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1Strictly speaking, there are NO results for hot QCD. There are results from

”AdS/CFT=AntideSitter/ConformalFieldTheory”, ”gravity/gauge theory duality”,

for N = 4 hot supersymmetric gauge theory matter for Nc À 1, g2Nc À 1.

One argues that hot QCD matter (QGP) observed at RHIC simulates this for 1.5Tc<∼T<∼few × Tc. It is

”conformally invariant”(why not for Tc<∼T<∼1.5Tc?), has Nc = 3 À 1 and is ”strongly coupled”,

g2Nc ≈ 12 À 1.

⇒ Excitement

These 3 lectures1 assume familiarity with the QCD side of deriving properties of hot QCD matter using

perturbation theory and/or lattice MC and aim at explaining AdS, CFT, N = 4, gauge/gravity duality, 4d

boundary, 5d bulk, black holes and giving an operational derivation of some of the results.

This is a complicated theoretical structure with no experimental confirmation. Great fun for a theorist.

1General lectures on this topic I have found useful are Lyng Petersen, hep-ph/9902131; D’Hoker-Freedman, hep-
ph/0201253
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To keep in mind:

The duality ∼ equality will be between

Quantum field theory (a special one!) in 4d

Classical gravity in 5d (for Nc À 1, g2Nc À 1)



3
1. Some Classical Gravity 2

Einstein-Hilbert3 (some coordinates xµ = x0, x1, ..., xd−1, flat metric ηµν = diag(−1, 1, 1, .., 1)):

S[gµν] =
1

16πG

∫
ddx

√
g(R + 2Λ), ds2 = gµνdxµdxν, g = | det gµν| gµαgαν = δµ

ν ,

gµν ⇒ Rα
µβν, Rµν = Rα

µαν, R = gµνRµν, dim R = 1/length2 = GeV2, dimG = GeVd−2.

EOM from δS/δgµν = 0:

Rµν − 1

2
Rgµν − Λgµν = 0


= 8πGTµν, Tµν =

−2√
g

δSmatter

δgµν


 .

Varying conventions is a nuisance. Here for d-dimensional anti-de Sitter (AdS) space of radius L:

Λ =
(d− 1)(d− 2)

L2 ⇒ Rµν = −(d− 1)

L2 gµν, R = −(d− 1)d

L2 , R + 2Λ = −2(d− 1)

L2 (1)

The perfect fluid en-mom tensor Tµν = (ε + p)uµuν + pgµν becomes for vacuum Tµν = pvacgµν = −εvacgµν and since Λgµν

should behave as +8πGTµν we have εvac = −Λ/(8πG) < 0 which really characterises anti-dS space.

Number of comps in d dim: Rµναβ : d2(d2 − 1)/12, Rµν : d(d + 1)/2.

2Sean Carroll, Spacetime and Geometry; S. Weinberg, Gravitation and Cosmology
3Interested in history? Read Ebner, How Hilbert has found the Einstein equations before Einstein and forgeries of Hilbert’s page proofs, arXiv:physics/0610154



4Special solutions

1. Black hole in our world, d = 4, solution of

Rµν = 0 or of Rµν − 1

2
Rgµν = 0

which is asymptotically flat (ηµν) and regular on and outside an event horizon (coordinates t, r, θ, φ):

ds2 = −
(
1− rs

r

)
dt2 +

1

1− rs/r
dr2 + r2dθ2 + r2 sin2 θdφ2

THawk =
1

4πrs
=

h̄c

4πrs
=

h̄c3

8πGM
=

M 2
Pl
c2

8πM
, SBH =

A

4G
=

c3

h̄G

A

4
=

4πGM 2

h̄c
≡ 4π

M 2

M 2
Pl

≡ A

8πL2
Pl

.

2. AdS5, a solution of 4

Rµν − 1

2
Rgµν =

6

L2
gµν (2)

With coordinates t, x1, x2, x3, z

ds2 =
L2

z2
(−dt2 + dx2 + dz2) z = 0 is boundary, z > 0 is bulk

=
r2

L2
(−dt2 + dx2) +

L2

r2
dr2, r =

L2

z
, r = ∞ is boundary

Note how a distance scale L has entered!
4For parametrisations of the Anti de Sitter metric, see Balasubramanian-Kraus-Lawrence, hep-th/9805171, Appendix

A; Lyng Petersen, hep-th/9902131, section 2; Douglas-Randjbar-Daemi, hep-th/9902022, section 6. For a detailed
analysis of de Sitter, see Kim-Oh-Park, hep-th/0212326



5Symmetry of AdS5

AdS5 can be represented as the surface

−t21 − t22 + x2
1 + x2

2 + x2
3 + x2

4 = −L2

in the flat 6 dimensional space with metric

ds2 = −dt21 − dt22 + dx2
1 + dx2

2 + dx2
3 + dx2

4.

Just like a 2d sphere S2 is the surface x2
1 + x2

2 + x2
3 = R2 in the flat R3 with metric ds2 = dx2

1 + dx2
2 + dx2

3.

AdS5 has the symmetry O(2,4)



63. AdS5 black hole

ds2 =
L2

z̃2


−


1− z̃4

z4
0


 dt2 + dx2 +

dz̃2

1− z̃4/z4
0


 (3)

THawk =
1

πz0
, S =

A

4G5
=

1

4G5

∫
d3x

√√√√√√



L2

z0




3

= V3 · L
3

G5

1

4
(πTHawk)

3 = V3 · π
2N 2

c

2
T 3.

Polchinski, cosmicvariance.com/2006/12/07/: Physicists have found that some of the properties of

this plasma are better modeled (via duality) as a tiny black hole in a space with extra dimensions

than as the expected clump of elementary particles in the usual four dimensions of spacetime.

