Hot QCD in the limit of large number of colors and flavors

K. Kajantie

Helsinki Institute of Physics

Helsinki 23 October 2012

Alho - Järvinen - Kajantie - Kiritsis – Tuominen, 1210.4516 16 Oct Järvinen-Kiritsis 1112.1261

Holographitis is spreading: Jokela, Järvinen, Tahkokallio, Keränen, Suur-Uski, Alanen, Taanila, Alho, Franti + 4 older

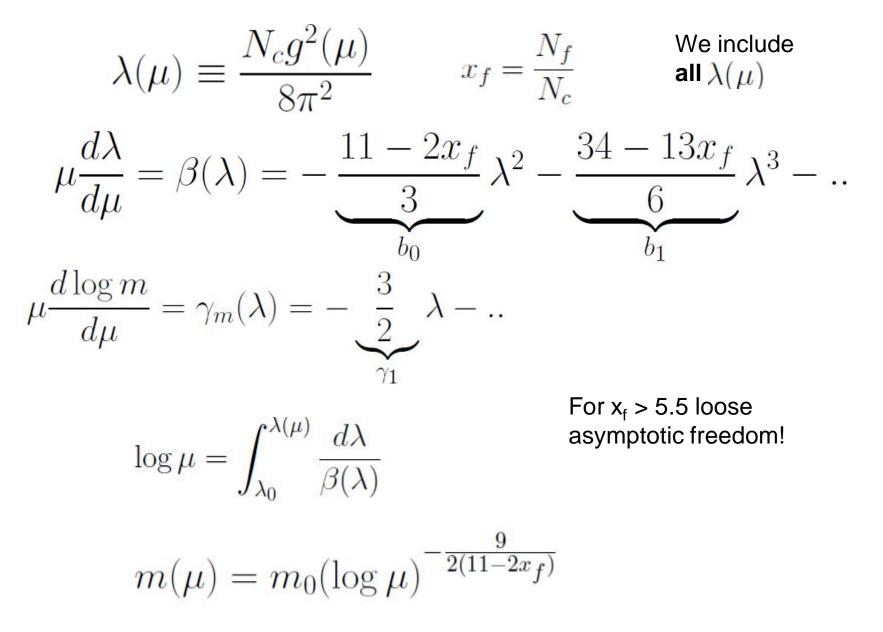
1. Hot QCD

$$e^{p(T)\frac{V}{T}} = \int \mathcal{D}A\mathcal{D}\psi \ e^{-\int d^4x \left[\frac{1}{g^2(\mu)}F^2 + \bar{\psi}(\partial + A)\psi + m(\mu)\bar{\psi}\psi\right]}$$

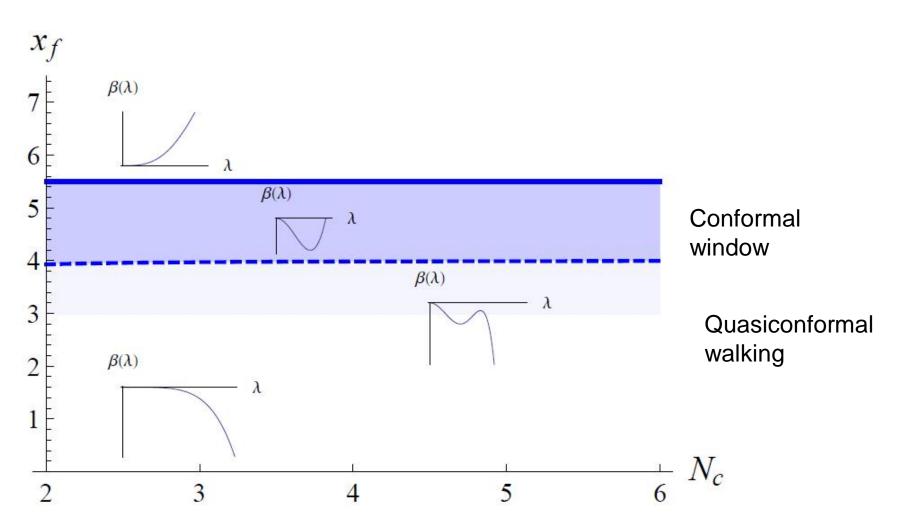
Solve p(T) for $m_q=0$ protected by chiral symmetry

