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Strictly speaking, there are NO results for hot QCD. There are results from 1
"AdS /CFT=AntideSitter/ConformalField Theory”, "gravity/gauge theory duality”,
for NV = 4 hot supersymmetric gauge theory matter for N. > 1, ¢° N, > 1.

One argues that hot QCD matter (QGP) observed at RHIC simulates this for 1.57T. <T'<few x T.. It is

"conformally invariant” (why not for T, <T'<1.5T.7), has N. =3 > 1 and is "strongly coupled”,
¢*N, ~ 12 > 1.

= Excitement

These 3 lectures! assume familiarity with the QCD side of deriving properties of hot QCD matter using
perturbation theory and/or lattice MC and aim at explaining AdS, CFT, N = 4, gauge/gravity duality, 4d
boundary, 5d bulk, black holes and giving an operational derivation of some of the results.

This is a complicated theoretical structure with no experimental confirmation. Great fun for a theorist.

!General lectures on this topic I have found useful are Lyng Petersen, hep-ph/9902131; D’Hoker-Freedman, hep-
ph /0201253



To keep in mind:
The duality ~ equality will be between
Quantum field theory (a special one!) in 4d

Classical gravity in 5d (for N > 1, ¢° N> 1)



1. Some Classical Gravity 2

Einstein-Hilbert® (some coordinates = = z°, !, ..., 21, flat metric 1, = diag(—1,1,1,..,1)):

1
Slgw] = e /dda:\/g(R + 2A0), ds® = guwdztdx”, g=|detgu| ¢""ga =,
guw = Ris,. Ry =R, R=g¢g"Ru,, dimR=1/length®=GeV?, dimG = GeV‘™?.

EOM from 6.5/dg,, = 0:

1 _2 55 tter
ij - § Rg/ﬂ/ - Ag/ﬂ/ =0 (: SWGTMV, T/ﬂ/ = i ) .

V3 69"

Varying conventions is a nuisance. Here for d-dimensional anti-de Sitter (AdS) space of radius L:

A: £2 éRMy:—TgILW’ RZ_T’ R+2A:_T (1)
The perfect fluid en-mom tensor T}, = (€ + p)u,u, + pg,, becomes for vacuum T}, = PracGuy = —€vacGyw and since Ag,,

should behave as +87GT),, we have €, = —A/(87G) < 0 which really characterises anti-dS space.

Number of comps in d dim: R,a5: d*(d* —1)/12, R, : d(d+1)/2.

2Sean Carroll, Spacetime and Geometry; S. Weinberg, Gravitation and Cosmology
3Interested in history? Read Ebner, How Hilbert has found the Einstein equations before Einstein and forgeries of Hilbert’s page proofs, arXiv:physics/0610154



Special solutions

1. Black hole in our world, d = 4, solution of
1
R, =0 or of RW—QRgW:O

which is asymptotically flat (7),,,) and regular on and outside an event horizon (coordinates ¢, 1,6, ¢):

s 1 .
ds® = — (1 — 7‘) dt* + ————dr® + r*df* + r*sin” 0d ¢’
r 1 —rg/r
T 1 he hc? M?2c? g A A 4rGM? A M? A
Hawk — = = = , BH — &~ 0= — 7= — ——F/—— — 477 — .
drrs  dmrs 8nGM  8tM 4G hG 4 he M2 8nlL?
2. AdS;, a solution of *
1 6
R,ul/ - i Rg,uu — Eguy (2)

With coordinates ¢, z', 2%, 23, 2

2

ds* = ;(—alt2 +dx*+dz*) z=0is boundary, z > 0is bulk

T2

:[,2(

Note how a distance scale £ has entered!

L? L?
—dt* + dx?) + —2dr2, r=—, r =00 is boundary
r 2

“For parametrisations of the Anti de Sitter metric, see Balasubramanian-Kraus-Lawrence, hep-th /9805171, Appendix
A; Lyng Petersen, hep-th/9902131, section 2; Douglas-Randjbar-Daemi, hep-th/9902022, section 6. For a detailed
analysis of de Sitter, see Kim-Oh-Park, hep-th/0212326



Symmetry of AdSs

AdS5 can be represented as the surface

—t] —t5 + 2% + a5 + a5 + 2] = —L*

in the flat 6 dimensional space with metric
ds® = —dt} — dt3 + da® + dxi + doi + da?.

Just like a 2d sphere S, is the surface 27 + 23 + 23 = R? in the flat R3 with metric ds® = dx? + da3 + dx3.

AdS; has the symmetry O(2,4)



3. AdS; black hole

L2 Z dz?
ds® = = |— |1 = S | dt? +dx*> + —— 3
=G (e T )
1 A | £2\? £31 w2 N2
T = — S = = Er ||| =V == (mT.)’ =Vs- cs.
™ 7TZO’ 4G5 4G5 / ‘ (Zo) ; G5 4 (7T * ) ’ 2

Polchinski, cosmicvariance.com/2006/12/07/: Physicists have found that some of the properties of
this plasma are better modeled (via duality) as a tiny black hole in a space with extra dimensions
than as the expected clump of elementary particles in the usual four dimensions of spacetime.