Transform to a form with just ... + dz2/z2 by z̃2 = z2/(1 + z4/4z4
0):

1 2 3 4

0.2

0.4

0.6

0.8

1

1.2

1.4
BH interior

z

horizon

ds2 =
L2

z2


−(1− z4/(4z4

0))
2

1 + z4/(4z4
0)

dt2 +


1 +

z4

4z4
0


 (dx2

1 + dx2
2 + dx2

3) + dz2


 (4)



7Some technology: use Mathematica (or similar) to do gravity algebra. Assume you want to show that the

BH (3) satisfies 5d AdS eqs (2). Here is a piece of Math code: 5

n=5 (fix the dimensionality; do not use i j k l s n for anything on your own!)

coord = {t, x1, x2, x3, z} (fix the vector with coordinates used)

metric = {{-a[z] b2/z2, 0, 0, 0, 0}, {0, b2/z2, 0, 0, 0}, {0, 0, b2/z2, 0, 0}, {0, 0, 0, b2/z2, 0}, {0, 0, 0, 0, b2/(a[z]z2)}}
(define the matrix gµν by desired symmetries. Here we pretend one function a[z] is unknown)

inversemetric = Simplify[Inverse[metric]] (compute gµν)

affine := affine = Simplify[Table[(1/2)*Sum[(inversemetric[[i, s]])* (D[metric[[s, j]], coord[[k]] ] + D[metric[[s, k]],
coord[[j]] ] - D[metric[[j, k]], coord[[s]] ]), {s, 1, n}], {i, 1, n}, {j, 1, n}, {k, 1, n}] ]

(compute the Christoffel symbols Γi
jk = 1

2 gis(∂kgsj + ∂jgsk − ∂sgjk))

riemann := riemann = Simplify[Table[ D[affine[[i, j, l]], coord[[k]] ] - D[affine[[i, j, k]], coord[[l]] ] + Sum[affine[[s, j, l]]
affine[[i, k, s]] - affine[[s, j, k]] affine[[i, l, s]], {s, 1, n}], {i, 1, n}, {j, 1, n}, {k, 1, n}, {l, 1, n}] ] (compute Ri

jkl = ...).

ricci := ricci = Simplify[Table[ Sum[riemann[[i, j, i, l]], {i, 1, n}], {j, 1, n}, {l, 1, n}] ] (Ricci is Rjl = Ri
jil)

scalar = Simplify[ Sum[inversemetric[[i, j]]ricci[[i, j]], {i, 1, n}, {j, 1, n}] ] (R = gijRij; not needed now)

einstein := einstein = Simplify[ricci - (1/2)scalar*metric] (Einstein tensor also not needed now)

ads := ads = Simplify[ricci + (4/b2)*metric] (this should vanish, but does not, ads[[2,2]] gives)

(4− 4a[z] + za′[z])/z2 from which you solve a[z] = 1 + Cz4 and find that all comps vanish.

5Google curvature.nb or get diffgeo5.m or diffgeo4.m from M. Headrick: http://www.stanford.edu/∼headrick



8What is this L2/z2 in the AdS metric?

Poincare plane: model of non-Euclidian geometry 6

ds2 =
1

y2
(dx2 + dy2)

geodesic = line

P

x

y

For any line & point P off the
line, infinity of noninter−

secting lines

2
ds^ 2 = (dx^ 2+dy^2)/ŷ2

s =
∫

ds =
∫

dy
1

y

√
1 + x′(y)2 ≡

∫
dyL[x′(y)] ⇒ d

dy


 x′(y)

y
√

1 + x′2


 = 0 ⇒ (x− a)2 + y2 = c2

Note: much simpler to pull out dy, use L[x′(y)], not L[y(x), y′(x)]!

6http://en.wikipedia.org/wiki/Poincarémetric



9What has this to do with string theories?

IIB string theory on Gµν ↔ AdS5×S5 (=just (!!) a 2-dimensional nonlinear sigma model for the d = 10

fields X0(σ1, σ2), ....., Xd−1(σ1, σ2)):

S[Xµ, ψµ, ..] = −T

2

∫
d2σ

√−dethab

[
habGµν(X)∂aX

µ∂bX
ν + εabBµν(X)∂aX

µ∂bX
ν + ...

−Gµν(X)eα
a ψ̄

µiρa∂αψ
ν + ...

]
Xµ(σ1, σ2)

Parameters: the tension T = 1/(2πα′) and radius L of AdS5 and S5.

Nobody knows what is the correct background Gµν(X).

AdS/CFT duality: This theory is the same as N = 4 (number of SuSy generators) conformal

supersymmetric SU(Nc) Yang-Mills theory living on the 4d boundary of AdS5 if

L2 =
√
g2Ncα

′

Calculable if Nc À 1,

λ ≡ g2Nc À 1

Nc

g2Nc1 0

Full quantum
string theory

Classical string theory
gravity
Super−



10String actions:

Particle action = −m
∫
dτ ⇒ String action = −T

∫
dA. T = 1

2πα′ = Tension.

String Xµ(τ, σ) moving in a space with metric ds2 = Gµνdxµdxν has the action (reparametrisation

invariance!!):

S = −T
∫

dτdσ
√−dethab, hab = Gµν

∂Xµ

∂σa

∂Xν

∂σb
, σa = (τ, σ).

Nambu-Goto: Gµν = ηµν

hab =




Ẋ · Ẋ Ẋ ·X ′

X ′ · Ẋ X ′ ·X ′


 X · Y ≡ ηµνX

µY ν ˙ = ∂/∂τ, ′ = ∂/∂σ.