- Chiral effective theories $\Phi_{ij}=\langle\psi_i\bar{\psi}_j
 angle$
- Lattice Monte Carlo (vast effort! $V \to \infty, \ a \to 0, \ m_q \to 0$ or $m_u, m_d, m_s, m_c, ..$ physical
- Pert theory: $p/T^4 = 1 + g^2 + g^3 + g^4 \log g + g^4 + g^5 + g^6 \log g + g^6 + ...$
- Holography: >5dim gravity dual, N_c , $N_c g^2 \gg 1$

Coupling and mass run, are scheme dependent:



Ranges of x_f:



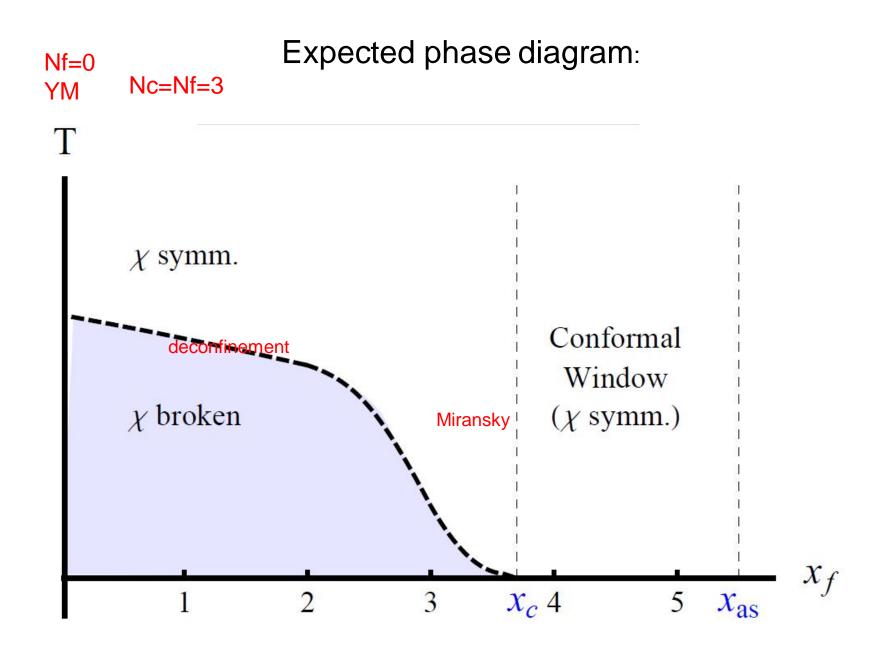
Simple thermal argument for $x_c=4$:

At low T dominant, easiest-to-excite modes are N_{f}^{2} Goldstone bosons (usual chiral symmetry breaking)

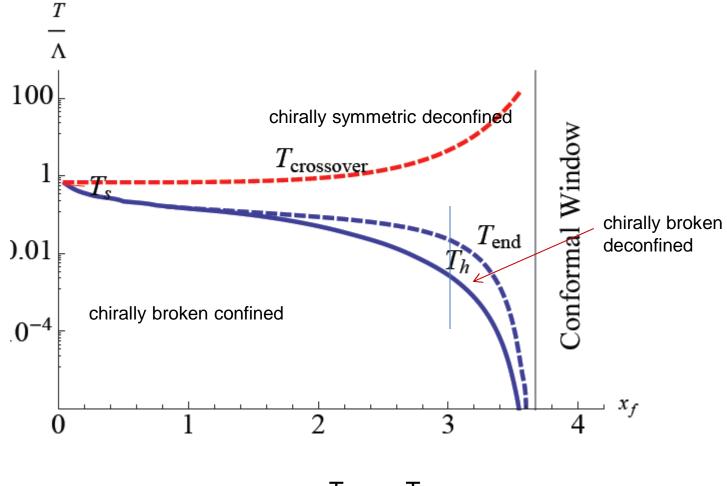
At some Tc these melt into $2N_c^2 + \frac{7}{8}4N_fN_c$ gluons and quarks

Assume latent heat is ~ difference between these numbers. One enters the conformal regime when latent heat vanishes.