Transform to a form with just ... + dz?/2% by 2% = 2% /(1 + 2% /4z;):

BH interior

hori zon

L2 (1—2Y/(42))? 24
ds* = ol 24/(42()3) dt* + |1+ 423) (dxi + dw3 + da3) + dz°




Some technology: use Mathematica (or similar) to do gravity algebra. Assume you want to show that the’
BH (3) satisfies 5d AdS eqs (2). Here is a piece of Math code: °

n=>b (fix the dimensionality; do not use i j k | s n for anything on your own!)

coord = {t, x1, x2, x3, z} (fix the vector with coordinates used)

metric = {{-a[z] b?/z%, 0, 0, 0, 0}, {0, b%?/Z%, 0, 0, 0}, {0, 0, b?/Z?, 0, 0}, {0, 0, 0, b%/Z%, 0}, {0, 0, 0, 0, b?/(a[z]z?)}}
(define the matrix g,,, by desired symmetries. Here we pretend one function a[z] is unknown)

inversemetric = Simplify[Inverse[metric]] (compute g"")
affine := affine = Simplify[Table[(1/2)*Sum[(inversemetric[[i, s]])* (D[metric[[s, j]], coord[[k]] | + D[metric[[s, k]],
coord[[j]] ] - D[metric[[j, k]|, coord[[s]] ]), {s, 1, n}], {i, 1, n}, {j, 1, n}, {k, 1, n}] ]

(compute the Christoffel symbols Fék = %gis(ﬁkgsj + 095k — Osgji))

riemann := riemann = Simplify[Table[ Dfaffine([i, j, I]], coord[[k]] | - D[affine[[i, j, k], coord[[l]] ] + Sum[affine[[s, j, I]]
affine[[i, k, s]] - affine[[s, j, k]| affine[[i, I, s|], {s, 1, n}], {i, 1, n}, {j, 1, n}, {k, 1, n}, {I, 1, n}] ] (compute R, = ...).

J
ricci := ricci = Simplify[Table[ Sum[riemann[[i, j, i, I]], {i, 1, n}], {j, 1, n}, {I, 1, n}] ] (Ricci is Rj; = R';)
scalar = Simplify[ Sum[inversemetric|[i, j]Jricci[[i, j]], {i, 1, n}, {j, 1, n}] ] (R = g R;j; not needed now)
einstein := einstein = Simplify[ricci - (1/2)scalar*metric] (Einstein tensor also not needed now)

ads := ads = Simplify[ricci + (4/b?)*metric] (this should vanish, but does not, ads[[2,2]] gives)

(4 — 4a[z] + zd'[2])/z* from which you solve a[z] = 1 + Cz* and find that all comps vanish.

5Google curvature.nb or get diffgeo5.m or diffgeo4.m from M. Headrick: http://www.stanford.edu/~headrick



What is this £?/2* in the AdS metric?

Poincare plane: model of non-Euclidian geometry °
o 1.9 2
ds® = yQ(daz + dy*)

y ds” 2 = (dx® 2+dy2)/§2

For any line & point P off the
line, infinity of noninter—
secting lines

shttp://en.wikipedia.org/wiki/Poincarémetric



What has this to do with string theories?

1B string theory on G, <> AdS5xS® (=just (!!) a 2-dimensional nonlinear sigma model for the d = 10
fields XO(at,0?), ..... Xd_l(a1 0?)):
S[XHyh ] = —= / d*ov/—detha WG (X )0.X"0, X" + € B, (X)0, X0, X" +
—Gu(X)egi"ip" 0ath” + .. X!(a', %)
Parameters: the tension 7' = 1/(2ma/) and radius £ of AdS; and S°.

Nobody knows what is the correct background G, (X).

AdS/CFT duality: This theory is the same as N' = 4 (number of SuSy generators) conformal
supersymmetric SU(N,) Yang-Mills theory living on the 4d boundary of AdS; if

L* = /¢’ N,o/
NC
S Classicat string theory—% Super-
gravity
Calculable if N, > 1, Full quantum
A= g¢’N,. > 1 string theory
1 9°N,



String actions: 10

Particle action = —m [ dT = String action = =T fdA. T = ﬁ = Tension.

String X" (7, o) moving in a space with metric ds* = G,,,dz"dx" has the action (reparametrisation
invariance!l):

XH*oXY
S = —T/deU\/ —dethgy,  ha = GWa 87 o' = (1,0).

do® Qob’
Nambu-Goto: G, = 1,
XX X-X L
hap = (X’-X X’-X’) XY =n,X"Y =0/0t," = d/0o.