Polyakov:

S = −T
∫

dτdσ
√−dethab = −T

∫
dτdσ

√−dethab
1

2
habhab

= −1

2
T

∫
dτdσ

√−dethab hab Gµν
∂Xµ

∂σa

∂Xν

∂σb



11String theory simplifies if Nc À 1 (string loops suppressed, corrections of order 1/Nc cannot be computed)

and if also g2Nc À 1 (then α′ ¿ L2 is ”small”; corrections of order 1/λ3/2 can be computed):

String theory (for Gµν = ηµν) has a spectrum of excitations of type M 2 = N/α′, N = 0, 1, 2, ... In the

limit α′ → 0 only massless excitations of spin 2, 1, 0, 3/2, ... are excited. The theory describing these

excitations is supergravity7

S[gµν] =
1

16πG

∫
d10x

√
ge−2Φ[R + 4(∇Φ)2 − 1

4 · 5!
FµναβγF

µναβγ + ...]

S[gµν] =
1

16πG

∫
d10x

√
g[R− 1

2
(∇Φ)2 − 1

4 · 5!
F 2

5 + .. +
ζ(3)α′3

8
e−

3
2 ΦW + ...]

where8 the α′ correction term is proportional to fourth power of the Weyl tensor (dimensionally the

corrections could be R + α′R2 + α′2R3 + ...) and we are back to classical gravity field eqs with solutions

of type

ds2 =
1

√
1 + L4

r4

[
−

(
1− r4

0

r4

)
dt2 + dx2

]
+

√√√√√1 +
L4

r4

[ dr2

1− r4
0

r4

+ r2dΩ2
5

]
, Φ = const, F 2

5 ∼
L8

r10

which for
√
1 + L4/r4 → L2/r2 go to the 5d black hole.

7For string frame → Einstein frame, see Carroll p. 184
8Gubser-Klebanov-Tseytlin, hep-th/9805156



122. N = 4 supersymmetric Yang-Mills

QCD S[Aµ, ψ, ψ̄] =
∫

ddx


−1

4
F a

µνF
µνa +

∑

f
ψ̄f (iγµDµ) ψf




N = 1 SuSy S[Aµ, λ] =
∫

ddx


−1

4
F a

µνF
µνa − 1

2
λ̄aiΓµ (Dµλ)a




N = 4 SuSy in full glory (1 vector, 4 fermions, 6 scalars, all adjoint) 9

S[Aa
µ, φ

a
i , ψ

a, ψ̄a] =
1

2g2

∫
d4x




1

2
F a 2

µν + (∂µφ
a
i + fabcA

b
µφ

c
i)

2 + ψ̄aiγµ(∂µψ
a + fabcA

b
µψ

c)

+ifabcψ̄
aΓiφb

iψ
c − ∑

i<j
fabcfadeφ

b
iφ

c
jφ

d
i φ

e
j + ∂µc̄

a(∂µc
a + fabcA

b
µc

c) + ξ(∂µA
a
µ)2





Here µ = 1, .., 4, i = 5, .., 10, (γµ, Γi) are ten real 16×16 Dirac matrices, ψa is a 16-component spinor,

also ghost and gauge fixing has been introduced.

Compute the beta function:

µ
∂g(µ)

∂µ
= β(g)

find β(g) = 0! Conformally invariant on quantum level! Coupling does not run! 10

9Many forms in literature, this is from Erickson-Semenoff-Zarembo, hep-th/0003055
10D.R.T.Jones, Phys.Lett.B100(1977)199(2loop), Brink et al, 1983(anyloop)



13What is this N in N = 4?

Read11. N = 4 is the number of SuSy generators Qi
a, a = 1, 2 (Weyl spinor index, rep of Lorentz group),

i = 1, ..,N .

[Pµ, Pν] = 0, [Pλ, Lµν] = ...., {Qi
a, Q̄

j
ȧ} = δij 2σµ

aȧPµ, {Qi
a, Q

j
ȧ} = 0,

[Pµ, Q
i
a] = 0, [Lµν, Q

i
a] = −i(σµν)

b
aQ

i
b.

Massless reps of Poincaré: |p, h〉. Including Qi
a means (read12) also |p, h− 1

2 〉, etc are needed ⇒
1, 1

2 , 0, −1
2 , −1:

N = 4 gauge multiplet:

Aµ, h = ±1, 2 states, λi
a, h = ±1

2 , 8 states, Xk, 6 scalars.

11’d Hoker, Freedman, hep-th/0201253, Sections 2.1-4,3.1-3
12Bailin-Love, Sect. 1.4, 1.6



14Symmetries of N = 4 SYM

Of course there is Lorentz, O(1, 3)∼ SL(2,C). Scale invariance (dimensionless coupling) ⇒ conformal

invariance, O(2, 4)∼ SU(2, 2). In QuantumCD this is broken (g(µ) runs), in N = 4 Quantum SYM

coupling does not run.

N = 4 SYM has the symmetry O(2,4), just like AdS5

Other symmetries, too: The N = 4 generators Qa
i can be rotated ⇒ SU(4)∼ SO(6) ”R symmetry”. (Count

dofs: 42 − 1 = 1
2
6(6− 1))

Including SuSy transformations ⇒ an even larger supergroup SU(2,2|4).

SU(Nc)



15Master formula for 4d gauge quantum field theory ⇔ 5d classical gravity:

〈exp



∫
d4xO(x)φ(x, 0)


〉FT = exp



− ∫

d4x
∫ z0
0 dz Lclass[φ(x, z)]





xµ = (t, x1, x2, x3) xM = (t, x1, x2, x3, z)

LHS: All there is in the field theory, all operator expectation values:

e.g.,
δ2LHS

δφ(x, 0)δφ(y, 0)
= 〈O(x)O(y)〉FT

RHS: Find the field, current φ(x) to which the operator O couples (O = F a 2
µν ⇒ φ(x),

O = Tµν ⇒ φ = gµν, etc). Then solve classical 5d gravity EOM for φ(x, z) with proper BC and compute

the LHS. Approximation works when the coupling of LHS is large, non-perturbative!

