consider
the potential shown in Figure XXXXX. We already know that integration about the trivial
saddle point x = x0 yields the usual result (2.77) for the harmonic oscillator. But what about
other saddle points? These are given by the euclidean equation of motion

1

2
mẍ− V ′(x) = 0 → 1

2
mẋ2 − V (x) = −E = const. (2.156)

The question is: are there non-trivial solutions such that x(0) = x(β)? As can be seen from
(2.156), these can be viewed as non-euclidean solutions for motion in an inverted potential
starting from x1 and coming to rest at x2 (see Fig. XXXXX). At x ≈ x0 the potential is
approximately harmonic with frequency ω, and x+ > x2 is defined by V (x+) = 0. The period
P of such a motion is given by

P (E) = 2

∫ τ2

τ1

dτ = 2

∫ x2

x1

dx

[
2

m
(V (x)− E)

]−1/2

≥
∫ x+

x+−x0

dx

√
2

m

(
V (x0)− E − 1

2
mω2(x− x0)

2

)−1/2

︸ ︷︷ ︸
harmonic oscillator

=
2π

ω
. (2.157)

Thus we conclude that the motion is periodic, i.e. P (E) = β, whenever β ≥ 2π/ω. In
that case there always exists an orbit x̄ such that x̄(0) = x̄(β) which is also a saddle point
(if T ≥ ω/(2π) the only solution is the classical x = x0). We may call the solution x̄ an
instanton.

Expanding about the instanton we find

Z = N

[
det

(
− d2

dτ 2
+ V ′′(x̄(τ))

)]−1/2

e−SE [x̄] . (2.158)

The aim is then to show that the determinant has one negative eigenvalue, giving rise to an
imaginary part of Z; this is a non-trivial task but can be done (see. Phys. Rev. D25 (1982)
330).
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2.12 Tunneling in field theory

Tunneling in field theory is analogous to the quantum mechanical case considered in the
previous Section. At high T we may simplify things by noting that as β → 0, only the static
modes with φ̇ = 0 contribute to the action so that

S =

∫ β

0

dτd3x

[
1

2
φ̇2 +

1

2
(∇φ)2 + V (φ, T )

]
≈ 1

T

∫
d3x

[
1

2
(∇φ)2 + V (φ, T )

]
≡ 1

T
S3[T ] .

(2.159)
The tunneling rate is then given by

Γ = Ae−S[φ∗]/T (2.160)

where A is the fluctuation determinant (from a gaussian integration) and φ∗ is the critical
field configuration, which is the solution to the euclidean equation of motion that connects
the two vacua.

In general there is an infinity of configurations connecting any two vacua. The issue then
is, which of these has the lowest action and thus corresponds to the fastest tunneling rate?
Usually the answer is: the most symmetric one. Let us therefore assume that the critical field
configuration is spherically symmetric. The euclidean equation of motion reads then

d2φ∗
dr2

+
2

T

dφ∗
dr

= V ′(φ∗, T ) . (2.161)

The solution φ∗ = φ∗(r) is called the critical bubble.

V(j )
*

j
*

*

*j0j0

V
0 j1

-e

assume:      <  1
e

V
0

<

Figure 2.10: The potential appropriate for the thin wall approximation.

Thin wall approximation. The critical bubble can be found analytically in the thin wall approximation1

which is appropriate for the potential of the type depicted in Fig. 2.10. There one assumes that the energy
difference ε between the two vacua is small compared with the height of the potential wall V0 that separates
them. In that case we may seek for a solution where φ∗ ≈ φ0 = const when r < R, the size of the bubble,
and dφ∗/dr 6= 0 only in a narrow region ¿ R, while outside the bubble we have φ∗ ≈ 0 (see Fig. 2.11). Close
to the thin wall r is large so that we may write

d2φ∗
dr2

≈ V ′(φ∗, T ) =
dV

dr

dr

dφ∗
(2.162)

1S. Coleman, Phys. Rev. D15, 2929 (1977).
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so that φ′2∗ ≈ V (r) and

r ≈
∫ φ0

φ

φ∗√
V

. (2.163)

We then find that

S3 = 4π

∫ ∞

0

dr r2

[
1
2

d2φ∗
dr2

+ V (φ∗, T )
]

= −4
3
πR3ε + 4πR2S1(T ) , (2.164)

where S1 is the surface tension, which is the integral over the region where φ∗ changes rapidly; it can be
calculated explicitly once V (φ∗, T ) is specified.

j*

j0

the wall is thin:
in region <  R

¹ 0d

dr

j*

<

r

R

almost
constant

Figure 2.11: The critical field in the thin wall approximation.

The remaining task is now to minimize the action as a function of the free parameter R, the size of the critical
bubble:

dS3

dR
= 0 → R =

2S1

ε
. (2.165)

Since ε is assumed to be small, the bubble is large, as it should for the thin wall approximation to be valid.
We can also find the action, which reads

S3 =
16πS3

1

3ε2
. (2.166)

Hence in the thin wall approximation the tunneling rate Γ ∼ eS3/T is small and the transition could be called
slow boiling.

Finding the fluctuation determinant is again much more complicated. A good guess is always
that A ∼ T 4 since T is often the only relevant mass scale in the problem.
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Chapter 3

Ideal Fermi-Dirac and Bose-Einstein
gases

Here ”ideal gas” will denote a collection of free particles within a system with known energy
levels E1, E2, . . . . For example, if the system is a box of volume V = Ld (usually d = 3)
with periodic boundary conditions and if the particles satisfy the dispersion relation E2(k) =
(~ck)2 + (mc2)2 ≡ k2 + m2 the energy spectrum is

k = (k1, k2, k3) =
2π

L
(n1, n2, n3), ni = 0,±1,±2, ...,

E2(k) =
4π2

L2
(n2

1 + n2
2 + n2

3) + m2 (3.1)

and each set of ni corresponds to a state of the system. A second example is free particles in
a 3d harmonic oscillator potential with E(n) = ~ω(n1 + n2 + n3 + 3/2).

The crucial assumption is then the following: each state is occupied with equal probability,
given by the usual FD or BE statistics. This is easy to implement formally (and the standard
steps are reproduced below), but leaves completely open the dynamical issue of how this
kind of state is actually attained, i.e. how the system thermalises. Paradoxically, as will be
discussed in Ch. XXXXX, the stronger the interactions are, the faster and more efficiently
they thermalise the system; however, at the same time the interactions should be weak enough
so that the system is perturbatively close to the non-interaction ideal system. Therefore, in
reality ideal gas system is not a collection of free particles even if confined in a box!

Very much physics is built in the ideal gas formulas. Therefore, in this and the next Chapters
we shall discuss ideal gas systems from different angles and in various contexts.

49
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3.1 Partition functions, counting states

Let us assume that the occupation number of each of the energy levels Ei is Ni. From the
definition of grand canonical partition function Z we find that

Z(T, V, µ) ≡
∞∑

N=0

zNZ(T, V, N) =
∞∑

N=0

(e
µ
T )N

∑

{N1,N2, ...}
e−

1
T

(N1E1+N2E2+...). (3.2)

Because of the condition
∑

Ni = N , the summation in Z(T, V, N) is hard to perform. Note

+ + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + +

+
+

+
+

+
+

N1

N2

>>

> >

Figure 3.1: Z to the left and Z to the right.

however that the sum in Z goes over all accessible states, as depicted in Fig. 3.1. Therefore,
by rearranging the order of the summation we may write:

Z =
∞∑

{N1,N2,...=0}
e

µ
T

N1e
µ
T

N2 ...(e−
1
T

E1)N1(e−
1
T

E2)N2 ...

=
∞∑

{N1,N2,...=0}
(e

1
T

(µ−E1))N1(e
1
T

(µ−E2))N2 ...

=
∞∑

N1=0

(e
1
T

(µ−E1))N1

∞∑
N2=0

(e
1
T

(µ−E2))N2 ..., (3.3)

where the sums are now simple to evaluate:

∞∑
N=0

xN =

{
1 + x FD

1
1−x

BE
. (3.4)

Thus for FD we find

Z =
∏

k

[1 + e
1
T

(µ−Ek)], Ω = −V p(T, µ) = −T
∑

k

log[1 + e
1
T

(µ−Ek)], (3.5)

whereas for BE

Z =
∏

k

1

1− e
1
T

(µ−Ek)
, Ω = −V p(T, µ) = T

∑

k

log[1− e
1
T

(µ−Ek)], (3.6)
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From here one further derives, using s(T, µ) = ∂p/∂T = S/V , n(T, µ) = ∂p/∂µ = N/V and
ε = Ts− p + µn = E/V that

N(T, µ) =
∑

k

nk, (3.7)

S(T, µ) =
∑

k

[−(1− nk) log (1− nk)− nk log nk] FD, (3.8)

S(T, µ) =
∑

k

[(1 + nk) log (1 + nk)− nk log nk] BE, (3.9)

E(T, µ) =
∑

k

Eknk, (3.10)

where the average occupation number of the level k is

nk =
1

e
1
T

(Ek−µ) ± 1

{
FD
BE

. (3.11)

The above is valid for any set of energy levels Ek. If we further take our free particles in a box,
the energy levels are indexed by Ek ≡

√
k2 + m2 and the sums can be changed to integrals

using the continuum limit of the density of states of particles in a 3d box:

∑

k

→ V

(2π)3

∫
d3k. (3.12)

Then for FD the pressure reads as

p(T, µ) =
T

(2π)3

∫
d3k log[1 + e

1
T

(µ−Ek)] (3.13)

while for BE

p(T, µ) = − T

(2π)3

∫
d3k log[1− e

1
T

(µ−Ek)]. (3.14)

These expressions should be multiplied by g, the degeneracy of the momentum level k; g
counts the internal degrees of freedom such as spin, colour, etc. One should also add the
contribution of antiparticles. Since particles and antiparticles can annihilate, in equilibrium
their chemical potentials are opposite and terms where µ → −µ should be added to Eqs. (3.13)
and (3.14). Non-relativistically, however, their contribution is exponentially suppressed by
the Boltzmann factor exp(−2βm) and thus negligible. To see this, write E(k) =

√
m2 + k2 =√

(mc2)2 + (~ck)2 ≈ mc2 + ~2k2

2m
; then in the combination µ− Ek the rest energy mc2 has to

be combined with µ so that the chemical potential can be redefined as µ → µ′ = µ −mc2,
which implies that the antiparticle occupation number goes like 1/(exp(β(2m + µ′ + Ekin)).

Partial integration permits one to eliminate the logarithm from the expressions (3.13) and
(3.14) for p. Using the fact that the integrand is just a function of the absolute value of k
and thus of the form f(|k|), one can write

p(T, µ) =

∫
d3kf(|k|) = 4π

∫
d(

1

3
k3)f(k)

= 4π

[∣∣∣∣
∞

0

k2f(k)−
∫

dk
df

dk

1

3
k3

]
=

∫
d3k

1

3
k

(
−∂f

∂k

)
, (3.15)
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assuming that f(k) → ∞ faster that 1/k2 when k → ∞ as required by the finiteness of p.
Thus, taking f from (3.13),

∂f

∂k
= − 1

T

1

e
1
T

(E−µ) + 1

dE

dk

where dE/dk = (~c)2kdk and + stands for FD and - for BE. We then find

p(T, µ) =
(~c)2

(2π)3

∫
d3k

k2

3E(k)

1

e
1
T

(E−µ) ± 1
≡ (~c)2

(2π)3

∫
d3k

k2

3E(k)
n0(k). (3.16)

with

n0(k) =
1

e
1
T

(E(k)−µ) ± 1

{
FD
BE

.

From here one further derives, using s(T, µ) = ∂p/∂T = S/V , n(T, µ) = ∂p/∂µ = N/V and
ε = Ts− p + µn = E/V that

n(T, µ) =
1

(2π)3

∫
d3k n0(k) (3.17)

s(T, µ) =
1

(2π)3

∫
d3k[(1− n0) log

1

1− n0

+ n0 log
1

n0

] FD (3.18)

s(T, µ) =
1

(2π)3

∫
d3k[−(1 + n0) log

1

1 + n0

+ n0 log
1

n0

] BE (3.19)

ε(T, µ) =
1

(2π)3

∫
d3kEn0(k) (3.20)

3.2 Partition functions, free field theory

Let us next discuss how the above expression can be derived using other methods. In Eq.
(2.77) we found that the partition function for harmonic oscillator using functional methods
is given by Z = Z(ω) = const/(

∏∞
−∞(ω2 + ω2

n))1/2 so that

F = −T log Z =
1

2
T

∞∑
−∞

((2πnT )2 + ω2). (3.21)

It is quite automatic to transform this to a 3d system with massive particles: simply replace
the oscillator frequency by the energy, ω2 → k2 + m2, and sum over k. Then, writing d for 3,

f = −p =
F

V
=

1

2

∫
dd+1k log(k2

0 + k2 + m2) =
1

2
T

∞∑
n=−∞

∫
ddk

(2π)d
log[(2πnT )2 + k2 + m2].

(3.22)

This result can be simply derived by reformulating the problem in the language of scalar field theory: free field
theory is just a collection of harmonic oscillators. In field theory one replaces x with the field φ(x). At T = 0,
a classical free real scalar field obeys the equation of motion (¤ + m2)φ = 0 ,where ¤ = ∂µ∂µ = ∂2

t − ∂2
x. The
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Klein-Gordon solutions are plane waves φ = eik·x with a dispersion relation k2 −m2 = 0 (here kµ = (k0, ki)
is a 4-vector). The equation of motion follows from the quadratic action

S =
∫

d4x
[1
2
∂µφ∂µφ− 1

2
m2φ2

]
. (3.23)

As discussed previously, at T 6= 0, we go to imaginary time with τ = it and require periodic fields so that

Z = N

∫
Dφ exp

[
−

∫ β

0

dτ

∫
d3x

1
2
[
(∂τφ)2 + (∂iφ)2 + m2φ2

]]
, (3.24)

where φ(x, τ + β) = φ(x, τ). Partial integration again groups the derivatives together with a - sign:
∫

d3x dτ
1
2
∂µφ∂µφ =

∫
d4x

[1
2
∂µ(φ∂µφ)− 1

2
φ¤φ

]

=
1
2

∮
dSµ φ∂µφ

︸ ︷︷ ︸
= 0 for φ(x) → 0 as x →∞

−1
2

∫
d4xφ¤φ , (3.25)

where now the box operator at T 6= 0 is euclidean: ¤ = ∂2
t +∇2 The surface terms vanish because there is

no field at infinity. We can evaluate this, again using the fundamental Gaussian integral (2.66),

Z = N

∫
Dφ exp

(−
∫

d3x dτ φKφ
) ∝ (detK)−

1
2 (3.26)

where now K = ¤ + m2 and .

Let us now compute detK = eTr ln K for a massless scalar field. Taking a trace means summing over the
diagonal matrix elements of the operator, and since K is continuous, we take an integral:

Tr ln K =
∫
〈x, τ | ln K|x, τ〉d3x dτ /V4

= V 2
4 V −1

4

∫
d3k

(2π)3
d3k′

(2π)3
eik·x−ik′·x

×
∫ ∞∑

n,j=−∞

τ is compact
L = 2πT : k → k + L︷ ︸︸ ︷
ei2πnτ/β−i2πjτ/β

[2πT

2π

]2

dτ

︸ ︷︷ ︸
T 2δ(n−j)

× 〈k′, n′| ln(k2
0 + k2 + m2)|k, n〉d3x (3.27)

Note the normalization factor 1/V4: for an identity operator the trace yields 1. For τ = τ + β → k0 = 2πn
β ,

n ∈ Z, so that

Tr ln K = V3

∞∑
n=−∞

∫
d3k

(2π)3
ln

(
(2πnT )2 + k2 + m2

)
(3.28)

where we have used the fact that V3βT = V4T . Thus we are back to Eq.(3.22).

To proceed further, we note that the integral is divergent, but the divergence is there already
for T = 0, i.e., is T -independent. One can get rid of constants by taking derivatives, so let us
improve the convergence by taking a derivative with respect to m2:

I(m) ≡ 2
df

dm2
= T

∞∑
n=−∞

∫
ddk

(2π)d

1

(2πnT )2 + k2 + m2
. (3.29)
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Then apply a magic formula from 19th-century mathematics

∞∑
n=−∞

x

(2πn)2 + x2
=

1

x
+ 2

∞∑
1

x

(2πn)2 + x2
=

1

2
+

1

ex − 1
. (3.30)
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Figure 3.2: How the summation formula (3.30) works; the top curve shows the RHS -1/x as
a function of x; the lower ones show respectively sums up to 1000, 100, and 10 terms.

and derive

I(m) =

∫
ddk

(2π)d

[
1

2E(k)
+

1

E(k)

1

eE(k)/T − 1

]
. (3.31)

Further, by integrating over m2 noting that dm2 = 2EdE:

f(T ) =
1

2

∫ m2

0

dm2 I(m) =

∫
ddk

(2π)d

∫ E

dE

(
1

2
+

1

eβE − 1

)

=

∫
d3k

(2π)3

{
2E(k) + T log[1− e−βE(k)]

}
. (3.32)

Here all the divergences are dumped in the first term, which obviously sums over all the
zero point energies. It is T -independent, as promised, and if we only are interested in T -
dependence, we can forget it. And the second term is precisely Eq. (3.14) with µ = 0.

However, if one really wants to find out the correct way of handling divergences, it is important
to keep even the first term. Also, often m has an important dynamic significance (in symmetry
breaking, for example) and cannot be forgotten. Then the simplest way of handling the
divergence of the first term in Eq. (3.31) is to keep d arbitrary. As we want to be close to 3d
we write d = 3− 2ε; then for small ε the integral is simply given by the expansion

∫
ddk

(2π)d

1

2(k2 + m2)1/2
= −m2

8π2

(
1

ε
+ 1− γEuler +O(ε)

)
(3.33)

so that the divergence is isolated in the 1
ε

singularity; this is an example of dimensional
regularisation. We shall return to this in a moment when discussing the T À m-expansion of
(3.14).

Why all this trouble with sums over n? The reason is that to include the effects of interactions
perturbatively, you cannot avoid doing sums.
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Note 1: that the beautiful formula (3.30) can even be generalised to

T

∞∑
n=−∞

1
(2πnT + C)2 + E2

=
1

2E

(
1 +

1
eβ(E+iC) − 1

+
1

eβ(E−iC) − 1

)
, (3.34)

T

∞∑
n=−∞

1
((2n + 1)πT + C)2 + E2

=
1

2E

(
1− 1

eβ(E+iC) + 1
− 1

eβ(E−iC) + 1

)
. (3.35)

The terms in the RHS here are distribution functions with chemical potential = ±iC.

Note 2: Define ps(n) as the number of ways an integer can be expressed as a sum of sth powers of integers.
For example, p1(5) = 7 since the ways are 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1. Similarly,
p2(5) = 2 since 5 = 22 + 12 = 12 + 12 + 12 + 12 + 12. Assume now that the energy spectrum is En = ns,
n ≥ 1, s > 0. If x ≡ e−β , the bosonic partition function (3.5) with µ = 0 is nothing but the generating
function of ps(n):

Z(x = e−β) =
∞∏

n=1

1
1− xns =

∞∑
n=1

ps(n)xn ≈
∫ ∞

1

dn ps(n)e−βn. (3.36)

One can now invert this by saddle point methods to obtain the famous Hardy-Ramanujan formula (1918) for
ps(n). For example, for the harmonic spectrum s = 1,

p(n) =
1

4
√

3N
eπ
√

2N/3. (3.37)

In string theory, the spectrum of string excitations goes like M2 ∼ 4N/α′ so that the number of states grows
exponentially with mass.

3.3 Photon gas

Photons propagate with the velocity of light, but when a collections photons have velocities
that are isotropic and momenta that are thermally distributed, the system is thermal gas. An
example of photon gas which plays an important role in contemporary physics is the cosmic
microwave background.

For the purposes of statistical physics, photons are bosons with with m = 0 and their degen-
eracy factor is 2 for the two helicities of massless vector bosons. In general, in the presence
of interactions the number of photons is not conserved so that µ = 0. Remembering that

∫ ∞

0

dx
xα−1

ex ∓ 1
=

{
ζ(α)Γ(α) BE
(1− 1

2α−1 )ζ(α)Γ(α) FD
(3.38)

we find the following expressions:

nγ =
N

V
= 2· 1

(2π)3

∫
d3k

1

e
k
T − 1

=
T 3

π3

∫ ∞

0

dx
x2

ex − 1
=

2ζ(3)

π2
T 3 (3.39)

εγ =
E

V
= 2· 1

(2π)2

∫
d3k

k

e
k
T − 1

=
T 4

π2

∫ ∞

0

dx
x3

ex − 1
=

π2

15
T 4 = 3p (3.40)

sγ = p′(T ) =
4

3

π2

15
T 3 =

2π4

45ζ(3)
n (3.41)
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Figure 3.3: Spectrum of cosmic background radiation: perfect massless Bose-Einstein. Note
that the error bars in the Figure are multiplied by 400.

From here one can derive various differential forms for dε/dω, dε/dλ, etc, using

E = ~ω = hν = pc = ~ck (3.42)

p = ~k =
h

λ
(here p is momentum!). (3.43)

For example, the energy density per unit frequency ν becomes

dε

dν
=

8πh

c3

ν3

ehν/T − 1
. (3.44)

This is the celebrated black body spectrum, which is somewhat a misnomer since it does not
actually refer to body which is black but to a body that does not absorb anything. The most
perfect black body observed in Nature is the cosmic microwave background (see Fig. 3.3).
Note also that ”radiation emittance” = c/4× energy density.

In d spatial dimensions one finds

p(T ) =
1

d
ε(T ) =

2Γ(d + 1)ζ(d + 1)

dΓ(d/2)(4π)d/2
T d+1. (3.45)

Massless BE and FD gases; basic equations in early cosmology. Here we summarize the relevant
ultrarelativistic expressions for Bose-Einstein and Fermi-Dirac gases emphasising unit choices. Both are
very much needed in cosmology (units K, m), also in relativistic heavy ion collisions (units GeV, fm). The
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appropriate conversion relations are

1 eV = 1.602×10−19 J;
~ = 1 = 6.58×10−22 MeVs = 7.64×10−12 Ks;
~c = 1 = 0.19733 GeVfm = 0.2290 Kcm;

1 K = 0.1532×10−36 gc2.

Then ε = 3p with

ε =
g

2
· (7

8
) · π2

15
T 4 =

g

2
· (7

8
)85.633(

T

GeV
)4

GeV
fm3 =

g

2
· (7

8
) · 0.841 · 10−36(

T

K
)4

g

cm3
;

n =
g

2
· (3

4
) · 2ζ(3)

π2
T 3 =

g

2
·(3

4
)31.700(

T

GeV
)3

1
fm3 =

g

2
· (3

4
) · 20.288(

T

K
)3

1
cm3

;

s =
g

2
· (7

8
) · 4π2

45
T 3 = (

7
6
)

2π4

45ζ(3)
n. (3.46)

For BE remove the bracketed fractions ( 7
8 ), ( 3

4 ), ( 7
6 ). Some further numerical relations are

Tγ = 2.725K ⇒ nγ = 410
1

cm3
;

Tν = (
4
11

)
1
3 2.7K = 1.9K ⇒ nν = 54

1
cm3

for gν = 1;

s0 =
4π2

45
[1 +

2 · 3
2

· 7
8
· 4
11

]T0γ
3 = 2810

1
cm3

(
T0γ

2.7K
)3 = 7.03n0γ .

3.4 The non-relativistic limit: Maxwell-Boltzmann

statistics

Maxwell-Boltzmann statistics is obtained in cases when we may approximate 1/(e
1
T

(E−µ) ± 1) ≈
e−

1
T

(E−µ), i.e., one can neglect the difference between BE and FD statistics. This requires
that e(E−µ)/T >> 1 or n0 << 1, which must hold for all values of k. Since E =

√
k2 + m2 one

should require e(m−µ)/T >> 1. All the thermodynamical functions can now be expressed in
terms of the Bessel function Kν(z):

Kν(z) =

∫ ∞

0

e−z cosh t cosh νt, (3.47)

which for small x goes like

Kn(x) =
Γ(n)

2(x/2)n
, K0(x) = log(2/x) (3.48)

while for large x

Kn(x) =
√

π/(2x)e−x. (3.49)



58 CHAPTER 3. IDEAL FERMI-DIRAC AND BOSE-EINSTEIN GASES

From Eqs. (3.16)-(3.10) we obtain the expressions

p =
m2T 2

2π2
eβµK2(βm) = nT,

n =
m2T

2π2
eβµK2(βm),

s =
m3

2π2
eβµ

[
K1(βm) + (4T − µ)/m ·K2(βm)

]
,

ε =
m2T 2

2π2
eβµ

[
K1(βm) + (3T/m)K2(βm)

]
. (3.50)

Note that p = nT holds also relativistically. In the non-relativistic limit K2(z) →√
π/(2z) exp(−z) so that

n = (
mT

2π
)

3
2 e−

m−µ
T ≡ 1

λth
3 e

µ−m
T ¿ 1

λth
3 . (3.51)

because e
m−µ

T À 1. (Compare how we derived this result in Ch. 1 in reversed order: µ =
∂F/∂N = −T log 1/(nλth

3).) Thus Maxwell-Boltzmann statistics is valid if n << 1/λth
3, that

is, the mean particle distance is much larger than the thermal wavelength of the particles,
which is the old condition that wavepackets not overlap, λth ¿ n−1/3.

The ultrarelativistic limits βm → 0 follow from Kn(z) ≈ 1
2
Γ(n)/(z/2)n.

3.5 Large T expansion

For µ = 0 we may write for bosons from Eq. (3.14)

f(T, m) =
T 4

2π2

∫ ∞

0

dx x2 log[1− e−
√

x2+y2
]|y=m/T . (3.52)

The integral in Eq. (3.52) has the following expansions:

fBE(T, m)

T 4
= −

(
y

2π

)3/2

e−y (y À 1) (3.53)

= −π2

90
+

y2

24
− y3

12π
− y4

32π2
[log y + γE − log 4π − 3

4
] +

ζ(3)y6

768π4
+ . . . (3.54)

Similarly, for the FD free energy (3.13) one has the expansion

fFD(T, m)

T 4
= −7π2

720
+

y2

48
+

y4

32π2
[log y + γE − log π − 3

4
] +

7ζ(3)y6

4 · 768π4
+ . . . . (3.55)

Finding the small-y expansion is an interesting mathematical problem. Note that the integral
seems to depend on y2 but the expansion (3.54) contains the term y3. There is no such in
(3.55). The reason is that expanding the integrand for small y leads to a divergent integral
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Figure 3.4: The exact result for p(T )/T 4 from (3.52) and the various terms of the large-T or
small-y expansion in (3.54).
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Figure 3.5: The exact result from (3.52) compared with the low-T approximation in (3.54).

for bosons. The physics reason is that the BE distribution function 1/(ex − 1) diverges at
x → 0, the FD distribution is finite. There are lots of infrared bosons at finite T !

To derive the T À m expansion return to the m2-derivative of f in Eq. (3.29). One sees that all the terms
with n 6= 0 can be expanded for small m/T , the zero mode n = 0 is the dangerous one. So separate it:

I(T,m) = I(n=0)(T, m) + In 6=0(T, m)

= T

∫
ddk

(2π)d

1
k2 + m2

+ 2T

∞∑
n=1

∫
ddk

(2π)d

1
(2πnT )2 + k2 + m2

. (3.56)

The zero mode term is seemingly a function of m2 but actually is divergent for d = 3 so a consistent
regularisation is needed. Try

∫
d3k

(2π)3
1

k2 + m2
=

∫ ∞

0

dk

2π2

k2 + m2 −m2

k2 + m2
=

∫ ∞

0

dk

2π2
− m2

2π2

∫ ∞

0

dk

k2 + m2
. (3.57)

Thus ∫
d3k

(2π)3
1

k2 + m2
= +∞− Tm

4π
(3.58)

and an obviously positive function of m2 has become a negative function of m – provided that the positive
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infinity can be disposed of. The second term in Eq. (3.56) can now be expanded for T À m:

1
(2πnT )2 + k2 + m2

=
∞∑

l=0

(−)l(m2)l

[(2πnT )2 + k2]l+1
(3.59)

and then integrated term by term over k using

ddk =
πd/2

Γ(d/2)
(k2)d/2−1dk2 (3.60)

together with the definition of the gamma function:
∫

ddk

(2π)d

1
(k2 + m2)A

=
1

(4π)d/2

Γ(A− d/2)
Γ(A)

1
(m2)A−d/2

. (3.61)

After the integration the sum over n can be written as a zeta function and the final answer reads

In 6=0(T, m) =
2T

(4π)d/2

1
(2πT )2−d

∞∑

l=0

( −m2

4π2T 2

)l Γ(l + 1− d/2)
Γ(l + 1)

ζ(2l + 2− d). (3.62)

Expanding for small ε, including terms up to l = 2, using the values of the zeta function, ζ(−1), ζ(1+2ε), ζ(3)
given below in Sect. 3.3 and adding the n = 0 term (γE is the Euler constant) leads to

I(T, m) =
T 2

12
− Tm

4π
− m2

16π2

(
1
ε

+ log
4π

T 2
− 2 log(2π) + 2γE +O(ε)

)
+

m4ζ(3)
128π4T 2

+O(m6/T 4), (3.63)

which (×1/2) still has to be integrated over m2 to give (3.54).

The extremely accurate computations of the Standard Model in particle physics express their results in terms
of the numbers log π, γE , ζ(N) appearing here (plus further related ones). Why does Nature choose them?

3.6 Particle-antiparticle mixtures at large T

In relativistic plasmas one must include also the antiparticles. Since the two can annihilate
to vacuum, the chemical potential of an antiparticle is −µ. For a FD system one then has
from (3.13) and the m2-integral of (3.31):

p(T, µ) = 2

∫
ddk

(2π)d

{
E(k) + T

[
log(1 + e−β(E(k)−µ)) + log(1 + e−β(E(k)+µ))

]}
, (3.64)

where E(k) =
√

k2 + m2, 2 counts the number of spin states and, for the first vacuum energy
term, d = 3− 2ε.

As for µ = 0, for the massless case the above result can be written in a very simple form.
Dropping the vacuum term

p(T, µ; m = 0) =
T 4

π2

∫ ∞

0

dx x2
[
log(1 + ey−x) + log(1 + e−y−x)

]|y=βµ

=
T 4

π2

(
7π4

180
+

π2

6
y2 +

1

12
y4

)

=
7π2

180
T 4 +

1

6
T 2µ2 +

1

12π2
µ4. (3.65)
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Here the coefficient of the T 4 term is 2 · 2 · 7
8
· π2

90
with obvious interpretations (2 for spin, 2

for particle+antiparticle at µ = 0, 7/8 for relating fermions and bosons and π2/90 the factor
for one bosonic degree of freedom. For a quark-antiquark gas one would further have 3 for
color and NF for number of flavours). What is surprising here is that the sum of the two
terms (which has to be even in y) is so simple while the log-terms separately just define some
functions of y. Further analogous relations are

∫ ∞

0

dx x

(
1

ex−y + 1
+

1

ex+y + 1

)
=

π2

6
+

1

2
y2 (3.66)

∫ ∞

0

dx x2

(
1

ex−y + 1
− 1

ex+y + 1

)
=

π2

3
y +

1

3
y3 (3.67)

∫ ∞

0

dx x3

(
1

ex−y + 1
+

1

ex+y + 1

)
=

7π4

60
+

π2

2
y2 +

1

4
y4 (3.68)

Here the last is basically the same as (3.65), as shown earlier by partial integration. Note the
minus sign in the middle equation, what is simple is the net fermion number, n− n̄.

There are many ways of deriving the above integrals. Actually all the terms are polylogarithms Ls(z):

Ls(z) =
∞∑

n=1

zs

ns
=

1
Γ(s)

∫ ∞

0

dx
xs−1

z−1ex − 1
, Ls(1) = ζ(s), (3.69)

where z is a complex number and where the analytic continuation to the complex plane is quite non-trivial.
Note, e.g., that the sum defines the function only for |z| < 1. The general result for an integral with arbitrary
integer power of x is given later in (3.85). An elegant way of evaluating the integrals is Taylor expanding
around y = 0. To calculate the derivatives with respect to y one should not work out dn(x, y)/dy explicitly
but note that this is equal to ±dn(x, y)dx and get rid of d/dx by partial integration, which simultaneously
decreases the power of x. With proper sign between the terms one ultimately comes to constant derivative so
that the expansion terminates.