Polyakov:

1
§ = =T [drdoy/=dethy = =T [ drdoy/=dethe 5 h"ha,

1 " OXH*o0X"
— —QT/deJ\/Tthabh GWW ol




String theory simplifies if N, > 1 (string loops suppressed, corrections of order 1/N, cannot be computed)
and if also g? N, > 1 (then o < £? is "small”; corrections of order 1/A\%? can be computed):

String theory (for G, = 1,,,) has a spectrum of excitations of type M* = N/a/, N =0,1,2,... In the
limit @’ — 0 only massless excitations of spin 2,1,0,3/2, ... are excited. The theory describing these

excitations is supergravity’

— 1 ro
Slowl = 1o [ d"z/ge**[R + 4(VD)* — 5 s P ]
1 ((3)a s
1= 410 B A X E—— 3%
S[g 16WG/ ry/g[R (V) Tl e W ]

where® the o/ correction term is proportlonal to fourth power of the Weyl tensor (dimensionally the
corrections could be R + o/R? + o/?R3 + ...) and we are back to classical gravity field eqs with solutions

of type

i = (1 a1 14 LT, e, B D
\/1+7£4 r 7“41_@ 5] A R Ty

which for /1 4+ £*/r* — L£?/r* go to the 5d black hole.

"For string frame — Einstein frame, see Carroll p. 184
sGubser-Klebanov-Tseytlin, hep-th /9805156



12

2. N = 4 supersymmetric Yang-Mills

QCD (A, 0] = [

L FLP S0y (D) g

N=18uSy  S[A,N=[d

a va 1 \a,; a
_Z F;}JVFM — 2)\ ZF'M <D'u)\) ]

N = 4 SuSy in full glory (1 vector, 4 fermions, 6 scalars, all adjoint) *

_ 1 1 0 a c
S[AZ7 ?7 ¢a> WL] — 2792 / d4 {2 FSVZ ( qu? -+ fabcAngzc)z + lbawu(au@b =+ fabcAzw )

+Zfabc¢arl¢ 77b Z fabcfade¢ ¢ ¢ ¢ + a C (a ¢ + fabcAb C) -+ f((? Aa) }

1<J
Here u=1,..,4, i =75,..,10, (v*,T") are ten real 16x16 Dirac matrices, ¢* is a 16-component spinor,
also ghost and gauge fixing has been introduced.

Compute the beta function:

39( )

au—ﬁ()

find 8(g) = 0! Conformally invariant on quantum level! Coupling does not run!

‘Many forms in literature, this is from Erickson-Semenoff-Zarembo, hep-th /0003055
0D.R.T.Jones, Phys.Lett.B100(1977)199(2loop), Brink et al, 1983(anyloop)



What is this A/ in N = 47 13

Read!l. N/ = 4 is the number of SuSy generators ', a = 1,2 (Weyl spinor index, rep of Lorentz group),
i=1,.. N.

[Pl“ PV} =0, [P>\7 L/W] — e {an Qiz} — 5ij QUgaPm {pr Q}yz} =0,
[P/m QZ] =0, [L,UV7 QZ] — _i(auu)zQé'

Massless reps of Poincaré: |p, h). Including Q' means (read'?) also |p, h —

1 1 .
175707 T 9 —1:

1

3 ), etc are needed =

N = 4 gauge multiplet:

A, h = %1, 2 states, )\Z, h = j:%, 8 states, X" 6 scalars.

1’d Hoker, Freedman, hep-th/0201253, Sections 2.1-4,3.1-3
12Bailin-Love, Sect. 1.4, 1.6



Symmetries of N’ = 4 SYM 14

Of course there is Lorentz, O(1, 3)~ SL(2,C). Scale invariance (dimensionless coupling) = conformal
invariance, O(2,4)~ SU(2,2). In QuantumCD this is broken (g(u) runs), in N' = 4 Quantum SYM
coupling does not run.

N =4 SYM has the symmetry O(2,4), just like AdSs;

Other symmetries, too: The N = 4 generators (¢ can be rotated = SU(4)~ SO(6) "R symmetry”. (Count
dofs: 42 —1=16(6—1))

Including SuSy transformations = an even larger supergroup SU(2,2|4).

SU(N)



Master formula for 4d gauge quantum field theory < 5d classical gravity: 15

(exp | d*z O(x)¢(x,0))pr = exp{— [ d'z [ dz Lojusld(, 2)]]

ot = (t,z", 2*, %) oM = (t, 2!, 2 2P, 2)
LHS: All there is in the field theory, all operator expectation values:
6°LHS
c.g., = (O(x)O(y))rr

0¢(z,0)0¢(y, 0)

RHS: Find the field, current ¢() to which the operator O couples (O = F}.,* = ¢(z),
O =T, = ¢ = g, etc). Then solve classical 5d gravity EOM for ¢(x, z) with proper BC and compute
the LHS. Approximation works when the coupling of LHS is large, non-perturbative!