It vanishes at $N_f = 4 N_c$

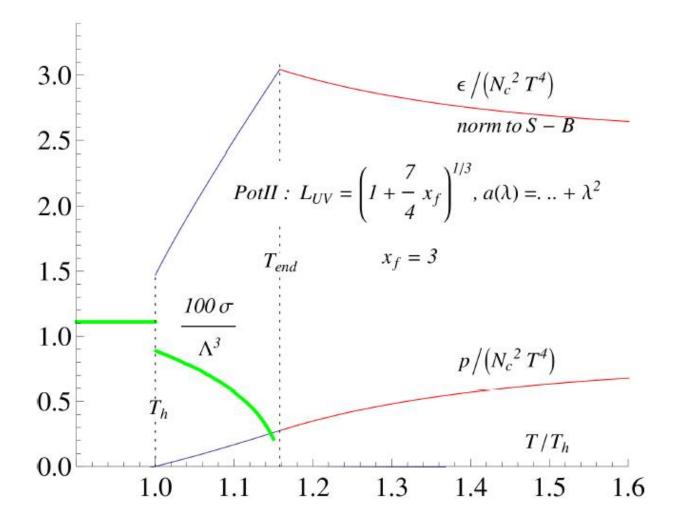


Results of computations using holography

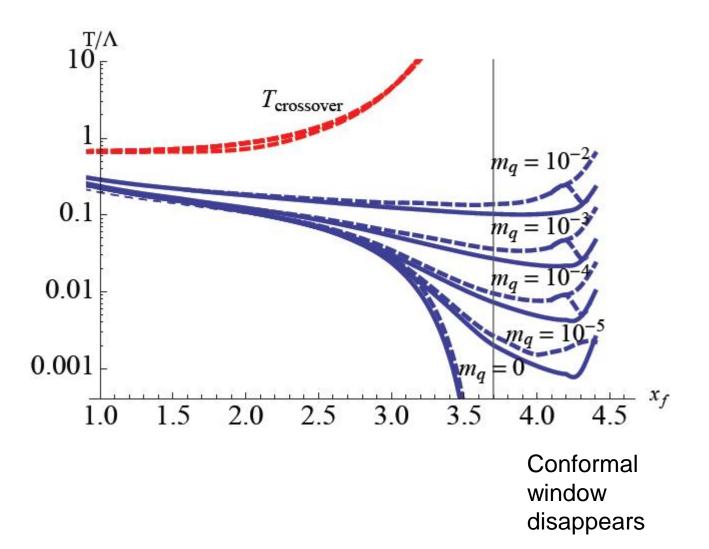


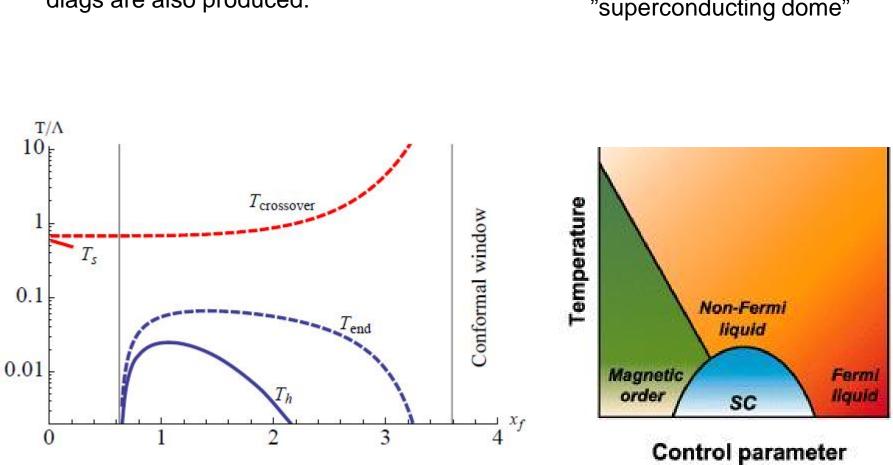
 $T_{chiral} > T_{deconfined}$

Along
$$x_f = 3$$
:



Quark mass has drastic effects;





Weirder (for QCD) phase diags are also produced:

But compare "superconducting dome"