Key issue: holography

Dofs can match since number of dofs for gravity ∼ area, not volume.



16Application 1: pressure of hot SYM matter

In the ideal gas limit the pressure of N = 4 SuSy YM would be

p(T ) = (gB +
7

8
gF )

π2

90
T 4 = (8 + 7)dA

π2

90
T 4 =

π2(N 2
c − 1)

6
T 4 ≡ aT 4,

(one vector = 2, six scalars = 6, four fermions = 8, all adjoint).

Weak coupling correction terms have been computed13, a, b, c, d are coming:

a = N 2
c

π2

6


1− 3

2π2
λ +

3 +
√

2

π3
λ3/2 + aλ2 log λ + bλ2 + cλ5/2 + dλ3 log λ + ...


 , λ ≡ g2Nc.

The plasmon term is
dA

12π
(m3

E + Nsm
3
S), Ns = 6

where the two effective masses are14

m2
E =

(
2λ + numberE · λ2 + ...

)
T 2, m2

S =
(
λ + numberS · λ2 + ...

)
T 2.

For QCD:

m2
E =

1

3
Ncg

2(T )T 2 ≡ 1

3
λ(T )T 2,

the number ”runs”.

No phase transition, no ”hadrons”, in N = 4 SuSy YM!

13E.g., Nieto-Tytgat, hep-th/9906147
14In the strong coupling limit mE = 3.4πT , Bak-Karch-Yaffe, arXiv:0705.0994



17The result from AdS5×S5 is

p(T ) =
π2N 2

c

6
T 4




3

4
+

45ζ(3)

32

1

λ3/2
+ ...




Joining weak (orders g3, g4, g5, preliminary) and strong coupling:

1 2 3 4 5 6

0.8

0.85

0.9

0.95

1.05

1.1 pHTL�p_ideal

lambda

3

5

4

strong coupling



18”Experimental evidence for the 3/4”

0.5 1 1.5 2 2.5 3

1.5

2

2.5

3

3.5

gsqHT�LambdaL

LogHT�LambdaL
1 10 100 1000

T/Λ
MS
_

0.0

0.5

1.0

1.5

p/
p SB

g
2

g
3

g
4

g
5

g
6
(ln(1/g)+0.7)

4d lattice

Points: Lattice Monte Carlo, Curves: Perturbation theory, Red: The famous 3/4

Argument: Near Tc the gauge system is necessarily strongly interacting. For T>∼2Tc g2(T ) nearly constant,

Ncg
2 À 1, ε− 3p ≈ 0, the system is ≈ conformally invariant. The 3/4 gives average behavior. Good fit!



19How do you derive the result?

You want to get the energy-momentum tensor of a thermalised system of quanta of N = 4 4d SYM

boundary theory from solutions of 5d bulk gravity. Expect Tµν(x) to be related to gMN(x, z).

Method 15: write the 5d metric in the form

gMN =
L2

z2




gµν 0

0 1




and expand near z = 0:

gµν(x, z) = g(0)
µν (x) + g(2)

µν (x)z2 + g(4)
µν (x)z4 + ....

Then

Tµν =
L3

4πG5


g(4)

µν −
1

8
g(0)

µν [(Tr g(2))
2 − Tr g2

(2)]−
1

2
(g(2)g

−1
(0)g(2))µν +

1

4
Tr g(2) · g(2)µν




Here the boundary can even be curved; for us it is flat, ηµν, and only g(4)
µν contributes. Note its correct

dimensionality, 1/z4 ∼ T 4.

The gravity dual of hot boundary matter is the 5d AdS black hole

ds2 =
L2

z̃2


−(1− z̃4

z4
0

)dt2 + dx2
1 + dx2

2 + dx2
3 +

1

1− z̃4/z4
0

dz̃2




which was written in the form

ds2 =
L2

z2


−(1− z4/(4z4

0))
2

1 + z4/(4z4
0)

dt2 +


1 +

z4

4z4
0


 (dx2

1 + dx2
2 + dx2

3) + dz2




15For relating energy-momentum tensor on the boundary to the corresponding supergravity solution, see Brown-
York, PRD47 (1993) 1407; Henningson-Skenderis, hep-th/9806087; Balasubramanian-Kraus, hep-th/9902121; Myers,
hep-th/9903203; and, in particular, de Haro-Solodukhin-Skenderis, hep-th/0002230



20Expanding:

≡ L2

z2







gµν(x, 0) + g(4)

µν (x)
︸ ︷︷ ︸
∼Tµν

z4 + ...



dxµdxν + dz2





⇒ g(4)
µν = diag(3, 1, 1, 1)

1

z4
0

,
1

z0
= πT.

Magnitude 16: Relating string theory → supergravity

16πG10 = (2π)7α′4g2
s , nontrivial!!

gs = closed string coupling, one handle costs g2
s . Integral over the 5d S5 can be separated Ω5 = π3:

1

16πG10

∫
d10x

√
G =

1

16πG10

∫
d5x

√
g

∫
d5y
√

γ =
L5π3

16πG10

∫
d5x

√
g =

1

16πG5

∫
d5x

√
g.