Key issue: holography

Dofs can match since number of dofs for gravity ~ area, not volume.



Application 1: pressure of hot SYM matter

In the ideal gas limit the pressure of N = 4 SuSy YM would be

N 2 m(N? —1)
T) = —ap)—T = (8 4+ Ndy—T* = ¢ T = oT*
p(T) (93+89F)9O (8 + )A90 : al™,

(one vector = 2, six scalars = 6, four fermions = 8, all adjoint).

Weak coupling correction terms have been computed!?, a, b, ¢, d are coming:

2
o3, 32
a=Ne 6 : 27r2)\Jr 3

The plasmon term is

where the two effective masses arel?

my = <2)\ + numberg - \* + ) T, m3= ()\ + numberg - \* + ) T,

For QCD: : .
mp = 2 G (T)T? = 2 NT)T?,

the number "runs’,

No phase transition, no "hadrons”, in A/ = 4 SuSy YM!

3E.g., Nieto-Tytgat, hep-th/9906147
14In the strong coupling limit mg = 3.477T, Bak-Karch-Yaffe, arXiv:0705.0994

N2 aXlog A+ A2+ e X2+ dN3log A+ .|, A= ¢’N..

16



The result from AdS5x S5 is

N2 (3 45¢(3) 1
T)=—°<°7%|Z
p(T) == {4 Ty T

Joining weak (orders ¢°, g%, g°, preliminary) and strong coupling:

1.1} p(T)/p_i deal

1.05!

0.95/
0.9}

0.85}

0.8*F



gsq N /Lanbda)

"Experimental evidence for the 3/4" 18

1.5 T T T T TTTT T T T T TTTT T T T T TTTT

P/Pgg

- —— gs _
o®Un(Ug)+0.7)| 1
¥ = = = 4dlattice 8

[
0_0 ’._I1lllrll‘Illllllllllllllr‘l‘

1 10 100 1000
Log (T/Lambda)

0.5 1 1.5 2 25— _3 T/A

Points: Lattice Monte Carlo, Curves: Perturbation theory, Red: The famous 3/4

Argument: Near T, the gauge system is necessarily strongly interacting. For T>2T, ¢*(T) nearly constant,
N.g*> > 1, € — 3p = 0, the system is =~ conformally invariant. The 3/4 gives average behavior. Good fit!



How do you derive the result? 19

You want to get the energy-momentum tensor of a thermalised system of quanta of ' =4 4d SYM
boundary theory from solutions of 5d bulk gravity. Expect T},,(x) to be related to gy (z, 2).

Method 1°: write the 5d metric in the form

L? G 0
PIN="21 0 1

and expand near z = 0:
Gu(, 2) = 9,8(,)/)(95) + gl(f,,)(fﬁ)z2 + g/(j,i)(ac)z4 + ...

Then

£l w1 2 L. 1

T = o G 9w — gguv [(Tr 9(2)) —Tr 9(2)] - 2(9(2)9(0)9(2)>;w + 4T1" 92) " 92)uw
Here the boundary can even be curved; for us it is flat, 7,,, and only gl(fy) contributes. Note its correct
dimensionality, 1/2% ~ T,
The gravity dual of hot boundary matter is the 5d AdS black hole
ds® = £ —(1 — ~Ax)cth + dx? 4 do3 + dod + 1d52
2 24 ! 2 3 1—z4/2;

which was written in the form
£2

2 __
d3—2

(1—=4/(4%))° 5 2!
— dt“+ (1+-— | (d d d dz?
T 24/(420) +4Z0 (daf + das + dx3) + dz

Z

For relating energy-momentum tensor on the boundary to the corresponding supergravity solution, see Brown-
York, PRD47 (1993) 1407; Henningson-Skenderis, hep-th/9806087; Balasubramanian-Kraus, hep-th/9902121; Myers,
hep-th/9903203; and, in particular, de Haro-Solodukhin-Skenderis, hep-th /0002230



Expanding: 20
£2

=1 |9uw(r,0)+ 9/34”)(:6)24 + .| datdz” + dz?
< SN——

~T

1 1

:>g/(w) —dlaug(S,l,l,l)—4 — =7T.

<0 20

Magnitude '°: Relating string theory — supergravity
167Gy = (21) g2, nontrivial!!

gs = closed string coupling, one handle costs g2. Integral over the 5d S5 can be separated (25 = 73:

10 5 5 B 5 .
167TG10/d VG = 167rG [ Pafg [ &y = 167TG /d‘” J= 167TG | Pa/g.

L 2N?