Somewhat more laborious is to get the result by expanding the FD distributions using 1/(1 − x) =
∑∞

0 xn.
Now ex+y ≥ 1 always, but ex−y ≥ 1 for x ≥ y so we have to expand differently for 0 < x < y and y < x < ∞.
For the middle one we have

=
∫ ∞

0

dxx2

{
−Θ(x− y)

∞∑
1

(−e−x+y)n + Θ(y − x)
[
1 +

∞∑
1

(−ex−y)n
]
+

∞∑
1

(−e−x−y)n

}

=
∫ y

0

dxx2 +
∞∑
1

(−)n

{
−

∫ ∞

y

dxx2e−nxeny +
∫ y

0

dxx2enxe−ny +
∫ ∞

0

dxx2e−nxe−ny

}

=
1
3
y3 +

∞∑
1

(−)n

{∫ ∞

0

dxx2e−nx(e−ny − eny) +
∫ y

0

dxx2(e−nxeny + enxe−ny)
}

=
1
3
y3 +

∞∑
1

(−)n
(−4y

n2

)
=

1
3
y3 +

π2

3
y. (3.70)

To get from the second to the third line we have added to the integrand of the last term 0 = e−nxeny−e−nxeny.
To get from the third to the last line, simple integrals were carried out explicitly, lots of terms then cancel.
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3.7 Mathematical interlude: Properties of the ζ func-

tion

The ζ function appears frequently. It is defined by

ζ(s) =
∞∑

n=1

1

ns
=

1

Γ(s)

∫ ∞

0

dx
xs−1

ex − 1
Res > 1

=
1

1− 21−s

∞∑
n=1

(−1)n+1

ns
=

1

(1− 21−s)Γ(s)

∫ ∞

0

dx
xs−1

ex + 1
Res > 0

= 2(2π)s−1 sin
πs

2
Γ(1− s)ζ(1− s) =

∏
p=prime

1

1− 1
ps

. (3.71)

The middle line follows from the indentity

1

ex + 1
=

1

ex − 1
− 2

e2x − 1
. (3.72)

From this analytic continuation we have a beautiful result of the sum of all positive integers:

ζ(−1) = 1 + 2 + 3 + 4 + ... =
2

4π2
sin(−π

2
)Γ(2)ζ(2) = − 1

12
. (3.73)

This may look like something completely unphysical, but the contrary is the case. For exam-
ple, when you hear that bosonic string theories are consistent only in a world of 26 dimensions,
this number 26 is the solution of 1 + 2 + 3 + 4 + .. = 2/(2− d).

1-2-4
1

s

G
( s

)

Figure 3.6: Plot of ζ(s).
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What then is the product 1 · 2 · 3 · 4··· of all the integers? Now use

ζ ′(s) =
∞∑

n=1

− log n

ns
⇒ ζ ′(0) = −

∞∑
1

log n = − log
∞∏
1

n

so that ∞∏
1

n = 1 · 2 · 3 · 4··· = e−ζ′(0) =
√

2π, since ζ ′(0) = −1

2
log 2π.

A very important generalisation of this is the widely used “zeta function regularisation of func-
tional determinants. Assume A is an operator with Aun = anun, where an are its eigenvalues
and un its eigenfunctions, n = 1, 2, .... For any operator its determinant is an important quan-
tity. In terms of the eigenvalues it is detA = a1·a2·a3···, but for infinite dimensional functional
operators this product is most likely infinite. How do you regulate it? If one defines:

ζA(s) =
∞∑

n=1

1

an
s

(3.74)

one has
det A = a1·a2·a3··· = e−ζ′A(0) (3.75)

and these equations define an analytic continuation of the product of eigenvalues from the
region of large Res, where the product converges, to a region where one needs the value of
the product. Since the eigenvalues of the harmonic oscillator are equally spaced, one notices
that ζ(s) is essentially just the ζA(s) for A = harmonic oscillator!

Some special values of ζ(s) are

ζ(−2n, n ≥ 1) = 0, ζ(−3) =
1

120
, ζ(−1) = − 1

12
ζ(0) = −1

2
, (3.76)

ζ(2) =
π2

6
, ζ(3) = 1.20206, ζ(4) =

π4

90
, (3.77)

ζ(1 + ε) =
1

ε
+ γEuler +O(ε) the only singularity!. (3.78)

Riemann’s hypothesis is that all the nontrivial zeroes of ζ(s) have Res = 1
2
. Numerical

verification has been extended up to 1012 zeroes, all of type 1
2

+ it. Note that up to some
value of t, there will be t · [log(t/(2πe)/(2π) +O(log t/t)] zeroes, for example, the 1020th zero
is at 1

2
+ i1.52024...1019.

A function closely related to the ζ function is the polylogarithm

Ls(z) =
∞∑

n=1

zs

ns
=

1

Γ(s)

∫ ∞

0

dx
xs−1

z−1ex − 1
, Ls(1) = ζ(s), (3.79)

L0(z) =
z

1− z
, L1(z) = log

1

1− z
, L2(z) = −

∫ z

0

dt
log(1− t)

t
, . . . . (3.80)

If we define the integral

I(s) =

∫ ∞

0

dx xs−1

(
1

ex−y + 1
+ (−)s 1

ex+y + 1

)
(3.81)
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then from (3.79)

I(s) = −Γ(s)[Ls(−ey) + (−)sLs(−e−y)]. (3.82)

The polylog satisfies the functional relation

Ls(z) = (−)s−1Ls(1/z)− (2πi)s

s!
Bs

(
log(−z)

2πi
+

1

2

)
, (3.83)

where Bs(x) is a Bernoulli polynomial,

B1(x) =
1

2
+ x,

B2(x) =
1

6
− x + x2,

B3(x) = x(
1

2
− x)(1− x),

B4(x) = − 1

30
+ x2(1− x)2, (3.84)

etc. Using this one finds

I(s) =
1

s
(2πi)sBs(

1

2
+

y

2πi
), (3.85)

which together with the explicit forms Eq. (3.84) reproduces the integrals Eq. (3.68).

Finally, are you interested in the 10 000 000th (hexadecimal) digit of ζ(3) (and who
wouldn’t)? From D. J. Broadhurst, math.CA/9803067 you find that ζ(3) goes like
1.202056903159594........CDA018F4E....., where the C is the 10Mth hexadecimal digit.

3.8 Casimir effect

As discussed in Ch. 2, at finite T the time direction is imaginary and of finite length,
0 < τ < β, while the spatial directions satisfy 0 < x < L → ∞. Let us now make one
spatial direction of finite length, 0 < z < a, while keeping the other two spatial directions and
imaginary time infinite, 0 < x, y, τ < L → ∞. From the symmetry of the problem it should
be obvious that there is a physical quantity E(a) obtainable from p(T ) by 1/T ↔ 2a (for the
factor 2, see below):

p(T )/T = −E(a =
1

2T
), E(a) = − π2

720

~c
a3

. (3.86)

Take a look at Eq. (3.24): as it stands it would yield Z = exp(−F/T ) = exp(pL3/T ), and
replacing 1/T → 2a we have Z = exp(L · L2E). The quantity E(a) is the Casimir energy [?],
the energy per area between two infinite plates arising just from the fact that one has cut away
a finite region from an infinite space. It is thus a macroscopic manifestation of the quantum
mechanical zero point energy for field fluctuations, a ”cosmological constant”. Changing the
shape of the region changes the constant, but as long as there is no other quantity with
dimensions of mass (now me = ∞!), E(a) must behave as ∼ 1/a3. Since E(a) ∼ −1/a3, the
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associated force E ′(a) (which corresponds to entropy density at finite T ) is attractive. That
is, E(a) wants to be smaller and, since

~c
a4
≈ 10−14 N

m2

(
mm

a4

)
,

the force is small indeed, but nevertheless measurable.

Let us derive the above result doing the mode sum explicitly using dimensional regularisation:

E =
∑ 1

2
~ω =

1

2
~c

∑ √
k2

x + k2
y + k2

z

=
1

2
~c

∑
n=0,±1,...

∫
L2

(2π)2
d2k

√
k2

T +
(πn

a

)2
,

=
1

2
~c

∑
n=0,±1,...

(
−L2

6π

)(
π

a
|n|

)3

=
1

2
~c

(
− π2

6a3

)
L2

∑
n=0,±1,...

|n|3

= − π2~c
720a3

L2, (3.87)

where the momentum integral was done by setting s = 0 in

∫
d2k

(2π)2
(k2

T + m2)1/2−s =
m3−2s

4π

1

s− 3/2

and where ζ(−3) = 1/120 was used. Remarkably, the analytic continuation of a divergent
integral (this even fixes the sign!) and the sum of a divergent series, properly done, gives a
physical measurable result. Note that above the mode functions are those for a finite box,
exp(iknz), kn = π/a n, (both periodic and antiperiodic) while for finite T bosons one has to
include only the periodic ones, ωn = 2π/β n, since the space is topologically a circle1.

A recent review of the Casimir effect is, for example, http://arxiv.org/pdf/quant-ph/0609145

Since using zeta function regularization, which rather counterintuitively implies e.g. that
∑ |n|3 = −1/60, may

look like magic, it is useful to check the calculation using the more ”physical” momentum cutoff regularization.
Add calculation

1Actually, there is much discussion in the literature on the correct choice of modes.
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Chapter 4

Degenerate physical systems

4.1 Bose-Einstein condensation

Bose-Einstein condensation, first discussed in an article by S. Bose in 1924 which he sent to
Einstein who further elaborated on the subject in 1925, was first discovered 70 years after the
theoretical prediction.

Let us first consider the case of non-relativistic Bose-Einstein gas. For an ideal non-relativistic
boson system in thermal equilibrium the occupation number

n(E) =
1

eβ(E−µ) − 1
(4.1)

gives the thermodynamics via

N̄ =
∑

k

n(Ek) ≡
∫ ∞

0

dE g(E)n(E),

E =

∫ ∞

0

dE E g(E)n(E),

Ω = T

∫ ∞

0

dE g(E) log[1− eβ(µ−E)] . (4.2)

where g(E) is the density of states as discussed in Ch. 1.6, g(E) ∼ √
E for a box and

g(E) ∼ E2 for a harmonic trap.

Assume now we have some fixed number N of bosons in thermal equilibrium at some T, µ.
One expects that these have to be related by

N = N̄ =

∫ ∞

0

dE g(E)
1

eβ(E−µ) − 1
. (4.3)

Consider now the RHS as a function of µ. Firstly, we clearly must have µ < 0; otherwise the
E-integral blows up at E = 0. At very large negative µ the integral is very small, as is made

67
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explicit below for Maxwell-Boltzmann statistics in Eq.(4.16). When µ approaches 0 from the
negative side, the integral obviously grows monotonically. It thus reaches its maximum value
at µ = 0:

N̄max =

∫ ∞

0

dE g(E)
1

eβE − 1
. (4.4)

For a given number N of bosons we shall define a critical temperature Tc by

N =

∫ ∞

0

dE g(E)
1

eE/Tc − 1
. (4.5)

This will be the temperature below which some of our N bosons will start condensing to the
ground state.

To see the necessity of condensation, consider Eqs.(4.3) and (4.4). As long as N < N̄max we
can solve µ from (4.3). However, when N > N̄max the difference N − Nmax will condense to
the ground state.

The problem arises because the occupation number 1/(exp(−βµ) − 1) of the E = 0 mode
goes to infinity as µ → 0−, and as a consequence the continuum approximation

∑

k

→
∫

d3k

(2π)3
(4.6)

is not correct at k = 0. Instead we should take the continuum limit by

∑

k

→
∑

k=0

+

∫

k 6=0

d3k

(2π)3
. (4.7)

(Note that removing the point k = 0 from the integration range does not change the outcome
of the integral because of the measure.) This means that the density of states should be
written as

g(E) = CαEα−1 + δ(E) , (4.8)

where α labels the systems in which the gas is confined. We shall consider both a box and a
harmonic trap, for which the density of states has been computed in Ch. 1.6: g(E) = C

√
E

for a box and g(E) = CE2 for harmonic trap. The delta function in Eq. (4.8) takes care
of the zero mode; because of it, the occupation number of ground state bosons can become
macroscopic, i.e. bosons can condense in the ground state.

Inserting Eq. (4.8) into Eq. (4.2) we then find

N = Cα

∫ ∞

0

dE
Eα−1

eβ(E−µ) − 1︸ ︷︷ ︸
usual thermal cloud

+N0(T ) (4.9)

where N0(T ) is the number of particles in the ground state (≈ 0 for T > Tc). By expanding
in powers of e−β(E−µ) ≤ 1 one sees that the integral is a polylogarithm Ls(z) =

∑∞
n=1

zs

ns

discussed in Ch. 3.5:
N = CαΓ(α)T αLα(eβµ) + N0(T ), (4.10)
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If we start increasing N at some fixed temperature, then when it reaches N̄max the solution is
µ = 0. When it increases above N̄max, µ remains at µ = 0 and the surplus N−N̄max condenses
in the ground state. From the definition of Tc in (4.5) we find that N = CαΓ(α)ζ(α)Tα

c so
that we can solve for µ = 0, T < Tc from (4.10)

N0(T ) = N

(
1− Tα

Tα
c

)
. (4.11)

Consider now the two concrete cases, box and harmonic trap, explicitly. For a box we have
α = 3/2 so that

Cα =
V

}3

m
√

2m

2π2
⇒ n̄ =

1

}3

m
√

2m

2π2
Γ(

3

2
)

︸︷︷︸√
π/2

ζ(
3

2
)T

3
2

c ⇒ Tc =
}2n̄

2
3

m

2π

(ζ(3
2
))

2
3︸ ︷︷ ︸

≈3.3

(4.12)

One can also get an estimate of Tc by demanding overlap between wave packets:

n−
1
3 = λth = }

√
2π

mTc

⇒ Tc ' }2n
n
3

m
(4.13)

Numerically, for the classic example of 4He liquid with n−
1
3 ∼ Å and m ∼ 4mp, one finds

Tc ∼ 3K like the superfluid critical temperature. But 4He is not a ideal dilute Bose gas!

l
th

n
-1/3

Figure 4.1: Estimating Tc.

A harmonic trap with α = 3 is the relevant case for real experiments. Then

Cα =
1

2

1

(}ω)3
⇒ Tc =

1

(ζ(3))
1
3︸ ︷︷ ︸

≈0.94

}ωN
1
3 . (4.14)

Note, in particular, that there is no explicit volume V factor in Cα now. For T ≤ Tc we can
put µ = 0 and all the thermodynamical quantities, from Eq. (4.2), become very simple:

Ω =
T 4

2(~ω)3

∫ ∞

0

dx x2 log(1− e−x) = − π4

90(~ω)3
T 4

S = −∂Ω

∂T
=

2π4

45(~ω)3
T 3, E =

π4

30(~ω)3
T 4

N0(T ) = N

(
1− T 3

T 3
c

)
(4.15)



70 CHAPTER 4. DEGENERATE PHYSICAL SYSTEMS

T
T

c0

N
0
(T)

Figure 4.2: Condensate fraction

For T > Tc exact expressions have to be used, but very simple expressions are obtained also
at very large T since then one can apply the Maxwell-Boltzmann approximation and write

N =
T 3

(~ω)3
eβµ, E =

3T 4

(~ω)3
eβµ. (4.16)

Since N ≈ (Tc/~ω)3 we can invert from here µ = −3T log(T/Tc).

Let us now consider more concretely the parameter values of BE condensation in a harmonic trap. This also
illustrates why there is no explicit V factor in the density of states. The parameter values of atomic BEC
experiments are quite different from those expected for liquids, since new trapping methods avoid formation
of liquid or solid. Very roughly, one uses harmonic traps with ω ∼ 1000Hz, }ω ∼ 10−12eV = 10−8K = 10nK
and N ∼ 106 atoms (early experiments had 104 atoms, one can go up to 107 atoms). Thus Tc ∼ 1000nK
but the systems are cooled down to 10 nK. The densities are of the order of 1014/cm3 so that the ”average
distance between molecules” is ∼ 1000 Å. Of course, this is not a real distance, actually the wave functions of
the molecules overlap in the condensate. What is important is that this distance is larger than the scattering
length a ≈ 100Åof low energy scattering (see below); this implies that the system is dilute, it can be regarded
as an approximately ideal gas. And clearly it is much larger than the size of molecules, ∼ 1Å.

Assume we now have N atoms of mass m at some T in a harmonic oscillator potential 1
2mω2x2. How big is

the system? If T À ~ω we know that very high states of the potential are occupied. Since En = ~ω(n + 1
2 )

we see that levels up to n + 1
2 ∼ T/~ω are occupied. Since for the nth excited state

〈x2〉 =
~

mω
(n +

1
2
)

we see that the size of the system is

RhighT =

√
T

mω2
=

√
T

~ω

√
~

mω
.

This can as well be obtained from classical equipartition (expectation values of potential and kinetic energies
are essentially the same):

1
2
mω2R2 ∼ p2

2m
∼ 3

2
T ⇒ R ∼

√
T

mω2
, p ∼ mωR. (4.17)

Condensation to ground state takes place when wave packets start overlapping:

}
p
∼ n−

1
3 =

(
R3

N

)1/3

=
R

N1/3
∼ }

mωR
⇒ Rcrit =

√
}

mω
N1/6 (4.18)
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corresponding to T ∼ }ωN1/3. At T = 0 all the bosons are finally condensed in the ground state and that
has the width

Rcond =
√
〈x2〉 =

√
~

2mω
=

1√
2A

20µm (4.19)

for m = Amp.

There is very much subtle and ingenious physics in BEC experiments. For the first, how does
one create the trap 1

2
mω2x2 for neutral atoms (or neutrons, or single ions and electrons)?

Nobel prizes were given to Dehmelt & Paul (1989) for ion trap technique and to Chu, Cohen-
Tannoudji, Phillips (1997) for cooling and trapping of atoms with laser light. Then one must
find atoms that have suitable properties (such as Rubidium) and find methods for cooling
them. Finally, one must be able to observe the formation of the condensate; this is done by
releasing the atoms from the trap and measuring their velocity distributions. See, for example
Bose-Einstein Condensation in Dilute Gases, C.J.Pethick and H. Smith, Cambridge University
Press 2001, http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521665809

4.2 Condensate wave function

Let us next briefly discuss what one should do to go beyond the ideal gas situation. In the
quantum mechanical treatment of the problem we should start with the wave function Ψ of N
bosons in an external potential V (r) (=box, 1

2
mω2r2, . . . ), given in a one-particle factorised

form by

Ψ = Ψ(r1, . . . , rN) =
N∏

k=1

Ψ(rk) , (4.20)

where Ψ(rk) ≡ Ψk is the single particle wave function. Let us assume that we need to consider
only pairwise interactions U(r1 − r2) (=hard sphere, van der Waals, . . . ). The Schrödinger
equation reads:

i}
∂Ψ

∂t
=

N∑
i=1

[− }2

2m
∇2

i + V (ri)
]
Ψ +

∑
i<j

U(ri − rj)Ψ . (4.21)

To proceed one uses the concept of scattering length a from low energy scattering theory,
σtot(E → 0) = 4πa2, a > 0 for repulsive, a < 0 for attractive interactions. Writing

U(r) =
4π~2a

m
δ(r)

gives the correct cross section when used in potential scattering (with scattering amplitude
f(θ) = −m/2π~2

∫
d3x exp(iq · r)U(r), σ =

∫
dΩ|f |2). The combination na3 (actually

√
na3)

is a dimensionless expansion parameter, a dilute gas has na3 ¿ 1.

What can one think of computing? The simplest situation is found at T = 0 when all the
bosons are in the ground state E = 0. However, they interact via U(ri − rj), which affects
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E. Using first order perturbation theory one finds

∆E = 〈Ψ0(r1) . . . Ψ0(rN)|
N∑

i<j=1

U(ri − rj)

︸ ︷︷ ︸
1
2
N(N−1) equal terms

|Ψ0(r1) . . . Ψ0(rN)〉

=
1

2
N (N − 1)︸ ︷︷ ︸

≈N

∫
d3r1d

3r2|Ψ0(r1)|2|Ψ0(r2)|2 U(r1 − r2)︸ ︷︷ ︸
≈ 4π}2a

m
δ3(r1−r2)

∫
d3r3|Ψ0(r3)|2

︸ ︷︷ ︸
=1

. . .

=
2π}2aN2

m

∫
d3r

︸ ︷︷ ︸
V

|Ψ0(r)|2︸ ︷︷ ︸
1
V

|Ψ0(r)|2︸ ︷︷ ︸
1
V

⇒ ε =
∆E

V
=

2π}2an2

m
(4.22)

where a > 0 for repulsive and a < 0 for attractive interactions. This is how the low energy
interactions change ground state energy (density) from the free value.

Calculating higher order corrections is a heroic chapter in quantum theory:

ε =
2π}2an2

m

{
1 +

128

15π

√
na3 +

[8(4π − 3
√

3)

3
log na3 + C

]
na3 + . . .

}
(4.23)

The first correction is from Lee-Yang (1957) (needs a > 0) and the second from Wu (1959).
For C one needs more than the scattering length (cond-mat/9712041).

The computations are most conveniently carried out in the 2nd quantised field theory formu-
lation:

Ψl(r) =
∑

k= 2π
L

n

al
k

1√
V

eik·r, [al
k, al†

k′ ] = δkk′ (4.24)

⇒
{

[Ψp, Ψl] = 0

[Ψp, Ψ
†
l ] = δplδ

3(r − r′) equal times!
(4.25)

The Schrödinger equation in this formulation is given by

iΨ̇ = [H, Ψ] ,

H = H0 + V (1) + V (2) + · · ·
V (1) =

∫
d3rΨ†

kV Ψk ,

V (2) =

∫
d3rd3r′Ψ†

k(r)Ψ†
l (r

′)Ũδ(r − r′)Ψk(r)Ψl(r
′) , (4.26)

where we have now written the strength of the pairwise interaction as Ũ . It is then an exercise
to show that

[H, Ψk] = Ũ |Ψ|2Ψk − ∇2Ψk

2m
+ V (r)Ψk . (4.27)

Let us then assume that Ψ = Ψ0 + Ψ′ with 〈Ψ′〉 = 0 and Ψ0 =
√

n0. The ground state Ψ0

has E0 = 0 so that the time evolution is given by

Ψ0(t) = eiHtΨ0 = ei(E0−µ)tΨ0 = e−iµtΨ0 . (4.28)
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Then, using Eqs. (4.26) and (4.27), one arrives at the Gross-Pitaevskii equation:

−∇
2Ψ0

2m
+ V (r)Ψ0 + Ũ |Ψ0|2Ψ0 − µ̃Ψ0 = 0 , (4.29)

where
µ̃ = µ− 2n′Ũ , n′ = 〈Ψ′†Ψ〉 ¿ n0 when T < Tc . (4.30)

In the case of harmonic trap V = 1
2
mω2r2.

Another way of approaching this equation is to write the energy functional

E[Ψ] =

∫
d3r

[
1

2m
|∇Ψ(r)|2 + V (r)|Ψ(r)|2 +

1

2
Ũ |Ψ(r)|4

]
. (4.31)

Finding the extrema of E[Ψ] under the constraint that N is constant, i.e., computing δ(E −
µN)/δΦ∗ = 0 again results in Eq. (4.29). We shall later meet on several occasions functionals
of this particular form.

If the interaction is weak (so that we may neglect the Ψ4-term), the theory is Gaussian and
we obtain an eminently sensible result for the condensate wave function:

Ψ0 ≈
(

n0

π3/2l30

)1/2

e
− r2

2l20 , (4.32)

where l0 = (mω)−1/2) is the size of the condensate, i.e., the width of the harmonic oscillator
ground state. This serves as the starting point for variational calculations when the interaction
is switched on (exercise).
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4.3 Neutron Star: A T = 0 Fermi System

Neutron star is a cold body consisting of essentially non-interacting fermions bound together
by gravity. Hence it can be considered as a prime example of ideal Fermi gas at zero temper-
ature.

Let us first review the relevant formulas for T = 0 degenerate fermion gas. The starting point
is the FD expression for Ω, and we assume that there exist different fermions with µi, mi.
Then, as T → 0, log[1 + eβ(µ−E)] → β(µ−E)Θ(µ−E) so that we find (2 is for 2 spin states)

Ω(T = 0, µi) = −2
V

(2π)3

∫
d3k

∑
i

(µi − Ei(k))Θ(µi − Ei(k))

=
∑

i

2
V

(2π)3

∫
d3k(Ei(k)− µi) =

∑
i

(Ei − µiNi) = E −
∑

i

µiNi(4.33)

where 2 is for 2 spin states and for any i, kF =
√

µ2 −m2, µ ≡ EF . Then

n =
1

π2

∫ kF

0

dk k2 =
1

3π2
k3

F , (4.34)

ε =
1

π2

∫ kF

0

dk k2
√

k2 + m2 =
1

8π2

[
kF EF (2k2

F + m2)−m4 log
EF + kF

m

]
(4.35)

= mn +
3

5

k2
F

2m
n = mn +

k5
F

10π2m
, NR (4.36)

=
1

4π2
k4

F = 3p ER (4.37)

p = −ε + µn = 2

∫
d3k

(2π)3

k2

3E(k)
Θ(µ− E(k))

=
1

8π2

[
kF EF (

2

3
k2

F −m2) + m4 log
EF + kF

m

]
(4.38)

=
k5

F

15π2m
=

2

3
(ε−mn) =

1

15π2m
(3π2n)5/3, NR. (4.39)

Consider now bound states of neutrons, starting from a single one. A neutron is a uud-quark
QCD bound state with mass mn = 939.565330±0.000038 MeV. It decays to a proton with a
mass mp = 938.271998±0.000038 MeV via the beta decay n → p e−ν̄e (d → ue−ν̄e) with the
energy release of Q = mn −mp = 1.293318±0.0000005 MeV and a lifetime τn = 885.7± 0.8 s
(difficult to measure!). The maximum momentum of the decay electron is 1.19 MeV. Most of
the neutron mass is QCD energy. It is heavier than the proton because for reasons nobody
really knows, the d quark is heavier than the u quark (some 7 vs. 4 MeV in a certain scheme;
no accurate number can be given since the quark mass is not a physical scheme independent
quantity). All these numbers are crucial for the buildup of the nature around us.

Neutrons appear in bound states nucleons by virtue of the residual QCD forces that can be
thought to ”leak” out of the nucleons to within a distance of fm. Hence we have long-lived
states like pn; pnn (but no nn!); ppnn=He4, etc.
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Question: why is ppnn stable but nnnn does not exist; why does n in He4 not decay?

Stable or semistable states (i.e. elements and their isotopes) end at around A=250 with

EA = (A− Z)mn + Zmp − 0.016A + 0.018A2/3 + 0.71Z2A−1/3 + . . .

including the masses, binding energy of nuclear matter, surface energy and Coulomb energy.
Much work has been devoted to the study of cold nuclear matter with the binding energy
E/A − mN = −16 MeV at the nuclear matter matter density nnm = 0.17 1/fm3. This is a
degenerate Fermi gas with effects of nuclear force playing a significant role.

We shall, however, proceed to neutron stars. Residual QCD forces do not seem to be able to
bind nucleons to (semi)stable states with À 250 neutrons, but if we have enough nucleons,
gravitational forces will become important. Indeed, neutron stars can be considered as big
nuclei with A ≈ 1057. They are possible end products of a stellar evolution whereby nuclei are
burned in the core of the star through the chain H→He→C→· · ·Fe. The process ends in iron
because it is the state of lowest energy in the space of nuclear configurations. When nuclear
burning ceases, radiation pressure disappears and the star collapses under the weight of its
own gravity. Depending on the mass of the star, the final state is a white dwarf, a neutron
star, or a black hole. Figure here with Chandrasekhar limit etc?????

Why A ≈ 1057 for a neutron star? Assume a neutron star is a big nucleus with R = A1/3/mn

and mass M = Amn, mn giving the only energy scale. It is kept together by compensating
the outward push from the Fermi pressure by gravitational attraction. The outward Fermi
energy per neutron is also of the order of mn (see below). The gravitational binding energy
of a neutron is

mn
GAmn

R
≡ m2

n

M2
Planck

A

R
=

m3
n

m2
Planck

A2/3.

Equating this with mn gives

A =

(
MPlanck

mn

)3

= (1019)3 = 1057 ≈ Msun

mn

.

In a collapse to a neutron star protons and elecrons merge in the weak process pe− → nνe

and the neutrinos νe stream out of the star because of their very weak interactions, but only
up to a point determined by the thermal and mechanical equilibrium conditions.

Let us now estimate the density of protons and electrons in a neutron star. The equilibrium
conditions are:

1. np + nn ≡ nB = const. This will be of the order of nuclear matter density and varies as
a function of radius as given by the relativistic hydrostatic equilibrium equations. This
variation is neglected here.

2. Electric neutrality, np = ne− = nB − nn.
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3. We now have effectively only one free variable, nn, and this is determined by finding
the minimum of the energy density of the system by

dρ

dnn

= 0 ⇒ µn = µp + µe,

where µ2 = k2
F + m2, and

kF,e = (3π2ne)
1/3 = [3π2(nB − nn)]1/3

kF,µ = [3π2(nB − nn)]1/3

kF,n = [3π2nn]1/3 = 1.71fm−1 = 338 MeV, if n = 0.17fm−3. (4.40)

To verify that in equilibrium µn = µp + µe simply compute the derivative of ρ = ρn + ρe + ρp

with respect to nn, taking ρ ≡ ε from Eq. (4.35). Then

∑
i

dρ

dkF,i

dkF,i

dnn

=
∑

i

dkF,i

dnn

kF,i
2Ei = 0, where

dkF,i

dnn

∝ 1

k2
F,i

(4.41)

and the derivative vanishes when (abbreviating C ≡ (3π2)1/3)

µn−µp−µe =

√
C2n

2/3
n + m2

n−
√

C2(nB − nn)2/3 + m2
p−

√
C2(nB − nn)2/3 + m2

e = 0. (4.42)

The minus signs for p, e follow since there is a −nn in their Fermi momentum kF .

One can easily solve np/nn from Eq. (4.42) numerically, but it is more illustrative to to find
an approximate analytic solution. Let us therefore take p, n as non-relativistic and electrons
as relativistic (for more accuracy, see Weinberg). For neutrons at nuclear matter density
kF = 338 MeV and EF = mn + 61 MeV so that this is qualitatively fine. Then Eq. (4.42)
reads

mn +
1

2mn

C2n2/3
n = mp +

1

2mp

C2(nB − nn)2/3 + C(nB − nn)1/2 . (4.43)

For nn ≈ nuclear matter density the order of magnitude of the terms is 939+60=938+2+60
and one sees that mn = mp cancels, the Fermi kinetic energy of the proton contributes
negligibly and we can equate the neutron Fermi kinetic energy and the electron Fermi energy
and find nB − nn = C3n2

n/(2mn)3 or

np

nn

=
ne

nn

=
3π2

(2mn)3
nn = 0.034nn · fm3, (4.44)

since numerically 1/m3
n = 0.0083 fm3. For real neutron stars the central density is few×nuclear

matter density, ne and np are a few % of nn. Similarly,

kF,e = Cn1/3
p = 197 MeV(nnfm3)2/3 (4.45)

which is ≥ the maximum decay momentum 1.19MeV of the beta decay electrons. Thus only
part of the neutrons can beta decay, establishing the equilibrium as discussed above.

Summarising, at this very rough level of approximation, a neutron star is a T = 0 degenerate
Fermi system of 1057 nucleons, with radius R = A1/3fm = MPlanck/mn fm = 1019fm = 104km,
with the n, p, e composition discussed above.
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4.4 Degenerate Fermi gas with repulsive interactions

We got very far without saying anything about interactions. Let us now remedy this defect.
Consider a dilute degenerate gas of fermions with a short range repulsive interaction near T
= 0.

kF

0

<

< k

k1

2

Figure 4.3: All states ψk(r) = 1√
V

χse
ik·r (r ≡ r, s) are filled up to kF .

To leading order the energy is E = E0 = N · 3
5
EF ; for bosons E = 0. How do the low-energy

scatterings of the fermion states within the Fermi sea affect E? A detailed discussion can be
found in Landau-Lifshiz, Stat. Phys. 2, section 6; here we give a rough outline. To start
with, let us apply again first-order perturbation theory with

∆E = 〈Ψ0|HI |Ψ0〉 (4.46)

where we assume a pairwise interaction

HI =
N∑

i<j=1

U(r1 − r0); U(r) =
4π~2a

m
δ(r) (4.47)

and where a, the scattering length, is the k → 0 limit of the scattering amplitude so that

a =
m

4π~2

∫
d3rU(r) . (4.48)

This implies that the fermion interaction cross section is

σ = 4πa2, (4.49)

For dimensional reasons, one then expects that the expansion parameter should be akF .

The ground state wave function Ψ0 is the antisymmetrizised state

Ψ0 =

∣∣∣∣∣∣∣∣∣∣

Ψ1(r1) Ψ1(r2) ... Ψ1(rN)
Ψ2(r1) Ψ2(r2) ... Ψ2(rN)

. . . .