⇒ L3

G5
=

2N 2
c

π

⇒ Tµν =
L3

4πG5
g(4)

µν =
N 2

c

2π2
g(4)

µν =




3aT 4 0 0 0

0 aT 4 0 0

0 0 aT 4 0

0 0 0 aT 4




a =
π2N 2

c

8

16Gubser-Klebanov-Peet, hep-th/9602135; Gubser-Klebanov-Tseytlin, hep-th/9805156



21Application 2: Viscosity

Another celebrated result17 is

η =
π

8
N 2

c T
3


1 +

75ζ(3)

4λ3/2
+ ...


 1 +


8.0

λ




3/2

η

s
=

h̄

4π


1 +

135ζ(3)

8λ3/2
+ ...


 1 +


7.4

λ




3/2

obtained by evaluating the correlator:

η = lim
ω→0

1

2ω

∫
dtd3x eiωt〈T12(x)T12(0)〉

∫
d4xT 2

1 (x)g1
2(x, z = 0)

In particular, h̄/4π should be the lower limit for all physical systems:

η

s
≥ h̄

4π

where = holds for all systems having a gravity dual (not proven, so far).

Reminder: η decribes the response of flow to shear, v1 varying as a function of x2 ⇒ T12. Friction force on a spherical
object moving in a fluid:

Ffriction = −6πR · η · v
⇒ dimη=kg/(ms)=Js·m3. Reynolds number Re=ρLV/η. ”Small”η ⇒ turbulent flow; Navier-Stokes flow does not go to

Euler flow when η is ”small”; flow develops an internal length scale δ ¿ L!!

17Policastro-Son-Starinets, hep-th/0104066; Buchel-Liu-Starinets, hep-th/0406264



22Air (η ∼ 10−5, s = S/V ∼ N/V ∼ 1kg/mp/m3 ∼ 1027/m3):

η

s
≈ 10−5

1027
À 10−35

4π

Kinetic theory:
η

s
≈ pτc

s
≈ T 4τc

T 3
= Tτc>∼h̄ uncertainty principle

So the limit η/s >∼ h̄ = 1 is quite expected, but now >∼ →≥!

Experimental fact: QCD matter observed in heavy ion collisions at RHIC/BNL has T up to 5Tc (strongly

coupled!!) and flows nearly ideally.

Seems paradoxical: weakly coupled fluid has a ”large”viscosity!

Bjorken flow: v(t, x) = x/t,

T (τ ) =


Ti +

1

6πτi




(τi

τ

)1/3 − 1

6πτ
.



23Collection of formulas for Green’s functions

A(t) = eiHtA(0)e−iHt and B(t) are two operators, 〈O〉 = Z−1Tre−βHO.

J1(ω) =
∫ ∞
−∞ dt eiωt〈A(t)B(0)〉 J2(ω) =

∫ ∞
−∞ dt eiωt〈B(0)A(t)〉 = e−βωJ1(ω).

GR(t) = 〈 i [A(t), B(0)] θ(t) 〉 GR(ω) =
∫ ∞
−∞

dω′

π

ρ(ω′)
ω′ − ω − iε

= G∗
A(ω).

ρ(ω) =
1

2
(1−e−βω)J1(ω) = ImGR(ω) =

1

2

∑

m,n
2πδ(ω+En−Em)〈n|A(0)|m〉〈m|B(0)|n〉(e−βEn−e−βEm),

Gβ(ωn) = GR(ω + iε → iωn ≡ i2πnT ) =
∫ β

0
dτ eiωnτGβ(τ ),

Gβ(τ ) = T
∞∑

n=−∞
e−iωnτGβ(ωn) =

∫ ∞
−∞

dω

π
ρ(ω)

exp(−ωτ )

1− exp(−βω)
=

∫ ∞
0

dω

π
ρ(ω)

cosh(1
2 β − τ )ω

sinh 1
2 βω

”Lattice MC determination of η in QCD”means measuring Gβ(τ ) for T12 and somehow inverting the

spectral representation and finding out the derivative of ρ(ω, T ) at ω = 0:

η = ρ′(0, T ).

Is this even possible18?

18Aarts-Martinez Resco, hep-ph/0203177, Meyer, 0704.1801



24In AdS/CFT the master formula permits one to compute even Minkowskian correlators!

Discuss on blackboard, if time permits!



25Application 3: Expanding matter?

What would be the gravity dual of an expanding system? Can we see the effects of η/s = 1/(4π) there?

A conformally invariant (T µ
µ = 0) conserved (DµT

µν = 0) Tµν in the coordinates

ds2 = −dτ 2 + τ 2dη2 + dx2
2 + dx2

3 is

T µ
ν =




−ε(τ ) 0 0 0

0 −ε(τ )− τε′(τ ) 0 0

0 0 ε(τ ) + 1
2 τε′(τ ) 0

0 0 0 ε(τ ) + 1
2 τε′(τ )




Here ε(τ ) is an unknown function, pL = pT if ε ∼ 1/τ 4/3. Any constraints from AdS/CFT?

1+1+2d Bjorken similarity flow with AdS/CFT parameters:

ε(T ) = 3p(T ) = 3aT 4, η = p′(T )/(4π) = aT 3/π, a = π2N 2
c /8, ζ = 0

v(t, x) =
x

t
≡ tanh Θ(τ, η), Θ(τ, η) = η, uµ =

xµ

τ
,

T (τ ) =


Ti +

1

6πτi




(τi

τ

)1/3
− 1

6πτ
, ε(τ ) = 3aT 4(τ )



26Adiabatic flow numbers for Pb+Pb:

0.1 1 10

[fm]

10

100

1000

(
)[

G
eV

fm
-3

]

SPS

RHIC

LHC

| |<0.5
A=208

1/τ 1/3, 6π simple, Ti, τi (very) hard, Tiτi ∼ h̄

Shuryak-Sin-Zahed



27Search for time-dependent solutions of AdSd+1 with proper symmetries 19

RMN − 1

2
RgMN − d(d− 1)

2L2
gMN = 0, (τ, η,xT , z)

gMN =
L2

z2

(
gµνdxµdxν + dz2

)
gµν(x, z) = g(0)

µν (x) + g(4)
µν (x)z4 + z6 + ...