= —
G5 T

3¢7* 0 0 O
£ (4) _ icz 9(4) 0 aT* 0 0 T2 N2
27T2 j01% 0 0 CLT4 0 :
0 0 0 aT*

16 Gubser-Klebanov-Peet, hep-th/9602135; Gubser-Klebanov-Tseytlin, hep-th/9805156



Application 2: Viscosity

Another celebrated result!” is

/
n=—N2T® {1 FRLSCIN ] 1+ (8'0)3 :

8 4)3/2 A
n h 135¢(3) (7.4)3/2
1= 1+ —
s | T ewnr T 1

obtained by evaluating the correlator:
: 1 w
n = }}1@)0 2w/dtd3x e (Ty5(2)T12(0)) /d4x T(z)gy(x, 2 = 0)

In particular, i /47 should be the lower limit for all physical systems:

U
s~ Am
where = holds for all systems having a gravity dual (not proven, so far).

Reminder: 7 decribes the response of flow to shear, v; varying as a function of x5 = Ti5. Friction force on a spherical
object moving in a fluid:

Ffriction - _67TR : 77 VvV
= dimn=kg/(ms)=Js:m3. Reynolds number Re=pLV/n. "Small’ = turbulent flow; Navier-Stokes flow does not go to

Euler flow when 7 is "small”; flow develops an internal length scale 6 < L!!

"Policastro-Son-Starinets, hep-th/0104066; Buchel-Liu-Starinets, hep-th /0406264

21



Air (n ~107°, s = S/V ~ N/V ~ lkg/m,/m> ~ 10*"/m?): 22

n _107° N 10~%
s 1027 4

Kinetic theory:

. T'r
~ P o T3C =T7.>h  uncertainty principle
s

So the limit /s > h = 1 is quite expected, but now > — >

» |33

Experimental fact: QCD matter observed in heavy ion collisions at RHIC/BNL has T" up to 57 (strongly
coupled!!) and flows nearly ideally.

Seems paradoxical: weakly coupled fluid has a "large” viscosity!

Bjorken flow: v(t,z) = x/t,
1 T; 1/3 1
T(r) = (T, (A R
(7) ( " 67TT¢> <7'> O




Collection of formulas for Green's functions 23

A(t) = et A(0)e " and B(t) are two operators, (O) = Z 'Tre PH Q.

= [ dte M ADBO))  h(w) = [T At BO)A(E) = e (w)
Galt) = (i[AW), BOO) Grlw) = [= X P e ),

—00 1 W —w — 1€

(1— e‘ﬁw)Jl( )= ImGR(w)zl > 2né(w+E,—F )(n\A(O)\m>(m[B(O)\n}(e_ﬁE”—e_ﬁEm),

2 mn

Gﬂ(“)n) = GR(w + i€ — w, = i27TnT) — /Oﬁ dr 6iwnTGﬂ(7_>,

L\D\H

plw) =

o dw exp(—wT) /oo dw cosh(3 8 — T)w

GlT) = Tnziio e T Gwa) = /—00 7rp<w)1 —exp(—fw) Y 7Tp<w> sinh 1 Sw

"Lattice MC determination of 77 in QCD" means measuring G)3(7) for T2 and somehow inverting the
spectral representation and finding out the derivative of p(w,T) at w = 0:

=00, 7).

s this even possible!®?

18 Aarts-Martinez Resco, hep-ph/0203177, Meyer, 0704.1801



In AdS/CFT the master formula permits one to compute even Minkowskian correlators! 24

Discuss on blackboard, if time permits!



Application 3: Expanding matter? >

What would be the gravity dual of an expanding system? Can we see the effects of 1/s = 1/(47) there?

A conformally invariant (7%, = 0) conserved (D, T"" = 0) T}, in the coordinates
ds* = —dr? + T2dn* + dx3 + da3 is

—€(T) 0 0 0

u 0 —e(r)—7€(7) 0 0

= 0 0 e(T) + %7’6’(7’) 0
0 0 0 e(1) +57€(7)

Here €(7) is an unknown function, p; = pr if € ~ 1/7%3. Any constraints from AdS/CFT?
14+1+4-2d Bjorken similarity flow with AdS/CFT parameters:
e(T) = 3p(T) =3aT?, n=p(T)/(47) = aT?/7, a = 7*N?/8, ( =0

T xH
U(t,l’) — ; = taDhQ(T, 77)7 @(7-7 77) =1, ' = )
T
1 T; 1/3 1
T(T) = (TZ + 6777-) (7_> - e(T) = 3aT*(7)



Adiabatic flow numbers for Pb+Pb:

! T T !
1000 ¢ lyl<o5
A=208
1
HE 100 £ .
@ -
O, i
E 10} E
w E m
| L
0.1 10

1/7’1/3,67'(' simple, T;,7; (very) hard, T;7; ~ h

26



Search for time-dependent solutions of AdS,.; with proper symmetries 27

1 did —1
Ryn — QRQMN — (QL,Q)QMN =0, (7,m, X7, 2)
£2

5 (gwd:ﬁ“das” + dz2) (T, 2) = dO(z) + ¢W ()2t + 25+ ...

