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1

Tony Green’s orders inverted:

First the hard stuff (string theory, AdS)

Then the easy stuff (thermodynamics, expansion)



2AdS/CFT duality

IIB string theory on AdS5×S5 (ds2 = Gµνdxµdxν): S = −m
∫
dτ

S[Xµ, ψµ, ..] = −T

2

∫
d2σ

√−dethab

[
habGµν(X)∂aX

µ∂bX
ν + εabBµν(X)∂aX

µ∂bX
ν + ...

−Gµν(X)eα
a ψ̄

µiρa∂αψ
ν + ...

]
Xµ(σ1, σ2)

is the same as

N=4 SuSy Yang-Mills (conformal field theory, no dimful parameters):

S[Aa
µ, Φ

a
i , ψ

a, ψ̄a] =
∫
d4x


−1

4
F a 2

µν +
1

2
(DµΦi)

2 − 1

2
ψ̄iγµDµψ − ψ̄Φψ − Φ4




(N 2
c − 1)× (2+6 bosonic + 4+4 fermionic dofs)

Conformal also on
quantum level µ

∂g(µ)

∂µ
= β(g) = 0



3Problem of string theory: background (in)dependence

String theory is thus just (!!) a 2-dimensional nonlinear sigma model for the d = 10
fields X0(σ1, σ2), ....., Xd−1(σ1, σ2) + .... :

S[Xµ, ψµ, ..] = −T

2

∫
d2σ

√−dethab

[
habGµν(X)∂aX

µ∂bX
ν + ....

]

It can be consistently quantised in the linear case

Gµν = ηµν = diag(−1, 1, 1, ....., 1)

but not for, say:

ds2 =
1

√

1 + L4

r4

[−(
1− r4

0

r4

)
dt2 + dx2 + dy2 + dz2

]
+

√√√√√√1 +
L4

r4

[ dr2

1− r4
0

r4

+ r2dΩ2
5

]

(this is AdS5×S5 for r ¿ L), let alone for general background Gµν(X).

There is even no method for determining the true ground state Gµν(X) (cf. Aµ(x) for
QCD)



4Since theory is not known, need approximations to get anything out.

Take number of colors large so that loop diagrams in string theory (balls with handles)
do not matter, only tree diags (corrections O(1/Nc) incalculable):

N>>1
tree diag

Take the tension T so large that strings collapse to a point, equally, string excitations
become so massive that only massless excitations, gravitons, gluons,..., are active ⇒
supergravity ⇒ AdS5×S5 (corrections O(1/g2Nc) calculable):



54d gauge field theory ⇔ 5d classical gravity concretely

〈exp



∫
d4xO(x)φ(x, 0)


〉FT = exp



− ∫

d4x
∫ z0
0 dz Lclass[φ(x, z)]





xµ = (t, x1, x2, x3) xM = (t, x1, x2, x3, z)

LHS: All there is in the field theory, all operator expectation values:

δ2LHS

δφ(x, 0)δφ(y, 0)
= 〈O(x)O(y)〉FT

RHS: Solve classical 5d gravity EOM for φ(x, z) with proper BC and compute the LHS.
Approximation works when the coupling of LHS is large, non-perturbative!

Key issue: holography

Dofs can match since number of dofs for gravity ∼ area, not volume.



6Thermodynamics

Pressure of hot supersymmetric N = 4 matter for small couplings λ ≡ g2Nc is, counting
2 + 6 + 7/8× (4 + 4) = 15 × color massless dofs:

p(T ) = N 2
c 15

π2

90
T 4


1−

3

2π2
λ +

3 +
√

2

π3
λ3/2 + aλ2 log λ + bλ2 + cλ5/2 + dλ3 log λ + ...




(Nieto computed a, b, c, Laine-Schröder d 2 years ago, unpublished)

No phase transition!

The result from AdS5×S5 is

p(T ) =
π2N 2

c

6
T 4



3

4
+

45ζ(3)

64
√

2

1

λ3/2
+ ...




Interpolate nicely!

Experimental evidence for the 3
4 :



7
Pressure of QCD matter/aT 4

The famous
factor 3/4
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Points: Lattice Monte Carlo, Curves: Perturbation theory

Phase transition at Tc ≈ ΛQCD with large increase in n:o of dofs.

Argument: Near Tc the gauge system is necessarily strongly interacting and also αs(T )
nearly constant, conformally invariant. The 3/4 gives average behavior. Good fit!



8How do you get the 3/4 from AdS5?

According to an authority in string theory:

Pochinski, cosmicvariance.com/2006/12/07/: Physicists have found that some of the
properties of this plasma are better modeled (via duality) as a tiny black hole in a space
with extra dimensions than as the expected clump of elementary particles in the usual
four dimensions of spacetime.

Here is this tiny (10−15m) black hole (z = 0 is boundary, z > 0 is bulk)

5d AdS with BH in bulk =
L2

z2


−


1− z4

z4
0


 dt2 + dx2 +

dz2

1− z4/z4
0


 THawk =

1

πz0

solves RMN − 1

2
RgMN =

6

L2
gMN ∼ T bulk

MN NO T brane
MN !