. . . .
ΨN(r1) ΨN(r2) ... ΨN(rN)

∣∣∣∣∣∣∣∣∣∣

(4.50)
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where Ψk are single particle wave functions which also include the spin. Then

∆E = 〈Ψ0|
N∑

i<j=1

U(ri − rj)|Ψ0〉 (4.51)

∝
∑
spin

〈Ψ1(r1)Ψ2(r2)|δ(r1 − r2)|Ψ1(r1)Ψ2(r2)〉〈Ψ3Ψ4 · · · |Ψ3Ψ4 · · ·〉 (4.52)

+ all combinations, properly antisymmetrized . (4.53)

As r1 → r2, the normalized antisymmetric spin combination is (ψ↑1ψ
↓
2−ψ↓1ψ

↑
2)/
√

2. Altogether
there are N = N↓ + N↑ states with N↓ = N↑ = N/2. As indicated above, the interaction Eq.
(4.47) picks the terms spin↑ ×spin↓, each term contributing ∆E = 4π~2a/m. Thus altogether

∆E = N↓N↑
4π~2a

m

∫
d3r︸︷︷︸
V

〈ψ1|ψ1〉︸ ︷︷ ︸
1/V

〈ψ2|ψ2〉︸ ︷︷ ︸
1/V

+ all combinations, normalized (4.54)

=
N2

V

π~2a

m
= N × k3

F

3π2

π~2

m

(
kF a

kF

)
(4.55)

= E0

[
1 +

10

9π
kF a

]
. (4.56)

Adding next-to-leading order would result into

E = E0[1 +
10

9π
kF a +

4(11− log 4)

21π2
(kF a)2 + ...] . (4.57)

This is an academic case which should be contrasted with the case of attractive interactions,
which will be discussed next.

4.5 Attractive interactions and the gap equation

Let us now assume the interaction is attractive. This seems like an unusual case since the
Coulomb interaction between electrons is repulsive. However, when the electrons interact
with the lattice vibrations of certain materials, there arises an effective attractive interaction
between the electrons. Then one finds a remarkable instability of the usual fermionic T = 0
ground state, the Fermi sphere: if there is any attractive interaction between the fermions,
then the energy E of two fermions with opposite momenta, k and −k, just above the Fermi
sphere, k > kF , is less than 2EF with ∆ = 2EF − E > 0. Here ∆ is called the mass (or
energy) gap, and its existence is at the very heart of superconductivity.

Evaluating ∆, as will be done below, one finds that ∆ ∼ exp(−1/small). Hence the gap ∆ is
non-analytic when the small strength if the interaction → 0 and hence the gap is genuinely
non-perturbative: there is no (Taylor) expansion in the coupling strength. In contrast, the
scattering corrections of the previous Section are perturbative and → 0 smoothly as the
scattering length a → 0.
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Figure 4.4: Leading order: states filled up to fermi surface |k| ≤ |kF |

To the leading order the states are filled up to Fermi surface and the energy of a pair at the
surface is 2EF . Consider then two electrons in a spin zero antisymmetric state so that their
momenta are k and −k and lie just above the Fermi sphere, k > kF . Thus the spatial part of
the wave function is ∼ eik·x1e−ik·x2 , or when summing over all momenta (x = x1 − x2),

ψ(x) =

∫
d3k

(2π)3
eik·xψ(k)θ(k − kF ) . (4.58)

This should be solved from the Schrödinger equation

[−~
2

m
∇2

x + V (x)]ψ(x) = Eψ(x), x = x1 − x2, (4.59)

where m = 2mreduced. Since the conditions on ψ are formulated in momentum space, we also
have to write the Schrödinger equation in momentum space, where the product V (x)ψ(x)
becomes a convolution:

(E − ~
2k2

m
)ψ(k) =

∫
d3k′

(2π)3
V (k− k′)ψ(k′)θ(k′ − kF ), (4.60)

V (x) =

∫
d3k

(2π)3
eik·xV (k) . (4.61)

From here we see that the dimensions of V (k) are energy·volume, the same as those of
4π~2a/m, where a is the scattering length. Eq. (4.60) should be solved for E with the
expectation that E = 2EF −∆.

Now insert the crucial information that V is attractive near Fermi surface:

V (k− k′) =

{ −v0 if EF < Ek, Ek′ < EF + δ
0 otherwise

(4.62)

Here δ is a parameter which will turn out to be ≈ ~ωDebye ≈ 100 K. As we will see ∆ ¿ δ. The
parameter v0 ∼ 4π~2|a|/m (the attractive nature of the interaction, i.e. a < 0, is implemented
in Eq. (4.62) by writing −v0) characterises the strength of the interaction. Parametrically,
it is the energy of the particle×volume of the particle. It should thus be compared with
EF × V/N . Hence v0 is small if v0n/EF ¿ 1 (typically 0.1...0.5).

Solving Eq. (4.60) we find

ψ(k) =
v0

2Ek − E

∫
d3k′

(2π)3
θ(k′ − kF )θ(EF + δ − Ek′)ψ(k′) (4.63)
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>
kF

Figure 4.5: From (4.62) kF < k < kF + mδ/~2kF .

Here
∫

d3k′
(2π)3

θ(k′− kF )θ(EF + δ−Ek′)ψ(k′) depends on kF and δ, but not on k. Now multiply

both sides by θ(k−kF )θ(EF +δ−Ek) and then integrate over d3k; then factors of
∫

d3k
(2π)3

θ(k−
kF )θ(EF + δ − Ek) cancel and one finds

1 = v0

∫
d3k

(2π)3
θ(k − kF )θ(EF + δ − Ek)

1

2Ek − E
. (4.64)

This is the famous gap equation.

To solve E from Eq. (4.64), let us write the density of states in a box in a conveniently
normalised form:

∫
d3k

(2π)3
=

1

V

∑
i

=

∫ ∞

0

dEkg(Ek), g(E) =
3

4

N

V EF

√
E

EF

. (4.65)

Now, by convention, g(E) is number of states per unit E per unit V . Then

v0

∫ EF +δ

EF

dEkg(Ek)
1

2Ek − E
≈ v0g(EF )

2
log(

2EF − E + 2δ

2EF − E
). (4.66)

where we have assumed that the density of states g(EF ) stays almost constant over the the
narrow range [EF , EF + δ]. Assuming further that the energy gap ∆ = 2EF − E = binding
energy À 2δ one finds the solution

∆ = 2δe−2/v0g(EF ). (4.67)

Often the gap equation is written in a simplified prototype form:

1 = g2

∫ Λ

0

dE√
E2 + ∆2

= g2 log
( Λ

∆
+

√
Λ2

∆2
+ 1

)
≈ g2 log

2Λ

∆
. (4.68)

From this we see that
∆ = 2Λe−1/g2

. (4.69)

Remarkably, we have found a solution with ∆ > 0. Both forms of the solution emphasize the
fact that the energy gap does not disappear in the weak interaction limit. It is not attainable



4.5. ATTRACTIVE INTERACTIONS AND THE GAP EQUATION 81

from the ground state (Fermi sea) by small perturbations, and therefore an entirely new
ground state has to be constructed: this is the BCS state.

To see in another way how the solution appears, rewrite (4.64) by going back to the sum over
states and plot it as a function of E. The smallest value of 2Ek = ~2k2/m is 2EF , above that
but below 2EF + δ there are the states 2E(i). Thus

1

v0

=
1

V

∑
states

1

2Ek − E
=

1

V

[
1

2EF − E
+

1

2E(1) − E
+

1

2E(2) − E
+ ...

]

and Fig. 4.5 shows how the solution is formed. Numerically, for superconductors, EF ≈
10000K, δ ≈ ~ωDebye ≈ 100 K and ∆ ≈ 1 K. These would correspond to v0g(EF ) = 3

4
v0n/EF ≈

0.4

<

>}∆

_
v0

2EF
(1) (2)2E 2E E

Figure 4.6: Gap equation plotted as a function of E.

The above is a simple discussion of quantum mechanics of one pair, both electrons outside
the Fermi sphere. For a proper discussion one must include all possible pairs as well as
fermions inside but still near the Fermi surface (see Landau-Lifshitz, Statistical Physics, Part
2, Chapter V). Then, at any T , the superconducting gap equation becomes

1 = g T

∞∑
n=−∞

∫
d3k

(2π)3

1

(~ωn)2 + ξ2
k + ∆2

, (4.70)

where ~ωn = (2n+1)πT , g is a four-fermion coupling (=v0 previously), and ξk = ~2k2/(2m)−
EF = (p+pF )(p−pF )/2m ≈ vF (p−pF ) is the energy measured from the Fermi surface. Note
the simple one-loop structure of this: it is like the I(T, m) discussed previously, now for
fermions and with k2 + m2 → v2

F |p− pF |2 + ∆2. Using

∞∑
n=−∞

x

(2n + 1)2π2 + x2
=

1

2
− 1

ex + 1
=

1

2
tanh

x

2

one derives from here the equation

1

g
= g(EF )

∫ δ

0

dξ√
ξ2 + ∆2

tanh

[
1

2
β
√

ξ2 + ∆2

]

for the T -dependence of the gap ∆(T ); δ = ~ωDebye and g(EF ) is the density of states on the
Fermi surface. For T = 0, β = ∞ one is back to (4.68). For any T , in the weak coupling limit
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∆ ¿ δ, one has

log
∆(0)

∆(T )
= 2I(

∆(T )

T
),

where

I(y) =

∫ ∞

0

dx√
x2 + y2

1

(exp
√

x2 + y2 + 1)
.

For large y, I(y) →
√

π/2ye−y and for small y, I(y) = 1
2
log(π/y)− 1

2
γEuler +7ζ(3)/(16π2)y2 +

. . . ). From here one finds that (2eγ/π ≈ 1.13)

Tc =
eγ

π
∆(0) =

eγ

π
2δe−2/g·g(EF ) (4.71)

and

∆(T ) = 1.74∆(0)(1− T/Tc)
1/2. (4.72)

4.6 BCS theory

Using the usual fermionic creation and annihilation operators, {a, a†} = δ, {a, a} = {a†, a†} =
0 the normal Fermi sphere could be written as

∏
k<kF

a†ka
†
−k|0〉 = |F 〉, writing the opposite

momenta explicitly. As discussed above, this state is actually unstable if there is attractive
interaction. The true ground state, replacing the Fermi sphere, is the BCS ground state
(Nobel 1972)

|ΨBCS〉 =
∏

k>0

(
√

1− v2
k + vka

†
ka
†
−k)|0〉 (k ≡ k, s) (4.73)

The last term implies that all electrons in the system are paired (with probability v2
k) This

ground state was a guess, ansatz, but it works very well! Let us briefly indicate how solving
the Schrödinger equation with this wave function proceeds.

>

1

kkF

vk

Figure 4.7: The superconducting solution for the weight vk.

The Hamiltonian and the Schrödinger equation

{
H = T + V =

∑N
i=0 Ti +

∑N
i<j=1 V (xi − xj)

i~∂tΨ(1, ..., N) = HΨ(1, ..., N)
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can in the occupation number representation

a|n〉 =
√

n|n− 1〉 a†|n〉 =
√

n + 1|n + 1〉

be written as {
H =

∑∞
r,s=1 a†ras〈r|T |s〉+ 1

2

∑
rs′lk a†ra

†
salak〈ij|V |kl〉

i~∂t|Ψ〉 = H|Ψ〉
Here, in terms of one-particle states, 〈r|T |s〉 =

∫
d3xΨ∗

rTΨs, 〈ij|V |kl〉 =
∫

d3xd3x′Ψ∗
r(x)Ψ∗

s(x
′)V (x−

x′)Ψk(x)Ψl(x
′) and |Ψ〉 is a linear combination of states = |n1n2n3.....〉 ≡ (a†1)

n1 ...|0〉. Further

H =
∑

k

Eka
†
kak +

1

2

∑

k,q

〈q − q|V |k − k〉a†qa†−qa−kak, (4.74)

N =
∑

k

a†kak, (4.75)

where (there is interaction between pairs only)

〈q − q|V |k − k〉 =
v0

V
θ(δ − |Ek − µ|)θ(δ − |Eq − µ|).

To solve H|ΨBCS〉 = E|ΨBCS〉, where vk in ΨBCS and E are unknown, one has to define new
operators for which |ΨBCS〉 is the ”vacuum”, αk|ΨBCS〉 = βk|ΨBCS〉 = 0:

{
αk = ukak − vka

†
−k

βk = uka−k − vka
†
k

u2
k + v2

k = 1

This is a canonical transformation a, a† ⇒ α, β. Quite a bit of work leads to

H − µN =
∑

k

√
(Ek − µ)2 + ∆2(α†kαk + β†kβk) + ... (4.76)

where
√

(Ek − µ)2 + ∆2 gives the quasiparticle energy spectrum with gap ”mass” and ∆ is
determined from the gap equation (4.70), essentially like the ∆ for Cooper pairs.

>

<Energy

E  =kµF

} ~ ∆

h k2 2__
2m

Figure 4.8: The gap function

The whole Fermi system can lower it’s energy by going to the BCS state. Because of the gap
this is a non-analytic transition.
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What seems very surprising is how an attractive interaction between electrons can arise. For
this one has to study carefully the collective behavior of electrons, including both the effects
of electrons and ions. Allowing the ions to move in response to the motion of electrons one
finds that there is firstly a static screening of a negative test charge, the Coulomb potential
becomes ∫

d3k

(2π)3

eik·r

k2 + 1/r2
0

=
1

4πr
e−r/r0 ,

1

r2
0

=
3

2

e2

ε0

n

εF

(4.77)

For a gas of electrons in a metal,

r0 ∼
√

a0

kF

∼ a0√
a0kF

∼ a0

(a3
0n)1/6

,

where a0 = ~/(αmec) is the Bohr radius. This is ≈ ionic lattice spacing so that the screening
is very efficient. However, a closer analysis (see Ashcroft-Mermin, Eqs. (26.25) and (34.10))
shows that there is also dynamic screening, the electron-electron interaction becomes fre-
quency dependent. The screening by ionic motion gives rise to a net attractive interaction
between electrons with energies separated by less than ~ωD, the energy of lattice vibrations.

4.7 Quark matter

For electrons in metals the net attractive interaction arose in a rather complicated way via
interactions with ions. For quarks at T = 0 the non-Abelian color interaction itself leads to
an attractive interaction. Thus instabilities of the Fermi sea at T = 0 are expected to lead to
remarkable effects for quark matter. However, so far they remain unobserved. This is a part
of the more general issue of determining the phase diagram of strongly interacting matter on
the T, µ plane, which we now briefly discuss.

Quarks have several quantum numbers, which we denote as qsif , with s = 1, .., 4 for spin,
i = 1, 2, 3 for color and f = 0, 1, 2, .., Nf for flavor. The quark masses are not physical because
they are always confined within hadrons. Hence the masses are convention dependent. In
a certain scheme they are mu ∼ 4MeV, md ∼ 7MeV, ms ∼ 150MeV, mc = 1.5GeV,mb =
5GeV,mt = 180GeV.

The QCD coupling constant varies with the energy scale µ as given by the renormalization
group equation

µ
dg(µ)

dµ
= −bg3 +O(g5) (4.78)

the solution of which to lowest order is

g2(µ2) =
g2(µ1)

1 + 2bg2(µ1) log(µ2/µ1)
≡ 1

2b log(µ2/ΛQCD)
, (4.79)

where 16π2b = 11−2Nf/3 and ΛQCD = µe−1/(2bg2(µ)) is the integration constant of Eq. (4.79);
note the analogy with the energy gap in Eq. (4.69) 1

1Proving in a way mathematicians accept as satisfactory that QCD has a gap is one of the famous million
dollar problems, see http://www.claymath.org. Any physicist knows there is a gap.
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Figure 4.9: Some alternative phase diagrams on the (T, µ) or (T, nB) plane.

The idea now is that if one heats ordinary matter up to T À 200 MeV = 1/fm and/or com-
press it to densities ρ À ρnuclmatt = 0.17/fm3 the quark-gluon structure of hadrons (strongly
interacting particles) dissolves and a quark-gluon plasma is formed. The fundamental prob-
lems are then: what is Ω(T, µ) = −V p(T, µ) for QCD matter? Is there a phase transition
between the hadronic and quark-gluon phases?

Extensive theoretical and experimental work has been devoted to the study of Ω(T, µ) for
QCD matter. Note that theoretically there are different ”QCDs” depending on what quark
masses are assumed; there is only one physical QCD where quark masses are so fixed that the
theory produces correct hadronic masses (such as mn, mp discussed earlier). Some possible
alternatives are shown in Fig. 4.7

The bag model. A very simple, old (1974) phenomenological idea captures roughly some
of the features of the quark-hadron phase differences. Gluons are massless and so are also
relevant u and d quarks as is also, to some extent, the s quark. There is asymptotic freedom
so interactions should be small at very large T so apply just ideal massless gas formulas.
However, to represent all the unknown QCD interactions, include also a vacuum term −B
to the pressure. Then we have, from formulas of Chapter 3, for a system of massless gluons
with 2 spin and 8 color states and NF massless quarks and antiquarks with 2 spin and 3 color
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states in a quark chemical potential µ:

pq(T, µ) = 2 · 8π2

90
T 4 + 3 ·NF

(
7

8
· 2 · 2π2

90
T 4 +

1

6
T 2µ2 +

1

12π2
µ4

)
−B

=

(
16 +

21

2
Nf

)
π2

90
T 4 +

NF

2
T 2µ2 +

NF

4π2
µ4 −B, (4.80)

From here one further computes s = ∂p(T, µ)/∂T , n = ∂p(T, µ)/∂µ,

ε = Ts + µn− p = (T∂/∂T + µ∂/∂µ− 1)p = 3p + 4B.

As T (or µ) decrease, the system should go over to the hadron phase where

ph = gh
π2

90
T 4 +

(
2mT

π

)3/2

Te−m/T

(
1 +

1

2

µ2

T 2

)
, (4.81)

where gh can be assumed to count just the relativistic pions and where the nucleons of mass
m are also included. The critical curve T = Tc(µ) is obtained at the phase equilibrium defined
by equal pressures ph = pq.

For µ = 0 we can write

pq(T ) = aqT
4 −B, ε = 3aqT

4 + B, ph(T ) = ahT
4. (4.82)

One now sees clearly how B operates. The critical temperature is determined by aqT
4
c −B =

ahT
4
c and a solution is possible only if B exists, T 4

c = B/(aq− ah). One also sees that the bag
constant acts just as a vacuum energy density, corresponding to an energy momentum tensor

Tµν = Bgµν , T00 = +B, Tii = −B. (4.83)

Note that µ is the chemical potential associated with net baryon number, nB−nB̄; this is the
conserved quantity although pairs of BB̄ or qq̄ can appear/vanish. For a nucleon B(N) = 1
while for a quark B(q) = 1/3, and since in equilibrium the process p ↔ qqq can take place,
µN = 3µq.

The ideal gas formulas can, of course, be improved by computing higher order corrections
in perturbation theory (see J. I. Kapusta and C. Gale, Finite-Temperature Field Theory,
Cambridge University Press 2006).

Along the µ axis at T = 0 one might think that the net baryon number density n =
∂p(0, µ)/∂µ behaves as shown in Fig.4.7. One can directly apply the ideal gas formulas
given above, but also higher order corrections can be computed with much effort over the
entire T, µ plane (see Aleksi Vuorinen, thesis 2004). However, the Fermi sea instability leads
to qualitatively new effects at T = 0. The point with T = 0 QCD matter is that the at-
tractive interaction between fermions near the Fermi sea is obtained for free, from the colour
symmetry. For electrons one needed a roundabout via interactions with positively charged
ion oscillations.
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Figure 4.10: Net baryon number density at T = 0, µ increasing. The relation between µ and
n is somewhat tricky at small µ!

Color superconductivity. To indicate where the attractive force between quarks comes
from one needs some group theory. Consider the group SU(2) and the states of two spin 1/2
particles. Denote this state by (u, d), the fundamental representation of SU(2). The combined
state reduces to a scalar and vector: 2×2 = 1+3, the singlet state is the antisymmetric state
(u1d2− d2u1)/

√
2 and the vector state is the symmetric set (u1u2, (u1d2 + d1u2)/

√
2, d1d2). If

the spin operator is S, its eigenvalues are S2/~2 = s(s+1) = 0, 3/4, 2 for singlet, doublet and
vector respectively. Assuming rotational symmetry, the potential between particles would be
V (r) = V0(r) + V1(r)S1 · S2, where

S1 · S2 =
1

2
[|S1 + S2|2 − |S1|2 − |S2|2

= −3

4
singlet

= +
1

4
triplet (4.84)

This simple argument has thus produced a sign change, change between attraction and re-
pulsion, in the potential.

For the QCD color group SU(3) the quarks are in the fundamental representation 3 of SU(3).
Taking two fundamental states qi, pj (i, j = 1, 2, 3 are color indices), the appropriate group
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theory relation is 3× 3 = 3̄ + 6 or in tensorial form

qipj =
1

2
(qipj − qjpi) +

1

2
(qipj + qjpi). (4.85)

Doing some SU(3) group theory as was done for SU(2) above shows that the antisymmetric
two-quark state 3̄ is favoured by a factor −2 relative to the symmetric one 6.

This simple source of attraction has given rise to a large literature on the pairing instability
of quark matter near T = 0. Since the quarks have many quantum numbers there can be
complicated patterns of pairing: the order parameter would be 〈qs,a,iqs,b,j〉, where s(=left or
right-handed) is a spin index, a, b = u, d, s, c, .. is a flavor index and i, j = 1, 2, 3 is a color
index. There is a very elegant result for the gap:

∆(µ) = 514π4

(
2

Nf

)5/2
1

g5(µ)
µ exp

[
−3π2

√
2

1

g(µ)
− π2 + 4

8

]
, (4.86)

where Nf is the number of flavors and g(µ) is the dimensionless running coupling in (4.79).
Note the dominant factor exp[−const/g(µ)], due to special properties of QCD this really
contains g, not g2. Numerically, this has a huge effect; ∆ is much bigger than expected by
analogy with ordinary superconductivity, but still ¿ µ. Unfortunately, the only thinkable
tests of these theoretical ideas are in observations of stellar compact systems and one has so
far no empirical evidence of color superconductivity.



Chapter 5

Hydrodynamics and Kinetic Theory

5.1 Introductory remarks

Let us now move on from global to local thermal equilibrium, the dynamics of which is
described by hydrodynamics, which is a set of equations describing continuous media. The
degrees of freedoms are now fields: number density n(x, t), temperature T (x, t), pressure
n(x, t), mass(energy) density ρ(x, t) = mn(x, t) in the non-relativistic case, velocity v(x, t),
and so on. In order that we may treat matter as continuous naturally requires that the time
scales δt À τc, the collision time, and the length scales δx À r, the average distance between
the particles (atoms, molecules). In terms of frequency and wave number the conditions are
ωτc ¿ 1, kλ ¿ 1. Actually there will also be shock fronts with thickness λ, but these are
treated as discontinuities conserving energy and momentum fluxes. One may also note that
in magnetohydrodynamics a collisionless approximation with ωτc À 1 may be valid. Then
the electric and magnetic fields E and B dominate the dynamics.

Thermal equilibrium ⇒ Local thermal equilibrium ⇒ No equilibrium
∆t = ∞ ∆t À something
∆x = ∞ ∆x À something

T, p = constant p = p(t,x), T = T (t,x)

Table 5.1: Equilibrium conditions.

There immediately arises two questions: (i) how do small perturbations about a given back-
ground evolve, and (ii) how is thermal equilibrium locally reached? The former issue leads
to the study of the propagation of pressure and density waves, the latter to is related to
dissipation and viscosity in general.

The third question would be: what is the microscopic origin of the hydrodynamics? This
question is addressed by the kinetic theory, which yields hydrodynamics as a coarse grained
description of the motion and interactions of point-like particles. Kinetic theory will be
discussed in Sect. XX.

89
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To get a feeling of the typical observables and their magnitudes, consider a simple example,
air, which is mostly N2 and O2 molecules at p = 105Pa and T = 273 K. From pV = NT
we find that n = p/T = 1/(33.5Å)3 so that average distance between the air molecules is
n−1/3 = 33.5Å À radius of the molecule; here we may take the radius of the N2 molecule
R = 1.9 Å. The non-relativistic molecules obey the Maxwell distribution

f0(v̄) = n0(
m

2πT
)3/2e−

m
2T

v̄2 ⇒ 〈v〉 =

√
8T

πm
= 453m/s .

The mean free path can be estimated as λ = 1/(nσ
√

2) = 1/(4π
√

2nr2) =
(33.5Å)3/(17.8 · (1.9Å)2) = 586Å, where the collision cross section was estimated by σ ≈
4πR2. The collision frequency is then τc = λ/〈v〉 = 1.3 · 10−10s. A Nitrogen molecule thus
collides, on the average, ten billion times in one second. Air can be described as continuous
medium at scales δt À 10−10s and δx À 34Å.

In summary, for air R : n−1/3 : λ = 1.9 : 33.5 : 586 ≈ 1 : 17 : 172; air at normal room
temperature and density is a dilute, nearly ideal gas. However, what is of interest are not so
much the static properties but rather the dynamical behaviour of air or fluids in general. In
practise this means the fluid flow (e.g. the velocity field) or the propagation of perturbations
(e.g. sound waves).

Flow is important! Consider an air molecule in front of a house, and suppose the street is 10 meters away.
How long does it take for the molecule to find itself on the street? We may assume that the molecule travels
with the velocity v = 〈v〉 and that in a collision its speed remains always the same although the direction to
which it is travelling changes randomly (i.e. collisions are gaussian). After N collisions the mean distance
traversed along any of the 3 dimensions is 〈x〉 =

∑N
i=1 xi, where xi ≡ L0 = vτc for all i. At each step positive

and negative directions are as probable so that 〈xi〉 = 0 but 〈x2
i 〉 = L2

0. Different steps are totally independent
so that 〈xixj〉 = 〈xi〉〈xj〉 = 0 if i 6= j The square of the total distance covered after N collisions is

〈x2〉 =
N∑

i=1

N∑

j=1

〈xixj〉︸ ︷︷ ︸
L2

0δij

= L2
0N = (dτc)2t/τc = v2τct ≡ Dt.

so that
d ≡

√
〈x2〉 =

√
Dt.

The time elapsed is t = Nτc = d2/(v2τc). Plugging in the appropriate numbers we verify that diffusion is a
very slow process: t(d = 10 m) ≈ 1 month. Flows, i.e. winds, are clearly of utmost importance. Here we have
also defined a diffusion constant D and derived an expression for it. With the above numbers for air we have
d = 5mm

√
t/s.

Similar considerations apply also to relativistic systems. An example would be the radiation
dominated very early universe. Then n ∼ T 3, v = c = 1 and σ ≈ α2/T 2, where α is the
appropriate (gauge) coupling strength squared, and the 1/T 2-dependence of the cross section
follows from dimensional considerations: [σ] = cm2 = 1/energy2 and in the ultrarelatvistic
case the only energy scale is T . Thus the collision rate λ = 1/(nσv) ∼ 1/(α2T ). The size of
the system is now the Hubble distance ∼ MPlanck/T

2 and thus equilibrium can be achieved
if T ¿ α2MPlanck. This means that right after Big Bang, if the universe did not emerge in
a thermal state, it did not reach thermal equilibrium until the Hubble rate had decreased
sufficiently.
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5.2 The basic equations of hydrodynamics

The local thermodynamical behavior of the fluid (= gas or liquid) is characterised by
continuous fields such as the number density n(x, t), temperature T (x, t), mass density
ρ(x, t) = mn(x, t) and pressure p(x, t). The hydrodynamic equations relate these to the
velocity fields v(x, t), j(x, t) = ρv. In terms of the microscopic theory, the fields are averages:
they are moments of the phase space distribution function f(x,v, t) of the (pointlike) particles
that constitute the fluid:

n(x, t) =

∫
d3vf(x,v, t), N(t) =

∫
d3xn(x, t), u(x, t) · n(x, t) =

∫
d3vvf(x,v, t).

The behavior of f is determined by kinetic theory, which will be discussed in Section 5.8.
The averaged fields obey the hydrodynamic equations, which we first write down for the
non-relativistic case.

• Conservation of particle number or mass density

Requiring the conservation of the mass density ρ we arrive at the continuity equation:

dρ

dt
=

∂ρ

∂t
+

∂

∂xk

∂xk

∂t
ρ =

∂ρ

∂t
+∇ · (ρv) = 0 (5.1)

which expresses the conservation of particle number. Relativistically, this is the net particle
number, but non-relativistically there are no antiparticles in thermal equilibrium.

• Conservation of momentum density

By virtue of the continuity equation, the nonrelativistic force density can be written as

f ≡ dρv

dt
= ρ

dv

dt
= ρ

(
∂v

∂t
+

∂xk

∂t

∂

∂xk
v

)
. (5.2)

On the other hand, for a time independent force f = −∇p. Thus we arrive at the Euler
equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + fext , (5.3)

where fext contains both internal forces such as viscosity, as well as external ones, such as
gravity.

The Euler equation is simply the analogue of the newtonian force equation F = mẋ = ṗ
for fluids. On the left-hand-side one has n ·m× the convective time derivative of v, i.e. the
change of the velocity field when one follows the fluid flow, ∆x = v∆t:

v(x + ∆x, t + ∆t)− v(x, t) = ∆t
∂v

∂t
+ ∆x · ∇v = ∆t(

∂v

∂t
+ v · ∇v).

On the right-hand-side one has various forces causing the flow, starting from the pressure
gradient. If only this is included, one has the Euler equation and the flow is adiabatic,
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entropy conserving, ∆S = 0. For a viscous dissipative ∆S > 0 one obtains the Navier-Stokes
flow with

fviscosity = η∇2v + (ζ +
1

3
η)∇(∇ · v),

with the proportionality constants that are called bulk and shear viscosities. Their role is
to cause flow when, say, vx(y) depends on y, see Fig.5.2. We will return to viscosity and
Navier-Stokes equation in Section 5.5

>

>

>
>

>
>

vx
y

x

>
m
otion

Figure 5.1: Dependence of vx on y causes dissipative flow in y direction.

From the previous two equations and local thermodynamics, one further derives (LL, Fluids,
§6)

• Conservation equation for energy density:

∂

∂t
(
1

2
mnv2 + U) +∇ · [v(

1

2
mnv2 + (U + p)) + dissipation] = 0 (5.4)

where U = E/V = Ts − p is the internal energy density. Note the non-trivial structure of
this equation. The energy density is obviously (1/2)mnv2 + U . However, the corresponding
current is not simply density ×v but one must also add the pressure to the energy density,
the relevant potential is the enthalpy E + pV . Physically, when the system expands, it does
−pdV work. Energy, of course, is always conserved, but not the comoving energy density.

• Entropy conservation

Although energy density in the comoving volume is not conserved, entropy is. From previous
equations and thermodynamic relations it follows that either

∂s

∂t
+∇ · (sv) = 0, s =

S

V
≡ σn (5.5)

or
∂σ

∂t
+ v · ∇σ = 0, σ =

S

N
≡ s

n
. (5.6)

That both forms are equivalent, follows from the continuity equation for ρ = mn.
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5.3 Relativistic hydrodynamics

Hydrodynamical equations can be written more symmetrically in the relativistic notation,
where the starting point is the energy-momentum tensor, which for ideal fluids reads as

T µν = (ε + p)uµuν − pgµν (5.7)

while the current density is
jµ = nuµ . (5.8)

Here ε is the relativistic energy density and uµ = dxµ/dτ = (dt/dτ, dx/dτ) = (γ, γv) is the
four-velocity with uµuµ = γ2 − γ2v2 = 1 (the proper time differential dτ =

√
dt2 − (dx)2 =

dt
√

1− v2 = dt/γ). In comoving coordinates which are definied by the rest frame of the flow
v = 0, the four-velocity uµ = (1, 0).

In flat space with gµν = diag(1,−1,−1,−1) ≡ ηµν we have then

T µν =




ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 (5.9)

and in any frame, when v 6= 0, in block matrix notation,

T µν =

(
γ2(ε + pv2) γ2(ε + p)vi

γ2(ε + p)vi (ε + p)γ2vivj + pδij.