Tµν = # · g(4)
µν (x)

Heavy ion collision, boundary metric g(0)
µν : −dt2 + dx2 = −dτ 2 + τ 2dη2 + dx2

2 + dx2
3:

ds2 =
L2

z2

[
−ea(τ,z)dτ 2 + τ 2eb(τ,z)dη2 + ec(τ,z)(dx2

2 + dx2
3) + dz2

]

Small-z expansions start: a(τ, z) = z4a0(τ ) + z6a1(τ ) + ..., ea = 1 + z4a0(τ ) + z6 + ..

⇒ ε(τ ) = −# · a0(τ )

b0, c0 give longitudinal and transverse pressures(τ ). So ”just”need a0(τ )!

Obtain 5 non-linear 2nd order partial differential equations (ττ, ηη, TT, zz, τz components of Einstein)

for a(τ, z), b(τ, z), c(τ, z) ⇒ no analytic solution known ⇒ global structure of soln unknown.

First appro idea: feed to Einstein the above expansions and solve a0, a1, etc. Not good enough: basically

you reproduce the form of conformally invariant conserved Tµν with one unknown function.

Need info on large z, the bulk; criteria for choosing correct soln

Cosmology, dt2 − r2(t)dx2 : ds2 =
L2

z2 [−a(t, z)dt2 + b(t, z)dx2 + dz2]

19Janik-Peschanski hep-th/0512162, Heller-Janik hep-th/0703242, Nakamura-Sin hep-th/0607123, Kovchegov-Taliotis
0705.1234, Kajantie-Louko-Tahkokallio 0705.1791



28Exact time dep solution for d = 2, −dτ 2 + τ 2dη2 + dz2: 20

ds2 =
L2

z2


−(1− z2

v2τ 2
)2dτ 2 + (1 +

z2

v2τ 2
)2τ 2dη2 + dz2




1

v2
≡ M − 1

4
Suggests a horizon at z = vτ moving with velocity v. However, structure of AdS3 is completely known

(BTZ)! Transform τ, z → V, U → t, r

V =



2τ −

(√
M + 1

)
z

2τ +
(√

M − 1
)
z




( τ

L
)√M

, r = L
√

M


1− UV

1 + UV


 , M ≡ 1 +

4

v2
= MBH · 8G3

U = −


2τ −

(√
M − 1

)
z

2τ +
(√

M + 1
)
z




( τ

L
)−√M

, t =
L

2
√

M
ln

∣∣∣∣∣∣
V

U

∣∣∣∣∣∣ .

⇒ ds2 = L2


− 4

(1− UV )2
dV dU + M


1− UV

1 + UV




2

dη2




ds2 = −


r2

L2
−M


 dt2 +

dr2

r2/L2 −M
+ r2dη2

Completely static! s, T :
dS

Ldη
=

√
M

4G3
, T =

√
M

2πL , M ≥ 0.

0 < η < 2π is unwrapped, no limits!

20Kajantie-Louko-Tahkokallio, arXiv:0705.1791[hep-th]



29Global structure is completely known:

r = 8

r =
 r +r = r+

r = 8

r = 0 

r = 0 

atan(U) atan(V)

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

5

5

2

2

1

1

0.5

0.5

0.1

Boundary is r = ∞, z = 0!

The region 0 < z < vτ =

part of interior of while hole + exterior of black hole.

rm = 2L
v = L√M − 1 < r < r+ = L√M < r < ∞

Matter comes out of a white hole!



30Energy-momentum tensor in boundary CFT

ds2 =
L2

z2
[gµνdxµdxν + dz2], gµν = g(0)

µν (τ ) + g(2)
µν (τ )z2 + .. g(0)

µν = diag(−1, τ 2)

Tµν =
L

8πG3
[g(2)

µν − g(0)
µν Tr(g(2)

µν )]T µ
ν =

L(M − 1)

16πG3




τ−2 0

0 1


 Mfluid − 1vac

T µ
ν =



−ε(τ ) 0

0 p(τ )


 , ε(τ ) = p(τ ) =

L
16πG3

M

τ 2
=

πL
4G3

T 2(τ )

Entropy density and T : S = s(T )V = p′(T )V :

s(τ ) =
dS

τdη
=

1

τ

√
ML

4G3
=

πL
2G3

T (τ )

Effectively: scale static TH , s by L/τ ,

TBTZ =

√
M

2πL →
√

M

2πτ

Works nicely, but gravitation in 3d is not dynamical!



31Back to d = 4: The metric with TH = 1/πz0

ds2 =
L2

z2


−(1− z4/(4z4

0))
2

1 + z4/(4z4
0)

dt2 +


1 +

z4

4z4
0


 (dx2

1 + dx2
2 + dx2

3) + dz2




is a solution ⇒ clearly need large z! Solve iteratively in powers of z/τ 1/3 or z/τ and demand regularity.

Large τ : If you take the time dependent JP metric

ds2 =
L2

z2


−(1− z4/(4z0(τ )4))2

1 + z4/(4z0(τ )4)
dτ 2 +


1 +

z4

4z0(τ )4


 (τ 2dη2 + dx2

2 + dx2
3) + dz2




z0(τ ) ≡ 31/4τ 1/3

you get

RMN − 1

2
RgMN − 6

L2
gMN =




−3
2 0 0 0 0

0 −7
2τ

2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0




8

9τ 2

z4

z4
0(τ )

Not a soln but → 0 ∼ 1/τ 2 at fixed z/τ 1/3. Further ε = −a0(τ ) =∼ 1/z4
0 ∼ τ−4/3.

