
The initial state of little bang and
classical gluon fields

K. Kajantie

keijo.kajantie@helsinki.fi

University of Helsinki, Finland

5 December 2005

Work with F. Gelis and T. Lappi



1Problem: How do you relate

An ultrarelativistic (γ = E/M À 1) heavy (A ≈ 200 À 1) ion collision

and

LQCD =
1

4
(∂µAa

ν − ∂νA
a
µ − gfabcA

b
µAc

ν︸ ︷︷ ︸
F a

µν

)2 +

+
∑

udscbt
{ψ̄f [(∂µ + igAa

µT a
︸ ︷︷ ︸

Dµ

)γµ + mf ]ψf}

Classical EOM extremize the action:

Dµ = ∂µ + igAµ, Fµν = (ig)−1[Dµ, Dν], [Dµ, Fµν] = Jν, [Dν, Jν] = 0

Parameters: Nc, g, mf ⇒ Nc, g(µ),mf(µ), ΛQCD in Quantum Physics.



2Scenario, parameters

A + A central collision, A ≈ 200, γ =100 (RHIC) =2250 (LHC),
v ≡ tanh(yB) ⇒ yB =5.3 (RHIC) = 8.4 (LHC).

Max size ∼ 2RA ≈ 12 fm, max time ∼ RA/cs ≈ 10 fm/c + some expansion.

Perturbative picture:

A nucleus is a ”cloud of partons”. Small x =
pL/E gluons dominate. A + A is ∑(gg →
gg). N:o of gluons saturates:

∂tN(t, x) = ∂2
xN︸ ︷︷ ︸

diffusion

+ N −N 2
︸ ︷︷ ︸

logistics

Dominant momentum: saturation scale Qs
Qs = 1 GeV (RHIC) = 2 GeV (LHC)



3Classical (+ quantum initial condition) field picture:

Dense saturated system of gluons ⇒ large occupation numbers ⇒ classical gluon fields.

Source of those fields? Nuclei moving with v ≈ c = 1.

EM Weizsäcker-Williams fields: Solve Maxwell for v → 1 in

J0(t,x) = eδ(x)δ(y)δ(z − vt), Jz = vJ0, Jx = Jy = 0.

Nice exercise! Lots of technicalities: use x± = t± z, choose gauge:

(A+, A−,AT ) = (
e

2π
δ(t− z) log

C

xT
, 0,0) → (0, 0,

e

2π

xT

x2
T

θ(t− z)
︸ ︷︷ ︸

vacuum for t>z

)

The gauge invariant Fµν corresponds to a δ(t− z) pulse of quasi-real photons ≡ WW
photons.

Photon-photon collisions: e+e− → γγ + X → .....
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η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.



5Now take the two nuclei as zero-thickness (δ(x±)) transverse colored disks moving in

opposite directions:

Jµ = δµ+δ(x−)ρ(1)(xT ) + δµ−δ(x+)ρ(2)(xT ).

Color is built in
ρ(xT ) ≡ ρa(xT )T a.

Can you physically fix the color at each point xT? Of course not! But one may think of

drawing them from a statistical ensemble so that colors at different xT are uncorrelated

and, say, Gaussian-distributed at fixed xT :

〈ρa
(m)(xT )ρb

(m)(yT )〉 = g2µ2δabδ2(xT − yT ), m = 1, 2.

Essential parameter:
g2µ ∼ 1...2 GeV ↔ Qs.

This charging is a Brownian process (McLerran, Helsinki, 1982),

〈x2〉 = Dt ⇒ 〈µ2〉 = const A1/3

.



6What about solving

[Dµ(A), Fµν(A)] = Jν

for Aµ ≡ Aa
µT

a?

Is
[Dµ, J

µ] = 0

satisfied? Yes, for a proper gauge choice!