)
(5.10)

An interesting special case is the vacuum energy for which ε = −p ≡ εvac so that Tµν = εvacgµν . Compare
also Eq. (5.7) with energy momentum tensor of a collection of point particles at x = xi(t) for which

Tµν =
∑

i

pµ
i pν

i

Ei
δ3(x− xi(t)) =

∑

i

∫
dτ

pµ
i pν

i

m
δ4(x− xi(τ)). (5.11)

The hydrodynamical equations (without dissipation) simply arise from the conservation of
the energy-momentum tensor and of the particle number current:

∂µT
µν = 0, ν = 0, 1, 2, 3 ∂µj

µ = 0. (5.12)

Note that when defining conservation one must take into account the change of the volume
element with flow. In other words, what is conserved is

N(t) =

∫

V (t)

d3xj0(t,x)

in the comoving frame, defined by δV = vδt · dA:

N(t + δt) =

∫

V +δV

d3xj0(t + δt,x) = N(t) +

∫
d3x

∂j0

∂t
δt +

∫
dA · vδtj0 =

= N(t) +

∫
d3x

[
∂j0

∂t
+∇ · (vJ0)

]
δt = N(t)
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A particularly important point now is that entropy conservation again follows directly from
the equations of motion (5.12). General thermodynamic relations are always valid so that

s =
S

V
=

∂p

∂T
, n =

N

V
=

∂p

∂µ
, ε(T, µ) = Ts(T, µ)− p(T, µ) + µn(T, µ),

where T = T (t,x), µ = µ(t,x), v = v(t,x) are fields depending on xµ = (tx). Using the
definition (5.7) of T µν one finds that the projection of its conservation along uν can be written
in the form

uν∂µT
µν = T∂ν(su

ν) + µ∂νnuν . (5.13)

Thus the conservation of T µν and jµ also implies that

∂µs
µ = 0, sµ = suµ (5.14)

and entropy is conserved. With viscosities and thermal conductivity included, ∂µs
µ > 0. If

one normalises to the net particle number N instead of V by defining σ ≡ S/N then

∂µs
µ = nuµ∂µσ + σ∂µnuµ = nuµ∂µσ = 0 (5.15)

due to current coservation (5.12). Non-relativistically this was written in (5.5) and (5.6)

It is illuminating to study the non-relativistic limit of the relativistic equations (LL, Fluids,
p.500). The subtle point here is that the NR equations are for a fixed volume element, while
the relativistic equations refer to the proper frame. Thus one cannot only replace ε → mn+ ε
but instead ε → mn/γ + ε = ρ(1− 1

2
v2) + ε. Then, including c, the energy-momentum tensor

becomes

T µν =

(
ρc2 + ε + 1

2
ρv2 ρcvi + (ε + p + 1

2
ρv2)vi/c

Symmetric pδij + ρvivj

)
(5.16)

where v ¿ c and ε is without the rest energy. Then ∂µT
µ0 = ∂0T

00 + ∂iT
i0 = 0 yields

∂tρ + ∂i(ρvi) = 0, to order c

∂t(ε +
1

2
ρv2) + ∂i[(ε + p +

1

2
ρv2)vi)] = 0, to order 1/c

while ∂µT
µi = ∂0T

0i + ∂jT
ji = 0 gives

∂t(ρvi) + ∂j[(ρvivj + pδij)] = 0, to order 1 (5.17)

Thus the 0-component gives both the particle number conservation and the energy density
conservation equation, while the i-component gives the Euler equation.

5.4 Two practical applications

• Sound

Let us linearize around an obvious constant solution:

ε = ε0 + ε1, p = p0 + p1, n = n0 + n1,v = 0 + v (5.18)
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Then uµ = (1,0) + (0,v) and to order 1

T 00 = ε0 + ε1, T 0i = (ε0 + p0)v
i, T ij = (p0 + p1)δij, J0 = n0 + n1, J i = n0v

i. (5.19)

As the problem is linear, one may go to Fourier space with ∂0 → −iω, ∂i → iki. The
conservation equations then become

−ωε1 + (ε0 + p0)k · v = 0,

−ω(ε0 + p0)v + p1k = 0,

−ωn1 + n0k · v = 0.

From the 2nd equation

v =
p1

ε0 + p0

k

ω
→ v is longitudinal (5.20)

and inserting this to the first one

ω2 =
p1

ε1

k2. (5.21)

In coordinate space this corresponds to an undamped wave moving with velocity

vsound =

√
p1

ε1

=

√
dp

dε

∣∣∣∣
S

. (5.22)

Here one has made the very important additional statement that local thermal equilibrium
is always maintained so that small deviations ε1, p1 from constancy always go together adi-
abatically, conserving entropy. For example, when pressure increases, collisions are frequent
enough to make also the internal energy to change as required by global thermodynamics.
From the third equation, finally,

n1 =
n0

ε0 + p0

ε1; (5.23)

the net number oscillates together with energy density (though I do not seem to get ∂n/∂ε =
n/(ε + p) at constant S, get 1/µ = n/(ε + p− Ts) instead).

• Winds

This is a very nice and truly practical application of hydrodynamic equations, showing also
how one in physics has to proceed through different levels of approximation. One also has to
mess up with rotating coordinate systems; anyone familiar with this can proceed directly to
Eqs. (5.29)-(5.33).

(1) The rotation of the earth is essential:

ω =
∆p

∆t
=

v

R
=

2π

P
=

2π

24 · 3600(1− 1/365)
= 7.3 · 10−5 1

s

(2) In central motion:

v = ωR cos ϕ = 463m/s cos ϕ, a = ω2R cosϕ = 0, 0337m/s2 cos ϕ (5.24)
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Figure 5.2: Coordinate system

(3) Coordinates fixed relative to space vs. coordinates fixed relative to the body:

d

dt
|space =

d

dt
|body + ω × | r, (5.25)

⇒ vspace = vbody + ω × r (5.26)

⇒ d

dt space
vspace = aspace = abody + ω × vbody + ω × dr

dt
|body + ω × (ω × r) =

1
m

F (5.27)

(F = ma is valid in an inertial system!)

⇒ abody =
1
m

F− 2ω × vbody − ω × (ω × r) (5.28)

(4) The coordinates on the surface of the earth

> >

<

N y

z   up x
E

that is

<

< >y z

latitude ϕ

Figure 5.3: The coordinates on the surface of the earth

Then ω = ω(cos ϕj + sin ϕk) = ω(0, cosϕ, sinϕ)

After this long preparation, the hydrodynamic equations can be written in the form:

dv

dt
= −1

ρ
∇p + g − ω × (ω × r)− 2ω × v (5.29)

where one firstly can approximate g − ω × (ω × r) ≈ (0, 0,−g) and where the Coriolis force
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is, neglecting vz:

−2ω × v = −2ω

∣∣∣∣∣∣

i j k
0 cos ϕ sin ϕ
vx vy vz

∣∣∣∣∣∣
= 2ω(sin ϕvy,− sin ϕvx, cos ϕvx). (5.30)

Writing all the components separately one gets

dvx

dt
(10−4) = −1

ρ

∂p

∂x
(10−3) + 2ω sin ϕvy (10−3) (5.31)

dvy

dt
(10−4) = −1

ρ

∂p

∂y
(10−3)− 2ω sin ϕvx (10−3) (5.32)

0 = −1

ρ

∂p

∂z
(10)− g (10) + 2ω cos ϕvx (10−3) (5.33)

The order of magnitude of the terms (in SI units) is written directly after each term, based
on the estimates vx, vy ∼ 10 m/s, vz ∼ 10−2 m/s, 2ω ∼ 10−4 1/s, 1/∆t ∼ 1/day ∼ 1/105 1/s.

The largest terms, of the order 10, give the equation

1

ρ

∂p

∂z
= −g. (5.34)

If ρ = m · p/T then dp/p = −gm/T ≈ −g/v2
s and one can solve this as

p(z) = p(0)e
− g

v2
s
·z

(5.35)

This, of course, just gives the height of the atmosphere 〈z〉 ∼ v2
s/g ∼ 104 m. For a neutron

star with the surface T = 5 keV and vs ∼
√

T/mp ∼ 6 · 105m/s and surface gravity 1011×
that of earth one would have an atmosphere of height 10 cm.

The next-to-leading order terms of order 10−3 imply for the first that dvx/dt ≈ dvy/dt ≈ 0
(nearly steady state state) so that

v =
1

2ω sin ϕ · ρ(−∂p

∂y
,
∂p

∂x
, 0) =

1

2ω sin ϕ · ρ k×∇p (5.36)

This is the ”geostrophic equilibrium” in which the pressure force −∇p and the Coriolis force
balance each other. It cannot be reached near the equator, where ϕ ∼ 0. Note that the wind
velocity is perpendicular to the gradient of pressure, wind does not blow in the direction of
decreasing pressure.

The next-to-next-to leading order terms include also dvx/dt, dvy/dt of order 10−4. Assuming
2d circular symmetry in the x, y plane and putting time dependence in dθ/dt = v/r the
components are

{
vx = v(r)(− sin θ)
vy = v(r)(cos θ)

{
dvx

dt
= v(r)(− sin θ)v

r
∂p(r)
∂x

= p′(r) cos θ
dvy

dt
= v(r)(− sin θ)v

r
∂p(r)
∂y

= p′(r) sin θ
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Figure 5.4: The pressure and the Coriolis force stabilize each other!

and the equations (5.31) and (5.32) become

−v2(r)

r
= −1

ρ
p′(r) + 2ω sin ϕ · v(r). (5.37)

Going to the northerm hemisphere with f ≡ 2ω sin ϕ > 0 we can write

fv(r) =
1

ρ
p′(r)− v2(r)

r
. (5.38)

For a low atmospheric pressure, a cyclone, p′(r) > 0, 0 < v(r) < vgs(r) = p′(r)/(fρ) and the
rotation is anticlockwise, dθ/dt = v/r > 0.

For high atmospheric pressure, anticyclone: p′(r) < 0, vgs < 0 and the rotation is clockwise.
However, now (5.38) implies that |v(r)| > |vgs(r)|, but actually v cannot grow so winds are
light around an anticyclone.

As a final application of (5.37), go to the equator, where 2ω sin ϕ = 0 and

v2(r)

r
=

1

ρ

dp

dr
.

Approximate here r ≈ ∆r ∼ 100 km, ∆p ∼ 30 mbar ∼ 0.03 · 105 Pa and ρ =1 kg/m3. Then

v(r) =

√
r

ρ

∆p

∆r
≈

√
∆p

ρ
≈ 50m/s. (5.39)

This is a tropical cyclone or hurricane. I still would love to understand why it is that the
surface temperature of the ocean has to be > 27 C before a hurricane can be formed (Erik
Palmen, 1948).
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Figure 5.6: An anticyclone

5.5 Dissipation and the Navier-Stokes equation

The Euler equation conserves entropy (5.5), but in reality the entropy always grows. This
can be taken into account by adding to the Euler equation dissipative terms, or viscosity,
which physically arise because the collisions between fluid particles scatter them out of the
flow. Because of the collisions, the fluid is no longer ideal. The Euler equation with viscosity
terms is called the Navier-Stokes equation and is conventionally written as

ρ(
∂v

∂t
+ v · ∇v) = −∇p + η∇2v + (ζ +

1

3
η)∇(∇ · v), (5.40)
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where η is the shear and ζ the bulk viscosity. This is basically a phenomenological but an
extremely well verified equation. There is no fundamental derivation of this, but one may use
physically motivated arguments to arrive at Eq. (5.40). Writing

Πik = pδik + ρvivk + ∆Πik (5.41)

we may ask, what is the general form of the non-ideal stress energy ∆Πik?

• If v = 0, there is no flow and hence no dissipation so that ∆Πik(v = 0) = 0.

• It then makes sense to expand about v = 0 so that when the velocity gradients are
small, ∆Πik ∝ ∂vi/∂xk +O(v2).

• Uniform rotation has no friction. Thus, if the velocity field is of the form v = ω× r, we
find

∂vi

∂xk

=
∂

∂xk

εijlω
jxl = −εkjiω

j ≡ −∂vk

∂xi

where εijl is the completely antisymmetric unit tensor with ε123 = +1. Note also that if
i = k, then ∂vi/∂xk = 0. Thus we conclude that

∆Πik = α

(
∂vi

∂xk

+
∂vk

∂xi

)
+ βδik

∂vi

∂xi

where α and β are independent parameters (transport coefficients). It is however useful
to rearrange the terms into a traceless and a non-traceless part, rename the independent
parameters and write

−∆Πik = η(∂kvi + ∂ivk − 2

3
δik∇ · v) + ζδik∇ · v. (5.42)

Now Tr∆Πik = −η(2∂vi/∂xi − 2/3 × 3∂vi/∂xi) + 3ζ∂vi/∂xi = 3ζ∂vi/∂xi. Like the Euler
equation, the Navier-Stokes equation is obtained from the conservation of Π in Eq. (5.41) so
that we arrive at

−∇ ·∆Π = η∇2v + (ζ +
1

3
η)∇(∇ · v) ≡ fviscosity . (5.43)

Note that the second term on the RHS is zero if the fluid is incompressible: by virtue of the
continuity equation (5.1) ∇ · v = 0 if ρ = const.

Thermal conductivity. Thermal flow is also characterized by a trasport coefficient, the thermal conductivity
κ, defined by

jq = −κ∇T .

Thermal flow affects the 0i components of the energy momentum tensor. Defining the densities s = S/V and
σ = S/N one finds that thermal flow increases entropy:

T

(
∂s

∂t
+∇ · (sv)

)
= Tn

(
∂σ

∂t
+ v · ∇σ

)

=
1
2
η(∂kvi + ∂ivk − 2

3
δik∇ · v)2 + ζ(∇ · v)2 +∇ · (κ∇T ). (5.44)
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Also the T -term, together with the T in the LHS gives a positive contribution to entropy production (LL,
Fluids, §49).

The question of what to add to the non-dissipative terms is actually far from trivial. The
standard non-dissipative terms, like those in Eq. (5.42) work extremely well in most practical
instances, but lead to conceptual difficulties. For example, the diffusion equation is parabolic
and the signal propagates with infinite velocity (if you start with δ(x) at t = 0, the solution
extends to any x at t > 0). This can be corrected by introducing second-order corrections
to the entropy current and hyperbolic dissipative hydrodynamic equations can be written
down. A full account with references can be found in Azwinndini Muronga, arxiv.org/ps/nucl-
th/0309055.

Historically, η is measured by the friction force on a spherical object moving in a fluid:

Ffriction = −6πR · η · v
from where one can read the dimensions of η as kg/(ms). Some numerical values for η and
the kinematic viscosity η/ρ are given in the Table.

η, Ns
m2 ν = η

ρ
, m2

s

Water 20◦C 1.00 · 10−3 1.00 · 10−6

Air 20◦C 1.8 · 10−5 1.5 · 10−8

Hg 20◦C 1.56 · 10−3 1.2 · 10−7

Table 5.2:
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vapor

η

Figure 5.7: η for water

One of the most interesting results coming from string theory (some would suggest the only
result, others like extra dimensions and supersymmetry also come from other arguments) is
that viscosity for any substance should satisfy

η

s
≥ ~

4π
, (5.45)

where s = S/V is the entropy density. The equality sign applies to all 4d field theories
obtainable from string theory in a certain well defined way. For all normal matters the
inequality is usually violated by a wide margin. Note the factor ~; there is no c in this
relation.
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Note also that mathematically it has not yet been proven that physically reasonable solutions
exist for the Navier-Stokes equation. Proving this is one of the Millenium problems, see
http://www.claymath.org/millennium/Navier-Stokes.Equations/navierstokes.pdf

5.6 Turbulence and Reynolds number

It is of great theoretical and practical interest to consider the circumstances under which the
viscosity terms in the Navier-Stokes equation (5.40) are important. To this end, to simplify
the discussion, let us assume that the fluid is non-compressible with ρ = const. so that
∇ · v = 0 and the dissipative part depends on η alone, which we assume to be a constant.
Then we may define

ω = ∇× v (5.46)

and operate with ∇× on the Navier-Stokes equation1. We then find

∂ω

∂t
= −∇× (v · ∇)v − 1

ρ
∇×∇︸ ︷︷ ︸

εijk∂k∂l=0

p +
η

ρ
∇×∇×∇2v︸ ︷︷ ︸

εijk∂j(∇2v)k=∇2(∇×v)i

. (5.47)

We further note that

v ×(∇× v) = −(v · ∇)v +
1

2
∇v2

→ −∇× (v · ∇)v = ∇× v × (∇× v)︸ ︷︷ ︸
=∇×(v×ω)

+
1

2
∇×∇︸ ︷︷ ︸

=0

v2 .

(5.48)

Thus we arrive at
∂ω

∂t
=

η

ρ
∇2ω +∇× (v × ω) (5.49)

where η/ρ ≡ ν is often called the kinematic viscosity.

Let us now defined the dimensionless variables τ = t/t0 and u = v/v0, where t0 is a typical
time scale in the problem and v0 = L/t0 is a typical velocity with L is a typical length scale.
With the dimensionless variables ∇ → ∇′ = L∇ and ω → Ω = Lω/v0 and

∂Ω

∂τ
=

1

R
∇′2Ω +∇′ × (u×Ω) , (5.50)

where

R =
Lv0

ν
=

ρLv0

η
(5.51)

is the Reynolds number.

Clearly, if R ¿ 1, the evolution of Ω is dominated by the diffusive term, which for a given
Fourier mode k yields the equation Ω̇ = −k2Ω/R so that Ω → 0 as τ →∞. Thus for a small

1This would also be the appropriate description for vorticity in the fluid
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Reynolds number, viscosity damps the velocity field. If R À 1, viscosity is unimportant and
the evolution of Ω is dominated by the non-linear term in Eq. (5.50), which can then lead to
fluid motion which is highly non-perturbative or turbulent. In other words, the flow develops
an internal length scale δ ¿ L and the magnitude of the viscosity term is rather η/ρ · v/δ2

which equals the inertia term of δ = L/
√

Re.

For an airplane with a wing length of 10 m, taking νair ∼ 0.15 cm2/s and typical velocity as
v0 ≈ 200 m/s we find R ∼ 10 · 100/10−5 ∼ 108 À 1; hence the motion of an airplane wing
through air can be expected to generate turbulence (as it does). For a bug in water we take
L ≈ 0.1 cm, νwater = 0.01 cm2/s and v0 ≈ 1 cm/s to find R ∼ 10−3 · 10−3/10−3 = 10−3; hence
water bugs live a pastoral and non-turbulent (but short) life at a small Reynolds number.

5.7 Magnetohydrodynamics

When hydrodynamics is supplemented by the Maxwell equatios, we obtain magnetohydrody-
namics. The fluid elements are charge carriers and are therefore subject to the Lorentz-force
F = q(E + v ×B). Then there are two possibilities:

• Collisionless plasma. In this case, the electrons and the ions are separate. As a
consequence, there are sources for electric fields and plasma oscillates. This case could
be called plasmaphysics proper. Will be discussed ????

• Collision dominate. If collisions dominate such that the collision rates between the
charged fluid elements (particles) are much faster than the rate of change of elecro-
magnetic fields, the charge densities effectively average out and there are no sources for
electric fields. This case is magnetohydrodynamics proper (MHD for short).

Let us now focus on plasma dominated by collisions. Although there is no charge density,
there nevertheless exists a current

j = σ(E + v ×B) , (5.52)

where σ is the conductivity. The Maxwell equations read

∇× E = −∂B

∂t
,

∇ ·B = 0 ,

∇×B = µ0j , (5.53)

where we have neglected the induced current ∂E/∂t ¿ j. Hitting the last of the Maxwell
equations with ∇× we obtain

∇× (∇×B) = −∇2B = µ0σ(∇× E +∇× (v ×B)) (5.54)

or
∂B

∂t
=

1

µ0σ
∇2B +∇× (v ×B) , (5.55)
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which is the basic MHD equation. Note that Eq. (5.55) has the same form as the hydrody-
namical description of non-compressible fluid (vorticity), Eq. (5.50). Therefore we may use
Eq. (5.55) to define a magnetic Reynolds number RM . Let us define the magnetic diffusivity
ηM ≡ (µ0σ)−1 and let L0 ∼ ∇−1 and v0 be respectivley the typical length and velocity scales
in the problem. Then, as before,

RM =
L0v0

η
. (5.56)

Clearly, RM ¿ 1 corresponds to the limit of vanishing conductivity, σ → 0. Conductivity
vanishes if the charged particles in the flow scatter away; hence low conductivity means a
large collision cross section or equivalently, a mean collision time τc → 0. Likewise, RM À 1
implies high conductivity and a small collision cross section. These two case give rise to a
qualitatively different magnetohydrodynamic behaviour of the plasma:

• Low conductivity, RM ¿ 1. If σ → 0 in Eq. (5.55), we may write

∂B

∂t
≈ 1

µ0σ
∇2B (5.57)

and choosing eg. B ↑↑ êz we find at large t

B = B0e
−µ0σz2

4t . (5.58)

Thus there is diffusion: the plasma cannot sustain B because of collisions. Note that
the current dies out starting at small scales: defining the diffusion length rD through
µ0σr2

D/4t ∼ 1 we find
rD ' 2

√
µ0σt . (5.59)

At time t at length scales less than rD there is no current and hence no magnetic field;
the ”microscopic” motion is random. However, at larger scales there still is bulk motion,
and hence a current, and hence a magnetic field. When the ∇2 - term dominates, B
(and Ω in Eq. (5.50)) spread diffusively, as depicted in Fig. ??.

>

<

x

Figure 5.8: The ∇2 - term, diffusive spreading

• High conductivity, RM À 1. Now we approximate Eq. (5.55) by

∂B

∂t
≈ ∇× (v ×B) , (5.60)
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which clearly admits the solution B ≈ const., B ↑↑ v. Hence in this limit the magnetic
field follows the motion of fluid; the magnetic field is said to be frozen in the plasma:
d
dt

∮
C

v ·dl = d
dt

∫
B·dA = 0. This can lead to complicated entangled magnetic field lines

as charge carriers move around in the plasma; this is an example of magnetic turbulence.

> > > >

C(t + δ)

C(t)

Figure 5.9: The curve C moves with the current!

Magnetic dynamo Because conductivity is high in many astrophysical situations, such as in the Sun and in
galaxies, the magnetic field can be assumed to be highly entangled and to follow the velocity field lines. This
has been used as a starting point to explain the magnetic fields of galaxies, which are typically of the order of
10−6 G with a coherence scale of about 1 kpc. In the magnetic dynamo model one assumes an initial small
seed field, which is then enhanced exponentially by the differential rotation of the galaxy and by the coriolis
drift of particles (and hence the magnetic field) from the galactic plane.

The diffusion equation for the temperature field is given by

∂T

∂t
= k∇2T (5.61)

Derivation:
T = heat field
j = heat current

{
dimT = J

m2

dimj = J
m2s

{
j = −k∇T
∂T
∂t +∇ · j = 0 ⇒ ∂T

∂t = k∇2T

So

{
dimk = m2

s

dim 1
µ0σ = c2

mkg · V
A m = m2

s

[
1

µ0σ
= The magnetic diffusion constant]

With the initial condition T (x, t → 0) = T0δ(x), a heat pulse at x = 0, the solution is analogous to the case
of magnetic diffusion with

T (x, t) = T0
1√

4πkt
e−

x2
4kt . (5.62)

5.8 Kinetic theory

In hydrodynamics and in magnetohydrodynamics we assume continuous matter. The task of
the kinetic theory is to explain both at the level of constituents. To this end one starts with
the probability distribution f(x,p, t) of a given particle species in the phase space volume
element d3xd3p. Then the particle density is

n(x, t) =

∫
d3pf(x,p, t) (5.63)
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while the total particle number is N(t) =
∫

d3xn(x, t). The current density reads

u(x, t) · n(x, t) =

∫
d3pvf(x,p, t), (5.64)

where u(x, t) is the velocity of the flow.

Example: MB statistics In the non-relativistic limit

f(x,v) = n(x)(
m

2πT (x)
)3/2e−

m
2T (x) (v−u(x)2), (5.65)

where T, n,u depend on x. Relativistically, one would write

1/nf (p, x) = exp[uν(x)pν/T (x)− µ(x)/T (x)] + 1,

1/nb(p, x) = exp[uν(x)pν/T (x)]− 1, (5.66)

where now all thermodynamic quantities depend on xµ = (t,x) and the single quantity E is replaced by pµ =
(E,p). In the comoving frame, uµ(x) = (1,0) the eqs. (5.66) reduce to the standard FD, BE distributions.

The phase space dynamics is dictated by the Liouville theorem, according to which, in the
absence of collisions, f = constant along its trajectory in phase space. Hence

0 =
df

dt
=

∂f

∂t
+

∂f

∂xk

∂xk

∂t
+

∂f

∂pk

∂pk

∂t
= 0

→ ∂f

∂t
+∇f · v +∇pf · F = 0 , (5.67)

where F is the external force (e.g. the Lorentz force).

In the presence of collisions, the Liouville equation (5.67) is written formally as

∂f

∂t
+∇f · v +∇pf · F =

∂f

∂t

∣∣∣∣
coll

, (5.68)

where the RHS term is called the collision integral and the equation itself the Boltzmann
equation. Note that this is a complicated non-linear equation even without collisions. For
example, if f is the distribution of a charged particle, then the force term itself will depend
on f via the Lorentz force: F = e(E + v ×B), where E and B depend on f .

x, v, t_ _

x + ∆x, 
v + ∆v, 
t + ∆t

_ _
_ _

Figure 5.10: Moving with the flow means ∆x = v∆t and ∆v = a∆t.
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In a somewhat different formulation, to get the change while moving with the flow we have to take ∆x → v∆t
and ∆v → a∆t so that the convective derivative of f becomes

∆f

∆t
=

f(x + ∆x,v + ∆v, t + ∆t)− f(x,v, t)
∆t

∣∣∣∣
∆x=v∆t,∆v=a∆t

.

Expanding in ∆t and inserting a = F/m one obtains the kinetic equation

∂f

∂t
+ v · ∂f

∂x
+

F
m
· ∂f

∂v
=

∂f

∂t

∣∣∣∣
coll

. (5.69)

The collision terms has two obvious components since collisions can in principle both destroy
or produce a given state fi. In this context there are several levels of approximation. The
simplest approach is to ignore multiple scattering and 2 → 3, 2 → 4, and other higher order
processes and focus only on the effect of 2→2 collisions to the distribution fi of species i.
Then there are collisions k + l → i + j which produce more particles while the collisions
i+ j → k + l reduce their number. In equibrium, fi = f0 so that the effect of collisions should
vanish. Thus we may try to write in the relaxation time approximation

∂fi(x,v, t)

∂t

∣∣∣∣
coll

=
∑

k,l,j

(
fk↘
fl
↗©↗fi

↘fj
− fi↘

↗©↗
↘

)
≈ − 1

τc

(fi − f0),

where τc = is the collision time ≈ constant. A more precise approach would be to compute
the transition amplitudes M(k + l → i + j) and M(i + j → k + l) from theory (e.g. QED)
and then integrate (possibly numerically) over the momenta of the particles of type k, l and
j.

Example: two particle species. Let us assume there are only two particle species, denoted by A and B.
Here A is the species the evolution of which we wish to follow. Then, apart from normalization factors,

∂f

∂t

∣∣∣∣
coll

∼ −
∫

fA(p1)fB(p2)|Md(AB → AB; p1)|2d3p2 d3p3d
3p4︸ ︷︷ ︸

final state

+
∫

fA(p3)fB(p4)|Mp(AB → AB; p1)|2d3p3d
3p4 d3p2︸︷︷︸

final state

, (5.70)

where Md (Mp) is respectively the matrix element for destroying (producing) particle A in the momentum
state p1. Let us now assume that the species B, which contributes to the thermal bath in which A propagates,
is in near equilibrium so that fB = f0

B , where f0
B ∼ exp(−βE) is the equilibrium distribution. Then, by virtue

of energy conservation,

fA(p3)fB(p4) ≈ e−β(E3+E4) = e−β(E1+E2) ≈ f0
A(p1)f0

B(p2) . (5.71)

Thus we may write
∂f

∂t

∣∣∣∣
coll

∼ −fA(p1)Γd(p1) + f0
AΓp(p1) , (5.72)

where Γd and Γp are the collision rates for destruction and production. In near equilibrium the matrix elements
Md ≈ Mp so that we may write Γd ≈ Γp ≈ 1/τc.

Note that in the relaxation time approximation

df(t)/dt = −1/τc[f(t)− f0] (5.73)
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we may easily obtain the solution for the distribution function as

f(t) = f0 + e−
t

τc (5.74)

so that due to collisions, f approaches equilibrium exponentially fast.

The hydrodynamic equations can now be derived from the kinetic equations. We start from
the Liouville equation (5.67) and integrating over the momenta we find

∂

∂t

∫
d3pf

︸ ︷︷ ︸
ρ/m

+∇ ·
∫

d3p vf
︸ ︷︷ ︸
〈v〉ρ/m

+

∫
d3p F · ∇pf =

∫
d3p

∂f

∂t

∣∣∣∣
coll

, (5.75)

where we have defined the mean velocity field as

〈v〉 =

∫
d3p vf∫
d3pf

. (5.76)

For a single fluid the collision integral vanishes for 2 → 2 collisions:

∫
d3p

∂f

∂t

∣∣∣∣
coll

∝
∫

d3pd3p2d
3p3d

3p4|M |2 (f(p)f(p2)− f(p3)f(p4)) = 0 (5.77)

since the p, p2 etc are just integration labels. Moreover, the force term also vanishes:
∫

d3p Fk
∂

∂pk
f =

∮
dS · Ff

︸ ︷︷ ︸
→0 since f→0 as |p|→∞

−
∫

d3pf ∇p · F︸ ︷︷ ︸
∂

∂pk
∂pk

∂t
=0

= 0 . (5.78)

Thus from Eq. (5.75) we arrive at the continuity equation:

∂ρ

∂t
+∇ · ρ〈v〉 = 0 . (5.79)

The continuity equation is the zeroth momentum moment of the Liouville equation; the Euler
equation can be obtained by taking the first moment:

∂

∂t

∫
d3ppif

︸ ︷︷ ︸
〈vi〉ρ

+∇ ·
∫

d3p vvimf +

∫
d3p F · ∇pfpi =

∫
d3ppi

∂f

∂t

∣∣∣∣
coll

. (5.80)

It is an exercise to show that the first moment of the collision integral vanishes for a single
fluid. As for the other terms, let vi = 〈vi〉+ v′i with 〈vi〉 = 0. Then

m

∫
d3pf


〈vi〉〈vj〉+ v′j〈vi〉︸ ︷︷ ︸

→0

+ v′i〈vj〉︸ ︷︷ ︸
→0

+v′iv
′
j




= ρ〈vi〉〈vj〉+
1

3
δij〈v2〉mn . (5.81)
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Since
1

2
m〈v2〉 = 〈E〉 =

3

2
T ≈ 3

2
p
V

N
=

3

2
p/n , (5.82)

where p is now the pressure, we find

∂ρ〈v〉
∂t

+ ∇ · [ρ〈v〉〈v〉+ pI]

= −
∫

d3p pF · ∇pf

= −
∮

dS · Fp
︸ ︷︷ ︸

→0

+

∫
dpf

∂

∂pk
pFk

︸ ︷︷ ︸
F

= 〈F〉 . (5.83)

Thus we have obtained the Euler equation for the mean velocity and force fields.

Note that we get all the important basic equations by destroying information, i.e. integrating
out inessential degrees of freedom. This is a concrete example of ”weak emergence”, new phe-
nomena (hydrodynamic behavior, local thermal equilibrium) are obtained by coarse graining,
integrating out parts of higher-level theories. Proponents of ”strong emergence” hold that
these new phenomena have an independent existence and are not obtained by integrating out
degrees of freedom. This certainly is not the case here.

5.9 Transport coefficients

We now study a situation in which there are small gradients in n(r), T (r) or the flow velocity
u(r) (small means lfree ·∇n(r) ¿ n, etc.). These small gradients cause a transport of particles,
temperature or momentum and we define response = transport coefficient · gradient; these
measure the viscosity, diffusivity and thermal conductivity of the fluid. Because of the small-
ness of the gradients, this approach is called linear response theory. The transport coefficients
can now simply be estimated from kinetic theory. In fact, the equiblibrium distribution is of
the form:

f0(r,v) = n(r)

(
m

2πT (r)

)3

exp

(
− m

2T (r)
[v − u(r)]2

)
(5.84)

From the transport equation in the relaxation time approximation it follows that

f − f0 ≡ f1 = −τc[v · ∂f0

∂r
+ a · ∂f0

∂v
], (5.85)

where the RHS can be calculated with the help of ∇n,∇T,∇u and the kinetic coefficients
can be identified.

Some details. The starting point for the linear response theory is to consider small fluctuations about the
local thermodynamical equilibrium and write

f0(x,p, t) = f0(E∗
p/T (x, t)) , (5.86)



110 CHAPTER 5. HYDRODYNAMICS AND KINETIC THEORY

where E∗
p is the energy in the rest frame of the fluid, and T is the temperature field.

