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Summary

* Part One:

— Second order logic and set theory capture
mathematical concepts to the same extent of
categoricity.

— Non-standard and countable models have the same
role in second order logic and set theory.

e Part Two:

— Second order characterizable structures have a
canonical hierarchy.

— Second order truth cannot be expressed as truth in a
particular structure.

— Understanding second order logic seems to be
essentially beyond second order logic itself.



Part One

e Second order view
* Set theory view
* Catogoricity



The second order logic view

 Mathematical propositions are of the form,

M = ¢ (1)

where M is a mathematical structure,
like the reals, Euclidean space, etc, and ¢ is a
second order sentence. Or of the from

— ¢ (2)




What are the specific structures?

e Specific structures are structures M that have
arisen from mathematical practice:

N,Q,R,C,R",C"...



What are the specific structures?

* Specific structures are structures M that have

a second (or higher) order characterization 4,,.
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What are the specific structures?

* Specific structures are structures M that have
a second (or higher) order characterization 4,,.
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Judgements in second order logic

e What counts as evidence for the assertion that

= U — @

holds?



Evidence for = ¢, is a proof of ¢ from ¥,
(and comprehension et al. axioms).
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S midence

Evidence for = 9, is a proof of ¢ from ¥,
(and comprehension et al. axioms).

The proof tells us more than just = &, .

If we study a formal system in which the proof is
given, then @ holds in the entire cloud” of
models of ¥J,, around M. Such models are often
called non-standard.
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The set theory view

 Mathematical propositions are of the form,
<I>(a1, cens Cln)

where ®(xq,...,z,) is a formula of set
theory with quantifiers ranging over all sets

and a,,...,a, are some specific definable
mathematical objects.

* No (1)/(2) distinction.



What are the specific objects of set
theory?

* Definable objects.
* Anything one might need in mathematics:

N,Q R,C,R"™, C"...
sin(z), ((z), I'(x)
\/57 m, €, lOg 57 C(5)

every real is definable.
A well-order of the reals need be definable.




The set theory view modified

 Mathematical propositions are of the form,

Va — (I)(Cbl, cees Cln)

where a is some rather large ordinal, although
anything bigger than w+5 (or w,) is rarely
needed outside set theory itself.

* First order variables actually range over ath
order objects over the integers.
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Judgements in set theory

e What counts as evidence for the assertion that

CID(al, cees CLn)

holds?



Evidence

 We can use the evidence that
/ZFC F (I)(Cll, cens CLn)

 Of course, this tells than the mere
assertion that ®(ay, ..., a, ) holds in the
universe of sets.




Proofs and categoricity

Categoricity is provable from Comprehension Axioms
(CA) for the classical specific structures.

= Peano(S,0,5,0’) proves isomorphism of {S,0} and {S’,0’}.
= Peano(S,0) and Peano(S’,0’) have non-isomorphic models.

Non-standard models of CA tell us about the nature of
the evidence, not about (lack of) categoricity.

It is the same in set theory.
= ZFC(€,€’) proves isomorphism of {€} and {€’}.
= ZFC(€) and ZFC(€’) have non-isomorphic models.
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Part Two

e Second order characterizable structures
* Their global structure
 Their existence



Cardinality matters

s ML 0 A

Recap:

VMMM Op AM”E Oyr) — M= M)

M is second order characterizable =» | M| is
second order characterizable.

* If kis second order characterizable, then so
are k* and 2

 The second order theory of 2¥is not Turing
reducible to the second order theory of k.
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Second order characterizable structures
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Definability matters

* |If M is second order characterizable, the
second order theory of M is A,.

* The second order theory of all structures is I1,-
complete, hence not (Turing-reducible to) the
second order theory of any particular (s. o. c.)
structure.
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Second order characterizable structures

= 1L,
2Na e o ¢ o A
N, o o o o A,
o o o o A,
No o o o o A
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Second order truth

* Conclusion: In second order logic truth in all
structures cannot be reduced to truth in any

particular specific structure.
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The existence of second order
characterizable structures

The set of second order sentences that
charcterize some structure is not /1,.

Second order characterizations depend on the
propositions

"¢ has a model”. (3)
This is a new form of proposition. But what

counts as evidence for such propositions? A
proof? Of what?

Likely choice: ZFC = ¢ has a model”; leaves
second order logic behind.
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Complete formulas

* A second order sentence is complete if it has a
model and for any second order sentence
logically implies the sentence or its negation.

e Categorical sentence are complete.

* Ajtai: Axiom of Constructibility implies that
complete sentences are categorical.

* Ajtai, Solovay: Consistently, there are complete
sentences that are non-categorical.

* Again, ¢ is complete”is not l,-definable.
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Summary

* Part One:

— Propositions of second order logic and set theory are of a
different form but both refer to real mathematical objects
and use proofs as evidence.

— Second order logic and set theory capture mathematical
concepts such as natural and real numbers to the same
extent of categoricity.

— Second order logic and set theory both have non-standard
and countable models if evidence is formalized.

* Part Two:

— Second order characterizable structures have a canonical
hierarchy based on cardinality.

— Second order truth cannot be expressed as truth in a
particular structure.

— Obtaining second order characterizable structures seems
to go beyond second order logic.



S Theses

* Second order logic is the },-part of set theory.
Mathematics outside set theory resides there.

* As a weaker form of set theory, second order
logic is an important milestone. One can
develop second order model theory.

e Set theory provides a foundation for second
order logic.

27



Thank you!



