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We all know the problem: understand the ”experimental data”:
from Bielefeld
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Basic reason of the difficulties: the magnetic sector of hot non-Abelian
gauge theory is non-perturbative, confining, numerical.
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The perturbative expression for the pressure is now known
up to g6 log g:

p/pSB = 1 Stefan-Boltzmann
+g2 2-loop (Shuryak 78)

+g3 resum 2-loop (Kapusta 79)

+g4 ln 1/g resum 2-loop (Toimela 83)

+g4 resum 3-loop (Arnold, Zhai 94)

+g5 resum 3-loop (Kastening, Zhai 95)

+g6 ln 1/g resum 4-loop (KLRS02)

+g6 not computable in PT! (Linde 80; this talk)

+g7 . . . . . . (this talk)

pSB =
π2

90
(16 +

21

2
Nf)T 4

Even though the g6 coefficient is not calculable in PT, it is
calculable - as is the non-perturbative sum starting g7.

How?
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Effective theory approach: Braaten-Nieto

pQCD(T )/T = (pE + pM + pG)/T =

= T 3
[
1 + g2(Λ) + g4(Λ) +

(
log

Λ

T
+ a log

T

ΛE

)
g6(Λ)

]
+

+m3
E + m2

Eg2
E + mEg4

E +
(
a log

ΛE

mE
+ b log

mE

ΛM

)
g6

E +

+g6
M log

ΛM

g2
M

Sequence of three theories:

• Full hot 4d QCD

• 3d gauge+adjoint Higgs theory, S[Ai, A0]

• 3d gauge theory, S[Ai] = 1
4F

2
ij

carefully matched in the UV. (Matching will be also the main point in the

next talk by Vepsäläinen)
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General remarks:

1. In the determination of p(T )V = −F there is always an
arbitrary ”cosmological” constant. Fixed by

p(T → 0) = 0 or p(T →∞) = pSB(T ).

2. For the calculation to be useful, renormalisation has to be
carried out so that g is the g(T/ΛMS) experimentally deter-
mined in the MS scheme:
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3. If

µ
∂

∂µ
g(µ) = −β0g

3 − β1g
5 + . . .

then

µ
∂

∂µ

[
g2(µ) + 2β0 log(µ)g4(µ) + (4β2

0 log2(µ) + 2β1 log(µ))g6
]

is of order g8.
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Perturbative result (known for all Nf ):

a ≡ αs(µ̄)

π
Nf = 0

pQCD(T )/pSB(T ) = 1− 15

4
a + 30a3/2 +

+


237.2 +

135

2
log a− 11

2

15

4
log

µ̄

2πT


 a2

+


−799.1 +

495

2
log

µ̄

2πT


 a5/2

+


−659.2 + 742.5 log

µ̄

2πT
− 475.6


 a3 log a

+


−1815

16
log2 µ̄

2πT
+ 2932.6 log

µ̄

2πT
+ p6


 a3 + . . .

−475.6 = −17415

16
+

63585

1024
π2

−659.2 = −49005

32
+

198855

2048
π2 − 1485

2
(log 2− γE)

Better: do NOT expand m3
E/T 3 = (g2+g4+ ..)3/2 ∼ g3+g5+ ..!
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These were obtained by evaluating the 4loop graphs
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Now that one has computed that

p(T )/pSB = . . . + 0.03738g6 log
1

g
+ . . .

one can at least fit the g6 coefficient:

1 10 100 1000

T/Λ
MS
_

0.0

0.5

1.0

1.5
p/

p S
B

g
6
(ln(1/g)+1.5)

g
6
(ln(1/g)+1.0)

g
6
(ln(1/g)+0.5)

g
6
(ln(1/g)+0.0)

g
6
(ln(1/g) −0.5)

4d lattice

log(1/g) + 0.7 gives a good fit, but is the 0.7 only g6?
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Pure 3d SU(3)

Z = exp[
pG(T )

T
V3]

=
∫ DAi exp(− ∫

ddx
1

4
F a

ijF
a
ij) MS

=
∫ DUi exp(−β

∑
[1−2]) lattice

MS scheme: KLRS, hep-ph/0211321, Schröder, hep-ph/0211288

pG(T )

Tµ−2ε
=

dAC3
A

(4π)4
g6

M

[
(
43

96
− 157π2

6144
)(

1

ε
+ 8 ln

µ̄

2CAg2
M

) + βG + ..
]

For MS with no scale 1/εUV − 1/εIR = 0. To separate the UV
divergence, shield IR by introducing mgluon, use arbitrary ξ.
Then βG = βG(mgluon, ξ).

Lattice: Take derivative of pG(T )/T w.r.t β, determine 〈2〉,
integrate back.
Remarkable recent progress using stochastic perturbation
theory Di Renzo, Mantovi, Miccio, Schröder, hep-lat/0309111.

Determination of βG and p6 seems feasible! Avoid doing an-
alytically 4-loop lattice perturbation theory!