Let us consider small deviations from the local equilibrium:

f(x,p, t) = f0 + δf(p) . (5.87)

Assume a stationary viscous flow, i.e. time-independent δf ; then the Euler equation reads

∂ρVi

∂t
+ ∂k(Πik + ∆Πik) = 0 (5.88)

with Vi ≡ 〈vi〉 and

Πik = m

∫
d3p vivkf0 = ρViVj + pδik ,

∆Πik = m

∫
d3p vivkδf ≡ −η(∂iVk + ∂kVi − 2

3
δik∇ ·V)− ζδik∇ ·V . (5.89)

In the relaxation time approximation we write the Boltzmann equations as

∂f

∂t
+

p
m
· ∇f =

∂f

∂t

∣∣∣∣
coll

= −f − f0

τc
= −δf

τc
. (5.90)

For stationary flow ∂f/∂t = 0 and we find

δf ≈ −τc
p
m
· ∇f . (5.91)

A comoving observer sees locally a velocity field V = 0 with f = f0(E∗/T ). In the laboratory coordinates
the velocity field v = V + v∗ and

f0(E∗) = f0(E) +
∂f0

∂Ep
(E∗ − E) (5.92)

where E = 1
2mv2 = 1

2m(v∗2 + 2v∗ ·V + V 2) = E∗ + p∗ ·V +O(V 2) = E∗ + p ·V +O(V 2). Thus

f0(E) = f0(E∗)− p ·V ∂f0

∂Ep

→ ∇f0(E) = − ∂f0

∂Ep
∇p ·V (5.93)

and

∆Πik = m

∫
d3p vivkδf = −τc

∫
d3p vivk

p
m
· ∇(p ·V)

∂f0

∂Ep

=
−τc

m

∫
d3p vivkvj∂jVlvl

∂f0

∂Ep
. (5.94)

From this expression one can in principle read off the properly symmetrized coefficient of ∂jVl, or the shear
viscosity η, in an integral form.

• Viscosity

As an example, let us consider a simple physical situation in which u(x, t) =
∫

d3vvf(x,v, t) =
(ux(y), 0, 0), i.e., ∂yux 6= 0.

Define now

The density of momentum flow = −η
dux

dy
.
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Figure 5.11: Shear viscosity

The flow is the transport, η is the transport coefficient and dux

dy
is the reason for the transport.

(a) Let us first try to argue that

The transported momentum

m2s
= m∆v · flux = mλ

dux

dy
· nvth .

Thus

η = mλnvth = mτcn
T

m
= Tnτc = pτc .

Thus we have a very simple result
η = pτc , (5.95)

and if one puts in the numbers for the air η = 105 · 1, 3 · 10−10 = 1, 3 · 10−5Ns/m2. Not bad!

(b)For this type of flow

f0 = n0

( m

2πT

)3/2
exp

{− m

2T
[(vx − ux(y))2 + v2

y + v2
z ]

}
.

so that only the spatial derivatives remain in the kinetic equation:

∂f

∂t
+ v · ∇f + a · ∇vf = v · ∇f = − 1

τc

(f − f0).

The density of momentum flow now expresses how the momentum px in the x-direction flows
via vy in the y-direction:

∫
d3vpxvyf(v) =

∫
d3vpxvy[f(v)− f0] = −τc

∫
d3vpxvyv · ∇f0, (5.96)

where we inserted
∫∞
−∞ dvyvyf0 = 0. Inserting further

v · ∇f0 = vy
df0

dy
= vy · m

T
[vx − ux(y)]

dux

dy
· f0
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Eq. (5.96) becomes

= −τcm
m

T
·
∫

d3vvxv
2
y[vx − ux(y)]f0 · dux

dy
= −τcTn

dux

dy
≡ −η

dux

dy

from where we again obtain η = τcTn. Here we also used the fact that
∫

d3vvxv
2
y[vx − ux(y)]f0 = 〈v2

yv
2
x〉n =

T

m
· T

m
· n .

Note the paradox: η grows or the fluid becomes more viscous when τc grows, that is the
interactions become weaker. This may look strange, but the resolution is that τc gives the
scale; we have to observe phenomena for which ∆t À τc.

• The diffusion coefficient D

Let us define the particle current

J =

∫
d3vvf(r,v, t) = −D∇n ,

where f = f0 + f1 and

f0 = n(r)(
a

π
)3/2e−av2

, a ≡ m

2T
.

From the kinetic equation

f1 = −τcv · ∂f

∂r
= −τc(

a

π
)3/2e−av2

v · ∇n(r)

so that

J = −τc(
a

π
)3/2

∫
d3vvv · ∇n(r)e−av2

= −τc〈v2
x〉∇n(r) = −D∇n.

Here we used
∫

d3vvivjF (v2) =

∫
d3vv2

i F (v2)δij =
1

3
δij

∫
d3vv2F (v2)

and 〈v2
x〉 = 1

3
〈v2〉 = T

m
. Thus we finally obtain the diffusion coefficient as

D = τc〈v2
x〉 = τc

T

m
. (5.97)

• Thermal conductivity

Let us define heat current by q = −κ∇T with

f0 = n(r)

(
m

2πT (r)

)3/2

exp

(
− m

2T (r)
v2

)
.

Note that f0 has both n(r) and T (r) to keep p = n(r)T (r) = const.. From here, after some
computation,

q =

∫
d3vv

1

2
mv2(f0 + f1) = −τc

5

2
n

T

m
∇
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and

κ =
5

2
nτc

T

m
=

5

2
· 1

σ

√
T

m
. (5.98)

The diffusion equation of heat with the thermal diffusivity is then given by

∂T

∂t
=

κ

(Cp/N)n
∇2T . (5.99)
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Chapter 6

Spin models

6.1 Generic features

In spin models space is discretized by a regular crystalline lattice, and each lattice site is
assigned a discrete variable, the spin. Different spin models are specified by different types
of spins and the way they are coupled. Originally spin models were constructed to describe
magnetism, and in particular the transition between magnetic and non-magnetic phases as
the material is heated past its critical temperature. However, their field of application is much
wider, including modeling of discretized field theories, and they can be considered as simple
prototypes for critical phenomena and models for phases and phase transitions in general.
Spin models provide very illustrative examples of the computation of the partition function
Z = Tre−βH = e−βF . The advantage over continuous theories is that now the degrees of
freedom are almost trivial (numbers, often integers, on a lattice) and their number are finite;
moreover, the spin-spin interactions are simple (nearest neighbour, nnn,. . . ). Spin models
are also pedagocical in the sense that they, like most things in the real world, can seldom be
solved analytically so that numerical methods are essential.

A generic spin model has a Hamiltonian of the form

H = −
∑

i

HiSi −
∑
i,j

Ji,jSiSj −
∑

i,j,k

KijkSiSjSk − . . . , (6.1)

where the sum is over all the sites of the lattice that has a dimensionality d. At each site the
spin variables Si can take some values 0, 1, . . . , q − 1; we thus speak of d-dimensional q state
models. The interactions Jij etc may operate over the nearest neighbours only so that the
range of interactions is finite; or we may have an infinite range models. In the first term Hi

is an external field (e.g. magnetic field).

Simplest example: infinite range Ising model in 1 dimension. Let us assume that

H = −B
∑

i

Si − J

2N

∑

i,j

SiSj (6.2)

so that the interactions between all pairs have the same strength no matter what the distance |i − j|. We
further assume that

115
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Figure 6.1: 3× 6 rectangular lattice

• there are only two states: Si = ±1

• the lattice is one dimensional and has N sites

Then there are 2N possible spin configurations.

The great (and only?) virtue of the d = 1 infinite range Ising model is that, in contrast to almost any other
spin model, it can be solved analytically. We want to compute the weighted sum over all configurations:

Z =
∑

{Si}
e−βH

=
∑

{Si}

∫ ∞

∞

dµ√
2π

NβJ

e−
NβJµ2

2 +βJµ
P

i SieBβ
P

i Si , (6.3)

where we have used a trick: we have introduced an auxialiary (i.e. non-propagating) field µ such that when
integrated over, we regain the original sum over configurations. The advantage of such an auxialiary field is
seen by rearranging the the terms in Eq. (6.3) to obtain

Z =
∫ ∞

∞

dµ√
2π

NβJ

e−
NβJµ2

2

∑

{Si}
e(βJµ+βB)

P
i Si

︸ ︷︷ ︸
QN

i [eβ(Jµ+B)+e−β(Jµ+B)]

=
∫ ∞

∞

dµ√
2π

NβJ

e−βNL(µ,B) , (6.4)

where the we have defined the Lagrangian density

L(µ,B) =
J

2
µ2 − 1

β
log[2cosh

(
β(B + µJ)

)
] . (6.5)

Note that the Lagrangian is volume × density = NL. (For an auxialiary field Hamiltonian = −Lagrangian.)

Thus the infinite range Ising model is equivalent to a continuous theory that instead of discrete spins has a
single degree of freedom µ. The stationary points, i.e. the metastable minima, are obtained by setting

dL
dµ

= 0 = Jµ− 1
β

sinh
(
β(B + µJ)

)

cosh
(
β(B + µJ)

)βJ

→ µ = tanh
(
β(B + µJ)

)
. (6.6)

KUVAT!! If the external field B = 0, we see that there is a trivial solution µ = 0; other solutions exist if

dtanh (βµJ)
dµ

|µ=0 = βJ > 1 . (6.7)
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Clearly, for T > J ≡ Tc the minimum is at µ = 0 whereas for T < Tc the minimum jumps (adiabatically) to
µ = µ0 6= 0. Hence there are two phases and µ is an order parameter.

6.2 Mean field approximation

The spin Si is a quantum mechanical operator with a discrete set of eigenvalues; because of
that, computing Z is often quite impossible. However, if we replace the operator Si by its
expectation value 〈Si〉 ≡ si, or make a mean field approximation, we obtain a variable which
is a number that can take continuous values in a given range (e.g. 0 ≤ 〈Si〉 ≤ q − 1).

To illustrate the mean field approximation, let us consider the Heisenberg model. It is a
short-range Ising model with

H = −J

2

∑

〈i,j〉
Si · Sj − gµB

∑
Si ·B , (6.8)

where the constants are according to the usual conventions, and 〈i, j〉 denotes a sum over
the nearest neighbours only. Note that Si is a vector with some dimensionality n so that
Si = (S1, . . . .Sn)i with S2

i = 1; here we take n = 1 for simplicity so that in the mean field
approximation, adopting the boundary condition SN+1 = S1, we may write

Z =
∑

{Si}
exp

(
βJ

N∑

l=1

slsl+1 + βh

N∑

l=1

sl

)

=
∑

{Si}
Ts1s2Ts2s3 · · ·TsNs1 ≡ Tr TN , (6.9)

where h ≡ gµBB and we have introduced a 2× 2 transfer matrix T , given by

Tss′ = exp (βJss′ + βh(s + s′)/2) . (6.10)

The transfer matrix is yet another trick but well suited for the Heisenberg model. The
eigenvalues of T are

λ1,2 = eβJcosh βJ ±
√

e2βJsinh2βJ + e−2βJ (6.11)

and
Z = Tr TN = λN

1 + λN
2 . (6.12)

Let λ1 ≥ λ2. Then the free energy density of the Heisenberg model can be written as

f = F/N = − 1

N
T ln (λN

1 + λN
2 ) = −T ln (λ1)− 1

T

1

N

(
λ2

λ1

)N

. . . (6.13)

Magnetization is given by

M = −∂f

∂h
> 0 for h 6= 0, βJ 6= ∞ . (6.14)
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However, for fixed h, β one finds that M → 0 as J → 0. This means that at T = 0
magnetization vanishes and there is a phase transition at zero temperature from ordered high
T state to a disordered T = 0 state.

The details of the phase transition in the Heisenberg model are not as such terribly interesting.
However, it is very illustrative to compute the correlators. Consider the 2-point function

〈sisj〉 = Z−1
∑

sisjexp

(
βJ

N∑

l=1

slsl+1 + βh

N∑

l=1

sl

)

= Z−1
∑

s1,...,sN

Ts1s2 · · ·Tsi−1si
si · · ·Tsj−1si

sj · · ·TsNs1

= Z−1Tr T i−1σ3T
j−iσ3T

N−j+1 , (6.15)

where

σ3 =

(
1 0
0 −1

)
(6.16)

is the usual Pauli matrix.

We may now use a unitary transformation U to diagonalize T :

U−1TU = T̃ ; U =

(
cos φ −sin φ
sin φ cos φ

)
. (6.17)

Then

U−1σ3U =

(
cos 2φ −sin 2φ
−sin 2φ cos 2φ

)
≡ σ̃3 (6.18)

and using these, we find

〈sisj〉 = Z−1Tr

(
λN−j+1

1 0

0 λN−j+1
2

)
σ̃3

(
λj−i

1 0

0 λj−i
2

)
σ̃3

=

[
λN

1 cos22φ + λN
1

(
λ2

λ1

)j−i

+ λN
2

(
λ1

λ2

)j−i

sin22φ + λN
2 cos22φ

]
/(λN

1 + λN
2 )

→ cos22φ +

(
λ1

λ2

)j−1

sin22φ as N →∞ . (6.19)

It is also easy to show that

〈si〉 = M = Z−1Tr T i−1σ3T
N−i+1 → cos 2φ as N →∞ . (6.20)

The pair correlator function is defined as

gij = 〈sisj〉 − 〈si〉〈sj〉 = sin22φ exp [−(j − i)ln
λ1

λ2

] ≡ sin22φ exp [−ξ−1(j − i)] , (6.21)

where ξ is the correlation length and measures the coherence of the spin alignment. (The
exponential form is just a convention.)



6.3. POTTS MODEL 119

It is now straightforward to see that if h 6= 0, then ξ < ∞ because |λ1/λ2| > 1; if however
h = 0, |λ1/λ2| = (tanh βJ)−1 → 1 as T → 0 so that T = 0 is a critical point at which the
correlation length becomes infinite. This is a sign of a second order phase transition: because
of infinite range correlations, all the sites adjust their spins simultaneously; for first order
phase transition, the correlation length is finite.

6.3 Potts model

The Potts model is a generalised Ising model and a useful tool for studying phase transitions.
We take a d-dimensional N1 · N2 ·· . . . · Nd - lattice (= Nd if Ni = N) with the boundary
conditions that are usually taken to be periodic (hypertorus, see Fig. 6.2). Other alternatives
are fixed bondary conditions (which enhance finite size effects) or twisted boundary conditions
(which are used to force the system to generate dynamically some effect such as an interface).
There are Nd sites, dNd links (or bonds) and 1/2 · d(d− 1)Nd plaquettes.

1 3 5

1 3 5

2 4 6

5

6

1

2

Figure 6.2: Lattice with periodic boundary conditions

In the Potts model each site is assigned a spin σ = 0, 1, 2, . . . , q− 1 (q-state Potts model) and
one assumes a ferromagnetic (favors parallel spins) nearest neighbor (nn) interaction between
the spins so that

H = −K
∑

〈i,j〉
δσi,σj

(6.22)

where sum is over nearest neighbors. Thus if the spins of two adjacent sites are the same, the
contribution of the pair (or the link between them) to the total energy is −K, if the spins are
different, the contribution is zero. For the partition function one then has

Z =
∑

{σi}
eβK

P
〈i,j〉 δσi,σj = Z(T, N) ≡ e−F/T , (6.23)

where sum is over all states of the system, i.e., over all spin configurations. Solving the Potts
model ”simply” means evaluating Z (for N →∞).
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The Ising model in d dimensions has 2 states, “spins” si = ±1:

sisj δsisj

+
+· +· 1

+
−· −· 1

− +· −· 0

− −· +· 0

⇒ δsisj
=

1

2
(1 + sisj) (6.24)

and one can alternatively write

H = −K
∑

dNdpairs

δsisj
= −K

∑

pairs≡〈i,j〉
(
1

2
+ sisj) = −K̃

∑
pairs

sisj + const, (6.25)

where the constant is irrelevant.

Even for relatively small N , spins models have a vast number of states, the Ising model has
2Nd

states. Thus also many states can have the same energy, as already discussed in Chapter
1 in case of the Ising model.

For more details on the Ising model, see P. Beale, Phys. Rev. Lett. 76 (1996) 78, F. Wang and D. P. Landau,
Phys. Rev. E, 64 (2001) 056101. For the Potts model see Alves, Berg, Villanova, Phys. Rev. B41 (1989)
383. Google gives 125000 hits for Ising model and 92500 hits for Potts model. One also learns that the Potts
model partition function generates the Jones polynomial V (t), important for knot theory, with q−2 = t+1/t!

In the discussion of the Potts model it is, for both physical and mathematical reasons, ap-
propriate to also introduce a “magnetic field” h coupling to the total “spin”

∑
si just like in

electrodynamics, where EB = −M ·B, M = e/2mS:

Z =
∑

2Nd
configs

exp
[
β

∑

dNdpairs

sisj + βh
∑

Ndsites

si

]
= e−βF (β,h). (6.26)

This is physically important since clearly magnetic effects as such are very relevant. Mathe-
matically the magnetic field serves as a generating function parameter, by taking derivatives
of Z or F with respect to h one can evaluate expectation values of spins. The same applies
to partial derivatives with respect to β. ¿From Eq.(6.26):

∂Z

∂β
= (−F − β∂βF ) · Z =

∑
states

(
∑
i,j

sisj + h
∑

i

si)e
−βH (6.27)

= −E + TS − TS = −E , (6.28)

where −E =
〈 ∑

i,j sisj + h
∑

i si

〉
is the total internal energy. Moreover,

∂Z

∂h
= −β

∂F

∂h
· Z =

∑
states

[
β

∑
i

si e
−βH

]
, (6.29)

where −∂F/∂h =
〈 ∑

i si

〉
≡ M is the magnetisation.



6.3. POTTS MODEL 121

Thermodynamics with possible phase transition singularities is obviously obtained only in the
thermodynamic limit, N → ∞. How can we sort this out when we can do numerics only at
finite N? To analyse the situation we have to understand the V -dependence. To keep track
of the volume factors, we shall now rewrite the Hamiltonian as follows:

βh
∑

i

si ⇒ h

∫

V

ddx a(x) ≡ hA,

∫
ddx = V , (6.30)

where h is an external force which couples to a(x), a degree of freedom of the system. Then

βH = βH0 − hA (6.31)

and

Z = Z(h) = Tre−βHo+hA =
∑
states

e−βEn+hA (6.32)

so that the derivatives become

∂Z

∂h
= TrAe−βH ≡ Z〈A〉 ⇒ 〈A〉 =

∂ log Z

∂h
=

Z ′

Z
, (6.33)

∂2Z

∂h2
= TrA2e−βH ≡ Z〈A2〉 ⇒ 〈A2〉 =

Z ′′

Z
. (6.34)

The susceptibility now expresses how the expectation value depends on h:

V χ =
∂〈A〉
∂h

=

∼F ′′︷ ︸︸ ︷
∂2 log Z

∂h2
=

Z ′′

Z
− (

Z ′

Z
)2 = 〈A2〉 − 〈A〉2 = 〈(A− 〈A〉)2〉, (6.35)

where V is included since A is extensive, ∼ V . Thus, simulating at some fixed T, h and finite
V one will see something as depicted in Fig. 6.3: there is a peak at the position of 〈A〉 and
the width of the peak is given by the susceptibility, ∼ F ′′(h).

dN
dA

A

width = susceptibility~F’’

average~<A>~F’

Figure 6.3: Distribution of A obtained at finite V at fixed T, h.



122 CHAPTER 6. SPIN MODELS

For an intensive variable, the volume average a ≡ ∫
dx
V

a(x) = A/V , dx ≡ ddx, and generalising
in an obvious way ha(x) → hiai(x) one has

{
〈ai〉 = 1

V
∂ log Z

∂hi

χij = ∂〈ai〉
∂hj

= V
[〈aiaj〉 − 〈aiaj〉

]
= 1

V
∂2 log Z
∂hi∂hj

.
(6.36)

If one further defines a correlation function

C(x− y) = 〈a(x)a(y)〉 − 〈a(x)〉〈a(y)〉 (6.37)

then also, from Eq. (6.35),

χ =
1

V

∫
dx

∫
dy

[〈a(x)a(y)〉 − 〈a(x)〉〈a(y)〉

=
1

V

∫
dx dy C(x− y) =

∫
dxG(x) =

∫
dx eikxG(x)|k=0 ≡ G̃(k = 0) . (6.38)

Hence susceptibility is the Fourier transform of the correlation function at zero momentum.

One may now define the order of the phase transtions as follows:

• 1st order transition: jumps in some 〈A〉

• 2nd order transition: 〈A〉 is continuous, χ has a singularity

6.4 Phases, critical phenomena

T

h

T
c

Figure 6.4: First order line ending in a 2nd order critical point at T = Tc.

Intuitively, one expects the T, h plane phase diagram as shown in Fig. 6.4 for the Ising model
(Potts model with q = 2): M jumps from a negative to a positive value when one crosses the
1st order line. For T < Tc the spins order and the symmetry si → −si of the theory, i.e., the
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T
c

M T,h( )

T

h=0

h>0

h=
0

h=0

Mixed
phase

Figure 6.5: Magnetisation in the Ising model; for 0 ≤ T < Tc and h = 0 two values, ±|M(T )|
are possible.

symmetry of its Hamiltonian, is spontaneously broken (SSB, meaning that the theory has the
symmetry but its solutions not).

The situation above holds in the V → ∞ thermodynamic limit, but at finite V all discon-
tinuities are smoothed. Simulating the system one will see distributions like those shown in
Fig.6.6. With increasing V it makes more and more difficult to make system jump from a
peak to another, SSB occurs for V →∞.

T

h

T
c

M

M

M

Any shifts the peak

to some >0

h >0

Má ñ

as grows, peaks
get sharper

V

á ñM = 0, one peak
width ~ c

V
0

Figure 6.6: Types of distributions observed at finite V at three different regions of the h, T
plane.

Thus, to solve the properties of a statistical system (like the Ising model) you simulate it on
finite lattice (see section on Monte Carlo simulations) and plot (in one or even two dimensions)



124 CHAPTER 6. SPIN MODELS

distributions in various variabels (like
∑

sisj or
∑

si). One will observe three different types
of behavior as V increases:

• Usually, in a regular point of the phase diagram one obtains a Gaussian distribution of
width ∼

√
χ/V which gets narrower when V →∞ (Fig. 6.7).

Figure 6.7: Usually distributions get narrower when V →∞.

• In case of a first-order transition, one has a two-peak distribution which survives in
the V → ∞ limit, see Fig. 6.8. Thus it approaches the characteristics of a 1st order
transition: order parameter discontinuity, latent heat, interface tension, and correlation
lengths which are finite.

L 2L 3L

Figure 6.8: 1st order, peaks remain when V →∞.

• In the case of a 2nd order or continuous phase transition, the critical region is charac-
terised by a diverging correlation length ξ. The situation is very subtle and much work
has been devoted to the study of critical phenomena. In particular, one defines critical
indices which describe describe how various quantities → ∞ or → 0 when T → Tc or
t = 1− T/Tc → 0 (0+ or 0−):

ξ ∼ t−ν , M ∼ tβ when h = 0,

M ∼ h1/δ when t = 0, χM ∼ ∂M

∂h
∼ F ′′(h) ∼ t−γ,

CV ∼ F ′′(t) ∼ t−α, C(r) ∼ 1

rd−1+η
, when t = 0.

Note here the relation (6.35) between susceptibilities and 2nd derivatives of F . The
logic behind these definitions becomes clearly when we soon derive from the Landau
theory their mean field values.

To give a concrete example, we show data on 20000 configurations of the 3d Ising model
on a 583 lattice at the infinite volume critical point βc = 0.221654, h = 0. In the first
plot the horizontal axis is −583 <

∑
si < 583 = 195112 and the vertical axis shows 0 ≤∑

pairs δij ≤ 3 · 583 = 585336. In the second plot the axes are scaled by maximum values
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(and the vertical axis is changed to energy) so that the distribution is on the energy/link
(−1 < −∑

〈ij〉 sisj/3 · 583 < 1) vs. magnetization (−1 <
∑

i si/583 < 1) plane. The following
figures show the projections on the axes of Fig.6.10. Note, in particular, that even here one
observes a two-peak structure. However, now it is observed to scale, for example width ∼ Lγ/ν

for the peak in Fig.6.11.
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Figure 6.9: Distribution of points at Tc on the
∑

si vs
∑

pairs δij plane of the 583 Ising model.
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Figure 6.10: Distribution of points at Tc on the energy per link (−1 < −∑
〈ij〉 sisj/3 ·583 < 1)

vs. magnetization (−1 <
∑

i si/583 < 1) plane

The FSS (finite size scaling) analysis of these distributions (together with those at different
V = L3) now goes as follows. Since we are at Tc, the correlation lengths are formally infinite,
but because L is the largest scale, we must have ξ ∼ L. But since ξ ∼ t−ν (this was the
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Figure 6.11: Projections of Fig.6.10

definition of ν), one has t ∼ L−1/ν . Thus

CV ∼ F ′′(t) ∼ width of energy peak ∼ t−α ∼ Lα/ν

χM ∼ F ′′(h) ∼ width of magnetisation peak ∼ t−γ ∼ Lγ/ν

Thus one plots the distributions in Fig.6.11 at different L and fits from them the values of
the critical indices.

6.5 Mean field approximation for the Potts model

Considering the Potts model in the mean field approximation teaches us something about how
first order transitions may arise. The ddqs (d dimensional q state) Potts model is defined by
the Hamiltonian

H = −K
∑

〈ij〉
δσi,σj

≡ −K
∑

n

d∑
µ=1

δσn,σn+µ (6.39)

where 〈ij〉 represents nearest neighbor links between sites n, µ = 1, 2, ..., d is a direction and
σn = 0, 1, . . . , q − 1 (q different values). An example of a typical configuration at Tc is shown
in Fig. 6.12.

Let us now try the following mean field model. On each site n we just replace σ0, . . . , σq−1

by their expectation values x0, . . . , xq−1, which have to satisfy x0 + x1 + . . . + xq−1 = 1. One
might first expect that by symmetry all the xi have to be equal – but wait, there is symmetry
breaking which is just what we hope to understand analytically! Since each site is treated
independently,

∑
n in Eq. (6.39) just gives the number of sites, Nd. Then the total energy is,

due to Eq. (6.39),

E = −K ·Nd
[
x0(x0 + . . . + x0) + x1(x1 + . . . + x1) + xq−1(xq−1 + . . . + xq−1)

]
,

where x0 + . . .+x0, etc, correspond to links in each of the d dimensions. Thus the energy per
site becomes

E

site
=

E

Nd
= −Kd(x2

0 + . . . + x2
q−1). (6.40)
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Figure 6.12: Example of a configuration of a 2d 3 state Potts model at Tc on a 128×128
lattice. Note the clustering.

m=1

3

2site n

Figure 6.13: Site n and directions µ pointing to the adjacent sites in 3d.

But we do not want to minimize only energy but need also the entropy that competes against
energy. The standard expression for the entropy is S = −∑

pi log pi,
∑

i pi = 1 so that

S

site
=

S

Nd
= −(x0 ln x0 + . . . + xq−1 ln xq−1) . (6.41)

Hence the free energy (per site) reads

βf ≡ F/T

site
=

E/T − S

site
= x0 ln x0 + . . . + xq−1 ln xq−1 − βKd(x2

0 + . . . + x2
q−1) . (6.42)

So where is the minimum? To illustrate how Eq. (6.42) operates, let us plot it for q = 2,
the Ising model. Then x0 + x1 = 1 and it is convenient to define x = x0 − x1 ⇒ x0 =
1
2
(1 + x), x1 = 1

2
(1− x). In terms of x

βf(x) =
1 + x

2
ln

1 + x

2
+

1− x

2
ln

1− x

2
− βK(1 + x2) ≡ h(x) + g(x). (6.43)
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In Fig. 6.14 we plot the entropy and energy terms h(x), g(x) in Eq. (6.43) separately. One sees
again how the entropy and energy terms compete: energy wants to minimise itself, entropy
to maximise. Their joint effect produces a minimum.

h(x)

g(

x)

h x( )+
g(x)

minimum

Figure 6.14: Minimum of βf . Here h(x) and g(x) are the first and second terms of (6.43).

For a general q we expect the following (see Fig. 6.15). For T > Tc the system is disordered,
xk = 1/q, and each state is equally probable. For T < Tc the system orders itself to any of
the states, 0 for example.

1

Tc

x0

xii= q1,2,... -1 T

Figure 6.15: Expect: for T > Tc the system is disordered, xk = 1/q, each state is equally
probable

Let us write βf as a function of an order parameter s defined by

xi =
1− s

q
, i = 1, 2, . . . , q − 1, s ≥ 0, (6.44)

x0 + (q − 1)xi = 1 ⇒ x0 =
1 + (q − 1)s

q
, (6.45)
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where s = 0 when T > Tc. Then the free energy density in Eq. (6.42) can be written as

βf(s) =
1 + (q − 1)s

q
ln

1 + (q − 1)s

q
+ (q − 1)

1− s

q
ln

1− s

q

− βKd
1

q2

{[
1 + (q − 1)s

]2
+ (q − 1)(1− s)2

}
(6.46)

which satisfies βf(0) = − log q − βKd/q, βf(1) = −βKd. Furthermore,

β[f(s)− f(0)] =
1 + (q − 1)s

q
ln[1 + (q − 1)s] +

q − 1

q
(1− s) ln(1− s)− q − 1

q
βKds2

=
q − 1

2q
(q − 2d

K

T
)s2 − 1

6
(q − 1)(q − 2)s3 +

1

12
(q − 1)(q2 − 3q + 3)s4 + . . .

=





1
2
(1− dK

T
)s2 + 1

12
s4 for q = 2

(1− 2
3
dK

T
)s2 −1

3
s3 +1

2
s4 for q = 3

3
2
(1− 1

2
dK

T
)s2 −s3 +7

4
s4 for q = 4

(6.47)

In[1]:=

f[q_,s_,k_]:=(1+(q-1)s)*Log[1+(q-1)s]/q+(q-1)(1-s)*Log[1-s]/q-(q-1)k*s^2/q

In[2]:=

Plot[{f[7,s,2],f[7,s,2.15],f[7,s,2.5],f[7,s,3]},{s,0,1},AspectRatio 1,

PlotRange {{0,1},{-0.25,0.25}}]

T>Tc

T=T
c

T

<
T

c

bKd=2

b

»b

Kd

Kd

=2.15

c

bKd=2.5

bKd=3

Table 6.1: Plotting β[f(s) − f(0)] for q = 7 with Mathematica. The typical structure of a
first order phase transition is evident.
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What are βc, sc? Let us minimize βf(s):

βf ′(sc) =
q − 1

q

[
ln

1 + (q − 1)sc

1− sc

− 2βKdsc

]
= 0. (6.48)

There is always the solution s = 0 , but there is also a second one, see Fig. 6.5, which
corresponds to a second, albeit a metastable, minimum of the potential. At Tc this metastable
minimum must be on the same level with the one at s = 0. Thus Tc is determined by the
condition

βc[f(sc)− f(0)] = 0 (6.49)

⇒(1 + (q − 1)sc) ln(1 + (q − 1)sc) + (q − 1)(1− sc) ln(1− sc) = (q − 1)βcKds2
c . (6.50)

ln
1+(  -1)q sc

1-sc2bKdsc

Figure 6.16: Solving Eq.(6.48): s = 0 and another solution.

Simultaneous solutions to both equations are:

for q = 2 : ln
1 + sc

1− sc

= 2βKdsc ⇒ βcKd = 1 (6.51)

sc = tanh βKdsc (6.52)

for q ≥ 3 : sc =
q − 2

q − 1
, βcKd =

q − 1

q − 2
ln(q − 1) (6.53)

Tc =
q − 2

(q − 1) ln(q − 1)
Kd (6.54)

Inspection shows that the exact result for d = 2 is

{
Tc = 1

log(1+
√

q)
→ 2

log q
K

Tmean field
c (q →∞) → d

log q
K

(6.55)

so that both agree for large q.

What happens in the present mean field approximation is summarised in Fig. 6.5. At low
T the system is ordered in state 0 (by choice). At non-zero temperature other spins are also
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1

Tc

x0=

xi=

T

q-1
q

1
q q(  -1)

x0= xi =
1
q

Figure 6.17: Mean field states of the q-state Potts model. Values of xi given for T ≤ Tc refer
to T = Tc.

around, but if we decrease temperature, at T = 0 all the spins are aligned and there is only
the state 0. At T > Tc there is complete disorder as all spins are equally probable.

In the mean field approximation the transition to a new minimum does not take place at
T = Tc for q > 2 because the of the local maximum in the free energy, which traps the system
into the metastable vacuum at s = 0. However, eventually at T < Tc the system will either
tunnel or fluctuate over the barrier. Since now the new minimum has lower free energy, the
phase transition is associated with a release of latent heat. In the Potts model one finds for
the latent heat

L =
Tc[S(T > Tc)− S(T < Tc)]

Nd
= Kd

(q − 2)2

q(q − 1)
. (6.56)

Note that for q = 2, for which the transition is of second order, L = 0, as it should.
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6.6 Monte Carlo simulations

Monte Carlo integration is based on the approximation

I =

∫ 1

0

dx f(x) ≈ m̄ =
1

N

N∑

k=1

f(rk) (6.57)

where rk is a random number (0 ≥ rk ≥ 1).

1rk

f x( )

Figure 6.18: MC integration: generate random numbers evenly within 0,1 and take the average of
f(rk).