2. Building blocks of the gravity dual

Metric functions b(z), f(z):

$$\begin{split} ds^2 &= b^2(z) \left[-f(z)dt^2 + d\mathbf{x}^2 + \frac{dz^2}{f(z)} \right] \\ \text{If} \quad b(z) &= \frac{\mathcal{L}}{z}, \quad f(z) = 1 - \frac{z^4}{z_h^4} & \text{AdS}_5 \text{ black hole dual to} \\ \text{hot N=4 SYM = conformal} \\ \text{Dilaton } \lambda(\mathbf{z}) &: \quad \beta(\lambda) = b \frac{d\lambda}{db} & \lambda(z) = \frac{1}{b_0 \log(1/\Lambda z)} + \dots & \text{breaks} \\ \text{conformality} \\ \text{leading UV running} \end{split}$$

Tachyon $\tau(z)$:

$$\tau(z) = m \left(\log \frac{1}{\Lambda z}\right)^{-\frac{3}{2b_0}} z + \langle \bar{q}q \rangle \left(\log \frac{1}{\Lambda z}\right)^{\frac{3}{2b_0}} z^3 + \dots$$

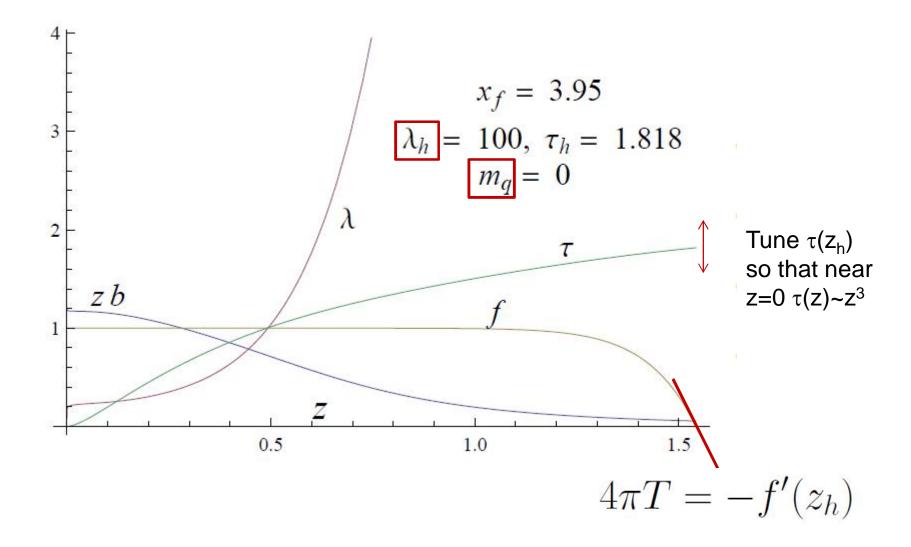
leading UV running of m

The four functions b(z), f(z), $\lambda(z)$, $\tau(z)$ are obtained as solutions of Einstein's equations from an action tuned so that the required UV behavior + confinement at large z is obtained

As in lattice Monte Carlo, particularly time consuming is fixing $m_q = 0$. One has to choose $\tau(z_h)$ properly:

Phases are black hole solutions. Solutions with the smallest Einstein action are the equilibrium ones.

Typical bulk field configuration:



Here is the gravity action:

$$S = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \mathcal{L} = S[g_{\mu\nu}, \lambda, \tau]$$

$$\mathcal{L} = R + \left[-\frac{4}{3} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + V_g(\lambda) \right]$$

Järvinen-Kiritsis 1112.1261

$$-x_f V_f(\lambda) e^{-\mu^2 \tau^2} \sqrt{1 + g^{zz} (1 + \lambda(z))^{-4/3} \tau'(z)^2}$$

Matched to β function near $\lambda \text{=} 0$

$$V_g(\lambda) = \frac{12}{\mathcal{L}_0^2} \left[1 + \frac{88\lambda}{27} + \frac{4619\lambda^2}{729} \frac{\sqrt{1 + \ln(1 + \lambda)}}{(1 + \lambda)^{2/3}} \right] \qquad e^{-\phi}R + .. \to R + ..$$

confinement at large λ

EOM :
$$\frac{\delta S}{\delta g^{\mu\nu}} = 0$$
, $\frac{\delta S}{\delta \lambda} = 0$, $\frac{\delta S}{\delta \tau} = 0$