The JP metric looks like the static metric with moving horizon, but for the factor dx2
1 ↔ τ 2dη2.



32Small τ : take the KT metric (a = unknown constant)

ds2 =
L2

z2

[
−(1− az4)dτ 2 + (1− az4)τ 2dη2 + (1 + az4)dx2

2 + (1 + az4)dx2
3 + dz2

]

and find

RMN − 1

2
RgMN − 6

L2
gMN =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 32a2(1− a2z8)−2z6




This is a solution if τ → 0 at fixed z/τ ! Implication:

g(4)
µν = a




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1




gµ
ν = a




−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1




traceless like gµ
ν = a




−3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




In local thermal equilibrium ε/3 = pL = pT , at τ = 0 ε = −pL = pT , negative pT !



33Can one interpolate? Is there some time τth when ”τ = 0”goes over to ”τ →∞”?

• For τ → 0 the system is in a quantum state and

πT =
1

τ

• For τ →∞ the system is thermalised:

πT = πTi

(τi

τ

)1/3

• These are equal at τ = τth:

τth = τi
1

(πTiτi)3/2
.

— Whatever this means! —-

• Theoretical status of time dependent systems? More exact solutions, understanding global structure?

• More fields? Scalars, form fields?

• Source terms?



34Application 4: Expectation values of Wilson loops

P exp
[
ig

∫

C
Aµdxµ

]
C = closed loop, Tr is gauge invariant

Expectation value of a Wilson loop 21 in the boundary field theory = Action of the string hanging from the

loop in the 5th dimension.

Take Q at x = −L/2, Q̄ at L/2. How deep does the string connecting them hang in the z direction, i.e.,

what is z = z(x, t) = z(x) for the extremal configuration (expected to be static, no t)?

Particle action = −m
∫
dτ ⇒ String action = −T

∫
dA. T = 1

2πα′ = Tension.

String Xµ(τ, σ) moving in a space with metric ds2 = gµνdxµdxν has the action:

S = −T
∫

dτdσ
√−dethab, hab = gµν

∂Xµ

∂σa

∂Xν

∂σb
, σa = (τ, σ).

Nambu-Goto: gµν = ηµν

hab =




Ẋ · Ẋ Ẋ ·X ′

X ′ · Ẋ X ′ ·X ′


 X · Y ≡ ηµνX

µY ν ˙ = ∂/∂τ, ′ = ∂/∂σ.

21For a discussion of a Wilson loop and its relation to a Q − Q̄ (free)energy at T = 0 and T 6= 0, and real t ⇔
imaginary time τ = it, see H.J. Rothe, Lattice gauge theories, Ch. 7 and 8 and Sect. 20.2.



35String hanging 22 from a Q and a Q̄ at z = 0 in the metric ds2 = gtt(z)dt2 + gxx(z)dx2 + gzz(z)dz2.

−L/2 L/20
x

z

z0

z*

ε

σ1 = t, σ2 = x, Xµ = (t, x, 0, 0, z(t, x) → z(x))

hab =




gtt + gzzż
2 gzzżz

′

gzzz
′ż gxx + gzzz

′2




√
−h =

√
−gttgxx − gttgzzz′2 − gxxgzzż2

Extremize (T = 1/(2πα′) = tension, ż = 0, g(z) = 1− z4/z4
0 specialising to the 5d AdS BH)

S = T∆t
∫ L/2

−L/2
dx
√
−h = T∆t 2

∫ z∗
ε

dz x′(z)
√
−h = ∆t

L2

πα′
∫ z∗
ε

dz

z2

√
1 + g(z)x′(z)2

Key technical point: dxL = dxL(z(x), z′(x)) = dz x′(z)L = dz Lnew(x
′(z))

22Rey-Yee, hep-th/9803001; Sonnenschein, hep-th/9910089



36Equation of motion is

∂L

∂x(z)
− d

dz

∂L

∂x′(z)
= 0 ⇒ ∂L

∂x′(z)
=

−gttgxxx
′

√−gttgzz − gttgxxx′2
= constant. (5)

The constant is fixed neatly so that the maximum value of z is z∗, z(x = 0) = z∗, z′(z∗) = 0. This gives

z′2 = (dz/dx)2 from which by integration (Exercise)

L = 2
∫ z∗
ε→0

dz
√√√√gxx

gzz

(
gttgxx
g∗ttg∗xx

− 1
) = 2

∫ z∗
0

dz
√√√√g(z)

[
g(z)
z4

z4∗
g(z∗) − 1

] g∗tt ≡ gtt(z∗), etc.

Inserting this z′2 to the action gives the extremal action (Exercise)

S = T∆t 2
∫ z∗
ε dz

√√√√√√√√

−gttgzz

1− g∗ttg∗xx
gttgxx

= T∆t 2
∫ z∗
ε dz

L2

z2

1
√√√√1− z4

g(z)
g(z∗)
z4∗

Separate divergence of the 5d AdS BH at z → 0:

∫ z∗
ε

dz
1

z2
f (z) =

∫ z∗
ε

dz
1

z2
[f (z)− 1 + 1] =

1

ε
+

∫ z∗
0

dz
1

z2
[f (z)− 1]− 1

z∗
;

throw away 1/ε. For Euclidian Wilson loop 〈∆t×R− loop〉 ∼ exp[−∆tV (R)] so write here

V (L, z0) = S/∆t:



37

V (L, z0) = 2TL2




∫ z∗
0

dz

z2




1
√
1− z4

g(z)
g(z∗)
z4∗

− 1


−

1

z∗




Scaling z = yz0, z∗ = ymz0:
23

L = 2z0

∫ ym

0

dy
√
(1− y4)[q(ym)/q(y)− 1]

q(y) ≡ y4/(1− y4) (6)

V (L, z0) =
L2

α′πz0





∫ ym

0

dy

y2




1
√
1− q(y)/q(ym)

− 1


− 1

ym





(7)

Units of length and energy given by

πz0 =
1

TH
, −VQQ̄ ≡

L2

α′πz0
=

√
g2Nc TH .