The result would be quoted as I = m̄ ± σ̄, where an unbiased estimate of the error σ̄ would
be:

σ̄2 =
1

N − 1

N∑
1

[f(rk)− m̄]2. (6.58)

Generating random numbers is a vast chapter of numerics, often they are obtained from
congruences of the type Ij+1 = aIj + c mod m, r =

Ij+1

m

Importance sampling is a way to improve the efficiency of MC: you generate numbers mainly
where the integrand is big. For example, if f(x) = e−axg(x), where g(x) ≈ const, one should
generate random numbers mainly for small x, preferably with the distribution e−ax. Here it
is simple, just take e−ax as variable (t = e−ax, x = 1/a · ln(1/t)):

∫ 1

0

dx e−axg(x) =

∫ 1

e−a

dt
1

a
g(

1

a
ln

1

t
)

=

∫ 1

0

dr
1

a
(1− e−a)g

(1

a
ln

1

(1− e−a)r + e−a

)
(6.59)

(t = (1−e−a)r+e−a). More generally, choosing h(x) so that f(x)/h(x) is so close to constant
as possible,

∫ x+

x−
dxf(x) =

∫ x+

x−
dxh(x)

f(x)

h(x)
=

[
H(x+ −H(x−)

] ∫ 1

0

dr
f(x(r))

h(x(r))
, (6.60)

where one has defined

x = x(r) = H−1
[
H(x−) + r(H(x+)−H(x−))

]
(6.61)

H(x) =

∫ ∞

−∞
dt h(t). (6.62)
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This is useful only if both H(x) and H−1(x) are known analytically, for example, if h(x) ∼
eax, 1/(x2 + a2), 1/xn, 1/(ex + 1).

The previous was in 1d and is, formally, straightforward to generalize to Nd. In spin models,
discretised path integrals, . . . , N → ∞. For them there is one important simplification:
we are interested in mean values (where the physics is) rather than the numerical values of
integral Z:

〈O〉 =

∑
{E}Oe−βE

∑
{E} e−βE

(6.63)

The great idea now is to generate ”configurations”, sets of the spin variables σi, with proba-
bility e−βE({σi}). Then simply

〈O〉 =
1

Nconfig

∑

{σi}
O({σi}) (6.64)

Generation of random numbers is a “great algorithmic challenge” and there are many methods:
Metropolis, heat bath, Langevin, overrelaxation, cluster, etc.

6.6.1 Metropolis

Let us as an example consider the 2d7s Potts model on a 3×4 lattice with periodic boundary
conditions. An example of a configuration {σi} could be:

0 1 3 1

1
1
1

1 2 1 1
1 4 4 1
0 1 3 1

1
1
0

1 2 1 1

(6.65)

On each site we have one of the numbers 0,...,6 (or 1,....,7 with the understanding that 0=7)
and the numbers outside the rectangle follow from periodicity. The energy of a configuration
is H = −J

∑
〈i,j〉 δσiσj

, where the sum goes over nearest neighbours (watch for a factor 2

depending on whether all neighbours or only those in positive direction are included), but we
will need only changes of H.

Now proceed as follows. You want to replace one configuration on the lattice by a new one.
Sweep through lattice site by site.

• Assume one has come to site 4:
1 2 1 1
1 4 4 1
0 1 3 1

(6.66)

• Randomly generate new q = 0, 1, 2, . . . , 6.
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• Calculate change in H. The part of the old H which may change was

Hold =
2

1 4 4
1

= −J + 0 + 0 + 0 = −J(+unchanged part) (6.67)

and the new possibilities are (∆H ≡ Hnew −Hold)

new=
2

1 1 4
1

2
1 2 4

1

2
1 3 4

1

2
1 4 4

1

2
1 5 4

1

2
1 6 4

1

2
1 0 4

1

Hnew = −2J −J 0 −J 0 0 0

∆H = −J 0 J 0 J J J

• How comes the heart of the algorithm. Accept new q always if ∆H ≤ 0 and with
probability e−β∆H if ∆H > 0. In other words, energy decreases are always accepted,
but also energy increases:

Probability

∆ H

e
-(1/T)∆H

T>>J

T<<J

Figure 6.19: Energy increases are also accepted!

If one accepted only energy decreases, the system would soon be driven into the T =
0 ground state. The effect of T is precisely to excite higher state. This algorithm
implements this by making changes that increase H acceptable with high probability
if T À J (disorder) and with low probability if T ¿ J (order). In the above example
qnew = 1, 2 and 4 would be always accepted. If qnew = 3, 5, 6, 0 (with ∆H = +J) then
0 ≥ r ≥ 1 will be generated and qnew will be accepted if e−J/T > r.

Why the above works and produces configurations distributed with desired probability clearly requires proof.

We want to generate a Markov sequence (Cn+1 depends only on Cn) of configurations C0, C1, C2, ... with an
update probability P (C → C ′) so that P (Cn) → e−S(Cn) with some given action of Hamiltonian S. Two
conditions must be satisfied, ergodicity (one must be able to reach all configurations) and microreversibility.
To understand the latter note that you clearly want that if the desired probability distribution of configurations

Peq(C) ≡ e−S(C) (6.68)
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is attained, you stay there. It is obvious that the following kinetic equation holds:

dP (C, t)
dt

= −
∑

C′
P (C)P (C → C ′)

︸ ︷︷ ︸
out

+
∑

C′
P (C ′)P (C ′ → C)

︸ ︷︷ ︸
in

, (6.69)

where dt is a computer ”time” unit, i.e., one step in updating C. This should vanish for P = Peq, so that the
in- and out-probabilities should satisfy

P (C → C ′)
P (C ′ → C)

=
Peq(C ′)
Peq(C)

= e−[S(C′)−S(C)] ≡ e−∆S . (6.70)

Different algorithms amount to constructing different forms for P (C → C ′). In this one must compromise
between getting nowhere fast (accept frequently, but only small changes) and getting somewhere slowly (you
may need big changes in C near phase transitions). For example you cannot

+ + + +
+ + + +
+ + + +
+ + + +

⇒
− − − −
− − − −
− − − −
− − − −

by “local update” (changing one spin at a time). Needs a lot of algorithmic development!

6.6.2 Heat bath:

Heat bath is effectively Metropolis with infinite number of tries at the same site. Assume we
have again come to point 4 in the 2d7s Potts configuration

1 2 1 1
1 4 4 1
7 1 3 1

Now the previous value does not matter, one just generates a new q to replace the 4 with the
probability

pq = e−
1
T

H




1 2 1 1
1 q 4 1
7 1 3 1


 (6.71)

from which one explicitly evaluates

p1 = p0e
2J/T =

z2

z2 + 2z + 4
, z ≡ eJ/T

p2 = p4 = p0e
J/T =

z

z2 + 2z + 4
,

p3 = p5 = p6 = p7 = p0 =
1

z2 + 2z + 4
, (6.72)

fixing p0 by normalising the sum of probabilities to one:

p0[z
2 + z + 1 + z + 1 + 1 + 1] = 1 ⇒ p0 =

1

z2 + 2z + 4
(6.73)
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For small T , z À 1, q is most likely to be 1 (ordering, two neighbours are already 1). For
large T , z → 1, all q are equally probable (disorder). In practice, at some fixed T , order the
pi’s on the interval (0,1). Then generate uniformly the random number 0 < r < 1 and choose
that q for which r lies in pq:

p
1

p
2

p
3

p
4

p
5

p
6

p7

0 1

r

Figure 6.20: Here the generated random number r lies in p4 and thus q = 4 is the new value
(by chance the same as the old one).

6.6.3 Langevin, stochastic quantisation

Langevin equation: one particle, one dimension, mass m, no potential, damping force γv,
stochastic force ξ(t):

mẍ + mγẋ = ξ(t). (6.74)

”Stochastic” clearly means that the force fluctuates with time. It is natural to assume that
the average force is zero, 〈ξ(t)〉 = 0. What about magnitude? One may specify the magnitude
but it is also important to know how different times are correlated. The simplest assumption
clearly is 〈ξ(t)ξ(t′)〉 = Iδ(t − t′), I is some constant, soon to be determined. It would seem
that 〈ξ2(t)〉 ∼ δ(0) ∼ ∞ and a careful limiting procedure can be invoked (replace δ by a
Gaussian with a small width in time, one is saying that the values of the force are correlated
only over this short time, over larger times thermal equilibrium is established). Now integrate
Eq. (6.74) for p = ẋ:

p(t) =

∫ t

0

dt′e−γ(t−t′)ξ(t′) + e−γtp(0)

and compute 〈p2(t)〉 using the ξ correlator:

〈p2(t)〉 =
I

2γ
(1− e−2γt) + e−2γt〈p2(0)〉. (6.75)

Now one knows that for each quadratic dof the energy 〈p2(t)/2m〉 is T/2 so that for large t:

〈p2(t →∞)〉 =
I

2γ
=

1

2
T · 2m (6.76)

so that the required magnitude of the fluctuation has been determined:

I = 2γTm. (6.77)

If one now solves Eq.(6.74) with a stochastic ξ(t), this one coordinate x(t) is ”thermalised”,
energies are distributed ∼ exp(−βE).
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How could one convert this to a numerical algorithm for producing thermalised configurations?
Now we know that we do not want to end up in classical field configurations, which are the
extrema of the action:

δS[Φ(x)]

δΦ
= 0. (6.78)

So now simply again introduce a stochastic force and write

∂Φ(τ, x)

∂τ
= −Γ

δS[Φ]

δΦ
+ ξ(τ, x), (6.79)

where τ is a fictitious computer time and ξ is constructed so that for large τ the probability
distribution of Φ configurations is exp(−S[Φ]). ........

This numerical method can also be formulated as a method to quantize general field theories, in 4d one then
introduces an extra fictitious 5th dimension, the τ in (6.79). This is stochastic quantisation, see P. Damgaard
and H. Hüffel, Phys. Rept. 152 (1987) 227.
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Chapter 7

Landau theory

7.1 Formulation of the Landau theory

Spin models teach us that in many cases one can describe the various phases of the system
by an order parameter (or a set of order parameters), which gauges the properties of the
system in some average sense. Hence we have an effective description: one can imagine a
more complete theory containing a large number of degrees of freedom φ, part of which are
integrated over under the condition that one of their combinations M(φ) be kept fixed:

e−βF (T,V,M) =

∫
Dφ e−βH(φ)δ(M −M(φ)) . (7.1)

If one further integrates over M one obtains the partition function of the full theory:

Z = e−βF (T,V ) =

∫
Dφ e−βH =

∫
DM [x] e−βF (T,V,M [x]). (7.2)

Effective approaches are guided by simplicity and symmetry principles and best justified by
their workings. A formal derivation of e.g. F (T, V, M [x]) in Eq. (7.2) is often very difficult
if not impossible (cf. BCS-theory ⇒ Ginzburg-Landau-theory). Therefore we have to be
satisfied with reasonable, physically motivated assumptions. To this end, let us write the free
energy of a statistical system as a functional of some order parameter M(x) (assumed here
to be real for simplicity):

F [M(x)] =

∫
d3x[

K

2
|∇M |2 +

1

2
aM2(x) +

1

4
bM4(x)− hM(x) + cM6(x) + . . .] (7.3)

≡
∫

d3x
[K

2
|∇M |2 + V (M(x))

]
, (7.4)

where the parameters satisfy

K > 0, a, ≶ 0 b > 0 (if c = 0), h ≷ 0, c > 0 . . . ,

139
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Eq. (7.4) defines the Landau model. We have used here a condensed matter notation: in
particle physics one would write K = 1 (the ”canonical normalisation of the kinetic term”,
which can always be done in case of a constant K by the field redefinition M → M/

√
K),

a = m2, b = λ, etc. The parameters may in general depend on T .

We could as well think of Eq. (7.4) as defining a 3d field theory with the action F . The
functional integral

Z[J ] = e−F (J) =

∫
DM [x] e−F (M [x])+

R
d3xJ(x)M(x) (7.5)

would then give all the Green’s functions or operator expectation values, i.e., all the physics
content, of this theory. In the original Landau theory the argument for the validity of (7.4)
was that near the phase transition M is small and higher powers can be neglected. In effective
field theories it often happens that, even for dimensional reasons, higher powers come together
with inverse powers of some mass scale and can thus be neglected when this mass scale is
large.

If h = 0, the only symmetry of the action Eq. (7.4) or the theory Eq. (7.2) is M → −M
(the group Z(2)). This is not accidental but rather reflects the fact that we have not included
odd terms like M3 in the free energy. Thus imposing a symmetry limits the possible form
of the free energy in an essential manner. Instead on Z(2), we could impose a global U(1)
symmetry, in which case the order parameter has to be complex M = M1 + iM2. If we gauge
the U(1) symmetry, i.e. demand that it is local and valid at each point x separately, we have
to introduce a gauge field so that effectively we arrive at a theory describing the interaction of
an order parameter with a massless gauge field (photon); this is the Landau-Ginzburg theory
of superconductivity. We could also have an order parameter which is a vector or a tensor.

Scaling to dimensionless variables. Clearly F/T is dimensionless, but

1
T

F [M(x)] =
∫

d3x(
K

2T
|∇M |2 +

1
2

a

T
M2 +

1
4
M4) (7.6)

contains quantities which are known but vary from problem to problem (K = }2
2m or 1, M = magnetisation

or wave function, . . . ). It is very useful to scale out dimensions. From dim(F/T ) ≡ [F/T ]=1 one finds that
the dimensionalities are

[a] = [
K

x2
], [M2] = [

T

Kx
], [b] = [

K2

Tx
] (this depends of d = 3!).

Using these units we have the simple dimensionless form
∫

d3x(
1
2
|∇M |2 +

1
2
aM2 +

1
4
bM4). (7.7)

7.2 Z(2) symmetry: the minimum energy configura-

tions

We now have the theory defined by the path integral

Z = e−βF =

∫
DM(x) e−βF (M(x)). (7.8)
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To minimize F one should minimize the whole integral. In Landau theory one usually assumes
that it is a good approximation to minimize the integrand, i.e., find the extrema of F (M(x)).
This approximation has many names: saddle point, tree level, mean field, classical field
approximation, as already discussed in some detail in Chapter 1. So let us simply take the first
functional derivative of F with respect to M(x) (do first a very common partial integration
based on (f ′)2 = −f · f ′′ + d(f · f ′)/dx and assume that the boundary term vanishes). Thus,
as before, we arrive at the equation of motion

δF [M(x)]

δM(y)
=

δ

δM(y)

∫
d3x

[K

2
M(x)(−∇2)M(x) + V (M(x))

]

= −K∇2M(y) + V ′(M(y)) = 0

(7.9)

Equally, one may use the equation of motion derived from the Lagrangian L(M,∂iM):

∂L

∂M
− ∂i

∂L

∂∂iM
= V ′(M)− ∂i[K∂iM ]) = 0. (7.10)

To find the physical configuration M(x), we can either numerically minimize
∫

d3x[
K

2
(∇M)2 + V (M)] (7.11)

or solve, most likely also numerically, the equation of motion

K∇2M = V ′(M).

Remark. In searching for the classical solution one may also start from the ”Langevin-type” kinetic equation
discussed in connection with numerical methods and neglect the stochastic term there, i.e., apply the equation

dM(x, t)
dt

= −Γ
δF (M(x, t))

δM(x, t)
(7.12)

where Γ > 0 is some constant and t is a fictitious computer time. This just expresses the natural fact that
as long one is not in equilibrium, δF/δM 6= 0, the time derivative of M is proportional to the deviation from
equilibrium. The role of the stochastic term was to thermalise the system and to keep it from falling into the
classical solution.

To solve the equation of motion (7.2) one needs the boundary conditions (BC). These define
the physical system one is considering. We shall go through a number of alternatives.

• Simplest case, no BC forces M(x) to vary

In this case any variation of M increases the action and F clearly is minimised by
∇2M = 0. M(x) = constant at least satisfies this. Then the equation of motion reads

V ′(M) = aM + bM3 − h = 0. (7.13)

Writing here (phenomenologically) a = α(T − Tc) (Landau’s notation) and taking in
turn a = 0, b = 0 and h = 0 we can motivate the existence and evaluate the mean field
values of three relevant critical indices.
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a < 0

a > 0

M

V

Figure 7.1: The potential for positive and negative a.

(i) Take first h = 0 and plot the potential for a > 0 and a < 0 as in Fig. 7.1.

This describes phenomenologically spontaneous symmetry breaking (SSB), a corner-
stone of modern theoretical physics. If 〈M〉 is the value of M at the minimum, the
expectation value of M , one has

a > 0 : 〈M〉 = 0 symmetric under M ↔ −M

a < 0 : 〈M〉 =

√
−a

b
symmetryM ↔ −M broken

In the symmetry broken phase a = α(T − Tc) and

T < Tc : 〈M〉 =

√
α

b

√
Tc − T ∼ t

1
2 (7.14)

which expresses the fact that the mean field value of the critical index β, 〈M〉 ∼ |Tc−T |β
near Tc is 1/2. Pictorially:

T

M

T
c

Figure 7.2: M ∼ √
Tc − T . Note this is valid only near M ≈ 0, near Tc.

(ii) Next take b = 0 so that the potential is V = 1
2
aM2 − hM and the condition for

the minimum becomes aM − h = 0. Now the Z2 symmetry M → −M is broken, h is
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a symmetry breaking parameter. Even the smallest non-zero h is enough to break the
symmetry. There are many instances of this phenomenon, e.g., in QCD the smallest
non-zero quark masses break the chiral symmetry.

For a > 0 the potential looks as shown in Fig.7.3 and the value at the minimum becomes

〈M〉 =
h

a
≈ h

T − Tc

so that the susceptibility, i.e., the response of the system to a small magnetic field
becomes

χM =
∂M

∂H
∼ 1

T − Tc

∼ t−γ, γ = 1. (7.15)

Again we have derived the mean field value of one critical index, that corresponding to
magnetic susceptibility, γ = 1.

M

V

h/a

Figure 7.3: The potential near M = 0 for b = 0, a > 0.

(iii) Finally, take a = 0. Then the condition for the minimum is h = bM3 so that

〈M〉 ∼ h1/3 ∼ h1/δ

where we have defined the third critical index δ and found its mean field value δ = 3.

• The case with boundary conditions: interface.

Take now h = 0 so that

〈M〉 = ±
√
−a

b
≡ M0 (7.16)

and assume that one of the directions is special so that for x → +∞ the system is
in the minimum 〈M〉 = +

√
−a/b and for x → −∞ in 〈M〉 = −

√
−a/b. These two

minima are shown in Fig.7.2 and we can set the BC so that the system moves from one
minimum to another, i.e., M(x, y, z) ≡ M(x) to varies as a function of x, Fig. 7.2.

It is easy to solve the equation of motion−K∇2M+aM+bM3 = 0, a < 0, analytically.
Introducing the dimensionless variables





M =
√

−a
b

M̂

x =
√

K
−a

x̂
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Figure 7.4: Double well

x

M(x,y,z)

Figure 7.5: Variation ∼ tanh(x).

the equation of motion becomes

M̂ ′′(x̂) + M̂(x̂)− M̂3(x̂) = 0. (7.17)

This is solved by

M̂(x̂) = tanh
x̂√
2
≡ M̂extr(x̂). (7.18)

Physically, what we have obtained is an interface or a domain wall.

Evaluating the free energy (7.4) for this particular form of M gives the free energy of
the interface (F = −ρV + σA), often called the interface tension σ:

F [Mextr(x)] =

∫ ∞

−∞
dx

area︷ ︸︸ ︷
dy dz [

K

2
(M ′

extr(x))2 + V (Mextr)] (7.19)

= Area · 2
√

2

3

(−a)3/2

b
≡ A · σ.

This is the ”classic”, ”saddle point”, ”tree level”, ”mean field”, extremal solution. The effect
of quantum fluctuations around it has been computed for small b (Münster, Nucl. Phys.
B324(1989)630):

σ → σ[1− b

16π2
(
3

4
+

π
√

3

2
+O(b2)]. (7.20)
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Both quantum and thermal fluctuations can be important near the critical temperature. To
demonstrate this, let us ask what is the probability for the system to fluctuate back to M = 0
from the minimum energy state M = M0 in Eq. (7.16) at T < Tc. Since the probability is
proportional to the Boltzmann factor, and for a constant order parameter the free energy is
density × volume so that we may write

P (M = 0; T < Tc) ∼ e−βV [f(M0)−f(0)] . (7.21)

Hence the fluctuation probability is vanishingly small with P (M = 0; T < Tc) ¿ 1 when the
exponent is smaller than 1. To be concrete, let us take a = µ2

0(1−T/Tc) whence we find that
fluctuations back to the unbroken phase end when

βV
µ4

0

4b

(
1− T

Tc

)2

À 1

→ Tc − T À 16b2T 3
c

K3µ2
0

≡ ∆Tc , (7.22)

where we have taken the volume factor V to be given by the correlation volume ξ3, where
ξ =

√
−K/a as this is the spatial scale where the order parameter solution connecting the two

phases changes by a relative amount of O(1). Thus very close to the critical temperature, in a
region ∆Tc, the behaviour of a system is typically difficult to compute because the fluctuations
are large.

Order parameter coupled to gravity. In the normal laboratory environment gravity plays no role.
However, at very large scales gravity is important and one has to consider phase transitions in the presence of
gravity. Perhaps the most striking example can be found in cosmic inflation, which is a period of superluminal
expansion in the very early universe. It is driven by a coherent scalar field φ = φ(t), the inflaton, which can
be viewed as an order parameter of some early phase transition. If the potential is flat enough, as depicted in
Fig. XXXXXX, the inflaton rolls slowly from φ ≈ 0 towards the minimum of the potential at φ = φ0. Slow
rolling means that the kinetic energy is much less than the potential energy, φ̇2 ¿ V (φ) ≈ V0, which will hold
until φ has grown to some value φ∗ at t = t∗, after which the inflaton field starts to oscillate. During the slow
roll the energy and the pressure are given by

ρ =
1
2
φ̇2 + V ≈ V

p =
1
2
φ̇2 − V ≈ −V (7.23)

so that the equation of state is ρ ≈ −p; effectively, there is a large cosmological constant. Then, assuming a
flat universe with a Friedmann-Robertson-Walker metric ds2 = dt2 −R2(t)dx2 the Einstein equation reads

H2 ≡
(

Ṙ

R

)2

=
8πG

3
ρ ≈ const. ≡ H2

0 , (7.24)

the solution to which is
R(t) = R0e

H0t . (7.25)

Thus the ”size” of the universe becomes exponentionally large with the number of e-folds of the scale factor
R given by N = H0t∗. For an adiabatic expansion RT = const. so that during inflation the temperature of
the universe T → 0. After inflation ends at t ≈ t∗, the inflation energy is assumed to be dissipated by decay,
and as a consequence the universe reheats.

Inflation was initially introduced (in 1981) because it solves some of the naturalness problems of the Big
Bang theory. However, its most important feature is that it can expalain the origin of structure in the
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universe. During inflation φ is subject to quantum fluctuations δφ, which give rise to a calculable spectrum of
density perturbations since (schematically) δρ = V ′δφ. The spectrum can be measured from the temperature
fluctuatations of the cosmic microwave background since ργ ∝ T 4 implies that 4δT/T = δργ/ργ . The
temperature fluctuatations have been measured very accurately e.g. the WMAP satellite, and the results
agree well with the inflationary predictions.

7.3 U(1) symmetry: complex order parameter

Let us now consider a complex order parameter with M = 1√
2
(M1 + iM2). We write the

free energy (or the action) in a form which is invariant under rotations in the complex plane.
Instead of Z(2) the symmetry then is U(1), defined by

M → eiχM. (7.26)

As long as the parameter χ is constant, this is called a global U(1) symmetry. In Sect. 8.5 we
shall assume χ to be some arbitrary function χ(x) which leads to local or gauged U(1).

In case of the global U(1) symmetry, the free energy of the Landau model reads

F =

∫
d3x

[
K∇M∗ ·∇M + a|M |2 + b|M |4

]
. (7.27)

Note that the factors 1
2
, 1

4
are built in the definition of M in terms of real variables. The

parameter K could be absorbed into the definition of M by rescaling M → M/
√

K. From
Eq. (7.27) one derives the EOM

δF

δM∗ = 0 ⇒ −K∇2M + aM + 2b|M |2M = 0 . (7.28)

For a < 0 this has a particularly interesting special solution: a vortex line or a string. For the
global U(1) symmetry these are called global vortices. These are cylindrical configurations.
Hence it is natural to use the cylindrical coordinates x → r, φ, z, see Fig. 7.6.

In order to find the string solution let us adopt the Ansatz

M(x) =
1√
2
f(r)einφ n = integer (7.29)

with the boundary conditions

f(0) = 0, f(∞) =

√
−a

b
. (7.30)

Due to f(0) = 0 one needs not to worry about φ being undefined there. Using

∇2 =
1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂φ2
(7.31)
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ö r

M= f(r)

M= if(r)

M= -f(r)

x

y

z

Figure 7.6: Coordinates for a global string

the EOM becomes

−K
1

r

d

dr
(r

dM(r)

dr
) +

Kn2

r2
M(r) + aM(r) + 2bM3(r) = 0 . (7.32)

Introducing again dimensionless variables by M =
√
−a/bM̂ and r =

√
K/(−a)r̂ yields

−K
−a

K

1

r

d

dr
(rM̂)

√
−a

b
+ Kn2−a

K

√
−a

b

M̂

r̂2
+

√
−a

b
aM̂ + b

−a

b

√
−a

b
M̂3 = 0. (7.33)

Cancelling some terms and omitting now hats from the dimensionless variables gives

−1

r

d

dr
(rM ′) + n2M

r2
−M + M3 = 0 (7.34)

or
1

r

d

dr
(rM ′(r)) + (1− n2

r2
)M −M3 = 0 (7.35)

and finally

M ′′ +
1

r
M ′ − n2

r2
M + M −M3 = 0 . (7.36)

Comparing with Eq. (7.17) one notices that two new terms have appeared (the 2nd and
3rd terms). These imply that tanh(r/

√
2) is not a solution. One has to find the solution

numerically, and the outcome is an M(r) growing monotonically from 0 at r = 0 to 1 at
r = ∞, somewhat resembling the r > 0 half of tanh(r) (see, e.g., Fig. 55.1 of Fetter-Walecka).

Now the free energy of the extremal configuration is proportional to the string length; it is the
string tension. It has to be computed numerically, but it is even more important to estimate
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Figure 7.7: Radial dependences of a global string.

it parametrically:

Fextr =

∫
dz

∫
dx dy

[
K|∇Mextr|2 + V (Mextr)

]
(7.37)

= Length · Area · free energy density · number.

For Area we have the natural estimate Area = K/(−a) (see the definitions of r̂ above, one
can also say Area = correlation length2). Similarly free energy density = the value of V (M)
at the broken minimum = −a2/(4b). Thus we estimate

F

Length
≡ Tension = number ·K · −a

b
= number︸ ︷︷ ︸

O(1)

·K · 〈M〉2. (7.38)

Example: Rotation of a bucket of superfluid. Because of superfluidity, the system cannot rotate as a
whole, but if it is forced to rotate, it carries the angular momentum along global vortex lines, distributed in a
hexagonal lattice (compare Abrikosov vortices in type II superconductors and magnetic fields) in the center
of which the matter is in the normal symmetric state. If the superfluid wave function is ψ = f(r)eiθ, the
superfluid density ns and velocity of the matter vs are given by

ns = f2(r), vs =
~
m
∇θ.

Note that this implies ∇×vs = 0 everywhere except at r = 0 (Feynman 1955). If simply θ = φ , the azimuthal
angle, one has

|vs| = ~
mr

,
h

mHe
= 1.0 · 10−7 m2

s
.

Thus the velocity decreases with r, in contrast to rigid rotation. More generally, θ = nφ, n = integer, but
only n = 1 is stable. For the tension of a superfluid vortex one obtains

E

∆z
=

∫
d2x

1
2
mnsv

2
s ≈

π~2ns

m
log

L

ξ
,

where L is the size of the system or the distance between vortices and ξ is the correlation length, width of
the vortex. For He4 the tension is some 10−12 N, in a neutron star the tension can be 104 N. One also has,
for one vortex, ∮

vs · dl =
∫
∇× vs · dA =

h

m
.
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7.4 Symmetry currents

Imposing a symmetry on the theory means that the Lagrangian L(φk, ∂iφk) is invariant under
the infinitesimal symmetry transformation

φk → φk + iχTklφl, (7.39)

where Tkl are numbers defining the symmetry and χ ¿ 1 is an infinitesimal parameter; for
mathematically minded, T is the generator of the symmetry algebra. The infinitesimal change
induced into the Lagrangian by the symmetry transformation is

δL =
∂L

∂φk

δφk +
∂L

∂∂iφk

∂iδφk

= (
∂L

∂φk

− ∂i
∂L

∂∂iφk

)δφk + ∂i

[ ∂L

∂∂iφk

· δφk︸︷︷︸
∼Tklφl

]
. (7.40)

The last term is a surface one, which is neglected when deriving the EOM. However, if now
φextr

k (x) satisfies the classical EOM, so that

∂L

∂φk

− ∂i
∂L

∂∂iφk

= 0 ,

requiring invariance δL = 0 we can conclude that

∂iJi = 0, (7.41)

where

Ji =
∂L

∂∂iφk

· Tklφl

∣∣∣∣∣
φk=φextr

k

(7.42)

is the Noether current.

For global U(1) symmetry the infinitesimal transformation is

M → M + iχM, M∗ → M∗ − iχM∗. (7.43)

Since the partial derivative needed in Eq. (7.42) is

∂L

∂∂iM
= K∂iM

∗ (7.44)

we have the symmetry current for the global U(1) symmetry:

Ji = iK[∂iM
∗ ·M − ∂iM ·M∗] = −2K Im(∂iM

∗ ·M) (7.45)

which for the vortex ansatz M = f(r)eiφ becomes

= −2K Im(∂if · e−iφ − i∂iφ · fe−iφ)feiφ = 2Kf 2(r)∂iφ(x, y). (7.46)

Note the dimensions:
[J ]

=
[
T/x2

]
= energy/area.
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7.5 Ginzburg-Landau theory of superconductivity

Let us now make the U(1) symmetry in Eq. (7.27) local, i.e., demand that the free energy (or
action) be invariant under the x-dependent transformation

M ≡ φ(x) → eiχ(x)φ(x) ' (1 + χ(x))φ(x) . (7.47)

V (φ∗φ) is still invariant but ∂iφ
∗ ∂iφ is not. However, if we replace ∂i by the covariant

derivative
∂i → ∂i + ie3Ai ≡ Di , (7.48)

where we have introduced a gauge field Ai(x) which is required to transform as

Ai → Ai − 1

e3

∂iχ (∂i ≡ ∂

∂xi
≡ ∇i) , (7.49)

then

Diφ(x) → [∂i + ie3(Ai − 1

e3

∂iχ)]eiχ(x)φ(x)

= i∂iχ · eiχφ + eiχ∂iφ + ie3Ai · eiχφ− i∂iχ · eiχφ

= eiχDiφ(x) . (7.50)

The covariant derivative transforms covariantly, i.e. as a group element like φ(x). Hence the
kinetic term (Diφ)∗ Diφ is invariant even under local U(1) transformations.

The kinetic part of the gauge field (∼ ∂2A2) should also be invariant and, of course, we know
it is just the Maxwell action of electrodynamics

3∑
i,j

F 2
ij =

3∑
i,j=1

1

4
(∂iAj − ∂jAi)(∂iAj − ∂jAi) ≡ 1

2
B2, (7.51)

where, in 3 dimensions, we only need the magnetic field

B1 = ∂2A3 − ∂3A2 . . . , B = ∇×A. (7.52)

Thus we have been led to a theory defined by the functional integral

Z ≡ e−V f =

∫
DAi(x)Dφ(x) e−S[Ai(x),φ(x)] , (7.53)

where

S[Ai(x), φ(x)] ≡ 1

T
F [Ai(x), φ(x)] =

=
1

T

∫
d3x

[K̃

4
(∂iAj − ∂jAi)

2 + K|(∂i + ie3Ai)φ|2 + a|φ|2 + b|φ|4
]

.(7.54)

In general, this is 3d scalar electrodynamics; i.e., 3d gauge + scalar field theory. It is a
superrenormalisable field theory (only two divergent diagrams, the tadpole and the sunset
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diagrams). In terms of this general formulation, all physics is contained in the expectation
values of correlators of gauge invariant operators:

〈O1(x1)...On(xn)〉 =
1

Z

∫
DAi(x)Dφ(x) O1(x1)...On(xn)e−S[Ai(x),φ(x)], (7.55)

where the Oi are local gauge invariant operators of the type

O(x) = F 2
ij(x), |φ(x)|2, φ∗(x)Diφ(x), . . . . (7.56)

For the time being we shall discuss this theory only in the mean field approximation, i.e.,
study the minima of the free energy in Eq. (7.54). This approximation is appropriate for
superconductivity.

For the Ginzburg-Landau theory of superconductivity the parameters in Eq. (7.54) are given
by

K̃ =
1

µ0

, e3 =
e

}
, K =

}2

2m
(7.57)

and further also e → 2e and m → 2m∗
e, the charge and mass of Cooper pairs, respectively.