Since Jµ lives on the light cone, one will actually be solving [Dµ, Fµν] = 0 with boundary
conditions on the light cone:

Ai(xT ) = U(xT )∂iU
−1(xT ),

U(xT ) ∈ SU(3) is vacuum,
Fµν = 0

η = cst.

t
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7Solving [Dµ, F
µν] = Jν iteratively in charge densities ρ1, ρ2 of the two currents:

Aµ
12,a(k) =

−ig

k2

∫ d4k1

(2π)4
cµ(k, k1, k2) A+

1,b(k1)A
−
2,c(k2)

︸ ︷︷ ︸
WW fields from both currents

cµ(k, k1, k2) = .... famous Lipatov vertex

Classical fields also give perturbative weak-field tree-level gluon emission!

We want strong fields!



8For τ > 0 want

Aµ(τ, η,xT ) = ( Aτ = 0︸ ︷︷ ︸
gauge choice

, Aη(τ,xT )
︸ ︷︷ ︸
∼longit.

,AT (τ,xT ))

which are then converted to energy in and number of gluons.

Remarkable initial condition: matching to two vacua below the light cone obtain:

Ai(τ = 0,xT ) = Ai
vac1(xT ) + Ai

vac2(xT ),

Aη(τ = 0,xT ) =
1

2
ig[Ai

vac1(xT ), Ai
vac2(xT )].

For Non-Abelian theory sum (nor commutator) of two vacua is NOT a vacuum!!

(while ∂iχ1 + ∂iχ2 = ∂i(χ1 + χ2)).

Set up the numerical computation on a, say, 512×512 transverse lattice (Krasnitz,
Venugopalan, Lappi).

Parameters: g2µ,RA.



9Main output: energy density plotted as dE/dη = Vε = πR2
Aτ ε:
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g2µ = 2 GeV ⇒ 1/g2µ = 0.1 fm

Sudden rise at τ = 1/Qs, then ετ = const, no thermalisation, other physics.



10But you can as well plot ε(τ ):
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Numerical result, g
2µ  = 2 GeV

const./τ

⇒ gluon production is instantaneous, all the action is on light cone.

Creation of little bang; followed by thermalisation, expansion, hadronisation,...



11Find analytically:

ε(τ = 0) =
〈∫ d2xT

πR2
A

H(xT )

τ
|τ=0

〉

H(xT )

τ
|τ=0 = g2(δijδkl+εijεkl)Tr[A

(1)
i (xT ), A

(2)
j (xT )] [A

(1)
k (xT ), A

(2)
l (xT )]

Remember, independently for the two nuclei

Ai =
i

g
U∂iU

†, U = eiΛ, −∂2
TΛ = gρ ρ = stochastic source

The initial energy density of little bang is
given by the ensemble average of Tr prod-
uct of two commutators of vacuum fields



12Now that you have Aµ, does it produce qq̄ pairs? Strong or time dependent fields
produce particles.

t

z

x+x−

eiq·xv(q)

A
(1)
i A

(2)
i

Ai, Aη

e−ip·xu(p)



13The matrix element is

Mτ (p, q) ≡ ∫ τdzd2xT√
τ2 + z2

φ†p(τ,x)γ0γτψq(τ,x) .

Now you have to set up a truly 1+3 d computation for integrating ψq(τ,x) using Dirac.

Lattice spacing: (NTa)2 = π(6.7 fm)2 ⇒ a = 12 fm/NT ≈ 0.05 fm.

Number count: ψc
q(τ,x) has 1802×400 numbers for x, 3 for c = 3 colors, 2·4 for ψ, a

total of 1.2 GB single precision. This set is integrated forward in steps of dτ = 0.02a in
500 steps to get to τ = 0.25 fm.

F. Gelis, K. Kajantie, T. Lappi, hep-ph/0508229



14qq̄ pairs are also produced instantaneously:
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15Conclusions

• Gluons dominate the wave function of a fast-moving hadron. Thus one thought that
the initial state of little bang would be dominantly gluonic, out of chemical
equilibrium (the Color-Glass-Condensate picture assumes it is entirely gluonic).

• Parametrically, pairs are suppressed by g2 from the q + q̄ → g vertex (”suppressed”?
g ≈ 2)

• In chemical equilibrium, counting dofs, for 16 gluons there are ≈ NF× 10 q + q̄’s

• Our numerical result suggests that the intense gluonic fields produce this amount of
q + q̄’s instantaneously.

• Experimental implications: thermal dilepton production is not suppressed by lack of
q + q̄’s.