Small L (and ym → 0, q(y) ≈ y4):

V (L) = −0.2285
√

g2Nc

L
Intermediate 0 < L < Lmax: can fit to

V (L) = −4

3

αs

L
+ σL

Small L again for ym → 1:

V (L, z0) → VQQ̄ =
L2

πα′
∫ z0

ε

dz

z2
⇒ − L2

α′πz0

After some ym, for L > some value (see Fig) the dominant config is that with separate QQ̄. This is also a

solution of (5) with x′ = 0, z∗ = z0.
23Plotted with Mathematica using ParametricPlot[{L[ym], V[ym]}, {ym, 0.15, 0.994}] in Fig.1
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Figure 1: The distance L as function of ym evaluated from (6), the extremal action and its tip region from (7) (all scaled by the factors outside
the integral) and the QQ̄ configuration.



39Picture from AdS/CFT:

• at small distances conformally invariant form V ∼ 1/L,
√

.. dependence on g2Nc is typical of strong

coupling.

• at some distance interaction is screened and QQ̄ separate.

• one can put in numbers 24

• mathematics of the curves is pretty: the independent QQ̄ solution is obtained also from the

string-connected solution when z∗ → z0 and the two branches approach each other

This was just an example of numerous applications of AdS/CFT to Wilson loop computations. Works even

for gluonic scattering amplitudes!! 25

24Large number of papers, mine is Kajantie-Tahkokallio-Yee, hep-ph/0609254
25Alday-Maldacena, arXiv:0705.0303



40

Addendum

There is no exact solution with the symmetry

ds2 =
L2

z2

[
−ea(τ,z)dτ 2 + τ 2eb(τ,z)dη2 + ec(τ,z)(dx2

2 + dx2
3) + dz2

]

but there is 26 an exact solution with the symmetry

ds2 =
L2

z2

[
−a(t, z)dt2 + b(t, z)dx2 + dz2

]

26Binetruy et al, hep-th/9910219, Kajantie-Tahkokallio, hep-th/0612226



41Solution in 1+3 dimensions: r = r(t)

ds2 = [−a(t, z)dt2 + b(t, z)dx2 + dz2]/z2, RMN + 4gMN = 0

a(t, z) =




(
1− r′′

4rz
2

)2 −
(
r′′
4r − r′2

4r2

)2
z4 − 1

4r4z4
0
z4



2




(
1− r′2

4r2 z2
)2

+ 1
4r4z4

0
z4




−→r(t)=1
(1− z4/(4z4

0))
2

1 + z4/(4z4
0)

b(t, z) = r2





1− r′2

4r2
z2




2

+
1

4r4z4
0

z4


 −→r(t)=1 1 +

z4

4z4
0

Again a time dependent solution with a ”horizon”at a(t, z) = 0:

z2
H± =

4r2

rr′′ ± √
4/z4

0 + (r′2 − rr′′)2
−→r(t)=1 2z2

0, πTH =
1

z0

Is there a coordinate transformation transforming away the t-dependence?

Boundary metric now is RW:

gµν(x, 0) = (−1, r2(t), r2(t), r2(t))

but r(t) is any function of t. Brane gravity adds a brane and Einstein with G4 to determine r(t).



42Tµν:

gµν(t, z) = g(0)
µν (t) + g(2)

µν (t)z2 + g(4)
µν (t)z4 + ...,

Tµν =
L3

4πG5


g(4)

µν −
1

8
g(0)

µν [(Tr g(2))
2 − Tr g2

(2)]−
1

2
(g(2)g

−1
(0)g(2))µν +

1

4
Tr g(2) · g(2)µν




Ttt = ε(t) =
3N 2

c

8π2




1

z4
0r

4
+

r′4

4r4


 ∼ T 4

0

r4(t)
+

1

t4
∼ T 4(t)

︸ ︷︷ ︸
radiation

+ t−4
︸ ︷︷ ︸

curvature
,

T 1
1 (t) =

1

3
ε(t)− N 2

c

8π2

r′2r′′

r3
︸ ︷︷ ︸

trace anomaly/3

ε = 3p ∼ T 4 are known, T (t) =?, s = p′(T ) =?, r(t) =?. Obvious that r(t) = t/t0
works nicely:

ε(t) =
3π2N 2

c

8

1

t4




t40
π4z4

0

+
1

4


 ⇒ T (t) =

1

πz0

t0
t

if t0 À z0

T ∼ 1/τ 1/3 follows if expansion is in 1d, thermalisation in 3d.



43The JP argument for fixing r ∼ tp: R = −20/L2, RµνRµν = 80/L4,

RµναβRµναβ =
1

L4




40 + 72




z2

z2
0b(t, z)




4



This is 112/L4 at the horizon if r(t) = t/t0. If r(t) ∼ tp>1, this is ∼ t8(p−1) for t À z0

(similarly p < 1) , thus

r(t) =
t

t0
We thus have gravity dual of matter in the center of spherical bang:

Thermalisation condition: temperature can be defined for

t0/z0 = πTt0 > 1 = h̄