In the Ginzburg-Landau theory the complex scalar field φ(x) is interpreted as a ”condensate
wave function” and its absolute value squared, |φ(x)|2 as the ”density of Cooper pairs”, pairs
of e− near Fermi surface. If a < 0, the U(1) symmetry is broken and an expectation value
of φ∗φ appears. As a consequence, the system goes over into a superconducting (SC) phase
(note: there is so far no mention of persistent electric currents!).

For bulk superconductivity again the gradient terms are = 0 (if nothing forces Ai, φ to
vary, they remain constant). For inhomogenous situations (boundaries, external B) they are
essential, and then, for dimensional reasons, two distance scales appear in the broken (SC)
phase:

• For φ:

K∂2φ2 + aφ2 ⇒ ξ =

√
K

−a
(7.58)

which as before is the coherence length for the ”kink” =
√

2/mHiggs.

• For Ai:

K̃∂2A2 +

”photon mass”︷ ︸︸ ︷
K e2

3 φ2 A2 ⇒ δ =

√
K̃

K

1

e3 < |φ|√2 >

=

√
K̃

K

1

e3

√
−a
b

=
}

mγc
(7.59)

which is the penetration depth of A and B.
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The ratio of the two scales, κ, is an important parameter:

κ2 =
δ2

ξ2
=

K̃

K

b

e2
3

. (7.60)

The value κ2 = 1/2 separates type I and type II superconductors, with significantly different
properties.

7.6 London equation

The classical field configuration φ,Ak again has to satisfy the equations of motion. For φ one
varies F with respect to φ∗ and obtains the EOM

−KDkDkφ + aφ + 2b|φ|2φ = 0. (7.61)

This is just (7.28) with ∂i → Di.

For Ak we have
δF

δAk

= 0 ⇒ ∂L

∂Ak

− ∂i
∂L

∂∂iAk

= 0 , (7.62)

which leads to
−K̃∂i[∂iAk − ∂kAi]− iKe3 [φ∗Dkφ− (Dkφ)∗φ] = 0 , (7.63)

where −K̃∂i[∂iAk−∂kAi] = K̃(∇×B)k This, of course, is just Maxwell’s equation (K̃ → µ0)
∇ × B = µ0J without the electric field term and with a derived current satisfying current
conservation:

Jk = +iKe3

[
φ∗(∂kφ + ie3Akφ)− (∂kφ

∗ − ie3Akφ
∗)φ

]
,

∂kJk = ∇ · J = 0 . (7.64)

This is just the current (7.45) with the derivative ∂i replaced by the covariant derivative Di.
Inserting here φ = |φ|eiS, one obtains the ”London equation” (1935)

J = −2Ke3|φ|2∇S − 2e2
3K|φ|2A = electric current =

1

µ0

∇×B , (7.65)

where ∇S is the gradient of phase. The current J is, by construction, locally gauge invariant.
Gauge invariance requires both the phase S and A; a change in S is compensated for by a
change in A. For a simply connected region one can “gauge away” the phase, just do the
gauge transformation φ → e−iS(x)φ. To see the reason for this limitation, take S to be the
azimuthal angle around the z axis, tan S = y/x. Then ∇×∇S = 2πδ2(r), r = (x, y, 0) (cf.
the discussion of superfluid rotational flow) and (dA is here the surface element)

∮
∇S · dl =

∫
∇×∇S · dA = 2π.

Thus the existence of the vortex line prevents one from gauging away S.
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So where is the magic supercurrent, current without ∆V ? The key is symmetry breaking, we
have

|φ|2 =

{
0 in symmetrical normal phase.
−a
2b

in broken SC phase.
(7.66)

so that the current vanishes in the normal symmetric phase but it is non-zero in the broken
phase. Introducing the penetration length by

1

δ2
=

2Ke2
3|φ|2

K̃
(7.67)

and assuming that |φ| = constant, we can as well write the London equation (7.65) in the
form

δ2∇×B + A = −2π

e3

∇S

2π
, (7.68)

where
2π

e3

=
2π~
e

=
h

e
= 4.13 · 10−15Vs (7.69)

is the flux quantum. Taking again S to be the azimuthal angle and applying ∇× once more
leads to

δ2∇× (∇×B) + B = −δ2∇2B + B = −2π

e3

δ2(r). (7.70)

To see the meaning of δ, choose a gauge in which S = 0 and the geometry A = (0, A(x), 0) ⇒
B = (0, 0, A′(x)) ⇒ ∇×B = (0,−A′′(x), 0). Then

−δ2A′′(x) + A(x) = 0 ⇒ A(x) = e−x/δA(0) . (7.71)

Thus the supercurrent is located near the surface, together with the magnetic field B. This
is the Meissner effect. We shall study this with more realistic approximations in Section 7.8.

7.7 Ginzburg-Landau as 3d field theory

The three-dimensional U(1)+Higgs theory is a locally gauge invariant 3-dimensional continuum U(1) + com-
plex scalar field theory defined by the functional integral

Z =
∫
DAiDφ exp

[−S(Ai, φ)
]

= exp
[−V e6

3f(y, x)
]
, (7.72)

S =
∫

d3x

[
1
4
(∂iAj − ∂jAi)2 + |(∂i + ie3Ai)φ|2 + m2

3φ
∗φ + λ3 (φ∗φ)2

]
. (7.73)

The parameters m3, e
2
3, λ3 of the Lagrangian have the dimension GeV and the fields have dimension GeV1/2.

Since the theory in eq. (7.73) is a continuum field theory, one has to carry out ultraviolet renormalization.
In 3d the couplings e2

3 and λ3 are not renormalised in the ultraviolet, but there is a linear 1-loop and a
logarithmic 2-loop divergence for the mass parameter m2

3. In the MS dimensional regularization scheme in
3− 2ε dimensions the renormalized mass parameter becomes

m2
3(µ) =

−4e4
3 + 8λ3e

2
3 − 8λ2

3

16π2
log

Λm

µ
, (7.74)
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where µ is the running scale and Λm is a scale independent physical mass parameter of the theory. Instead of
it it is more convenient to use m3(e2

3). Choosing e2
3 to set the scale, the physics of the theory will depend on

the two dimensionless ratios

y =
m2

3(e
2
3)

e4
3

, x =
λ3

e2
3

. (7.75)

The standard tree-level symmetry breaking analysis starts by inserting to the action φ = (v + φ1 + iφ2)/
√

2
(leave out the subscript 3):

S =
∫

d3x

[
1
4 (∂iAj − ∂jAi)2 + 1

2e
2(v2 + 2vφ1 + φ2

1 + φ2
2)AiAi + evAi∂iφ2 + eAi(φ1∂iφ2 − φ2∂iφ1)

+ 1
2m

2v2 + 1
4λv4 + 1

2 (∂iφ1∂iφ1 + ∂iφ2∂iφ2) + 1
2 (m

2 + 3λv2)φ2
1 + 1

2 (m
2 + λv2)φ2

2

+(m2 + λv2)vφ1 + 1
4λ(φ2

1 + φ2
2)

2 + λvφ1((φ2
1 + φ2

2)
]
, (7.76)

from which one reads the usual tree-level ground state values

v =

√
−m2

λ
, m1 = mHiggs =

√
−2m2 =

√
2λv, m2 = mGoldstone = 0, mA = ev. (7.77)

Earlier ξ =
√

2/mHiggs was the correlation length and δ = 1/mA was the penetration length. There are many
different names and notations for these two quantities. On the tree level

m2
H

m2
A

=
2λ

e2
= 2κ2 = 2x;

large Higgs mass correponds to large λ (as also in the Standard Model) and the tree level boundary between
type I and II is at x = κ2 = 1/2.

Symmetry breaking has also produced several new interaction terms in Eq. (7.76). The mixed term mAAi∂iφ2

can be disposed of by partially integrating and choosing the Coulomb gauge ∂iAi = 0. Further perturbative
quantisation of the theory Eq. (7.76) by gauge fixing is discussed in particle physics text books1. However,
perturbation theory has only a limited range of applicability and, fundamentally, all physics lies in expectation
values of various operators. Since this is a gauge theory, only gauge invariant operators have non-vanishing
expectation values. The most relevant one of these are the local (depending only on one point x) operators
of lowest dimensionality:

• Dim = 1: the JPC = 0++ scalar O(x) = φ?(x)φ(x),

• Dim = 1.5: the JPC = 1+− vector Õi(x) ≡ Bi = εijkFjk(x)/2 (Fij = ∂iAj − ∂jAi),

• Dim = 2: the JPC = 1−− vector Oi(x) = Imφ?(x)Diφ(x) (Di = ∂i+ie3Ai), the 1−+ vector Reφ?Diφ =
∂iφ

?φ/2 and the 0++ scalar (φ?φ)2,

• Dim=3: The 0++ scalars FijFij and φ?DiDiφ, the 1+− vector φ?Biφ and the 2++ tensor φ?[{Di, Dj}−
2/d δijDkDk]φ,

• Dim = 3.5: The 0−− scalar Bi ∂iφ
?φ and the 0−+ scalar Bi Imφ?Diφ,

• Dim = 4: The 0+− scalar ∂iφ
?φ Imφ?Diφ

The quantum numbers here refer to O(3). From these one can further construct bilocal, etc. operators and
correlators of the above operators, depending on two points.

The first topic of importance is the phase structure of the theory. The critical curve y = yc(x) (see Fig. 7.7)
divides the plane in two disjoint regions, the symmetric phase at y > yc(x) and the broken phase at y < yc(x).

1See e.g. Bailin-Love, Introduction to gauge field theory, section 13.5
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Figure 7.8: The phase diagram of 3d GL theory. Order parameters separating the phases are
either the gauge field mass or the vortex tension.

The presence of a critical curve is signalled by singularities in the free energy Z = exp
[−V e6

3f(y, x)
]
. On

the tree level the critical curve is at m2
3 = 0 (or at y = 0). Including fluctuations to one loop, the effective

potential becomes

V1−loop/e6
3 =

1
4
xφ̂2

[(
φ̂− 1

3πx

)2

+
2y

x

(
1− 1

18π2xy

)]
. (7.78)

Two degenerate states are obtained when the last term vanishes. From this one finds for the critical curve yc(x),
for the upper and lower metastability branches y±(x), the latent heat-like jump ∆`3 of the order parameter-
like quantity `3 ≡ 〈φ†φ(e2

3)〉/e2
3 between the broken and symmetric phases at yc and for the interface tension

σ3 ≡ σ/e4
3, defined in perturbation theory by

σ3 =
∫ φb/e3

0

d(φ/e3)
√

2V (φ/e3)/e6
3, (7.79)

where V is the perturbatively computed effective potential, the following values

yc(x) =
1

18π2x
, y+(x) =

1
16π2x

, y−(x) = 0, (7.80)

φ̂symm = 0, φ̂broken =
1

3πx
, (7.81)

`3 =
1

18π2x2
, σ3 =

23/2

648π3x5/2
. (7.82)

Perturbation theory becomes unreliable for large λ3 or x > 0.1 and the transition becomes continuous there.
This is also the region of type II superconductors. What is crucial is that there is a phase transition there,
the phase transition does not first have a first order line which then ends in a second order critical point
like the Ising model transition. The point is that there is an order parameter which distinguishes these two
phases. This order parameter could, for example, be the gauge field mass. mA ≡ mV ≡ mγ , which is = 0 in
the symmetric Coulomb and 6= 0 in the broken Higgs phase. Equally, it could be the tension of a vortex line.
This can be calculated in the mean-field approximation by solving the field equations numerically. The result
can be written in the form

TMF =
∆S

L
= −y

x
πE(

√
2x), (7.83)
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where the function E , with the value E(1) = 1, has been calculated numerically in, e.g., Ref. [?]. Of course,
one must also be able to compute it quite generally as an operator expectation value. Much work on this has
been done in Helsinki. Referenssit

If one extends the above from U(1)+Higgs gauge theory to SU(2)+fundamental representation Higgs gauge
theory, one obtains a theory which describes the thermodynamics of the electroweak theory. Then the phase
diagram looks much like that in Fig. 7.7 but with the qualitatively crucial difference: there the 1st order line
really ends in a critical point, for larger x or self-coupling λ or the Higgs mass there is no phase transition,
only a ”cross-over”. When all numbers are put carefully together, the endpoint corresponds to Higgs masses
of the order of 77 GeV. This is far below the present (2006) lower limit of mH so that in the physical minimal
standard model there is no electroweak phase transition.

7.8 Normal-superconducting interface tension

See the classic work by Ginzburg-Landau from 1950, reprinted in Landau’s collected works or Landau &
Lifshitz Stat Phys vol. 2 §46 for motivation of separating type I (σ > 0) and type II (σ < 0) SC.

Consider now a physical situation in which one forces a magnetic field through a superconduc-
tor. Superconductivity then must be at least locally lost and superconductors differ in how
this happens. For type I B penetrates through a thick rope while for type II B penetrates
through a lattice of vortices. Effectively, in type I the vortices attract each other so that
it is more favourable to join them in a rope. In type II they repel and want to be as far
from each other as possible, i.e., they form a lattice. Quantitatively, an elegant way to see
this difference is to compute the interface tension σ of a planar interface between normal and
superconducting phases. For positive σ it pays to reduce the number of interfaces so that the
vortices attract each other.

Piece of

SC matter
Element of

surfaceN

Z

Y

X

Figure 7.9: What happens if you force a magnetic field through a superconductor? For type
I a rope is formed.
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Assume now that the interface is in the y, z plane and that the magnetic and the order
parameter fields only depend on x and are

φ = φ(x) = real (gauge choice), (7.84)

A = (0, A(x), 0), (7.85)

B = ∇×A = (0, 0, A′(x)). (7.86)

The gauge has been fixed by transforming away the phase of φ. We also change the notation
to the particle physics one, a → m2, b → λ, K = K̃ = 1. Note that B lies in the interface.
The interface tension is F/Area, where

F =

∫
dy dz︸ ︷︷ ︸
=area

dx
[1

4
F 2

ij + (Diφ)∗Diφ + m2φ∗φ + λ(φ∗φ)2
]
.

For the present interface geometry

1

4
F 2

ij =
1

2
B2

z =
1

2

[
A′(x)

]2

|Diφ|2 = (∂iφ− ie3Aiφ)(∂iφ + ie3Aiφ) (φ∗ = φ!)

= [φ′(x)]2 + e2
3A

2φ2

so that

F

Area
=

∫ ∞

−∞
dx

[1

2
(A′(x))2 +(φ′(x))2 +(e2

3A
2(x)+m2)φ2(x)+λφ4(x)

]
≡

∫ ∞

−∞
dxf(x). (7.87)

The equations of motion extremising this are

∂L
∂A
− ∂x

∂L
∂A′ = 0

∂L
∂φ
− ∂x

∂L
∂φ′ = 0

⇒

⇒

A′′(x) = 2e2
3A(x)φ2(x)

φ′′(x) =
[
e2
3A

2(x) + m2
]
φ(x) + 2λφ3(x) .

(7.88)

To solve these equations of motion we also need boundary conditions. We fix them so that
the SC phase is at x > 0 and the normal phase at x < 0. Then, for x → ∞, φ(x) → 〈φ〉 =√
−m2/2λ, A → 0, f(x) → −m4/(4λ). For x → −∞ B = A′ → Hc, φ → 0, f(x) → 1

2
H2

c ,
where the limiting value Hc is determined in a moment. To isolate finterface(x) we must
demand that finterface(x) → 0 for x → ±∞. This is solved for x → +∞ by modifying f(x) by
(A′)2 → (A′ −Hc)

2:

Finterface

Area
= σ =

∫ ∞

−∞
dx

[1

2
(A′ −Hc)

2 + (φ′)2 + (e2
3A

2 + m2)φ2 + λφ4
]
. (7.89)

so that

finterface(x → +∞) =
1

2
H2

c −
m4

4λ
= 0. (7.90)

Thus one has determined
1

2
H2

c =
m4

4λ
, (7.91)
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Figure 7.10: Configurations of φ(x) (grows to the left) and B(x) (grows to the right) for zero
interface tension, λ = 1

2
e2
3. Here the SC broken phase is to the left, x < 0.

which just expresses the fact that the magnetic energy density on the normal side should
equal the condensate energy density on the broken side.

Multiplying the first of the EOMs (7.88) by A′ and the second by φ′ one derives a first integral

1

2
A′2 − (e2

3A
2 + m2)φ2 + φ′2 − λφ4 =

m4

4λ
, (7.92)

where the constant is determined from boundary conditions. With this one can further write
the interface tension in equivalent forms

σ =

∫ ∞

−∞
dx

(
A′2 −HcA

′ + 2φ′2
)

=

∫ ∞

−∞
dx

[
1

2
(A′ −Hc)

2 − λφ4

]
. (7.93)

From this we can analytically compute that

• For small λ ¿ e2
3 the coherence length ξ = 1/

√−m2 is much larger than the penetration
length δ =

√
λ/e2

3(−m2). The magnetic field then drops suddenly at the interface at

x = 0 to zero and we can focus only on φ. Eq. (7.92) then becomes φ′ =
√

λ(〈φ〉2− φ2)
which is solved by φ = 〈φ〉 tanh(x/

√
2ξ). Inserting this to the first of (7.93) then gives,

integrating over x > 0,

σ =

√
2

3

(−m2)3/2

λ
. (7.94)
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• The tension decreases with increasing λ and, remarkably, it vanishes, according to the
second of (7.93), if

A′ −Hc = −
√

2λφ2. (7.95)

A closer inspection of the EOMs shows that this happens when λ = 1
2
e2
3 or κ2 = δ2

ξ2 =
eK
K

b
e2
3

= 1
2
. This is shown in detail in Eqs.( 46.15-46.18) of Landau & Lifshiz, Stat Phys,

part 2, §46. The corresponding numerically computed field configurations are shown in
Fig. 7.8.

• For λ > 1
2
e2
3 σ < 0 and one minimises free energy by maximising the amount of interface,

i.e., it pays to distribute the total amount of flux among a number of vortex lines, each
carrying a flux quantum h/e.

We thus have two types of superconductors, which differ in how they react to an imposed flux
of magnetic field:

ΦB = B · Area. (7.96)

• Type I has σ > 0 and the imposed flux forms a rope parallel to B to minimize the area
(perpendicular to B).

• Type II has σ < 0 and the imposed flux penetrates the plasma through a lattice of
(Abrikosov) vortices parallel to B.

Thermodynamically, B is a ”canonical” variable (or actually its extensive volume integral
V B = Lz · ΦB), which can be spatially inhomogeneous. Its analogue is N , the particle
number. For B we can write V B = Lz(2π/e3)N , where N now is the number of flux quanta.
The conjugate intensive ”grand canonical” (it lets ΦB = BA or the number of flux quanta
fluctuate) variable is H, which is homogeneous, like the chemical potential µ. Thus we can
write F (T, V, N, B) = E − TS = −pV + µN + H · V B, taking account of the vector nature
of B in a suitable way.
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Chapter 8

Physics in 1 + 2 dimensions

8.1 Landau states

Many novel physical phenomena take place in 1+2 dimensions that are not possible in 1+3
dimensions. Experimentally, a two dimensional system is realised either by having an indepen-
dence of the third spatial dimension or by confining the system effectively to two dimensions
by having the thickness of the system in the third dimension much smaller than the relevant
dynamical length scale, e.g. correlation length, in two dimensions.

>

>

z

x

y

=>

>

>

<

y

x

L << L , Lz x y

Figure 8.1: 2d means Lz ¿ transverse dynamical scales ¿ Lx, Ly.

Hall effect. The classical two dimensional example is a thin strip of wire in a magnetic field and dates back
to E. H. Hall in 1879. Let the wire be in the (x, y)-plane with a current jx while the constant magnetic field
B points to the z-direction, as depicted in Fig.8.1. The ensuing Lorentz force displaces the current electrons
into the y-direction:

F = −e(E + v ×B) ∝ êy . (8.1)

161
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Figure 8.2: The Hall effect.

In addition, the electrons may collide with a collision time τ . As a consequence, the average momentum flow
after time ∆t reads p(t + ∆t) = (1−∆t/τ)p(t) + F∆t so that

dp
dt

= −p
τ
− eE− p

m
×B . (8.2)

The steady state is achived when dpk/dt = 0 for k = x, y. Thus, multiplying Eq. (8.2) by −neτ/m we arrive
at

σEx =
eBτ

m
jy + jx

σEy = −eBτ

m
jx + jy (8.3)

where σ = ne2τ/m and j = nep/m. Balancing now the Lorentz force out so that jy = 0 we find that at
equilibrium

Ey = − B

ne
jx . (8.4)

The combination
RH ≡ Ey

jxBz
=

1
en

(8.5)

is the Hall coefficient that can be measured experimentally. It does not depend on the material of the
conducting strip but depends on the sign of e.

Classically a charged particle in a constant magnetic field B = (0, 0, B) moves under the effect
of the Lorentz force in a circular path with the Larmor frequency and the Larmor radius given
by

ωL =
eB

m
, rL =

v

ω
=

mv

eB
. (8.6)

Quantum mechanically one writes down the Schrödinger equation with p → p− eA. There
are various gauge choices, such as

{
A = 1

2
B(−y, x, 0)

A = B(−y, 0, 0)
⇒ B = (0, 0, B)

and and choosing the latter one (the ”Landau gauge”; the former is the ”symmetric gauge”)
one obtains the Schrödinger equation for the transverse coordinates x, y:

− ~
2

2m
[(∂x − i

y

l2B
)2 + ∂y

2]ψ(x, y) = Eψ(x, y), (8.7)

0Landau, born 1908, ZfP 64(1930)629, Kittel Quantum theory of solids, p.217
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Figure 8.3: Classical motion in a magnetic field

where lB =
√

~
eB

= 260Å1/
√

B/T. Since the z-dependence is trivial, one obviously has

ψ(x, y, z) ∼ eikz ·zψ(x, y), (8.8)

and since there is no coordinate dependence on x, the x dependence is ∼ eikxx and, comparing
with the harmonic oscillator Schrödinger equation with the wave functions

ψ(x) =
1√

2nn!x0

√
π

e
− 1

2
( x

x0
)2
Hn(

x

x0

), x2
0 ≡

~
mω

, (8.9)

(H0 = 1, H1 = 2x,H2 = −2 + 4x2, . . . ) one finds that Eq. (8.7) is solved by

ψN(x, y) = N0e
ikxx exp

[−1

2
(

y

lB
− lBkx)

2
]
HN(

y

lB
− lBkx), (8.10)

with the energy eigenvalues, called the Landau levels,

EN =
p2

z

2m
+ (N +

1

2
)~ωL. (8.11)

In the last term

~ωL =
~2

ml2B
(8.12)

is a quantum Larmor energy. The result is only superficially asymmetric under x ↔ y. The
exponential exp[−1

2
( y

lB
− lBkx)

2] in Eq. (8.10) has its maximum at

y = y0 = l2Bkx =
~kx

eB
=

mvx

eB
= rL (8.13)

It is now quite interesting to see how the classical motion is reflected in the quantum mechan-
ical solution.

The key fact here is that EN does not depend on kx; in fact, the degeneracy of a state is

e

h
BLxLy.
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Figure 8.4: Counting the surface density of states

To derive this, note that the x-dependence of the states is eikxx, where kx = 2π/Lxnx, nx =
1, 2, ... (periodic boundary conditions). Thus the values of y0 are ~/(eB) · 2πnx/Lx, but this
has the maximum value Ly so that

nmax
x =

eB

h
LxLy. (8.14)

Since LxLy = Area, one finds that the surface density of states is

eB

h
=

B

Φ0

=
1

2πl2B

states

m2
. (8.15)

Here h/e ≡ Φ0 =flux quantum =4.14× 10−15Vs. As a quantitative example, if B = 1 T and
Lx = Ly = 1 cm, then Nstates = 1

4·10−15 (10−2)2 = 1010 and

2πl2B =
h

eB
=

4, 14 · 10−15m2

B/T
⇒ lB =

2, 6 · 10−8m√
B/T

=
250Å√
B/T

.

To summarize:

• The motion in the z direction, parallel to B, is unaffected by (0, 0, B) ⇒ E = p2
z/2m.

• The energy of the motion ⊥ B is quantised in steps of ~ωclassical = ~ eB
m

.

• Classically the particle can spin around any axis at fixed energy, quantally there are
only a finite number of states at any EN and their number is ∼ LxLy = Area:

Number of states =
e

h
·BLxLy =

B · Area

h/e
=

ΦB

Φ0

(times 2 for spin). The flux of B is quantised in units of h/e = 4.14 · 10−15 Vs.
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Flux quantisation also follows from the phase change of a wave function ψ in a vector potential
A along a path from x0 to x:

ψ(x) = exp
[
i
e

~

∫ x

x0

dx′ ·A(x′)
]
ψ0(x), (8.16)

where ψ0 is the wave function when A = 0. Taking a closed path then gives a phase change
e/~ · ΦB which has to be = 2πn for the wave function to be unique.

8.2 The Quantum Hall effect

When discussing the Landau states, ψ(x) is just the wave function of a quantum mechanical
system in general. In practical applications the properties of the system bring in much new
physics, as is the case in the classical Hall Effect. This is also true for the Quantum Hall
Effect (S. Girvin, cond-mat/9907002).

To see where quantum mechanical effects can appear, we massage the classical relation Eq.
(8.4) so that the 2d density n(2) = N/(LxLy), B parallel to the z axis, appears. To this end,
let us introduce a potential Vy and the current Ix by

Ey =
Vy

Ly

Jx =
Ix

LyLz

(8.17)

so that
Vy

Ly · Ix

LyLz

=
B

e N
LxLyLz

, B ≡ Bz, (8.18)

and

ρxy ≡ Vy

Ix

=
B

e N
LxLy

≡ B

en(2)

=
1

ν

h

e2
=

1

ν
25813

V

A
(8.19)

where we used the fact that, in quantum theory, if ν lowest Landau states are filled, the
surface density of electrons is

N

LxLy

= ν
eB

h
. (8.20)

This is, qualitatively, the integer quantum Hall effect. Note that even here we have said
nothing about the electronic structure of the matter, just a place where macroscopic quantum
effects could arise has been identified. And, in fact, when measuring ρxy as a function of B
and n(2) one sees an overall decrease with decreasing B and superposed on this plateaus at
integer ν.

Understanding the plateaus requires a more detailed discussion of the behavior of Landau
states in solids, i.e., here the detailed properties of solids have an effect. This goes even
further with the observation (in 1982) that there are plateaus also at fractional values of ν,
which is called the fractional quantum Hall effect. To explain this one has to include the effects
due to the Coulomb forces between electrons. As a consequence, there arises quasiparticles
with a fractional charge together with a novel form of a many-body ground state.
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>
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h_
e2

h_
e22

Figure 8.5: ρxy as a function of B

Consider relevant scales quantitatively. We have

lB =
260Å√
B/T

~Ω = ~
eB

m∗
e

= 19K · (B/T), (8.21)

wher m∗
e = 0.07me (the effective me in matter). To occupy the lowest Landau state we thus must have

T ¿ 19K · B
T ; in practice T ∼ 0.1K. The average Coulomb interaction is

e2

4πεε0lB
=

e2

ε · 4πε0~c
· ~c
lB

=
1
ε
· 1
137

· 0.229K · 108Å
2.6 · 102Å

√
B/T

=
1
ε
· 643K ·

√
B/T . (8.22)

In matter ε ≈ 10 so that the interaction term is quite large in comparison with ~Ω.

[ Part 3: ”Attached Text” ]

8.3 Topology in two dimensions

Physics in two dimensions can be different from physics in three dimensions because of topol-
ogy. Even the statistics of particles can, on general grounds, deviate from the usual Fermi-
Dirac or Bose-Einstein of three dimensional world. This is related to the fact that in 2d one
may define a winding number that does not exist in 3d.

Consider two 2d quantum states |x1〉 and |x2〉 as depicted in Fig. XXXX. The amplitude for
moving from x1 to x2 is given by

A = 〈x1|x2〉 = eiδθ = eθ0+iNφ/π (8.23)

where δθ is the total path, θ0 the single-valued amplitude and the winding number N counts
how many times the path goes around the origin. In contrast, in 3d the angle φ cannot be
defined unambiguously as the path can always be ”lifted” from the 2d plane; the path does
not matter. Thus in 3d we must require that

eiNφ/π = eiNφ′/π (8.24)
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if φ′ = φ + 2nπ. It then follows that we must also require that e2inN = 1 or that only the
windings

N = 0, π (8.25)

are allowed. It then follows that changing the labels in a two-particle wave function (by
reflecting x1 ↔ x2 or setting φ → π) in 3d means that

ψ21 = eiNφ/πψ12 = eiNψ12 = ±ψ12 . (8.26)

Hence only the completely symmetric (Bose-Einstein) or completely antisymmetric (Fermi-
Dirac) statistics are possible in 3d.

In 2d any winding number, and therefore any statistics, is possible. Hence the name anyon,
which is a particle that can obey a statistics that interpolates between Fermi-Dirac and Bose-
Einstein.

Aharonov-Bohm effect. A well-known quantum mechanical example of the fact that in 2d path matters
is the Aharonov-Bohm effect. Let there be a magnetic flux Φ =

∫
B · dA pointing to the z-direction and

confined to a small domain in the (x, y)-plane. Then

Φ =
∫

BzdA =
∫

εij∂iAj dA =
∮

dx ·A , (8.27)

where εij is the totally antisymmetric tensor. Let us choose a gauge

Ak =
Φ
2π

∂kθ(x) =
Φ
2π

εkj
xj

r2
, (8.28)

where θ is the angle around the flux. Taking

Bz =
{

B r < R0

0 r > R0
→ Aθ =

{
1
2π r < R0
Φ
2π r > R0

. (8.29)

Let us now consider a particle moving in 2d in a circle round the flux with a Hamiltonian

H =
1

2m
(p + eA)2 + V (r) , (8.30)

where the potential V generates the circular orbit at r > R0. A gauge transform A → A +∇θ(x) changes
the wave function of the particle by ψ → eieθ(x)/h so that going around once produces a total phase

θtot =
∫

θ(x)dl =
∫ 2π

0

Φ
2πr

rdφ = Φ . (8.31)

8.4 Anyons

The Aharonov-Bohm effect provides a natural starting point for modelling anyons. We may
consider 2d particles moving under the influence of a hypothetical gauge field which is pure
gauge and called the Chern-Simons gauge field:

A =
αφ0

2π
∇θ =

αφ0

2π

êθ

r
. (8.32)

Here α and φ0 are parameters and are chosen for the convenience of the presentation. Since
the Chern-Simons (CS) gauge field is pure gauge, it can be gauged away by A → A + ∇ξ
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except at r = 0, where it is singular. The corresponding magnetic field is zero except at r = 0,
where B = αφ0δ

(2)(r). As in the Aharonov-Bohm case, there is always a non-zero magnetic
fluc Φ = αφ0. In the presence of the CS gauge field particles will achieve a phase factor which
effectively changes the statistics they obey; hence they are anyons.

Let us consider two generic anyons. Their relative angular momentum is

L = r× (p−A) = r× (i∇+
αφ0

2π
êθr) = −i∂θ + i

αφ0

2π
, (8.33)

where we have chosen the CS charge e = 1 for convenience.

The wave function should be single-valued under r → −r so that the operator i∂θ has integer
eigenvalues. Thus the total angular momentum is fractional:

L = n +
αφ0

2π
. (8.34)

Let us now take a specific example by considering two electrons and a CS gauge field with
αφ0 = (2n + 1)2π. Such anyons are in fact bosons:

ψ12 = −eiαφ/2ψ21 = −e(2n+1)πiψ21 = ψ21 . (8.35)

There is a mean CS magnetic field BCS = αφ0n (n sums over the electrons). Recall that in
the quantum Hall effect E ∝ B so that energy is minimized when the real magnetic field eB
is cancelled against the CS field BCS. Then one obtains

n =
eB

αφ0

=
eB

2π

1

2n + 1
(8.36)

giving rise to a fractional guantum Hall effect. Here the filling factor ν = 1/(2n + 1) is odd
as observed.

We may also consider the quantum mechanics of two anyons in more detail. The Hamiltonian
is

H =
1

2M
[(p1 + eA(x1))

2 + (p2 + eA(x2))
2] + V (r) (8.37)

where r = |x1 − x2| and e ≡ e∗ is the effective charge. A(x1) = α~
e∗∇θ(x1 − x2) is the

Chern-Simons field with A(x2) = −A(x1).

Let us write H = HCM + Hr, where HCM is the center-of-mass motion and Hr is the relative
motion with {

HCM =
p2

CM

2mCM
mCM = 2M

Hr = 1
2mr

(pr − e∗A(r))2 + V (r) mr = M
2

(8.38)

HCM simply yields a free plane wave while for the relative motion we should solve the
Schrödinger equation with

Hr = − ~
2

2m

[
1

r

d

dr
(r

d

dr
) +

1

r2
(

d

dθ
+ iα)2

]
+ V (r) . (8.39)
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If we choose a harmonic potential, V = 1
4
mrω

2r2, one finds that the energy levels are given
by

E = ~ω[2n + 1 + |l + α|], (8.40)

where l + α is the fractional angular momentum.