3% 5%

Ty = # - 9,%/)(95)
—dt* + dx* = —dr* + Tdn* + daj + dai:

gMN =

Heavy ion collision, boundary metric g(O>

2% :
£2

9
ds 5

{—ea(m)dTQ + 72T dn? 4 ) (dad + dad) + dzﬂ
z

Small-z expansions start: a(7, z) = z%ao(7) + 2%a1(7) + ..., e* = 1+ 2%ao(7) + 2° + ..
= (1) = —# - ao(7)
by, co give longitudinal and transverse pressures(7). So "just” need ag(7)!

Obtain 5 non-linear 2nd order partial differential equations (77, nn, T'T, zz, Tz components of Einstein)
for a(r, 2), b(T, 2), c(T, 2) = no analytic solution known = global structure of soln unknown.

First appro idea: feed to Einstein the above expansions and solve ag, a1, etc. Not good enough: basically
you reproduce the form of conformally invariant conserved 7, with one unknown function.

Need info on large z, the bulk; criteria for choosing correct soln

£2
Cosmology, dt* — r*(t)dx* : ds* = —[—alt, 2)dt* + b(t, 2)dx? + dz*]
z
v Janik-Peschanski hep-th /0512162, Heller-Janik hep-th /0703242, Nakamura-Sin hep-th /0607123, Kovchegov-Taliotis
0705.1234, Kajantie-Louko-Tahkokallio 0705.1791




Exact time dep solution for d = 2, —d7? + 72dn* + dz* % 28

9 2
2N 2 249 9
(1—@2T2) dr + (1 +—2 ;) Todn” + dz

£2

2

1 M —1

2 V2 4
Suggests a horizon at z = v7 moving with velocity v. However, structure of AdS3 is completely known
(BTZ)! Transform 7,2 — V,U — t,r

V—(ZT_(\/M+1>Z)<Z>\/M7 r—ﬁ\/i(l_UV) M51+4:MBH'8G3

ds® =

27‘+<\/M—1>z v V2
2T — M —1 —VM
e [ )
27 + (VM +1) 2 o/M U
1 —UV\?
ds? — 2| _ M( ) 9
= ds E{ (1_Uv)2dVdU—i— LUV dn
9 re 2 4 ’ 279
dS: (B_M)dt 2/£2_M+7°d77
Completely static! s, 1"
ds. _vM - VMoo
,Cdn 4G3 2L

0 < n < 27 is unwrapped, no limits!

2Kajantie-Louko-Tahkokallio, arXiv:0705.1791 hep-th]



Global structure is completely known:

r=0
atan(V)
Ve
A\ /
SRR
r=oo s r=oo
r=0

Boundary is r = o0, z = 0!

The region 0 < 2z < v7 =
part of interior of while hole + exterior of black hole.
rm=22=Ly/M—-1<r<ry=LJVM<r<o

Matter comes out of a white hole!
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£2
22

ds’

1,

Energy-momentum tensor in boundary CFT

g datdx” + dz*], G = g/(f)y) (1) + ngQV)(T)ZQ + .. gg)y) — diag(—1, 7%)
_ ﬁ[g@) — g OTr(g@ T = LM—=1) (7720 M. —1
87‘(’G3 uv nyv uv v 167TG3 O 1 fluid vac
—e(r) 0 L M 7Ll _,
v ( 0 p(7) ) ’ e(7) = pl7) 167Gy 72 4G5 (7)

Entropy density and 7 S = s(T)V = p/(T)V:

Effectively: scale static Ty, s by L/,

VI VW

T = —
b1z 2L - 2T

Works nicely, but gravitation in 3d is not dynamical!
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Back to d = 4: The metric with Ty = 1/mz 31

£2

~2

ds® =

(1—2"/(42))° .0 2t 2 2 2 2
_ 1+ =
L+ 24/(4z) dt” + |1+ 12 (dxi + dx5 + dx3) + dz

1/3

is a solution = clearly need large z! Solve iteratively in powers of z/7'/° or z/7 and demand regularity.

Large 7: If you take the time dependent JP metric

L2 (1 =24/ (4z(r)h))” 2t
d 2 _ . d 2 1 2d 2 d 2 d 2 d 2
s = 5 2 ) + +4z0(7)4 (77°dn” + dxj + dw3) + d=z
20(T) = 3t/471/3
you get
-2 0 000
_1.2
Ry — oR 0 8 0 (1) 8 8 a
MN — JfWYMN — 59MN = a2 4
2 L 0 0 010 972 25(T)
0 0 000
Not a soln but — 0~ 1/72 at fixed z/7'/3. Further € = —ay(7) =~ 1/23 ~ 774/3.