Compare

4d Black Hole : ds2 = −

1− rs

r


 dt2 +

1

1− rs/r
dr2 + r2dΩ2

Solves Rµν = 0, THawk =
1

4πrs



9Poincare plane: model of non-Euclidian geometry

ds2 =
1

y2
(dx2 + dy2)

geodesic = line

P

x

y

For any line & point P off the
line, infinity of noninter−

secting lines

2
ds^ 2 = (dx^ 2+dy^2)/ŷ2

s =
∫

ds =
∫
dy

1

y

√
1 + x′(y)2 ⇒ d

dy




x′(y)

y
√

1 + x′2


 = 0 ⇒ (x− a)2 + y2 = c2



10The energy momentum tensor Tµν can be read from the boundary value of the 5d
metric, transformed so that g55 = 1/z2 (transform z2 → z2/(1 + z4/4z4

0):

1 2 3 4

0.2

0.4

0.6

0.8

1

1.2

1.4
BH interior

z

horizon

ds2 =
L2

z2


−(1− z4/(4z4

0))
2

1 + z4/(4z4
0)

dt2 +


1 +

z4

4z4
0


 (dx2

1 + dx2
2 + dx2

3) + dz2




≡ L2

z2







gµν(x, 0) + g(4)

µν (x)
︸ ︷︷ ︸
∼Tµν

z4 + ...



dxµdxν + dz2





⇒ Tµν ∼ diag(3, 1, 1, 1)
1

z4
0



11Static boundary energy momentum tensor

Magnitude is fixed:

L2 = gα′ =
g

2πT
⇒ L3

G5
=

2N 2
c

π

Tµν =
L3

4πG5
g(4)

µν =




3aT 4 0 0 0
0 aT 4 0 0
0 0 aT 4 0
0 0 0 aT 4




a =
π2N 2

c

8

What about systems in expansion, their gravity duals = ?

We have solved the AdS3 case (1+1d expansion; under study) and the 1+3d case if the
boundary metric is cosmological FRW – not Minkowski!



12Viscosity/entropy

Another celebrated result is

η

s
=

h̄

4π


1 +

135ζ(3)

16
√

2λ3/2
+ ...




obtained by evaluating the correlator:

η = lim
ω→0

1

2ω

∫
dtd3x eiωt〈T12(x)T12(0)〉 ∫

d4xT 2
1 (x)g1

2(x, z = 0)

Air (s = S/V ∼ N/V ∼ 1kg/mp/m3 ∼ 1027/m3):

η

s
≈ 10−5

1027
À 10−35

4π

Kinetic theory:
η

s
≈ pτc

s
≈ T 4τc

T 3
= Tτc > h̄

Experimental fact: QCD matter observed in heavy ion collisions at RHIC/BNL has T up
to 5Tc (strongly coupled!!) and flows nearly ideally.



13Spherical bang, ηµν = (−1, 1, ..., 1): matter expands

Tµν = (ε+p)xµxν

τ2 +pgµν

Fixed time t:

v=0
v=1

Similarity flow in 1 + 3: v = x
t θ(t− |x|), uµ = (γ, γv) = xµ

τ , τ =
√

t2 − x2

ε′(τ ) +
3

τ
(ε + p) = 0 ⇒p=ε/3 ε(τ ) =

ε0

τ 4
=

ε0

(t2 − x2)2

Big bang, gµν = (−1, r(t), r(t), r(t)): space expands

ε′(t) +
3 ṙ(t)

r(t)
(ε + p) = 0 r(t) =

t

t0
gives the above



14One solution in 1+3 dimensions: r = r(t)

ds2 =
L2

z2
[−a(t, z)dt2 + b(t, z)dx2 + dz2], RMN + 4gMN = 0

a(t, z) =




(
1− r′′

4rz
2

)2 −
(
r′′
4r − r′2

4r2

)2
z4 − 1

4r4z4
0
z4



2




(
1− r′2

4r2 z2
)2

+ 1
4r4z4

0
z4




−→r(t)=1
(1− z4/(4z4

0))
2

1 + z4/(4z4
0)

b(t, z) = r2





1− r′2

4r2
z2




2

+
1

4r4z4
0

z4


 −→r(t)=1 1 +

z4

4z4
0

Boundary metric and Tµν: gµν(x, 0) = (−1, r2(t), r2(t), r2(t)) = flat FRW

Ttt = ε(t) =
3N 2

c

8π2




1

z4
0r

4
+

r′4

4r4


 ∼ T 4

0

r4(t)
+

1

t4
∼ T 4(t)

︸ ︷︷ ︸
radiation

+ t−4
︸ ︷︷ ︸

curvature
,

T 1
1 (t) =

1

3
ε(t)− N 2

c

8π2

r′2r′′

r3
︸ ︷︷ ︸

trace anomaly/3



15Introducing T brane
µν (z = ε), brane gravity, ⇒ Einstein’s equations for r(t).

Choosing r(t) =
t

t0
⇒ ε(t) =

ε0

t4

we have gravity dual of matter in the center of spherical bang:

v=0
v=1

Thermalisation condition: temperature can be defined for

t0/z0 = πTt0 > 1 = h̄

We are still missing a solution with flow with shear ⇒ shear viscosity η.



16Conclusions

• For hot equilibrium SYM systems gauge/gravity duality has made
predictions (pressure, shear viscosity, quark energy loss) in qualitative
agreement with experimental results on hot QCD matter

• For time dependent systems with flow, in only local thermal
equilibrium, we do not (yet?) have the gravity dual for non-trivial
configurations (1+1d or rest frame of 1+3d is very special)

• Brane cosmology is an example of what one can do in this set-up for a
larger system: the whole universe