Tachyon action is particularly interesting; string theory enters

When string tension grows, strings become points Closed string theory, containing gravity, becomes supergravity

Open string theory, containing gauge theory, goes to DBI:

Dirac-Born-Infeld

$$\mathcal{L}_{\text{DBI}} = -\frac{1}{\ell^4} \sqrt{-\det(g_{\mu\nu} + D_{\mu}\tau D_{\nu}\tau + \ell^2 F_{\mu\nu})}$$

$$= -\frac{1}{\ell^4} \sqrt{1 - \ell^4 (E^2 - B^2) - \ell^8 (E \cdot B)^2} = \frac{1}{2} (E^2 - B^2) + \frac{1}{2} \ell^4 (E \cdot B)^2 + \dots$$

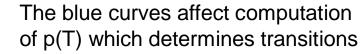
$$\ell^2 = 1/T = 2\pi \alpha'$$

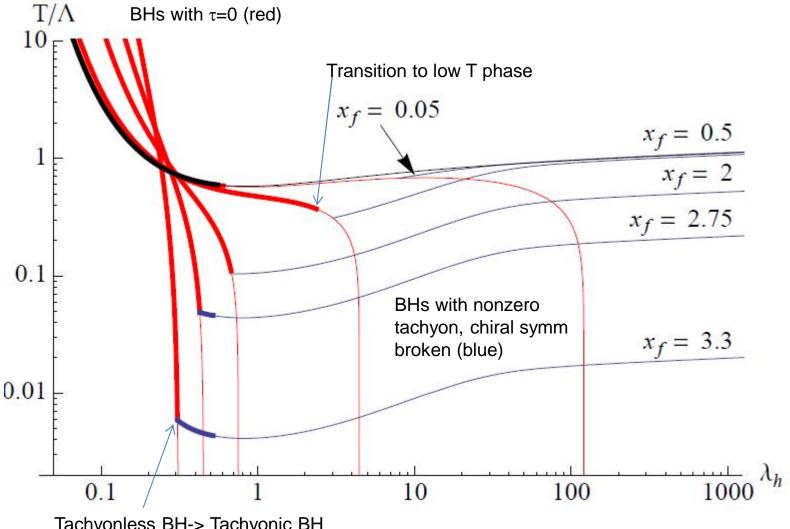
Thermo is now computed as follows:

- Pick a value of coupling at horizon, $\lambda(z_h)$
- Find $\tau(z_h)$ so that $m_q=0$ (or some other value)
- Compute temperature from $4\pi T = -f'(z_h)$
- Compute entropy density from

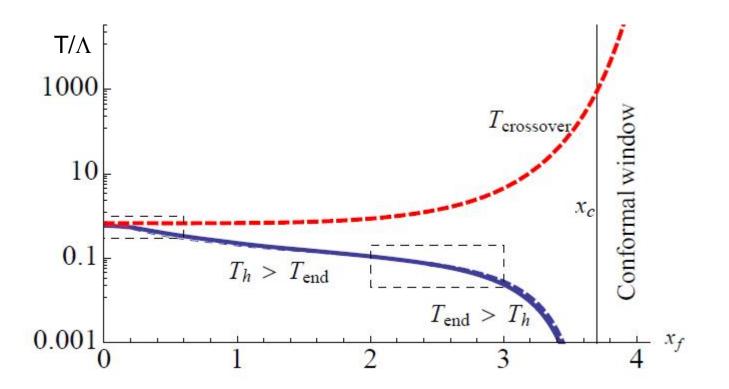
$$sV_3 = \frac{A}{4G_5} = \frac{b^3(z_h)}{4G_5}$$