The JP metric looks like the static metric with moving horizon, but for the factor dz} « 72dn?.



Small 7: take the KT metric (a = unknown constant) 32

LQ
ds® = = {—(1 — az4)d72 + (1 — az4)72dn2 + (1 + az4)dx§ + (1+ az4)dx§ + dzz]
and find
0000 0
| 6 0000 0
RMN_QRQMN_EQQMN: 0000 0
0000 0
000 0 32a*(1 —a?2®)"22°
This is a solution if 7 — 0 at fixed z/7! Implication:
1 0 00 -1 0 00 -3 000
0 —100 0 =100 0 100
(4) — L i —
Gw =% 0 10 v=al v o9 10 traceless like g¢", = a 0 010
0 0 01 0 0 01 0 001

In local thermal equilibrium €/3 = p;, = pr, at 7 = 0 € = —py, = pr, negative pr!



Can one interpolate? |s there some time 7, when "7 = (" goes over to "7 — o0'? 33

e For 7 — 0 the system is in a quantum state and

1
Tl = —
-
e For 7 — o0 the system is thermalised:
T 1/3
'l = n'T; ()
-
e These are equal at 7 = 7,,:
1
Teh — Ti 7= 975"
" (wTim;)3/2

— Whatever this means! —-

e Theoretical status of time dependent systems? More exact solutions, understanding global structure?
e More fields? Scalars, form fields?

e Source terms?



Application 4: Expectation values of Wilson loops o

P exp [ig /O A“dazu} C' = closed loop, Tr is gauge invariant

Expectation value of a Wilson loop 2! in the boundary field theory = Action of the string hanging from the
loop in the 5th dimension.

Take Q at x = —L/2, Q at L/2. How deep does the string connecting them hang in the z direction, i.e.,
what is z = z(x,t) = z(x) for the extremal configuration (expected to be static, no t)?

Particle action = —m [ d7 = String action = =T [dA. T = ﬁ = Tension.

String X/ (7, o) moving in a space with metric ds* = g,,,dz"dx” has the action:

XHroXY
S = —T/deU\/ —dethy, h OX"0 o' = (1,0).

= I g ot
Nambu-Goto: g, = 1,

o XX X-X
“TlX X XX

) XY =n,X"Y" =09/0r,"=0/0o.

2For a discussion of a Wilson loop and its relation to a Q — @ (free)energy at T = 0 and T' # 0, and real ¢t <
imaginary time 7 = it, see H.J. Rothe, Lattice gauge theories, Ch. 7 and 8 and Sect. 20.2.



String hanging ** from a Q and a Q at 2z = 0 in the metric ds® = g(2)dt* + g..(2)da® + g..(2)d2>.

T T T T T T T T T T T T T Tt ZO

Zy

—L/2 0 L/2 X

ol=t, o’=nz, Xt =(t,z,0,0, z(t, x) — z(x))

9 )
By = ( it + 9222 g:2%%2 ) ], — \/_gttgxx . gttgzzzl2 _ gxngZZ'Q

! 12
9.7 2 oo T 9222

Extremize (T’ = 1/(2ma/) = tension, z = 0, g(z) = 1 — z!/2] specialising to the 5d AdS BH)
£2

[T g (2

22

S =TAt [, dev/=h = TAL2 [* dz ! (2)V/=h = At—,
B ¢ fye’

Key technical point: do L = dx L(z(x), 7 (x)) = dz2'(2)L = dz L,..(2'(2))

2Rey-Yee, hep-th/9803001; Sonnenschein, hep-th/9910089
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Equation of motion is 36

87[/ _ iﬁiL — )= oL _ _gttgzmle
Ox(z) dz07'(z) 02/ (2)  /—GiG-> — G11GuaT’

The constant is fixed neatly so that the maximum value of z is z,, z(x = 0) = z,, 2/(z,) = 0. This gives

= constant. (5)

2? = (dz/dx)? from which by integration (Exercise)

dz dz

L=2[" =2/ g1 = gu(24), ete.
Y gue (91900 g(z) =t _ ' ’
ngz <gzkt9;x 1) Jg<z) ?fg(z*) 1]
Inserting this 22 to the action gives the extremal action (Exercise)
z o zz z £2 1
S =TAt2 [*de|— 2= A2 [+ de
€ 1 — 9it9zx € Z2$1_z49(z*)
Jtt9rx g(z) 24