One could also consider a gas of anyons. For N anyons

H =
N∑

i=1

1

2m
[pi +

e

c
ai(xi)]

2 +
1

2
mω2xi

2 . (8.41)

The last term is an external harmonic potential for the interacting anyons, and the CS gauge
field reads now

ai =
αΦ0

2π

∑

j 6=i

ê|xi − xj|
|xi − xj|2 . (8.42)

Again one may separate the center-of-mass motion and the relative motion to write the
partition function as

ZN = ZCMZRM (8.43)

where the CMS part is trivially

ZCM =
u

u− 1
, u = e−β~ω . (8.44)

However, ZRM is a complicated story and depends e.g. on whether [α] = Int α is even or odd.
Defining δ ≡ [α]− α one finds for odd [α]:

ZN(ω) =
1

N !
cosh[

β~ωN(N − 1)δ

2
]×

N∏

l=1

[
l

2 sinh(β~ω l
2
)
]2 (8.45)

and likewise for even [α]; for details, see Phys.Rev.Lett. 68(1992)1621.
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Appendix A

Units, conventions

We shall use units in which always kB = 1 (unit of temperature is the same as energy) and mostly
~ = c = 1. The gravitational constant G we keep. For completeness, we shall unsystematically in
various places insert proper factors of c, ~.

Conceptually, what is happening here is that these constants of nature are conversion factors:

kB =
energy

temperature
,

c =
distance

time
,

~ =
energy

frequency
,

G

c4
=

curvature = 1/m2

energy density
.

Physics teaches us that temperature is energy, distance and time are related (special relativity),
energy and frequency are related (quantum mechanics) and curvature and energy density are related
(general relativity) and it is clearly possible to use the same units in measuring either of the pairs.

Numbers:

~ = 1.054573 · 10−34Js = 6.58212 · 10−22MeV s = 7.64 · 10−12 Ks = 1
~c = 197.327 MeV fm = 0.229K cm = 1973eV Å

α =
e2

4πε0~c
=

1
137.03599

at scale 0

rBohr =
1
α

~
mec

= 0.5291772 · 10−10m

h

e
= 4.14 · 10−15 Vs flux quantum

h

e2
= 25813

V
A
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Planck units:

mass =
√
~c/G = 2.177 · 10−8 kg

length =
√
~G/c3 = 1.616 · 10−35 m

time =
√
~G/c5 = 5.391 · 10−44 s

power = c5/G = 3.63 · 1052 W

Energy ↔ circular or linear frequency, momentum ↔ wave number or wave length:

E = ~ω = hν(= ~ck =
hc

λ
= ~c

2π

λ
, for photons),

p = ~k =
h

λ
.



Appendix B

Exercises

Many-body Phenomena. MoKa SL04

Exercise 1

1. Refresh your thermodynamical skills by showing that

Cp − CV =
TV α2

κT
,

where the heat capacities, the coefficient of thermal expansion α and the isothermal compressibility κT

are defined by

Cp = T

(
∂S

∂T

)

p

, CV = T

(
∂S

∂T

)

V

,

α =
1
V

(
∂V

∂T

)

p

, κT = − 1
V

(
∂V

∂p

)

T

.

2. Calculate the Gaussian integral
∫ ∞

−∞
dx exp

(
−1

2
xTAx− bTx

)
,

where x and b are n-dimensional vectors and A is a diagonalizable, positive definite n× n-matrix.

3. Calculate the density of states of a Maxwell-Boltzmann gas on N non-interacting particles by perform-
ing the inverse Laplace transformation of the partition function:

g(E, N) =
1

2πi

∫ i∞+βc

−i∞+βc

dβ eβEZ(β, N),

where βc is the saddle-point of the integrand, and

Z(β, N) =
1

N !

(
V

π2β3

)N

.

4. Calculate the most probable, the mean, and the root mean square absolute velocity in the ideal gas,
using the normalized velocity distribution

f(v) =
( m

2πT

)3/2

exp
[
−mv2

2T

]
.
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Hint: The differential d3w(v) = f(v)d3v denotes the probability of finding a particle in the ideal gas
with the velocity vector v between (vx, vy, vz) and (vx + dvx, vy + dvy, vz + dvz) independent of its
position. Use this to first calculate the probability of finding a particle which has an absolute value of
velocity between |v| and |v|+ |dv|.

5. Consider a system of 4 particles and 12 possible states i = 1, . . . , 12 for each of them. The probability
to deliver a particle to a state i depends on the distribution of previously delivered particles in the
following way. The Pauli exclusion principle forbids two particles to occupy the same state. If a state
i is previously unoccupied, the probability for its occupation depends on the occupation number of the
neighboring states i− 1 and i + 1 such that

p(i) =





p0 if i− 1 and i + 1 are not occupied
p0/2 if either i− 1 or i + 1 is occupied
p0/4 if both i− 1 and i + 1 are occupied

where p0 is to be normalized in such a way that the particle is delivered to some state for certainty.
Periodic boundary conditions are assumed (that is, state i ≡ state i + 12)
a) How many possible partitions are there?
b) What is the average distance 〈|i− j|〉 of particles (distances are not calculated over the boundaries)?
You may need to write a short computer code to solve the problem.

Exercise 2

1. Some history on ”Physics is where the action is”: for Finnish-speaking participants, read the articles
http://www.tieteessatapahtuu.fi/0304/pekonen.pdf and
http://www.tieteessatapahtuu.fi/0304/maupertuis.pdf and try to find out how in the latter
Maupertuis’s formulation is related to today’s formulation of the action principle, i.e., that the classical
equation of motion for q(t) is the function extremizing S =

∫
dtL(q, q̇), L = T − V . Remember Snell’s

law n1 sin θ1 = n2 sin θ2, velocity of light in matter = c/n. Note that Maupertuis had the velocity of
light all wrong. Unfortunately Google does not locate Maupertuis’s original ”Accord de différentes lois
de la nature qui avaient jusqu’ici paru incompatibles” but non-Finnish-speaking participants might try
to find something in other languages.

2. Solve the diffusion equation

∂tn(t, x) = D∂2
xn(t, x), n(0, x) = δ(x)

by solving for the Fourier transform n(ω, k) and inverting back to n(t, x). Compare with the matrix
element 〈x1|e−εH |x2〉 encountered in the derivation of the path integral form of Tre−βH .

3. Calculate the imaginary time correlator

〈x(τ)x(0)〉 = Tr
[
e−βHx(τ)x(0)

]

for the harmonic oscillator in one dimension. Put a complete set of states to appropriate places, relate
x(τ) to x(0) with the use of the time-evolution equation and use the known matrix elements of x for
the harmonic oscillator.

4. - 5. The following intermediate step was met with in the derivation of the path integral form of the
partition function

Z = Tr e−βH =
∑

states

e−
En
T , H =

p2

2m
+ V (x)

=
∫ N∏

1

dxi√
2π}ε

m

exp
[
− ε

}
{m

2
[(

x1 − x2

ε
)2 + . . . + (

xN − xN−1

ε
)2 + (

x1 − xN

ε
)2]

+V1 + V2 + . . . + VN

}]
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Take now V (x) = 1
2mω2x2 and evaluate this Gaussian integral for finite N , then take N → ∞ to

recover the simple form of the vibrational partition function. To evaluate the finite-N integral you
need the determinant ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −a 0 0 · · · 0 −a
−a 1 −a 0 · · · 0 0
0 −a 1 −a · · · 0 0

0 0 −a 1 −a
...

...
...

...
. . . 0

0 0 0 −a
−a 0 0 · · · 0 −a 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The non-zero elements on the upper-right and lower-left corners make the evaluation problematic. It
is easier to first calculate the transition element 〈x1|e−βH |xN+1〉, for which these corner elements are
not there. That can be calculated by recursively relating the N ×N and N − 1×N − 1 determinants
to N − 1 × N − 1 and N − 2 × N − 2 determinants. The recursion relation can be solved by writing
it in terms of a 2 × 2 matrix, and then diagonalizing that matrix. The desired end result is obtained
when we equate x1 = xN+1 and perform the integral

Z =
∫ ∞

−∞
dx 〈x|e−βH |x〉

Exercise 3

1. The temperature of the cosmic microwave background (CMB) is today T = 2.735 K. What are the
average and median photon frequencies and wave lengths in CMB? How many photons are there per
cm3? Imagine that the CMB photons are trapped in a box with a size L0. If the box size scales in time
as L(t) = L0(t/t0)2/3 (as in our Universe), when did the CMB photon temperature equal the surface
temperature of the Sun (= 6000 K)?

2. Compute the following large-T (T À m) expansion (or as many terms as you can) of the pressure of
an ideal gas of bosons:

p(T )− p(0) = −T

∫
d3k

(2π)3
ln(1− e−β

√
k2+m2

)

=
π2T 4

90
− m2T 2

24
+

m3T

12π
+

m4

64π2

(
ln

m2

T 2
− 2 ln 4π + 2γE − 3

2

)
+O(m6/T 6).

(γE = Euler gamma)

3. Show that the particle number fluctuations for quantum ideal gases in the grand canonical ensemble
are

〈(nk − n̄k)2〉 = n̄k(1∓ n̄k) ,

〈(N − N̄)2〉 = N̄ ∓
∑

k
n̄2

k ,

where n̄k = 1/[expβ(Ek − µ) ± 1] is the equilibrium occupation number, N̄ =
∑

k n̄k and where the
upper sign refers to FD gas, the lower to BE one. Note that the distribution in any nk is an exponential
distribution, Pn ∼ e−λn, λ = const. The brave may even compute the third central moment 〈(nk−n̄k)3〉.

4. Consider the Euclidean action ∫ β~

0

dτ
[m

2
q̇2 + V (q)

]
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in the limits β fixed, ~ → 0 (classical limit) or β → 0, ~ fixed (large T limit). Show that in these
limits only the zero mode q = const. = q0 contributes to the functional integral form of Z so that
Z = e−βV (q0). Take τ ′ = τ/(β~) as a new variable. Which are the configurations dominating if
~→ 0, β~ = const?

5. Assume we have a 1+1d theory with a linear term in the potential: L = 1
2mẋ2 + 1

2mω2x2 + mω0x.
Calculate the partition function Z(T ) and normalize it to the partition function of the harmonic
oscillator (ω0 = 0).

Exercise 4

1. The energy flux from the Sun is 1400 W/m2 and it comes with a Bose-Einstein energy distribution
corresponding to 6000 K. What is the photon flux, number/s/m2? What is the density of photons,
number/m3, in the radiation? How does is compare with the density of photons in thermal equilibrium
at 6000 K? What is the incident energy density in photons and what is the radiation pressure?

2. You know that, for a bosonic system,

Ω = −V p(T, µ) = T
∑

k

log[1− eβ(µ−Ek)].

Derive from this the entropy S and internal energy E in terms of the average occupation number

nk =
1

eβ(Ek−µ) − 1

of the state k.

3. Compute the integral ∫ ∞

0

dxx2

(
1

ex−y + 1
− 1

ex+y + 1

)

by evaluating its Taylor series around y = 0. When computing d/dy, note that this is ±d/dx and get
rid of the d/dx by partial integration.

4. Consider an ideal gas of 87Rb atoms at T = 0, confined by the harmonic trap V (r) = 1
2mω2r2 where

m is the mass of the atom. A characteristic trap frequency is ω/2π = 150 Hz. Determine the ground
state density profile and estimate its width. Find the root-mean-square momentum and velocity of a
particle. What is the value of the central density when the number of atoms is 104?

5. Consider the specific heat C = ∂E/∂T of a 3-dimensional Bose gas trapped in a harmonic potential.
Show that the classical (i.e. Maxwell-Boltzmann) value at high T is C = 3N . Show then that at the
transition temperature Tc there is a discontinuity in the specific heat given by

∆C = −9
ζ(3)
ζ(2)

N = −6.58 N . (B.1)

Exercise 5

1. Consider a system of N non-interacting bosons in 2 dimensions in a rectangular box of area L2 at
a temperature T . Let T → 0, will the bosons condense to the ground state? Replace the box by a
harmonic trap, V = 1

2mω2(x2 + y2), what happens then? If condensation is possible, determine at
what T it takes place.
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2. You are given the functional

E[Ψ] =
∫

d3x

[
~2

2m
|∇Ψ(r)|2 + V (r)|Ψ(r)|2 +

1
2
U0|Ψ(r)|4

]
. (B.2)

for the wave function Ψ(r),
∫

d3x|Ψ|2 = N of an N -boson condensate. V (r) is the trapping potential
and U is a parameter (what are its dimensions?). Vary the total energy with respect to ψ∗ while
keeping the total number of particles fixed and find the equation giving the extremal configurations,
the Gross-Pitaevskii equation.

3. Compute E[Ψ] of the previous problem with V = 1
2mω2r2 for the trial wave function (check normali-

sation!)

Ψ(r) =
√

N

π3/4b3/2
e−r2/(2b2). (B.3)

Write the energy in terms of the parameter x defined by

b =

√
~

mω
x; (B.4)

use the characteristic energy defined by

U =
NU0

2(2π)3/2(~/(mω))3/2
. (B.5)

Find the equation giving the minimum of E(x) and solve it assuming x to be À 1. Find the value
E/N = 5/4 · (2U)2/5(~ω)3/5 for the contribution to the energy per particle.

4. Derive the small-T expansion of an integral over the Fermi-Dirac distribution n(E) = 1/(exp(β(E −
µ)) + 1):

∫ ∞

0

f(E)n(E)dE =
∫ µ

0

f(E)dE +
π2

6
T 2f ′(µ) +

7π4

360
T 4f ′′′(µ) +O((T/µ)6) ,

where f(E) is some sufficiently regular function.

5. Can you from the result of the previous problem derive the grand potential Ω(T, µ) of an ideal massless
fermion gas, valid at all T and µ? Remember antiparticles with µ → −µ.

Exercise 6

1. Consider ultrarelativistic electron gas, T, µ À me, the Grand Potential of which is Ω(T, V, µ) =
−V p(T, µ), p = aT 4+bT 2µ2+cµ4, a, b, c are known constants. Determine its specific heat CV , especially
near the degenerate limit, T ¿ µ. Remember that CV is defined keeping N constant. How does this
compare with the standard computation of the specific heat of electrons in metals, CV = N ·π2/2·T/TF ?

2. As an illustration of Pauli principle effects, consider uds-matter (composed of u,d and s quarks of
charges 2/3,-1/3,-1/3, respectively) in comparison with normal udd-matter. Show that the average
energies per quark are in the ratio

Eq(uds)
Eq(udd)

=
(

3
1 + 24/3

)3/4

≈ 0.89

if the two systems are kept at the same pressure at T = 0. Demand charge neutrality (what is the
degeneracy factor for spin and colour?) and neglect quark masses (Witten, PRD30 (1984) 272).
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3. Determine the surface temperature Ts of a planet (the earth, in particular) by assuming that the sun
radiates as a black body at a temperature 6000 K and that the earth radiates all the energy it gets
from the sun as a black body at the temperature Ts. The result will only depend on Tsun, the radius
Rsun of the sun and the planet-sun distance R, not on Rplanet nor on the Stefan-Boltzmann constant
σ. Apply to the earth starting from the fact that the observed angular diameter of the sun from the
earth is 0.57 degrees.

4. Use the uncertainty principle to estimate the size of a Cooper pair. To get ∆p assume that the
uncertainty in the energy of the pair is the gap ∆. Compare with the average electron-electron distance.

5. Consider a thermodynamic system in two phases Q and H at µ = 0 with

pq(T ) = aqT
4 −B,

ph(T ) = ahT 4,

aq > ah, B = constant.

Sketch a plot pq and ph as a function of T , find which one of the phases is the equilibrium one and
find the temperature Tc at which both phases are in equilibrium. Plot similarly the entropy density
s(T ) and energy density ε(T ) for both phases and compute the latent heat L ≡ Tc[sq(Tc) − sh(Tc)].
What would be the values of aq, ah if this were a model of the quark-hadron phase transition with the
Q phase containing gluons and u,d quarks and the hadron phase containing massless pions of charges
±, 0. What would then be B if Tc = 200 MeV?

Exercise 7

1. At any T the superconducting gap equation is

1 = g T

∞∑
n=−∞

∫
d3k

(2π)3
1

(~ωn)2 + ξ2
k + ∆2

,

where ~ωn = (2n+1)πT , g is a four-fermion coupling, and ξk = ~2k2/(2m)−EF ≈ vF (p−pF ). Derive
from here the equation

1 = g · g(EF )
∫ δ

0

dξ√
ξ2 + ∆2

tanh
[
1
2
β
√

ξ2 + ∆2

]

for the T -dependence of the gap ∆(T ); δ = ~ωDebye and g(EF ) is the density of states on the Fermi
surface.
Use: ∞∑

n=−∞

x

(2n + 1)2π2 + x2
=

1
2
− 1

ex + 1

2. In the weak coupling limit ∆ ¿ δ, derive that

log
∆(0)
∆(T )

= 2I(
∆(T )

T
),

I(y) =
∫ ∞

0

dx√
x2 + y2

1

(exp
√

x2 + y2 + 1)
.

Derive the large-y and small-y expansions of I(y) (the latter is I(y) = 1
2 log(π/y) − 1

2γEuler +
7ζ(3)/(16π2)y2 + . . . ). Find from here Tc in terms of ∆(0) and study the behavior of ∆(T ) when
T → 0 and T → Tc.
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3. Show that the dissipative part of the momentum flux density,

∆Πik = η

(
∂kvi + ∂ivk − 2

3
δik∇ · v

)
+ ζδik∇ · v

where η and ζ are shear and bulk viscosities, vanishes when the fluid is in constant rotational motion,
(v = ω × x). Show also that if the fluid is expanding in the radial direction, ∆Πik depends only on ζ.

4. Show that the Euler equations lead to entropy conservation, ∂s/∂t + v · ∇s = 0.

5. Show that the energy density satisfies the equation (U = E/V is the internal energy density)

∂

∂t

(
1
2
ρv2 + U

)
+∇ ·

[(
1
2
ρv2 + U + p

)
v

]
= 0

using the Euler and the continuity equations together with entropy conservation.

Exercise 8

1. Let us assume that we have a one-dimensional ideal gas at rest at pressure p0 and density ρ0 in a
container extending over 0 ≤ x < ∞. The equation of state is

p = p0

(
ρ

ρ0

)γ

, γ ≥ 1, v2
s =

∂p

∂ρ

∣∣∣∣
S

.

The plug of the container at x = 0 is removed at t = 0. How does the gas flow out of the container,
i.e., what is the velocity field v(x, t)? Plot a figure of what is happening.
To solve this, write down the continuity and Euler equations in 1+1 dimensions and take into account
that ∂xp = v2

s(ρ)∂xρ. Use the fact that v and ρ depend only on x/t (the flow is a similarity flow) and
show that v + vs = x/t and that v − ∫ ρ

0
dρvs(ρ)/ρ = const, then solve v = 2/(γ − 1) · [x/t− vs(0)].

2. In the previous problem, what are the particle trajectories in the (x, t)-plane, i.e., what is the path
followed by a particle when it leaks out of the container?

3. Consider a situation in which there initially is non-relativistic fluid with constant ρ0, p0 at rest, v = 0.
Then a gravitational field g, ∇ · g = −4πGρ, is imposed; effects of gravity are neglected for the initial
configuration. Add small perturbations ρ1, p1,v,g1, linearize the continuity and Euler equations and
find a dispersion relation

ω2 = v2
sk

2 − 4πGρ0.

Argue that this is an instability and determine the associated length and time scales. In what time
would the sun collapse if the gas pressure were turned off?

4. Consider viscous flow, i.e., one in which

∆Πik = η

(
∂kvi + ∂ivk − 2

3
δik∇ · v

)
+ ζδik∇ · v

is added to the spatial part of the energy-momentum tensor. Consider small oscillations around the
constant configuration ε0, p0,v = 0, linearize the equations of motion using Fourier components and
show first that there is a transverse (relative to k) mode with the dispersion relation

ω =
−iη

ε0 + p0
k2.

Why is this called a diffusive mode?
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5. As in the previous problem, but now for the longitudinal modes. Show that their dispersion relation
becomes

ω = ±vs|k| − iLk2, L =
4η/3 + ζ

ε0 + p0
.

What is the time and space dependence of these sound waves?

Exercise 9

1. In the last problem of the previous exercise it was shown that there is a longitudinal mode with the
dispersion relation

ω = ±vs|k| − iLk2, L =
4η/3 + ζ

ε0 + p0
.

Discuss numerically, using the value of η obtained from kinetic theory (ζ = 0 in this case), whether
this would apply to damping of sound waves in air. Show also that the condition of negligible damping
is the same as the usual condition for local thermal equilibrium, mean free path ¿ wave length.

2. We have a kinetic equation of the type

dNi

dt
= −Ni

∑

j

′
uji +

∑

j

′
uijNj ,

where Ni, (
∑

i Ni = N=constant) is the occupation number of state i, uij is the probability of the
transition j → i per unit time and the prime means that i → i is excluded. Assume first T = CP
invariance, uij = uji, and show that

S = −
∑

i

Ni

N
log

Ni

N

satisfies dS/dt ≥ 0. Then prove the same by only assuming unitarity,
∑

j uij =
∑

j uji for all i.

3. When is dS/dt = 0 in the previous problem? Then consider the same problem with the further
constraint that E =

∑
i Ni be constant. When is dS/dt = 0 in this case?

4. Consider the kinetic equation for only one type of particles, f(t,x,v). Write down explicitly the collision
term (∂f/∂t)c appropriate for 2→2 collisions and show that it conserves energy and momentum, i.e.,
satisfies

∫
d3p p

(
∂f

∂t

)

c

=
∫

d3p Ep

(
∂f

∂t

)

c

= 0.

5. Show that one obtains the Euler equation by taking the first v moment of the kinetic equation (i.e.,∫
d3v vi× the equation). You have to argue that ρ〈vivk〉 = ρuiuk + pδik.

Exercise 10

1. Show that the partition function of the 1d Ising model,

Z(T, h) =
∑
s1

· · ·
∑
sN

exp{β
N∑
1

[Jsksk+1 + h(sk + sk+1)/2]}
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where sN+1 = s1 and N → ∞ is understood, can be written as Z(T, h) = TrPN , where the elements
of the 2×2 matrix P are

〈s|P |s′〉 = exp{β
N∑
1

[Jss′ + h(s + s′)/2]}.

Compute from here the partition function as the N →∞ limit of the trace.

2. Consider the 2d Ising model at temperature T in a region 0 < x < L0, −L0 < y < L0. Assume that the
spin is mostly +1 when y > 0 and mostly −1 when y < 0, but that the boundary line, with endpoints
fixed at x = 0, y = 0 and x = L0, y = 0, is not straight because of fluctuations. The length of the
boundary is

L = L0 +
L0∑

k=1

|yk|,

where yk is the length of the k’th vertical boundary line. Argue that the free energy of the boundary
line, F = −T ln Z, can be obtained from

Z =
∞∑

y1,y2,...,yL0=−∞
δ (y1 + y2 + · · ·+ yL0) e−

2JL
T ,

and estimate that F = αL0, where

α = 2J + T ln tanh
J

T

is the surface energy of the Ising model. Plot as a function of T and find Tc.

3. The free energy per site of 2d Ising model is

F/N = −T

[
ln 2 +

2
(2π)2

∫ π

0

∫ π

0

dξdη ln
[
cosh2 ε− sinh ε (cos ξ + cos η)

]]
,

where ε = βJ/2. Show that F degenerates into the free energy per site of d = 1 Ising model in the
limit T →∞. Show that the integral is singular when sinh ε = 1 and determine from here Tc.

4. Consider a stochastic differential equation

mẍ + mγẋ = ξ(t), (B.6)

where 1/γ is a relaxation time scale, ξ(t) is a random force with zero average and uncorrelated in
time, 〈ξ(t)ξ(t′)〉 = Iδ(t − t′), I is to be determined. Integrate first p(t) = mẋ(t) and x(t) with given
x(0) = 0, p(0) and compute then the correlators 〈p(t)p(t + τ)〉 and 〈x(t)x(t + τ) − x2(t)〉 in the limit
t À 1/γ.

5. Argue using the thermalisation condition 〈p2(t)/(2m)〉 = T/2 that I = 2γTm. Determine the diffusion
constant using 〈x2(t)〉. What is the relation obtained of one inserts γ in terms of viscosity using the
Stokes formula? Compare with the formula η = ρD obtained from kinetic theory. How can the formulas
be compatible?

Problem 4:

p(t) =
∫ t

0

dt′e−γ(t−t′)ξ(t′) + e−γtp(0)

mx(t) =
1
γ

p(0)(1− e−γt) +
1
γ

∫ t

0

dt′[1− e−γ(t−t′)]ξ(t′)

〈p(t)p(t + τ)〉 =
I

2γ
e−γτ , 〈x(t)x(t + τ)− x2(t)〉 =

I

2m2γ3
(1− e−γτ )
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Problem 5:
〈p2(t)〉 = T/2 · 2m = Tm =

I

2γ
⇒ I = 2γTm

〈x2(t)〉 =
2T

mγ
= 2Dt ⇒ D =

T

γm
=

T

6πRη

(using Stokes: mγ = 6πRη). The Einstein relation holds for liquids, the kinetic theory formulas for gases.

Exercise 11

1. The Van der Waals equation of state is
(

p + a
N2

V 2

)
(V − bN) = NT.

Show that close to the critical point the difference between the gas and the liquid densities behaves as

ngas − nliquid = 4nc

(
1− T

Tc

)1/2

+ . . .

What value would you predict for the surface tension of water, knowing that for water pc = 2.2× 107 Pa
and Tc = 647 K. (Experimentally one gets 0.1 J/m2.)

2. Show that in the mean field approximation the latent heat (discontinuity of TS(T ) at Tc per lattice
site) of the q-state Potts model is

Kd

q

(q − 2)2

q − 1
.

3. Consider the d = 2, q = 7 Potts model in the mean field approximation with the order parameter s
defined at the lectures. What is the temperature T+ at which a non-trivial minimum s0 6= 0 appears?
What is Tc? Plot s0(T ).

4. Consider the free energy density

f(φ, T ) = f0(T ) +
1
2
a2(T − T0)φ2 +

1
3
a3φ

3 − φh,

where φ is an order parameter and a2, a3, h are constants. The susceptibility is defined by χ =
(∂〈φ〉/∂h)T . Calculate the critical exponents γ, γ′ defined by χ ∼ |t|−γ for t → 0+, χ ∼ |t|−γ′

for t → 0−, where t = T − Tc.

5. Study the phase structure of a system with the free energy density

f(φ, T ) =
1
2
γ(T 2 − T 2

0 )φ2 − 1
3
αTφ3 +

1
4
λφ4,

where α, γ, λ and T0 are positive parameters. Show that

(a) The system has a first-order transition with the critical temperature T 2
c = T 2

0 /[1− 2α2/9λγ].

(b) The second minimum at φ > 0 exists only when T 2 ≤ T 2
+ = 8T 2

0 /[9(T0/Tc)2 − 1].

(c) The latent heat L = 4γα2T 2
0 T 2

c /9λ2.
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Exercise 12

1. Consider a system with the free energy

f(T,B, M) = −BM + (T − Tc)M2 + λM4 +
1

M2∗
M6

(M∗ is some mass scale) as a function of the order parameter M in the Landau theory.

(a) Analyse the general behaviour of f and, in particular, its minima in the λ, T plane when B = 0.

(b) Find the first and second order transitions when B = 0.

2. An inflationary cosmological phase transition in the background of an expanding universe with radius
R(t) may be described by a Landau model with the free energy

F =
∫

dt

[
1
2
φ̇2 + V (φ)

]
R3(t),

where φ is a time dependent order parameter and near φ ≈ 0 the potential is V = V0(1 − εφ − δφ2)
where ε, δ ¿ 1. Initially φ = 0 and φ̈ is small, φ̈ ¿ Hφ̇, H = Ṙ/R. The order parameter is coupled to
gravity via the Einstein equation

H2 =

(
Ṙ

R

)2

=
8πG

3

(
1
2
φ̇2 + V (φ)

)
.

Show that initially R expands exponentially. Study the behaviour of φ and estimate the time the
exponential expansion ends. What is the value of φ at that point?

3. After many years of intensive labour, Theory of Nothing has finally been found. In terms of a complex
order parameter M it has the free energy

F =
∫

d3x

[(
1− κ

M2∗
|M |2

)
|∇M |2 + α · (T − Tc)|M |2 + λ|M |4

]
,

where κ ¿ 1, α is a constant and M∗ is some mass scale. Does the theory admit global strings? Study
how κ affects κ = 0 global strings.

4. Liquid crystals are anisotropic fluids formed by lengthy (length/thickness > 10) molecules. The macro-
scopic state of nematic crystals is described by a unit vector n(r). According to Landau’s theory the
equilibrium state of the system can be found by minimising the free energy density, which is a series
in the order parameter and its derivatives:

f = f0 +
3∑

ij=1

aij∂inj +
∑

ikjl

aikjl∂ink∂jnl + . . . .

Since the system has to be rotationally invariant, aij and aikjl are tensors which have to be formed of
ni ja δij . Show that this reduces the expansion to the form

f = f0 + bn · ∇ × n + 1
2a1(∇ · n)2 + 1

2a2(n · ∇ × n)2 + 1
2a3[(n · ∇)n]2 + a12(n · ∇ × n)∇ · n,

where the coefficients may depend on the temperature. Separate the symmetric and antisymmetric
parts of the tensor ∂inj and relate various terms in the system n = (0, 0, 1), in which ∂in3 = 0. Argue
physically that the coefficients are of the order of a ≈ 10−11N.

5. Consider superfluid in a cylindrical vessel of radius R and height H.

(a) Determine the energy and the angular momentum of one vortex parallel to the axis of the cylinder
in terms of the superfluid density ns, mass of the atom m and the quantum of the circulation of
the velocity h/m.
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(b) Show that the critical angular velocity for the formation of one vortex in the rotation about the
axis of the cylinder is

ωc =
~

mR2
ln

R

ξ
.

(c) Show that when the cylinder is rotating at a high angular velocity Ω, the number of vortices per
unit area of the surface is

N =
2mΩ

h
.

6. A type I superconductor has a 1st order transition at µ0H
2
c (T )/2 = a2(T )/4b, T < Tc. Show that there

is an entropy jump

V
a(T )
2b

da(T )
dT

= V µ0Hc
dHc

dT
,

so that the SC phase has a lower entropy. What is the latent heat L = T∆S, if Hc = Hc0(1−T 2/T 2
c )?

7. The following problems collect important general properties of thermal expectation values of operator
products. The spatial dependence, x,k is suppressed. Assume that A(t) and B(t) are two operators the
time dependence of which is given by the evolution operator exp(−itH/~). The dynamical structure
function is defined by

J1(ω) =
∫ ∞

−∞
dt eiωt〈A(t)B(0)〉,

where the thermal expectation value is defined by 〈O〉 = Z−1Tre−βHO. Show that

J2(ω) =
∫ ∞

−∞
dt eiωt〈B(0)A(t)〉 = e−βωJ1(ω).

Insert a complete set of energy eigenstates suitably. Show further that the Fourier transform of the
thermal expectation value of the retarded Green’s function,

GR(t) = 〈 i [A(t), B(0)] θ(t) 〉
is given by

GR(ω) =
∫ ∞

−∞

dω′

π

ρ(ω′)
ω′ − ω − iε

, ρ(ω) = 1
2 (1− e−βω)J1(ω) = ImGR(ω),

where the spectral function ρ(ω) is the Fourier transform of the commutator 1
2 [A(t), B(0)]. Show finally

that the fluctuations of A are obtained from

〈A2〉 =
∫ ∞

0

dω

π
ρ(ω)[1 + n(ω)], n(ω) = 1/(eβω − 1).

8. Now continue analytically GR(ω) to the imaginary axis by defining

Gβ(ωn) = GR(ω + iε → iωn ≡ i2πnT ) =
∫ β

0

dτ eiωnτGβ(τ),

where n=integer. Show that Gβ(τ) has the representation

Gβ(τ) = T

∞∑
n=−∞

e−iωnτGβ(ωn) =
∫ ∞

−∞

dω

π
ρ(ω)

exp(−ωτ)
1− exp(−βω)

, τ > 0.

To do the sum over n you may have to use Poisson’s summation formula.
Finally express the Fourier transform of the thermal expectation value of the usual time ordered product
T (A(t)B(0)) = A(t)B(0)θ(t) + B(0)A(t)θ(−t) in terms of ρ(ω). The answer is

GT (ω) =
∫ ∞

−∞
dt eiωti〈A(t)B(0)θ(t) + B(0)A(t)θ(−t)〉 =

∫ ∞

−∞

dω′

π
ρ(ω′)

[
1 + n(ω′)

ω′ − ω − iε
− n(ω′)

ω′ − ω + iε

]
.