- Integrate p(T) from p'(T) = s(T). Find phase with largest p





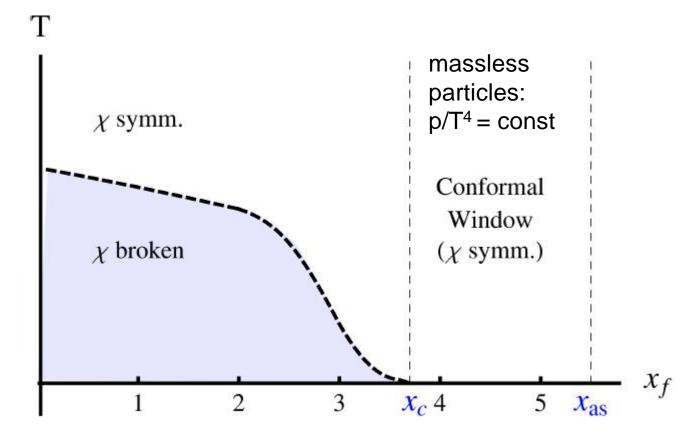
Tachyonless BH-> Tachyonic BH

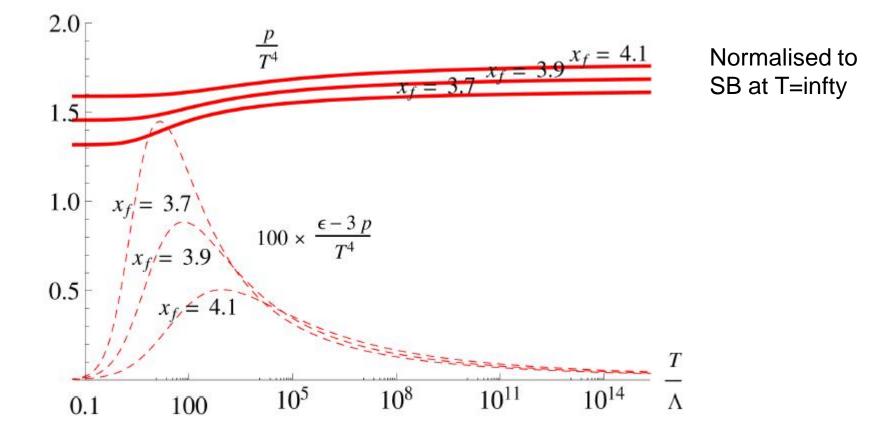


Miransky scaling hard to study numerically

Analytically: mass
$$\sim \exp\left(-\frac{2\hat{K}}{\sqrt{x_c - x_f}}\right)$$

Thermo in conformal window? $N_f\gtrsim 4N_c \quad m_q=0$





3. Conclusions

- The potentials $V_g(\lambda)$, $V_f(\lambda)$ are constrained but not completely: little predictive power. Offers a **framework**, **alternatives**

- The subtle interplay between confinement/chiral symmetry and black holes with and without tachyons is impressive (to me)

- Not a cheap simple way to solve QCD!

- Much to do: more and better numbers, other BSM theories (technicolor!), correlators, chemical potential, magnetic fields, theta vacua,....

Overflow

't Hooft, Witten, Veneziano limits

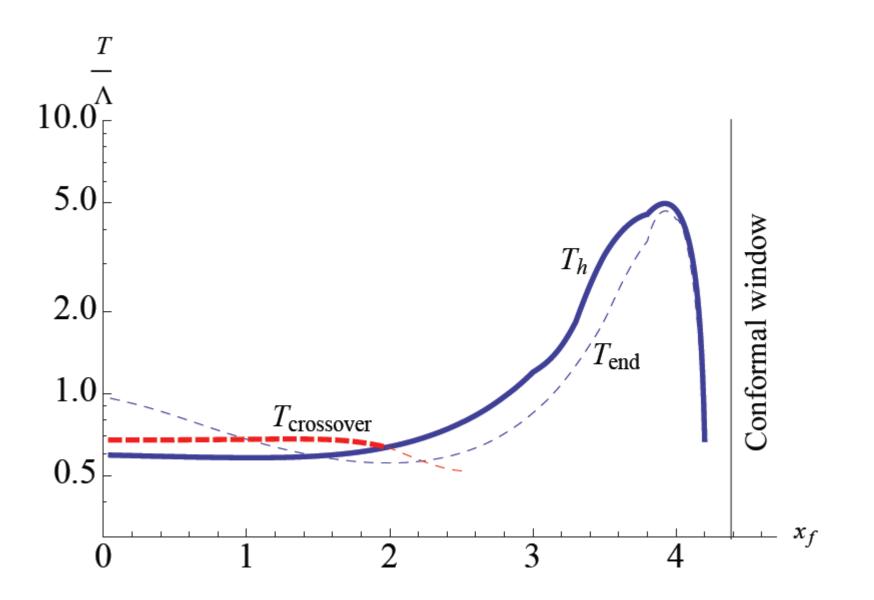
't Hooft limit: λ fixed, N_c large

Chiral anomaly:

$$\partial_{\mu}(\bar{\psi}\gamma^{\mu}\gamma_{5}\psi) \sim g^{2}N_{f}\,\tilde{F}_{\mu\nu}F^{\mu\nu} = \frac{\lambda}{N_{c}}N_{f}\,\tilde{F}_{\mu\nu}F^{\mu\nu}$$

Witten: at fixed λ , N_f large N_c switches of the anomaly

Veneziano: keep N_f/N_c fixed at large N_c



Gauge/gravity duality

$$\langle \exp\left[i\int d^4x\,\phi_0(x)\,\mathcal{O}(x)\right]\rangle$$

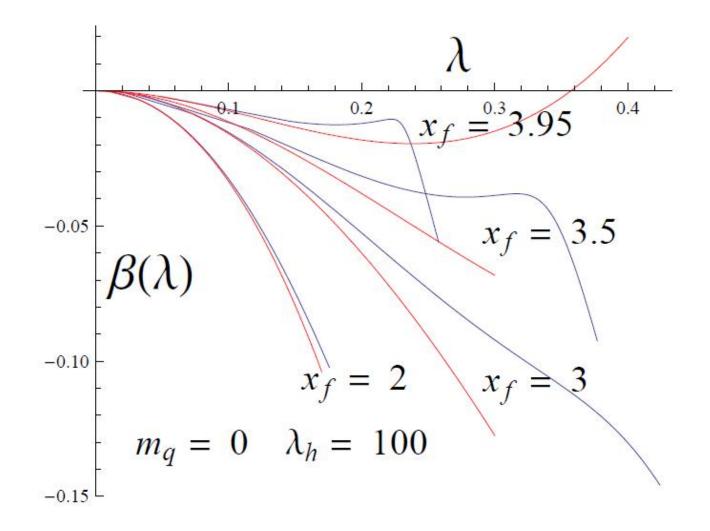
$$\exp\left[i\int d^4x \int dz \sqrt{-g} \mathcal{L}_{\text{grav}}[g_{\mu\nu}, ..., \phi(x, z)]\right]$$
$$\phi(x, z) = \phi_0(x) z^{\Delta_-} + \langle \mathcal{O} \rangle z^{4-\Delta_-} + ...$$

Dofs of gravity ~ area, not volume!

 AdS_5 has boundary at z=0 and scale L

 N_c , g^2N_c large

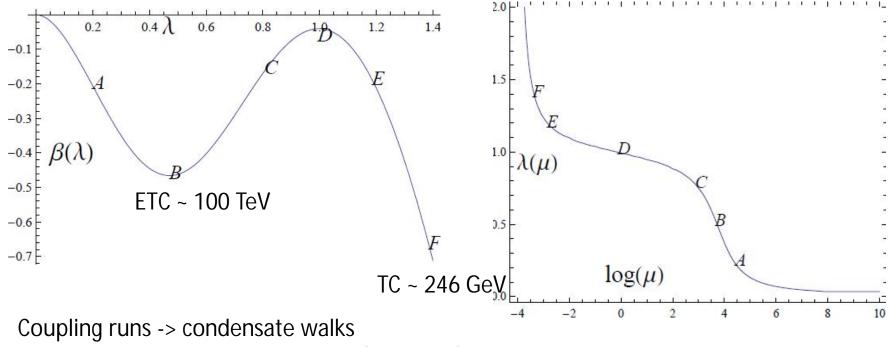
Appearance of "walking" with increasing N_f/N_c:



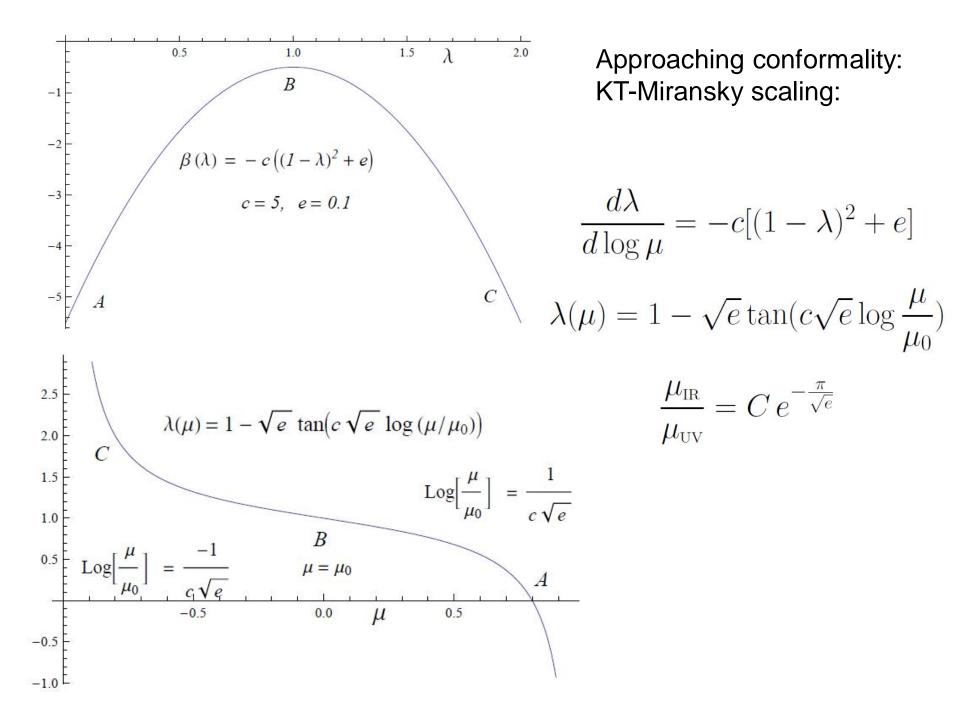
Below conformal window: quasiconformal, walking technicolor

Alanen-Kajantie-Tuominen 1003.5499, Alanen-Alho-Kajantie-Tuominen 1107.3362

$$\beta(\lambda) = -c\lambda^2 \frac{(1-\lambda)^2 + e(N_f)}{1+a\lambda^3} \quad c = 8, \ a = 1, \ e = 0.01$$



Coupling walks -> condensate runs (want this)

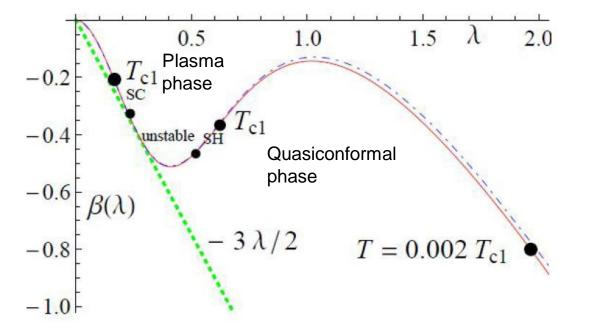


Model 1: build N_f dependence in the beta function

Alanen-Kajantie-Tuominen 1003.5499 Alanen-Alho-Kajantie-Tuominen 1107.3362

$$\beta(\lambda) = -c\lambda^2 \frac{(1-\lambda)^2 + e}{1 + \frac{2}{3}c\,\lambda^3}$$

Fix two scales, $\Lambda_{\rm ETC} \sim 10^3 \Lambda_{\rm TC}$ 2 transitions, 3 phases



Confining, chiral symm broken phase When e approaches 0 all masses should also approach zero, conformality 4d prediction: $\exp\left[-\left(\frac{2}{3}+\frac{1}{c}\right)\frac{\pi}{\sqrt{e}}\right]$ 0.001 $\Xi(c(1+e), e) = A e^{-D/\sqrt{e}}$ 10^{-5} 5d computation c(1 + e)17 _ 10^{-7} 10^{-9} 3 4 5 6 7 8 9 10

Path to this prediction: ansatz for 5d bulk metric, solve numerically Einstein's equations, solve numerically scalar field equations in this background, compute eigenvalues of Schrödinger equation. Striking that the result is as predicted!