Separate divergence of the 5d AdS BH at z — 0:
1
22

2 1 1 2 1 1
f(z) =] dzzg[f<z)_1+1]:€+ 0 dzzg[f(z)_l]—;

z
“dz
€ Z*

throw away 1/e. For Euclidian Wilson loop (At x R — loop) ~ exp|—AtV (R)| so write here
V(L, ZQ) = S/At



z dz 1 1
L z)=2TC* [ = —1| - =
V(L, 2) L /o 2 \/1 ~ 2 (e 2
g(2) =%
Scaling z = vz, 24 = Ymzo: >
dy
L = 2% [ gy) =y' /1 -y
"= yalym) /aly) — 1]
L’ m d 1 1
V(L,2) = — {jﬁ —1—}
amzo |0 v |1 = q(y)/a(ym) Ym
Units of length and energy given by
1 L?
= — —Vhp = =\/g2N, Ty.
TZ0 T, QQ . 9 H
Small L (and y,, — 0, q(y) ~ y):
0.2285+/¢*N.
Intermediate 0 < L < L__: can fit to
4 oy
L)y=——> L
V(L) 37 +0o

Small L again for y,,, — 1:

J L2
V(L 20) = Vg = — [*5 =

o 22 o' T2

37

After some 1,,, for L > some value (see Fig) the dominant config is that with separate QQ. This is also a

solution of (5) with ' =0, z, = 2.
2Plotted with Mathematica using ParametricPlot[{L[ym], V[ym]}, {ym, 0.15, 0.994}] in Fig.1
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Figure 1: The distance L as function of y,, evaluated from (6), the extremal action and its tip region from (7) (all scaled by the factors outside
the integral) and the Q@) configuration.



Picture from AdS/CFT: 39

e at small distances conformally invariant form V' ~ 1/L, \/-- dependence on g% N, is typical of strong
coupling.

e at some distance interaction is screened and (J() separate.

e one can put in numbers

e mathematics of the curves is pretty: the independent QQ solution is obtained also from the
string-connected solution when z, — 2y and the two branches approach each other

This was just an example of numerous applications of AdS/CFT to Wilson loop computations. Works even

for gluonic scattering amplitudes!! 2

2iLarge number of papers, mine is Kajantie-Tahkokallio-Yee, hep-ph/0609254
» Alday-Maldacena, arXiv:0705.0303



Addendum

There is no exact solution with the symmetry

but there is

26

ds

2 _

£2

22

{—6“(7’@0372 + 7T

26b

"2 dn? 4 e (da + da?) + dzﬂ

an exact solution with the symmetry

ds®> = £

22

26Binetruy et al, hep-th/9910219, Kajantie-Tahkokallio, hep-th /0612226

[—a(t, 2)dt* + b(t, 2)dx* + dzZ]
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Solution in 143 dimensions: 1 = 7(t) "
ds* = [—a(t, 2)dt* + b(t, 2)dx* + dz*] /2%,  Ryn +4gun =0

o 2 - 2 2 2
(t > [(1 B 47“Z2> N (47“ o 47“2> 24 - 4T}lZOIZ4] (1 T 24/(4Z61))2
a(l, z) = 2 \2 =1 4/ (44
[(1 _ 47222) i F}rngﬂ 1+ 24/(4z3)
) 7,,/2 ) 2 1 A 24
b(t, Z) =T (1_47“2Z ) +4?“42612 T(t)__zll—i_llzg

Again a time dependent solution with a "horizon” at a(t, z) = 0:

5 Ay? 5,2 T 1
P S5 2z Ty = —
HE = e Wl/zél + (r2 — rr’")? ORI H

20

Is there a coordinate transformation transforming away the ¢-dependence?

Boundary metric now is RW:

G (,0) = (=1,7°(t),7*(t), 7 (1))

but r(t) is any function of ¢. Brane gravity adds a brane and Einstein with G4 to determine r(%).



pri 12

g,LLV(ta Z) = gfboy)(t) + gf)(lf)ZQ + ggly)(t)f + ...,
D |

2(9(2)9(0)9(2)),uu + 4TI’ 92) " 92)uv

|
9ha — 9w (T g2 = Trgfy)] -

Ty =e(t) =

3N2( 1 oM T 1
~ ~ Tt 4
872 (z4r4 + 47“4) ri(t) 4 %L R

curvature
1 N2 74/2 !

€(t) —

radiation

Ti(t) = 8t 13

trace anomaly/3
€ = 3p ~ T% are known, T'(t) =7, s = p/(T) =?, r(t) =?. Obvious that r(t) = t/t,
works nicely:
1 %

37T2N2 1 1
€(t) = — 5t

8 t\r 4

T ~ 1/7‘1/3 follows if expansion is in 1d, thermalisation in 3d.



2

Zg0(t, 2)

The JP argument for fixing r ~ t”: R = —20/L* R"R,, = 80/L*,

| 4

RMV&BR/JVO&ﬁ — E }

This is 112/£%* at the horizon if 7(t) = t/ty. If r(t) ~ t?>1, this is ~ 3P~ for t > 2,
(similarly p < 1), thus

40 + 72

r(t) = fo

We thus have gravity dual of matter in the center of spherical bang:

Thermalisation condition: temperature can be defined for

to/ZQZﬂ'TtQ >1=~nh
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