9



After integration:

pG(T )

T
= 3c

log g2
3a

a3
+ c = dA/3

+
c1

2

g2
3

a2
+ cHeller-Karsch

1 = 1.94862

+
c2

24

g4
3

a
+ c2 = 6.7± 0.2

+
g6

3

216
(c3 log

6

g2
3a

+
1

3
c3 + c̃3)

c3 = 0.9± 0.4 c̃3 = 23± 5

The value of c3 agrees with the analytic one!! Next

• Do MS in finite V or

• Do stochastic perturbation theory with mgluon, ξ

to get the Linde coefficient βG.
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3d SU(3) gauge + adjoint Higgs theory:

exp[
pM(T )

T
V3] =

∫
DAa

iDAa
0 exp{−

∫
d3x×

[1

4
F a

ijF
a
ij +

1

2
(DiA0)

a(DiA0)
a +

+
1

16π2
(22 log

5.371T

ΛMS

+ 9)
︸ ︷︷ ︸

≡m2
E/g4

E=y∼1/g2

1

2
Aa

0A
a
0 +

+
3

44 log(5.371T/ΛMS)︸ ︷︷ ︸
≡λE/g2

E≡x

1

4
(Aa

0A
a
0)

2 +
. . .

T

]}

Ai, A0,x, dimensionless, Di = ∂i + iAi

Here m2
E, g2

E, λE are matched to 4d theory using next-to-
leading-order optimised perturbation theory.

Both m2
E and λ2

E are given by T/ΛMS.
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MS: KLRS, hep-ph/0304048

pM(T )

Tµ−2ε
= m3

E + g2
Em2

E + g4
EmE +

+
dAC3

A

(4π)4
g6

E

[
(
43

32
− 491π2

6144
)(

1

ε
+ 8 ln

µ̄

2mE

) + βM +O(ε)
]

βM = −311

256
− 43

32
ln 2− 19

6
ln22 +

77

9216
π2 −

− 491

1536
π2 ln 2 +

1793

512
ζ(3) + γ10

= −1.562519 + γ10 = −1.391512 . . .

Lattice: Take derivative of pM(T )/T w.r.t m2
E, determine

〈Aa
0A

a
0〉, integrate back.

Now we know 1-,2-,3-,4-loop perturbative results analytically
(for 〈2〉 only 1- and 2-loop)! If

pM

T
∼ m3

E + g2
Em2

E + g4
EmE + g6

E(log
µ̄

mE
+ βM) +

g8
E

mE
+ . . .

then (dimless terms; βM disappears!))

〈A
2
0

g2
E

〉 = −mE

πg2
E

+ 1 +
g2

E

mE
+

g4
E

m2
E

+
g6

E

m3
E

+ . . .

It is the last term +. . . we want to measure!
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Continuum extrapolation: βG = 6/g2
Ea →∞.

Choose y = m2
E/g4

E ∼ 1/g2 = 1.14 – 6.39, corresponding to
T ∼ 100 – 1020ΛMS. Leading term was −√y/π.
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Non-perturbative part of the condensate:
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(0.019/y is the 4loop result, subtracted in fig).
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Integrating the nonperturbative additional term in 〈A2
0〉 over

y = m2
E/g4

E = 1/g2 one obtains the additional free energy

− 0.013

0.45y0.45

which adds to p/pSB the last term in

p(T )

pSB

= . . . + 0.03738g6 log
1

g
+ 0.01645g6.9

= . . . + 0.03738g6
(
log

1

g
+ 0.44g0.9

)

1.7 > g > 1.3
when
2 < T/Λ < 10
Thus
0.44g0.9

simulates 0.7!

1 10 100 1000

T/Λ
MS

0.0

0.5

1.0

1.5

p/
p 0

g
6

full result

4d lattice

g
6
 ln 1/g, last perturbative
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That
+0.03738g6

(
log

1

g
+ 0.44g0.9

)

gives a good fit to data indicates that

• the order g6 term is small

• perturbation theory + non-perturbative 3d effects de-
scribe physics down to ≈ 3Tc. And this is a first-principle
computation in field theory.

Why is the g6 coefficient small? Big Linde term βG which is
effectively cancelled by -big terms from matching?

One should work out the g6 coefficient!

Small corrections from 〈A4
0〉 (start at g6), higher dimensional

terms truncated in the effective theory S[Ai, A0], say, A2
0F

2
ij,

(start at g7)...
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What remains to be done for g6?

+
g6

(4π)4

{
βE1 − 1

4
dAαE4

[
(dA + 2)βE4 +

2dA − 1

Nc
βE5

]

−dACA

[1

4
(αE6 + αE5αE7 + 3αE4αE7 + βE2 + αE4βE3)

+(αE6 + αE4αE7)
( 1

4ε
+ ln

µ̄

2gTα
1/2
E4

)]

+dAC3
A

[
βM + βG + αM

(1

ε
+ 8 ln

µ̄

2gTα
1/2
E4

)
+ αG

(1

ε
+ 8 ln

µ̄

2g2TCA

)]}

βE1: Calculate in full 4d theory in the MS scheme the order
g6 term for the pressure. Need 4-loop sum-integrals, should
be doable. IR 1/ε poles appear which precisely cancel those
above.

βE2, βE3: Calculate in full 4d theory the order ε 2-loop terms in
m2

E, g2
E.

βG: Use stochastic perturbation theory in pure SU(3) to re-
late MS and lattice and to find this Linde coefficient.
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Conclusions

• The perturbative computation of the pressure p(T, µ) of
hot QCD has been driven as far it can be

• There exists a definite and realistic scheme for comput-
ing the order g6 term. One needs both numerical lattice
and analytic computations.

• Inclusion of 3d nonperturbative effects beyond g6 ex-
tends the agreement with present lattice data down to
3Tc.

• Can one ever have such accurate and controllable ap-
proximations for time-dependent kinetic problems?
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